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ABSTRACT OF THE THESIS 
 

INVESTIGATING MAPREDUCE FRAMEWORK EXTENSIONS FOR 

EFFICIENT PROCESSING OF GEOGRAPHICALLY SCATTERED 

DATASETS 

By HRISHIKESH GADRE 

Thesis Director 

Professor Manish Parashar 

We observe two important trends brought about by the evolution of Internet in recent 

years. Firstly to improve end-to-end application performance in presence of bottlenecks 

in the wide-area Internet communication, modern day Internet services are designed in a 

decentralized fashion involving geographically distributed datacenters connected through 

the Internet. Secondly the pervasive nature of Internet services has resulted into an 

exponential growth in the size of digital information created, captured or replicated. 

Organizations are keenly interested in mining this information to uncover trends, 

statistics and other actionable information which can give them competitive advantage. 

These two trends necessitate the design of a large-scale data processing system which can 

operate efficiently in a distributed environment involving multiple datacenters connected 

through the Internet. 

In recent years, MapReduce programming model and specifically its open source 

implementation Hadoop is gaining a lot of traction for performing large-scale data 

processing in a centralized environment. Our evaluation of different real-world usage 

scenarios of Hadoop deployments revealed that the organizations with the distributed 
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datasets are required to copy the entire dataset to a centralized location so that it can be 

efficiently processed by the Hadoop MapReduce framework. As the Internet evolves 

growth in the size of distributed datasets would outpace the improvements in the network 

bandwidth available in the Internet. At that point the approach of copying the entire 

dataset to a single location using Internet would become infeasible. 

In this thesis, we have investigated the possibility of extending the MapReduce and 

specifically Hadoop framework to operate in a distributed environment involving 

multiple datacenters connected through the Internet. We also have proposed policies to 

improve the performance of Hadoop MapReduce framework in a distributed 

environment. We have observed that our policies improve the performance of Hadoop 

framework substantially.   
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1. Introduction 
 

1.1 Motivation 

Today evolution of Internet is radically improving every aspect of human society e.g. 

social networking sites like Facebook provide an opportunity to connect and socialize 

with other people in a way previously unimaginable or services like Amazon or eBay 

make the experience of shopping almost effortless.   

Most of the modern enterprise applications and services on the Internet require rigorous 

end-to-end system quality. Even a small degradation in performance and reliability can 

have a considerable impact on business metrics such as application adoption and site 

conversion rates. A 2009 Forrester Consulting survey [11] found that a majority of online 

shoppers cited website performance as an important factor in their online store loyalty, 

and that 40% of consumers will wait no more than 3 seconds for a page to load before 

abandoning a site. 

The performance and reliability of the Internet has a great influence on the end-to-end 

performance of any Internet service. Since the Internet is designed as a best-effort 

network, it cannot provide guarantees about end-to-end performance or reliability. So the 

services deployed in a centralized environment (i.e. in a single datacenter) are often 

subjected to bottlenecks in the wide-area Internet communication, resulting in poor 

performance.  

To overcome this problem, modern Internet services are based on decentralized 

architecture so that they can be geographically distributed (using multiple datacenters). 
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The key benefit of this approach is the significant decrease in the data volume that needs 

to be moved, the subsequent network traffic, and the distance the data needs to travel 

which reduces transmission costs, latency and improves the quality-of-service (QoS).   

Another interesting trend brought about by the evolution of Internet is the growth in the 

size of the digital information created, captured or replicated. A report published by IDC 

[9] states that overall 988 Exabyte of digital information (including structured as well as 

unstructured) was generated in year 2010 and predicts that the size of the total 

information would grow exponentially over coming years. Also over 95% of the digital 

information is available in unstructured (or semi-structured) form such as music, images, 

application logs or event streams generated by social networking applications such as 

Twitter or Facebook.  

Organizations are keenly interested in mining this information to uncover trends, 

statistics and other actionable information which can give them competitive advantage. 

For example processing the click-stream data from the eCommerce website logs helps to 

figure out interesting trends in usage patterns and in turn customer behavior. These two 

trends necessitate a large-scale data processing system which can operate efficiently in a 

distributed environment.  

In recent years, a MapReduce programming model [2, 3] is gaining a lot of traction for 

performing large scale data processing in a centralized environment. Inspired by the 

concepts of functional programming, this model divides the required computation into a 

set of small tasks that execute in parallel on multiple machines, and scales nicely to very 

large clusters of inexpensive commodity computers. The key benefits of this 
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programming model include its simple programming interface, ability to process large-

scale unstructured (or semi-structured) datasets efficiently as well as ability to achieve 

massive scalability (and fault-tolerance) without requiring high-end computing 

infrastructure. 

Hadoop [12] is a popular open source implementation of MapReduce programming 

model, primarily developed by Yahoo! and used by a number of organizations such as 

Facebook, Amazon, and LinkedIn etc. We noticed that the current design of Hadoop 

framework is targeted towards a centralized architecture involving a single datacenter. 

We studied the real-world usage scenarios for Hadoop deployments and observed that the 

organizations with dataset distributed across multiple datacenters (such as Rackspace [5]) 

are required to copy the entire dataset to a centralized location so that it can be efficiently 

processed by Hadoop MapReduce framework. 

The feasibility of copying the entire dataset to a single datacenter depends upon a number 

of factors such that the total size of the data to be copied from each datacenter, total 

number of datacenters involved in the copy as well as capacity of inter datacenter 

network. But as the Internet evolves, the growth in the size of geographically scattered 

datasets would outpace the improvements in the network bandwidth available in the 

Internet.  At that point the approach of copying the entire dataset to a single location 

using the Internet becomes infeasible. 

1.2 Problem statement 

As part of this research, we study the design assumptions behind the different 

components of Hadoop eco-system (specifically Hadoop Distributed File System (HDFS) 
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and MapReduce) which mandate the processing of MapReduce computations in a 

centralized environment. For each such design assumption, we propose and implement a 

policy to improve its performance in a distributed environment. Finally we compare and 

contrast our policies with the native Hadoop framework in an execution environment 

involving two datacenters, one at CAC Lab at Rutgers University and the other at 

Amazon EC2 for different classes of workloads.  

1.3 Contributions 

Specifically, the contributions of this research are as follows, 

• Design and implementation of a WAN aware Hadoop Distributed File System 

(HDFS) replica placement policy which improves the performance of write 

operations with respect to the default policy in the range of 100% to 200% 

depending upon the size of the dataset being written. 

• Design and implementation of an Adaptive Reduce Task Scheduling (ARTS) 

algorithm. This algorithm substantially reduces the total size of the Map phase 

output copied across the datacenters by taking into consideration the datacenter-

locality of the Map phase output while scheduling Reduce tasks.  

Also in case of a shared Hadoop cluster, this algorithm adapts the start of the 

Reduce phase with respect to the type of the workload executed as well as the 

size of the job (such as batch or interactive). Hence this algorithm consistently 

outperforms default Reduce phase scheduling policies in Hadoop framework 

(such as early-start and delayed-start). 
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2. Background and related work 
 

2.1 MapReduce Programming Model 

To perform large-scale data analysis (e.g. log processing, building web indexes etc.) over 

a commodity cluster (comprising of thousands of machines); programmer has to make 

complex decisions such as effective parallelization of computation for speedup, data-

distribution, fault tolerance as well as scalability etc. Without support of a suitable 

parallel programming model, these issues obscure the implementation of original 

computation with large amounts of complex code to deal with them.    

To avoid such complexity, MapReduce programming model is designed, which enables 

the programmer to express intended computation without the messy details of 

parallelization, data-distribution, fault-tolerance and scalability. This programming model 

is inspired by the concepts of ‘map’ and ‘reduce’ primitives in the functional 

programming languages like LISP and ML.  

Parallel processing is a technique to divide the required computation into a set of tasks so 

that they can be executed concurrently on multiple machines in a cluster. At the end, the 

results of all the tasks are merged together to produce final result. The framework is also 

responsible to implement necessary mechanisms for fault-tolerance as well as load-

balancing. The complexity of parallel algorithms is estimated in terms of space (memory 

requirements), time (processor cycles) as well as the communication overhead between 

different subtasks.   
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The communication between different subtasks can be performed in different ways. In 

case of shared-state architecture, a central authority is responsible to maintain the state of 

the computation. Different parts of computation communicate with each other by 

updating this shared state. In order to maintain consistency of the underlying data-

structures, the concurrent accesses to the shared-state are serialized by implementing 

appropriate locking protocols. This results into serialization of part of computation as 

well as extra communication overhead, leading to degraded performance. Also, systems 

designed with shared-state architecture tend to be difficult to scale. 

On the other hand in case of shared-nothing architecture, each of the subtasks is 

independent and self sufficient, and there is not a single point of contention in the system. 

This helps to achieve high-degree of parallelism as well as lower communication 

overhead. Generally, the systems designed with shared-nothing architecture tend to be 

easy to scale. 

2.1.1 Functional programming in the context of parallel processing 

The imperative programming paradigm is characterized as having an implicit state that 

can be modified (i.e. side effected) by constructs in the source language. As a result, this 

paradigm has a notion of sequencing the constructs to permit a precise and deterministic 

control over the state.  

In contrast, functional programming paradigm is characterized as having no implicit state 

(i.e. immutable data-structures and no shared state), and the computation is expressed 

solely as an evaluation of mathematical expressions. The state-oriented computations are 

accomplished by explicitly passing the state as an argument to the function.  
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Due to the requirement of immutable data-structures, the systems based on functional 

programming paradigm are not subject to data-race conditions and hence don’t require 

elaborate locking schemes to ensure the consistency of their data-structures. Hence, we 

can say that this paradigm is based on the shared-nothing architecture - making it suitable 

for efficient parallel processing. 

Another interesting property of functional programming paradigm is the notion of higher 

order functions, which accept one or more functions as arguments and optionally return a 

function as a result. This property is very useful in abstracting the common behavior of 

the system at one place. 

Also, any computation expressed as a functional program is deterministic in nature 

regardless of the order in which the parts of the computations are performed (known by 

the Church-Rosser theorem [7]). This property along with the higher order functions can 

be used to build a software framework which can accept user defined functions as 

arguments and automatically execute them on a large data-set in a highly parallel fashion 

on a commodity cluster. 

Finally functional programming is declarative in nature. Hence functional programs tend 

to be much more concise as compared to their imperative counterparts. This helps in 

improving the programmer productivity. 

Thus, the MapReduce programming framework utilizes the concepts of functional 

programming to provide a concise interface in imperative languages (like C++, Java, 

Python etc.) to the application programmers to express their computations in the form of 

two functions ‘map’ and ‘reduce’ which are automatically executed in a highly parallel 
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fashion on a commodity cluster by taking into consideration the factors like fault-

tolerance, data-distribution and scalability. 

2.1.2 Map function 

As shown in figure 1, Map function accepts a set of elements as an input and executes 

user specified conversion (or mapping) over every input element. It returns all the output 

elements as a set. Here the input and output elements are expressed as key-value pairs. 

The result of this mapping function forms the intermediate result of the MapReduce 

computation. 

 

 

Figure 1: Map operation transforms every element in the input set using the user-
specified conversion function 

  

The independent execution of mapping function over the input elements helps to 

automatically divide the input dataset and perform the mapping operation in parallel over 

a cluster. After completion of Map operation on individual fraction of the input, system 

groups the intermediate result based on the key. At the end of Map phase (i.e. after 
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successful execution Map function over entire dataset), system merges the results of 

individual groups based on parallel-merge-all strategy [8].   

The system then executes a reduce function over a set of intermediate values associated 

with each of the intermediate key. To improve the parallelization, the key-space for the 

intermediate keys is uniformly partitioned. This helps parallel execution of reduce 

function using multiple machines in the cluster. 

2.1.3 Reduce function 

As shown in figure 2, Reduce function accepts a set of elements as an argument and 

executes user defined accumulation function over input elements sequentially and returns 

the final value of the computation as a result (as shown in the figure above). 

 

Figure 2: Reduce function iterates over the input set to produce an aggregated 
value. 

 

2.1.4 Example MapReduce application 

A MapReduce framework can be used to perform log processing to extract useful trends 

in the interaction between the users and the application. For example, one interesting 
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trend would be to find out distinct client machines interacting with the application along 

with their request count. Consider following sample of log statements, 

66.249.65.107 - - [08/Oct/2010:04:54:20 -0400] "GET /support.html HTTP/1.1" 200 11179 "-" 

"Mozilla/5.0" 

66.249.90.107 - - [08/Oct/2010:04:54:20 -0400] "GET /support.html HTTP/1.1" 200 11179 "-" 

"Mozilla/5.0" 

66.249.90.107 - - [08/Oct/2010:04:54:21 -0400] "GET /contact.html HTTP/1.1" 200 11179 "-" 

"Mozilla/5.0" 

The Map function would accept a set of log statements (as shown above). Here each input 

element would comprise of key (the line number in the log file) and value (the actual log 

statement). 

The Map function would extract the client IP address from the log statement using the 

specified log format. The output of the Map operation would be client IP address (as a 

key) and request count (as a value). During this operation, the request count would 

always be 1.  

Function Map (String key, String value) 

   //Ignore key (which is a line number) in this case. 

  String ipAddress = extractIpAddress(value); 

  EmitIntermediate(ipAddress, “1”); 

 
The result of applying the Map function on the sample log statements would be  

[“66.249.65.107”, “1”] 
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[“66.249.90.107”, “1”] 

[“66.249.90.107”, “1”] 

 

The Reduce function accepts all the intermediate result entries with the same key (in this 

case client IP address). This function iterates over the input set and outputs the sum of 

request counts for each client IP address as described below. 

Function Reduce(String key, Iterator values) 

int result = 0; 

for each v in values 

result += parseInt(v); 

Emit(key, AsString(result));  

 

The result of reduce operation in case of the sample log statements would be, 

[“66.249.65.107”, “1”] 

[“66.249.90.107”, “2”] 

2.2 Hadoop MapReduce framework 

Hadoop is an open source implementation based on the original Google MapReduce [2] 

and Google File System [3] publications. Hadoop is created by Doug Cutting (the 

originator of Apache Lucene – a widely used text search library) while developing an 

open source web search engine called Apache Nutch.  

Hadoop eco-system is based on Google Cluster Architecture [1]. This architecture differs 

from traditional High Performance Computing (HPC) environment in two key 
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dimensions. Firstly, the reliability of the system is built in the system software rather than 

depending upon server-class hardware. This helps to build a high-end computing cluster 

using commodity hardware at a much lower cost. Secondly, this architecture focuses on 

aggregate request throughput rather than peak server response time. The response time of 

the application is improved by increasing the parallelization of the request processing 

tasks. 

Since Hadoop is designed to perform large-scale data processing in a clustered 

environment, it is very important to ensure to that processing nodes in the cluster have 

fast access to the required data, which ultimately depends upon availability of inter-node 

network bandwidth. Hence design of datacenter network architecture is one of the key 

elements to achieve acceptable performance for the given Hadoop cluster.  

Basically there are two options for designing underlying communication substrate for a 

large-scale cluster. One option is to use specialized hardware and communication 

protocols (like InfiniBand or Myrinet). This option provides excellent scalability for 

clusters of thousands of machines with very high bandwidth. But due to the specialized 

hardware requirements, it is quite expensive.  

On the other hand, using commodity Ethernet switches and routers to connect different 

machines in the cluster brings down the cost of datacenter networking setup considerably. 

This design also resonates with the Google Cluster Architecture [1] and hence used for 

most of the Hadoop deployments in practice.  

The main drawback of using commodity networking equipment is that the aggregate 

network bandwidth provided across the cluster scales poorly with respect to the cluster 
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size. Also it is not economically feasible to achieve highest level of aggregate bandwidth 

as the cost increases non-linearly with respect to the size of the cluster.  

To overcome this limitation, Hadoop ecosystem considers network bandwidth as a scarce 

resource and implements mechanisms to optimize its usage as far as possible. This is 

done by carefully modeling the topology of datacenter network being used in the Hadoop 

cluster.  

2.2.1 Modeling network topology in Hadoop framework 

 

Figure 3: Network topology in Hadoop (Reference: HDFS rack awareness proposal) 

As shown in the figure 3, Hadoop models the topology of datacenter network as a tree. 

The machines in the cluster represent leaves of the tree, which are connected to each 

other with the help of one or more racks. Typically each rack hosts around 30-40 

machines connected to each other by a 1GB/s internal switch. Multiple racks in a single 

datacenter are connected to each other by core switch (which normally is 1GB/s or 

better). 
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The levels in the tree are not predefined and can be configured by the administrator to 

suit the needs of the deployment. In practice it is common to have levels in the tree which 

correspond to the datacenter, the rack as well as the machine in the cluster. The distance 

between any two machines is equal to the sum of their distances to their closest common 

ancestor.  

Since the bandwidth available for each level decreases as we move up the tree from 

bottom to top, distance between nodes in a tree can be used as a measure of availability of 

bandwidth between given two machines in the cluster. Hadoop attempts to schedule 

operations such that the distance between source and destination of data is as small as 

possible. 

The Hadoop infrastructure mainly comprises of following components, 

• Hadoop Distributed File System (HDFS) 

• Hadoop MapReduce 

 

2.2.2 Hadoop Distributed File System (HDFS) 

HDFS is a distributed file-system designed to operate over a cluster of commodity 

hardware catering high-throughput batch-oriented applications processing large-scale 

data (typically in the range of terabytes). HDFS is suitable to store small number of very 

large files (typically in the range of hundreds of gigabytes in size) with write-once and 

read-many-times access pattern.  

A typical application generates dataset and stores it in HDFS once; and performs various 

analyses on the stored dataset over a period of time. Each analysis would normally 
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require scanning a large portion of the dataset. Hence a key system requirement is high 

read-throughput rather than low read-latency. Also, write-once semantic helps to avoid 

issues related to data coherency due to concurrent updates from multiple clients. 

Another key design consideration for HDFS is based on the assumption that it is more 

efficient to move the computation closer to required data rather than moving data closer 

to the computation being performed. This helps avoiding network congestion due to 

large-scale data movement and improving the application performance. To this end, 

HDFS is designed to be location-aware. This means that HDFS provides necessary 

functionality to model the network topology of the cluster (in terms of racks, switches 

and datacenters etc.) as well as interfaces for the applications to discover the location of 

operated data. This is helpful for the applications (typically MapReduce jobs) to schedule 

computations over the cluster intelligently in order to minimize network traffic.     

Since Hadoop cluster is deployed on a cluster of commodity hardware, a failure of one or 

more hardware components is a norm rather than exception. Hence a key goal for HDFS 

is to detect hardware failures and automatically recover from them. 

Also, HDFS is developed using Java platform, which facilitates easy portability between 

different computing platforms. 

2.2.2.1 Architecture 

Every file stored in HDFS is composed of one or more data-blocks of fixed size. The size 

of block can be configured at the time of file creation (the default size is 64MB). To 

guard against data-loss due to hardware failure, every block is replicated on multiple 

machines in the cluster (default replication factor is 3 although it can be configured at the 

time of file creation). 
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Figure 4: HDFS Architecture 

 
As shown in figure 4, Hadoop File-System (HDFS) is based on Master/Slave 

architecture. It separates the functionality of management of file-system metadata from 

handling data-blocks so that each can be delegated to separate components in the system. 

Every HDFS cluster consists of a single meta-data server (called NameNode in Hadoop 

terminology) and a group of data-block servers (called DataNode in Hadoop 

terminology).  

NameNode manages the namespace of Hadoop file-system and regulates access to files 

by clients. It exposes file system namespace operations (like opening, closing, and 

renaming files and directories) to the HDFS clients. It is also responsible for maintaining 

the mapping between files and their associated blocks. For every block in the file-system, 

it keeps an up-to-date information regarding set of DataNodes currently holding its 

replica. The NameNode also makes decisions related to block-placement and replication. 

By having a single NameNode in the HDFS cluster, the design of the system is 

simplified. It also enables the NameNode to take sophisticated block-placement and 

replication decisions based on the current state of the cluster. The downside of this design 
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is the fact that NameNode is a single-point-of-failure in the system and also it limits 

scalability of Hadoop cluster.  

In order to make sure that NameNode doesn’t become a bottleneck during the file 

operations, HDFS never directs actual file read/write operations through NameNode. The 

client instead requests NameNode for the appropriate DataNode to contact (the one 

containing data in case of read operation or the one will contain data in case of write 

operation). The communication between client and the DataNode happen independently 

without any involvement of the NameNode. 

HDFS cluster consists of a number of DataNodes, typically one per every machine in the 

cluster. DataNode is responsible to serve storage capability for the HDFS cluster using its 

local storage resources. The DataNode handles read/write requests from the clients as 

well as commands from the NameNode related to block creation, deletion and replication.   

2.2.2.2 Important Operations in HDFS 

Read Operation 

The figure 5 describes the sequence of operations performed during Read operation using 

HDFS. 

 

 
Figure 5: HDFS Read Operation 
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1. The application program requests the HDFS client to open the required file on its 

behalf. The HDFS client consults with NameNode to verify if the requested file 

exists in the system. Upon success, the HDFS client returns application with a file 

handle which is be used during subsequent file operations. The state of the file 

handle is maintained exclusively in HDFS client. This design helps keep 

NameNode completely stateless and hence can be scaled successfully in case of 

large clusters. 

2. HDFS client requests NameNode for the information about the locations of 

replicas for the first few logical blocks in the file. For each logical block, 

NameNode ensures that the list of replicas returned is sorted according to its 

proximity with the requesting client host. This ensures that HDFS client can fetch 

the contents of file from the nearest possible location in the cluster. 

3.  Using the file-handle, the application program performs read operations on the 

file in a streaming mode. Internally HDFS client fetches the contents of entire 

logical block in one step and buffers them to improve the performance of read 

operation.  

4. For each logical block, HDFS client sequentially contacts DataNodes in the order 

provided by the NameNode until the read operation succeeds. HDFS client also 

keeps a track of failed DataNodes and makes sure not involve them during 

reading subsequent blocks. At the end of read operation, it also verifies 

checksums of the data transferred from the given DataNode. If a corrupted block 

is found, it reports the logical block number and the associated DataNode 

information to the NameNode so that appropriate recovery could be performed.    
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5. At the end, the application program requests HDFS client to close the file opened 

for reading by passing the corresponding file handle. 

Write Operation  
 
The figure 6 describes sequence of actions performed during write operation using 

HDFS. 

 
Figure 6: Write operation in HDFS 

 
 

1. The application program requests HDFS client to create a new file of a given 

name in HDFS. 

2. The HDFS client requests NameNode to create a new file of given name. The 

NameNode performs various checks to make sure that file doesn’t already exist in 

HDFS as well as the client has necessary write permissions in the requested 

namespace. Upon verification, NameNode creates an entry for the requested file 

in the namespace and reports success to HDFS client. HDFS client returns 

corresponding file handle to the application program.  
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3. As the application performs write operation using the file handle, the HDFS client 

splits data being written into logical blocks. The size of each logical block can be 

configured per file basis. For each block being written, HDFS client requests 

NameNode to allocate new block in the HDFS cluster. NameNode uses 

configured replica-placement policy to select a set of DataNodes to hold the 

contents of the block. The client receives list of DataNodes from NameNode in 

sorted order based on their location proximity with the client.  

4. For each block write operation, the given set of DataNodes form a pipeline among 

themselves such that each DataNode forwards block contents to the next one in 

order. This design helps to fully utilize each machine’s outbound network 

bandwidth instead of dividing it amongst multiple recipients (in case of 

transferring data directly from client to a set of DataNodes). Also since 

DataNodes are sorted based on their location proximity, each entity in the pipeline 

has to transfer the block content only to the closest possible entity in the network 

which reduces the possibility of network bottlenecks. 

5. The DataNodes also send back corresponding acknowledgements in the pipelined 

fashion back to the client. The client waits for acknowledgements from all the 

DataNodes before declaring write operation as successful. 

6. At the end of file operation, the application program requests HDFS client to 

close the file. The HDFS client ensures that there are no pending 

acknowledgements and informs NameNode that file is complete.  
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2.2.2.3 HDFS replica placement policy 

During the allocation of a new block, NameNode consults with the configured replica 

placement policy to determine set of DataNodes to be selected to host the replica of new 

block. The replica placement policy attempts to trade-off between read-bandwidth, write-

bandwidth and the reliability. e.g. to optimize write-bandwidth utilization, the policy can 

host all the replicas in a single rack (thereby avoiding off-rack write traffic). But this 

results into lower reliability (e.g. if the rack loses network connectivity, the stored data 

would be unavailable) as well as lower read-bandwidth (since all the requests for the 

given block would be directed to a single rack).  

The default replica selection policy provided in HDFS is suited for deployments in a 

single datacenter. This policy works as follows, 

• If the client machine is hosting a DataNode process for the HDFS, it is used to 

place first replica. Otherwise policy selects any DataNode at random after 

verifying its suitability (e.g. DataNode should have sufficient space available to 

store the data and it should not be too busy handling other requests). 

• The second replica is placed on a DataNode in different rack as compared to first 

one at random.  

• Third replica is placed on a DataNode in the same rack as the second one but on 

different machine (as compared to second one) selected at random.  

• If there are still more replicas needs to be placed, this policy selects DataNodes at 

random. Here the policy attempts to avoid placing too many replicas on the same 

rack. 
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This policy provides excellent balance in all aspects, 

• Reliability (since blocks are stored on two different racks) 

• Write-bandwidth (since data has to pass through a single network switch during 

write operation). 

• Read-bandwidth (since the request load for a given block can be divided between 

two racks). 

2.3 Hadoop MapReduce framework 

Hadoop MapReduce framework is based on Master/Slave architecture. A master (called 

JobTracker in Hadoop terminology) accepts jobs submitted by the clients and performs 

‘data-aware’ scheduling using a set of workers (called TaskTracker in Hadoop 

terminology). Master partitions the input data into a set of M splits and processes them in 

parallel using a set of workers. Reduce invocations are distributed by partitioning the 

intermediate key space into R pieces using a partitioning function. The number of 

partitions (R) is specified by the client. 

Figure 7 demonstrates the flow of execution of a MapReduce job using Hadoop 

MapReduce framework.  
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Figure 7: Overview of job execution in Hadoop MapReduce 

• After client submits a MapReduce job to the JobTracker, it splits the input dataset 

into M pieces (each typically 64MB) and creates a Map task per input split. 

• JobTracker attempts to schedule each Map task by taking into consideration data 

locality between the input split (stored on HDFS) and the idle TaskTracker (ready 

to execute a Map task) such that copy of input dataset over the network is reduced 

as far as possible. 

• During the execution of Map task, the TaskTracker reads the contents of the 

corresponding input split. It parses key/value pairs out of the input data and passes 

each pair to the user-defined Map function. The intermediate key/value pairs 

produced by the Map function are buffered in memory. Periodically, these 

buffered key/value pairs are written to local disk, partitioned into R regions by the 

partitioning function. The TaskTracker informs JobTracker about locations of this 

intermediate output periodically.  
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• JobTracker inform Reducers the locations of Map phase output. The Reducer in 

turn copies the contents from the local disks of Mappers using HTTP protocol. 

When Reducer has read all intermediate data, it sorts it by the intermediate keys 

so that all occurrences of the same key are grouped together. The sorting is 

needed because typically many different keys map to the same Reduce task. If the 

amount of intermediate data is too large to fit in memory, an external sort is used. 

• The reduce worker iterates over the sorted intermediate data and for each unique 

intermediate key encountered, it passes the key and the corresponding set of 

intermediate values to the user defined Reduce function. The output of the Reduce 

function is appended to a final output file for this Reduce partition. 

• After successful completion, the output of the MapReduce job is available in the 

R output files (one per Reduce task). 

2.3.1 Hadoop MapReduce Schedulers 

In this section, we discuss different schedulers used by the typical Hadoop deployments 

in practice.  

2.3.1.1 Hadoop Fair Share Scheduler 

The Hadoop Fair Share scheduler [13] is developed by Facebook in collaboration with 

University of California, Berkeley.  Fair scheduling is a method of assigning resources to 

jobs such that all jobs get, on average, an equal share of resources over time. When there 

is a single job running, that job uses the entire cluster. When other jobs are submitted, 

tasks slots that free up are assigned to the new jobs, so that each job gets roughly the 

same amount of CPU time. This allows short jobs to finish in reasonable time without 
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starving long jobs. It is also a reasonable way to share a cluster between multiple users. 

Finally, fair sharing can also work with job priorities - the priorities are used as weights 

to determine the fraction of total compute time that each job should get. 

This scheduler organizes jobs into "pools", and shares resources fairly between these 

pools. The pools can be configured for each individual user or for each UNIX group. 

Within each pool, fair sharing is used to share capacity between the running jobs. Pools 

can also be given weights to share the cluster non-proportionally. 

In addition to providing fair sharing, the Fair Scheduler allows assigning guaranteed 

minimum shares to pools, which is useful for ensuring that certain users, groups or 

production applications always get sufficient resources. When a pool contains jobs, it gets 

at least its minimum share, but when the pool does not need its full guaranteed share, the 

excess is split between other running jobs. This lets the scheduler guarantee capacity for 

pools while utilizing resources efficiently when these pools don't contain jobs. 

The Fair Scheduler lets all jobs run by default, but it is also possible to limit the number 

of running jobs per user and per pool through the configuration. This can be useful when 

a user must submit hundreds of jobs at once, or in general to improve performance if 

running too many jobs at once would cause too much intermediate data to be created or 

too much context-switching. 
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2.4 Related Work 

2.4.1 Cotemporary MapReduce frameworks 

In this section we compare and contrast between Hadoop MapReduce framework and the 

other contemporary data processing systems. 

2.4.1.1 Sector/Sphere  

Sector/Sphere [10] is a software suite designed for high-performance distributed data 

storage and processing not only within a single datacenter but also across geographically 

distributed data centers over high speed wide-area-network (greater than 1 Gb/s). This 

system is originally designed at University of Illinois, Chicago and currently maintained 

as an Open source project. 

Sector is a user-space distributed file system which uses local storage capacity of each 

node for data storage. Similar to HDFS, this file-system is network topology aware and 

hence can optimize the network bandwidth used for data transfer. Also it does not support 

concurrent write operations and is designed mainly for the read intensive workloads. 

However the design of Sector differs from HDFS in a number of ways. Firstly, Sector is 

not a block-oriented file-system like HDFS. This means that it doesn’t split the user files 

into blocks; instead a user file is stored intact on the local file-system of one or more 

slave nodes. Although this design helps to provide better robustness due to its simplicity 

and better performance over wide-area-networks; the maximum size of the file which can 

be stored in Sector cannot exceed the maximum file size supported by the individual 

nodes in the cluster. Secondly, it uses UDT (UDP based data transfer) protocol for data 

transfer unlike other distributed file-systems such as HDFS which use TCP protocol. This 
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enables Sector to provide high performance data I/O across geographically distributed 

data-centers.  

Sphere is a parallel data processing engine integrated in Sector and it can be used to 

process data stored in Sector with the help of user-defined functions (UDFs) in parallel. 

The flexibility of specifying the UDFs for processing makes this system more generic to 

other MapReduce frameworks like Hadoop since MapReduce can be implemented as a 

special case of UDFs. The Sphere computing platform is also network topology aware 

and hence can optimize the network bandwidth consumed during computation by making 

data-locality aware scheduling decisions. 

2.4.1.2 Twister 

Twister [21], developed at Indiana University is a distributed in-memory MapReduce 

framework optimized for iterative MapReduce computations. It reads data from local 

disks of worker nodes and handles Map phase intermediate output in distributed memory 

of worker nodes. It users publish/subscribe messaging infrastructure for communication 

and data transfers. Twister assumes that the data read from the local disks are maintained 

as files and hence supports file based input format, which simplifying implementation of 

Twister runtime. This approach requires users to split their dataset into a number of files 

unlike Hadoop Distributed File System (HDFS) which can automatically partition the 

input dataset into a number of blocks. Twister also supports sending input data for Map 

tasks directly via messaging infrastructure which is extremely useful in iterative 

MapReduce computations since it avoids performing disk-write operation to save the 

results of Reduce phase for the next iteration. Instead the results of Reduce phase of last 

iteration are directly fed to the Map tasks of next phase via messaging infrastructure.  
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2.4.1.3 Comet MapReduce 

Comet MapReduce framework [22] is being developed at Rutgers University. It is 

designed using Comet, a decentralized (peer-to-peer) computational infrastructure that 

extends Desktop Grid environments to support applications that have high computational 

requirements along with non linear communication requirements. Comet provides a 

decentralized and scalable tuple space, efficient communication and coordination 

support, and application-level abstractions that can be used to implement Grid 

applications. The tuple space is essentially a global virtual shared-space constructed from 

the semantic information space used by entities for coordination and communication. 

This information space is deterministically mapped, using a locality-preserving mapping, 

onto the dynamic set of peer nodes in the Grid system. The resulting structure is a locality 

preserving semantic distributed hash table (DHT) built on top of a self-organizing 

structured overlay. This MapReduce framework use the tuple-space provided by Comet 

infrastructure to propagate the Map phase intermediate output thereby avoid disk 

read/write operations. This is particularly useful for MapReduce computations involving 

small to medium scale input datasets.  

2.4.2 Large-scale data transfer mechanisms over Internet 

The problem of efficiently transferring large datasets over the Internet has been studied 

extensively in the past. Jim Gray [15], DOT (Data Oriented Transfer service) project [16] 

and the PostManet project [17] have proposed using postal service as an alternative 

option for large-scale data transfer over the Internet. In this approach, the entire dataset is 

loaded to a portable storage device which is shipped via postal service (such as USPS, 

FedEx or UPS) to the destination site. The dataset is uploaded at the destination site using 
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the storage device. This helps to completely avoid the copy of dataset over the Internet.  

Now even Amazon provides a similar mechanism named Import/Export [18] in its Cloud 

offerings. This approach is suitable in environments where a small set of source sites 

transfer bulk datasets to a single destination infrequently. But as the number of source 

sites or the frequency of data transfer increases, the cost of shipping the datasets increase 

substantially. Hence this approach is not feasible in such environments.  

Pandora project [14] attempts to solve the problem of group-based data transfer in an 

environment involving multiple source sites each hosting a large dataset and single 

destination site, such that it reduces both total dollar costs incurred by the group as well 

as the total transfer latency of the collective dataset. It makes use of both the Internet as 

well as postal service (such as USPS, FedEx or UPS). The consolidated dataset at the 

destination site can later be used to perform computations using frameworks like Hadoop 

[12] or Dryad [19] locally. 

The basic difference between this work and our proposal is in the fact that we do not 

attempt to consolidate the entire dataset to a single location. Each participating site hosts 

a part of Hadoop Distributed File System (HDFS) and the dataset created at the site is 

stored locally in HDFS thereby avoiding data transfer over the Internet as far as possible. 

During the execution of a MapReduce job, the computations moved to the participating 

sites hosting the datasets over the Internet.  

Stork [18] is a scheduler for data placement activities developed for Grid environments 

executing data intensive scientific computations across wide-area networks. It attempts to 

solve the problem of efficient and reliable data placement over distributed Grid 
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environments by taking into consideration the semantics and characteristics of data 

placement tasks and implementing techniques to optimize them. The basic difference 

between this work and our proposal is in the fact that instead of moving the data towards 

computation through intelligent data placement techniques, we move the computation 

closer to the data sources and avoid the data transfer over wide-area networks as far as 

possible. 

2.4.3 Delay scheduling 

Zaharia et.al. [20] propose a Fair Share scheduler for Hadoop framework. The Fair Share 

scheduler attempts to resolve the conflict between fairness in scheduling and data locality 

with the help of a delay scheduling algorithm for the Map phase. The main idea here is 

that when the job that should be scheduled next according to fairness cannot launch a 

data-local task, it waits for a small time interval – letting other jobs to launch tasks itself. 

In this work, we have attempted to apply the concept of delay scheduling for the Reduce 

phase (i.e. an Adaptive Reduce Task Scheduling (ARTS) algorithm. Please refer to 

section 4.1 for details).  
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3. MapReduce Extensions   

Today most of the modern enterprise applications and services on the Internet require 

rigorous end-to-end system quality and even small degradation in performance and 

reliability can have a considerable business impact. Since the Internet is designed as a 

best-effort network, it cannot provide guarantees about end-to-end performance or 

reliability. So the applications deployed in a centralized environment are often subjected 

to bottlenecks in the wide-area Internet communication resulting in poor performance. 

To overcome this problem, modern enterprise applications are designed to be 

decentralized so that they can be deployed to the logical extremes of Internet instead of a 

centralized environment. The key benefit of this approach is the significant decrease in 

the data volume that needs to be moved, the subsequent network traffic, and the distance 

the data needs to travel which reduces transmission costs, latency and improves the 

quality-of-service (QoS).   

A good example of such decentralized architecture is the email-hosting platform designed 

by a company named Rackspace (which provides managed hosting services for the 

enterprises). Its email hosting platform ‘Mailtrust’ currently host emails for more than 

one million users and thousands of companies using hundreds of email servers distributed 

across multiple geographies [8]. The decentralized nature of this platform helps to 

improve the performance and hence the user perception of the Email service provided. 

During processing user requests, this platform generates considerable amount of logs 

(around 150GB per day) in various formats. The log-processing subsystem is required to 

aggregate this log information in a timely fashion, which can be used for different 
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purposes such as growth planning, understanding usage patterns as well as 

troubleshooting customer problems. 

To facilitate this, Rackspace utilizes Hadoop to process the logs to build Lucene indexes 

that customer-support team can query. The actual mail server logs are stored using HDFS 

on a dedicated Hadoop cluster. The figure below represents the deployment scenario of 

this system. 

 

Figure 8: Architecture diagram for Log processing system at Rackspace 

As shown in the figure 8, the email servers generating logs are distributed across multiple 

data centers. One of these datacenters also hosts a dedicated Hadoop cluster to perform 

the Log storage and processing. Within every datacenter, a variant of UNIX syslog is 

used to transfer the logs from email server to the Collector component. The Collector 

component in turn aggregates each type of log into a single stream and writes it to the 

dedicated Hadoop file system performing the log storage. Once the raw logs are placed in 

Hadoop file system, they can be processed by the MapReduce jobs. The result of this 

processing is the Lucene index, which is used to query various trends in the system 
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behavior such as the geographical sources of connections, average latency between 

specific machines, most effective spam rules etc. 

There are many different MapReduce applications such as building inverted-index for a 

search engine, performing distributed Grep operation etc. which also may require 

operating on data distributed in multiple datacenters.  

The feasibility of copying the entire dataset to a single datacenter depends upon a number 

of factors such that the total size of the data to be copied from each datacenter, total 

number of datacenters involved in the copy as well as capacity of inter datacenter 

network. But as the Internet evolves, the growth in the size of geographically scattered 

datasets would outpace the improvements in the network bandwidth available in the 

Internet.  At that point the approach of copying the entire dataset to a single location 

using the Internet becomes infeasible. 

In the past Jim Gray [15], DOT project [16] and the PostManet project [17] have 

suggested using postal service as an alternative option to large-scale data transfer over the 

Internet. But this alternative is not feasible in distributed environments involving a large 

number of data-sources frequently generating data to be processed. 

Hence as part of this research, we have studied design assumptions behind different 

components of Hadoop eco-system which mandate the processing of Map/Reduce 

computations in a centralized environment. Specifically we focus on two aspects of 

Hadoop framework, 

• Design of an underlying Hadoop Distributed File System (HDFS) 

• Design of scheduling algorithm for the Reduce phase. 
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3.1 WAN aware Hadoop Distributed File System 

The fundamental design assumption in a MapReduce framework is the availability of a 

single logical distributed file-system storing the input dataset. So in order to execute 

MapReduce computation across multiple datacenters, it is essential to have a distributed 

file system which can scale over the wide-area networks. As part of this research, we 

have experimented with Hadoop Distributed File System (HDFS). 

In order to understand the implications of deploying a single HDFS cluster across 

multiple datacenters, we conducted an experiment to evaluate the performance of HDFS 

spanning multiple datacenters and observed that the write performance of HDFS 

degrades considerably for the large datasets. (Please refer to section 5.3 for details of this 

experiment.)  

The cause of performance degradation in HDFS is that the default replica placement 

policy in HDFS does not take into consideration the datacenter-locality of the client while 

selecting the replicas. This results in unnecessary copy of data blocks over the Internet 

during the write operation. 

To solve this problem, we have designed a WAN-aware replica placement policy which 

ensures that the replicas are placed in the same datacenter as the client, provided 

sufficient storage space is available in that datacenter. Using the proposed policy, HDFS 

clients in multiple datacenters would be able to share a unified namespace without the 

overhead of data transfer over the Internet. With the WAN aware replica placement 

policy, the performance of write-operation in HDFS improves from 100% up to 200% 
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depending upon the size of the dataset being written. (Please refer to section 5.3 for 

details of this experiment.)  

We also observed that the network-topology awareness feature in HDFS ensures that 

during the read operation, the client accesses a datacenter-local copy of the block if 

available and hence the performance of the read operation does not suffer unnecessarily 

due to deployment of HDFS over the wide-area network. (In case when there is no 

datacenter-local copy of the block available, then the client would need to fetch it from 

one of the remote datacenters. But this cost is unavoidable and can be improved in future 

by using intelligent data-transfer protocols).     

3.2 Intelligent Scheduling of Reduce phase 

The execution time of a MapReduce job depends upon the time at which the Reduce 

phase starts. In Hadoop framework this can be configured by setting an appropriate value 

for ‘mapreduce.job.reduce.slowstart.completedmaps’ property (henceforth termed as 

slow-start threshold), which denotes a fraction of the total number of Map Tasks in the 

Job which should be complete before the Reduce phase can begin. After this threshold is 

reached, Hadoop selects any random node to execute the Reduce task.  

Although this policy works well on dedicated Hadoop cluster in a centralized 

environment, it is very inefficient when Hadoop is deployed in either distributed 

environment involving multiple datacenters or in a shared environment in which multiple 

MapReduce jobs can execute concurrently in a single cluster. Existing literature [3, 4] 

does not offer any guidelines for intelligent Reduce phase scheduling in such 

environments. 
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Consider a distributed environment involving multiple datacenters connected through the 

Internet. As the MapReduce computation operates on scattered dataset in multiple 

datacenters, each datacenter hosts a fraction of total Map phase output. Now if the 

Reduce task is scheduled to a node in datacenter hosting only a small fraction of total 

Map phase output, it will require to copy substantial size of Map phase output from other 

datacenters over the Internet. This can degrade the response time of a MapReduce 

computation considerably. Hence the Reduce phase scheduling algorithm should take 

into consideration locality between the node executing Reduce task and the nodes storing 

Map phase output. This means that in a distributed environment, Reduce task should be 

scheduled to a node in datacenter hosting the maximum fraction of total data size for the 

corresponding partition.  

On a dedicated cluster, Hadoop uses early-start (slow-start threshold = 0.05) policy by 

default. Early start of Reduce phase helps to overlap the compute intensive Map phase 

and I/O intensive Shuffle phase, resulting in improved response time for the Job. This 

configuration is especially suitable for clusters executing short and interactive jobs, 

where response time is very important. This is because short jobs suffer greater 

percentage degradation in the response time if the Reduce phase is delayed (Please refer 

to section 5.4 for details).  

 On the other hand, in case of a shared cluster concurrently executing both long running 

batch-processing jobs and short interactive jobs; starting the reduce phase early results in 

reducing the overall throughput of the system. This is because after the Reduce phase 

begins for a long running job, it occupies majority of Reduce slots in the cluster. As a 

result concurrent short jobs in the cluster are starved for the Reduce slots. This results in 
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degrading the response time for short jobs during the periods of high contention (Please 

refer to section 5.5.2 for details). 

Although delaying the start of Reduce phase helps to improve the total throughput of the 

cluster; for an individual Job, it ends up having only a partial-overlap between the 

compute intensive Map phase and the I/O intensive Shuffle phase. Hence during the 

periods of low contention, response time suffers as the Reduce tasks have to wait longer 

for the Shuffle phase to complete (due to delayed start). 

Since the total time required for the Shuffle phase is directly proportional to the size of 

the dataset generated during the Map phase, we experimented with different workloads 

using a realistic cluster configuration. During each experiment, we used early-start and 

delayed-start Reduce phase scheduling policies in order to understand its effect on the job 

execution time. During these experiments, we considered following two important classes 

of MapReduce workloads. 

3.2.1 TeraSort 

TeraSort is a write-intensive MapReduce benchmark, which sorts the input dataset using 

a MapReduce paradigm (Please refer section 5.1.3 for details). The size of the output 

generated at the end of Map phase is equivalent to the size of the input dataset (there is no 

reduction for this benchmark). Hence this benchmark characterizes all the workloads 

generating substantial amount of Map output as compared to original input dataset. 

For this experiment, we used a large input dataset (around 4GB) and executed this 

benchmark on a 3-node Hadoop cluster for Reduce phase scheduling policies such as 

early-start (slow-start threshold = 0.05) and delayed-start (slow-start threshold =0.8). 
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From figures 9 and 10, we can see that a delayed-start policy for Reduce phase results in 

reducing the overlap between the Map and Shuffle phases, thereby increasing the total 

job execution time (around 586s). On the other hand early-start of Reduce phase results 

in substantial overlap between the Map and Shuffle phases, thereby reducing the total job 

execution time (around 564s). Hence considering response time, this class of workload is 

sensitive to the slow-start threshold value.  

 

Figure 9: Task timeline for TeraSort benchmark using early-start of Reduce phase 

 

Figure 10: Task timeline for TeraSort benchmark using delayed-start of Reduce 
phase 
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3.2.2 WordCount 

WordCount is a MapReduce benchmark which counts the total number of occurrences of 

all the distinct words available in the given input dataset (please refer to section 5.1.4 for 

details). The size of the Map phase output is substantially smaller as compared to the 

original dataset (of reasonable size). Hence this benchmark represents workloads 

performing aggregation over the input dataset.  

For this experiment, we used a large input dataset (around 5GB of eBooks in text format) 

and executed this benchmark on a 3-node Hadoop cluster for Reduce phase scheduling 

policies such as early-start (slow-start threshold = 0.05) and delayed-start (slow-start 

threshold =0.8). 

From figures 11 and 12, we can clearly see that increasing the delayed-start of Reduce 

phase does not result in increase in the job execution time as compared to early-start 

policy. Hence considering response time, this class of workload is not sensitive to the 

slow-start threshold value. Therefore we can state that the decision to start the Reduce 

phase should also depend upon the type of workload for a given Job as well as total size 

of input dataset (which would classify a Job as a long running or short/interactive). 

Considering only the total progress of Map phase (in terms of fraction of total Map tasks 

complete) is not sufficient to provide acceptable performance on a shared Hadoop cluster. 
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Figure 11: Task timeline for WordCount benchmark using early start of Reduce 
phase 

 

Figure 12: Task timeline for WordCount benchmark using delayed start of Reduce 
phase 
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4. System Design 
 

4.1 Adaptive Reduce Task Scheduling (ARTS) algorithm 

We have designed a new algorithm for scheduling Reduce phase in Hadoop which works 

well both in distributed environments involving multiple datacenters as well shared 

environments. This algorithm is based upon two important observations, 

• A Shuffle phase cannot complete unless the entire Map phase is complete. Hence 

for any given partition, we can delay the execution of corresponding Reduce task 

if the time to copy the Map output for this partition is less than the estimated 

finish time for the Map phase. Also among multiple eligible partitions, the 

partition containing largest Map output needs to be scheduled earliest.  

• At any point during the execution of a Map phase, the size of partial Map output 

can be used to infer the type of the workload being executed. This information 

can be used to decide if a Reduce task needs to be scheduled immediately or can 

be delayed. 

This algorithm is orthogonal to the deployment environment (such as centralized or 

distributed) as well as scheduling policy configured for the Hadoop cluster (e.g. a 

Capacity Scheduler or a Fair Share scheduler etc.).  

Figure 13 describes the proposed algorithm. During execution of MapReduce job, the 

Hadoop master (called JobTracker) keeps a track of total size of Map phase output 

segregated with respect to datacenters. This means that for every partition, it keeps a 

track of total size of Map output in each datacenter. This helps to identify the datacenter-
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locality while scheduling Reduce phase in distributed environment. It is also used to 

classify the workload which helps in deciding the time when the Reduce phase could 

start.  

We have implemented a mechanism to identify datacenter identity for any node based on 

its IP address or domain-name (e.g. all machines with domain name .edu are part of CAC 

Lab). This configuration is static in nature and needs to be performed manually during 

the initialization of Hadoop cluster. This algorithm is executed when the master (called 

JobTracker) identifies any worker (called TaskTracker) in the cluster with an available 

Reduce slot. Let’s assume that the datacenter identifier for this worker is Dx. The 

important steps in this algorithm are as follows, 
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Figure 13: Adaptive Reduce Task Scheduling (ARTS) algorithm 

• JobTracker calculates estimated time required to complete the Map phase using 

the information such that total number of Map tasks remained to be processing 

and average Map task completion time (please refer section 4.1.2 for details). 
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• Among all the unscheduled partitions, JobTracker attempts to find out a partition 

Rx for which datacenter Dx holds maximum fraction of total Map output compared 

to other datacenters.  

• If no such partition could be found, then it selects any partition Rx such that 

datacenter Dx has maximum size of Map output as compared to all other 

unscheduled partitions. Please note that in this case partition Rx may not hold 

maximum fraction of total Map output as compared to other datacenters. This is 

just an optimization to reduce the cost of data copy from other datacenters. 

• JobTracker calculates estimated time required to copy the entire Map output for 

selected partition Rx. 

• If the estimated time to copy is larger than the Map phase completion time, then it 

schedules the partition Rx for execution on the identified worker. 

• If the estimated time to copy is smaller than the Map phase completion time, then 

JobTracker classify the workload for job by using the total size of Map output for 

partition Rx and the total Map phase  input processed (please refer section 4.1.3 

for details). 

• If the workload is not write-intensive, then it does not schedule the partition Rx for 

execution. 

• If the workload is write-intensive, then it calculates estimated number of Reduce 

tasks executing at the given point of time using a liner model (explained in section 

4.1.1). If the total number of Reduce tasks executing are lagging behind the 

expected number then it schedules the partition Rx for execution on the identified 

worker. 
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4.1.1 ARTS Algorithm for different types of workloads 

The figure 14 depicts the task timeline for the Terasort benchmark using the ARTS 

algorithm. Here we observe that although the scheduling of the Reduce tasks start early 

(after completion of 5% Map tasks), not all the Reduce tasks are started immediately (like 

in case of early-start policy). Instead, the algorithm figures out the next best partition 

depending upon the size of Map phase output generated so far at each point of time.  

 

Figure 14: Task timeline for TeraSort benchmark using ARTS algorithm 

Here we would like to note that the calculation of time-to-copy Map output depends upon 

the network bandwidth estimation provided by the user. In case this estimation is overly 

optimistic, it can result into delaying the start of the Reduce phase thereby degrading the 

performance of the Job. In order to avoid such scenarios, we also implement a linear step 

function which calculates expected number of Reduce tasks to be executing at any point 

of time (please refer section 4.1.4 for details). The algorithm uses this function to ensure 

that scheduling of the Reduce tasks is not lagging too far behind this expected number. 
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This helps to avoid the inefficient scheduling decisions made due to optimistic network 

bandwidth estimations.  

In our experience such step function is required only in case of workloads similar to 

Terasort since they tend to generate large amount of intermediate Map output and hence 

are more vulnerable to incorrect network bandwidth estimates. In the future work, we are 

planning to automatically infer the network bandwidth available in the given Hadoop 

cluster.  

The figure 15 depicts the task timeline for the Wordcount benchmark using the ARTS 

algorithm. Here we can see that the scheduling of the Reduce tasks start late (after 

completion of around 90% Map tasks) like in case of delayed-start policy while providing 

execution time comparable with the best case of early-start policy. 

 

Figure 15: Task timeline for WordCount benchmark using ARTS algorithm 
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We have implemented the proposed ARTS algorithm in Hadoop framework. The figure 

16 represents system architecture diagram for our implementation. 

 

Figure 16: The system architecture for adaptive slow-start algorithm 

As shown in figure 16, upon completion of a Map task, each worker in Hadoop cluster 

(called TaskTracker) notifies the master (called JobTracker) with the sizes of Map 

outputs for each of the partition. For each partition, the master performs aggregation 

(segregated with respect to datacenters). This helps master to keep a track of aggregate 

size of available Map output for each partition in each datacenter. 

The master also has access to following information, 

• Total number of Map tasks for this Job (totalTasks) 

• Total number of Reduce tasks for this Job (totalReduceTasks) 
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• Total number of completed Map tasks (totalTasksCompleted) 

• Total time spent during the Map phase (totalTimeInMapPhase) 

• Total number of Map tasks being executed currently (runningTasks) 

• Total number of Map slots currently allocated for this Job (mapSlotsAllocated) 

• Estimated network bandwidth available inside each datacenter as well as across 

datacenters.  

• For each partition, the total size of available Map output. (mapOutput[x] where x 

denotes the partition number). 

 

Following subsections describe procedures used in the ARTS algorithm. Please refer to 

section 4.1 for details of the algorithm. 

4.1.2 Calculation of estimated Map phase completion time 

Following steps are used to calculate estimated Map phase completion time. 

Step1: Calculate number of remaining Map tasks. 
 

 
 
Step2: Calculate average completion time for a Map task. 
 

 
 
Step3: Calculate estimated Map phase finish time. 
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4.1.3 Determination of workload type of the job 

Following steps are used to determine type of workload is executed. 

 

4.1.4 Determination of expected number of Reduce tasks running 

Following steps are used to determine the expected number of Reduce tasks in the 

Running state. 

Step1: Calculate the step to be used during this calculation. It is calculated by using the 

values of total number of Map tasks (after the Reduce phase starts) and the total number 

of Reduce tasks. 

 

Step2: Calculate the expected number of Reduce tasks by using the values of total Map 

tasks completed after the slow-start and the value of the step calculated above. 
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5. Experimental Evaluation 
 

5.1 Benchmarks 

This section summarizes different benchmarks in Hadoop framework used for evaluation 

as part of this research. 

5.1.1 TestDFSIO 

TestDFSIO tests the I/O performance of HDFS by using a MapReduce job as a 

convenient way to read or write files in parallel. Each file is read or written in a separate 

map task, and the output of the map is used for collecting statistics relating to the file just 

processed. The statistics are accumulated in the reduce, to produce a summary. 

5.1.2 TeraGen 

TeraGen is a MapReduce application designed to generate official input dataset for the 

TeraSort benchmark. The user specifies the number of rows and the output directory in 

HDFS and this application executes a MapReduce job to generate the dataset. It divides 

the desired number of rows by the desired number of Map tasks and assigns ranges of 

rows to each Map task. The Map tasks generate and write the dataset in parallel in HDFS. 

The format of the data is as follows, 

(10 bytes key) (10 bytes rowid) (78 bytes filler) \r \n 

The keys are random characters from the set ' ' .. '~'. 

The rowid is the right justified row id as an int. 

The filler consists of 7 runs of 10 characters from 'A' to 'Z'. 
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Since this benchmark is write intensive, it can be used for stress testing HDFS write 

performance apart from generating input dataset for TeraSort benchmark.  

5.1.3 TeraSort 

This is a MapReduce application to sort the data generated by the TeraGen benchmark. 

The input is a set of hundred-byte long records stored in a HDFS in the format described 

in section 5.1.2. TeraSort is a standard MapReduce sort, except for a custom partitioner 

that uses a sorted list of N − 1 sampled keys that define the key range for each reduce. In 

particular, all keys such that sample [i − 1] <= key < sample[i] are sent to reduce i. This 

guarantees that the output of reduce i are all less than the output of reduce i+1. To speed 

up the partitioning, the partitioner builds a two level Trie data structure that quickly 

indexes into the list of sample keys based on the first two bytes of the key. TeraSort 

generates the sample keys by sampling the input before the job is submitted and writing 

the list of keys into HDFS.  

Since this benchmark is read and write intensive, it is used for stress testing entire 

Hadoop eco-system including both HDFS and MapReduce. 

5.1.4 WordCount 

WordCount benchmark accepts a set of text files as an input and counts how often words 

occur. The output of the benchmark is a set of text files, each line of which contains a 

word and the count of how often it occurred, separated by a tab. Each Map task accepts a 

line as an input and breaks it into words. It then emits a key/value pair of the word and 1. 

Each Reduce task sums the counts for each word and emits a single key/value with the 

word and sum. As an optimization, the Reduce task implementation is also used as a 
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combiner on the map outputs. This reduces the amount of data sent across the network by 

combining each word into a single record. 

5.2 Evaluation of baseline I/O performance of Hadoop file-system 

(HDFS) in different clusters 

Since the configuration of hardware components is generally not uniform in multiple 

datacenters, we want to evaluate baseline I/O performance of Hadoop File System in 

different clusters. 

In this experiment we setup a single node Hadoop cluster (psudo distributed mode) on 

CAC cluster at Rutgers University as well as on Amazon EC2 (using small instance 

type). The hardware configurations for both the nodes is given as follows. 

Amazon EC2 

1.7 GB memory 

1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit) 

160 GB instance storage 

32-bit platform 

CAC Lab (glitch.rutgers.edu) 

Intel(R) Xeon(R) CPU 2.40GHz (4 processors) 

3.6 GB memory 

1TB storage 

64-bit platform 
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For this experiment, we utilizied TestDFSIO benchmark provided by the Hadoop 

distribution (please refer section 5.1.1for details). In this case, we conducted following 

experiments. 

• Executed TestDFSIO benchmark locally on CAC cluster (i.e. using both 

JobScheduler as well as HDFS in the CAC cluster). 

• Executed TestDFSIO benchmark locally on EC2 cluster (i.e. using both 

JobScheduler as well as HDFS in the EC2 cluster). 

Figures 17 and 18 show the performance of HDFS in above three combinations for read 

and write operations for different data sizes (250MB, 500MB and 750MB respectively). 

From this experiment, we can conclude that the CAC cluster provide much better I/O 

performance for HDFS operations as compared to the EC2 environment. 

 
Figure 17: HDFS write performance for different sizes of datasets 
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Figure 18: HDFS read performance for different sizes of datasets 
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1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit) 

160 GB instance storage 

32-bit platform 

CAC Lab (glitch.rutgers.edu/spring.rutgers.edu/darkwing.rutgers.edu) 

Intel(R) Xeon(R) CPU 2.40GHz (4 processors) 

3.6 GB memory 

1TB storage 

64-bit platform 

We experimented with following three cluster configurations. 

• Executed benchmark locally on EC2 cluster. For this experiment, we setup a six 

node Hadoop cluster on Amazon EC2. This experiment would help us to 

understand the baseline performance of TeraGen benchmark in a single datacenter 

environment. 

• Executed benchmark using both nodes in both CAC and EC2 cluster using the 

Hadoop’s default replica placement policy (termed as Hadoop Native henceforth). 

For this experiment, we divided the 6 node cluster equally into two parts such that 

each cluster would host a part of it (having 3 nodes each). This experiement 

would help us to understand the performance degradation due to the Hadoop’s 

standard replica placement policy in a distributed environment. 

• Executed benchmark using both CAC and EC2 cluster but with the newly 

designed WAN aware replica placement policy. This experiment would help us to 

understand the performance improvement gained with this policy. 
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The graph in figure 19 represents time required for completing the write operation using 

different replica placement policies.  We have normalized the value of time required for 

the write operation with respect to the corresponding value in a single datacenter 

environment. This is calculated using following formula. 

Tnormalized = ((Tactual – Tbase) * 100) / Tbase   

Where, 

Tactual represents the value of time taken to complete the write operation in a distributed 

environment for a specific size of dataset. 

Tbase represents the value of time taken to complete the write operation in a centralized 

environment for the same size of dataset as above. 

Tnormalized is the normalized value of time taken to complete the write operation in a 

distributed environment. 

 

Figure 19: Relative performance of write-operations using different replica 
placement policies. 
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From figure 19, we can clearly see that in a distributed environment the default replica 

placement policy in Hadoop suffers from severe degradation in performance of write 

operation with respect to its performance in a centralized environment for any specific 

size of dataset (greater than 200%). The WAN aware replica placement policy on the 

other hand performs significantly better than the default policy (improvement in the range 

of 100% to 200%).  

Another interesting point to note here is that for both policies time required to complete 

write operation fluctuates (e.g. it required less time to write 2GB data than 1GB using 

default policy). The reason behind this behavior is the allocation of Map tasks to different 

datacenters. The hardware configurations of nodes in multiple datacenters are not 

homogeneous (please refer to section 5.2 for details). Hence if a large number of Map 

tasks are allocated to a datacenter having better I/O performance then the time required to 

complete the operation is reduced considerably. 

5.4 Evaluation of response time for a job for different Reduce phase 
scheduling algorithms  

The goal of this experiment is to understand how different Reduce phase scheduling 

policies ultimately affect the response time of a job. In this experiment we use TeraSort 

benchmark (please refer section 5.1.3 for details) since it is sensitive to the Reduce phase 

start policy.  

We conducted multiple iterations of this experiment by increasing the size of input 

dataset from 256MB up to 4GB. This helped us to infer the type of jobs (interactive or 

batch) which are more sensitive to a change in Reduce phase scheduling policy. For each 

size of input dataset, we measure response time for a job using both early-start and 
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delayed-start Reduce phase scheduling policies. We calculate percentage degradation in 

response time as follows, 

% Degradation in response time = [(Tdelayed-start – Tearly-start) / Tdelayed-start] * 100 

Where, 

Tdelayed-start represents response time using a delayed-start Reduce phase scheduling 

algorithm (slow-start threshold = 0.8) 

Tearly-start represents response time using early-start Reduce phase scheduling algorithm 

(slow-start threshold = 0.05) 

 

Figure 20: % degradation in response time after delaying the Reduce phase 
scheduling 

From the figure 20, we can clearly see that the shorter jobs suffer larger percentage 

degradation in the response time. As the size of dataset increases, the percentage 

degradation in the response time becomes less dominant. 

0

2

4

6

8

10

12

14

16

256 512 1024 2048 4096

%
 D

e
g

ra
d

a
ti

o
n

 i
n

 R
e

sp
o

n
se

 T
im

e

Total Data Processed (MB)

% Degradation in 

response time



59 
 

 
 

5.5 Performance evaluation of adaptive slow-start algorithm using 

different Hadoop schedulers 

The adaptive slow-start algorithm attempts to schedule Reduce tasks such that an 

appropriate overlap between compute intensive Map phase and I/O intensive Shuffle 

phase can be achieved without penalizing short/interactive jobs (executing on a shared 

Hadoop cluster) on response time. The algorithm in itself  is orthogonal to the design 

(and goals) of any specific scheduling algorithm (such as fair share scheduling or first-in-

first-out scheduling) and hence can become a core component of the MapReduce 

framework. 

We conducted a set of experiments to evaluate the feasibility of adaptive slow-start 

algorithm in different execution environments by experimenting with different Hadoop 

schedulers namely First-In-First-Out (FIFO) scheduler and the Fair Share scheduler. This 

will help us to determine the feasibilty of using the proposed algorithm as a core 

component of Hadoop MapReduce framework. 

5.5.1 Performance evaluation of Adaptive Reduce Task Scheduling 
(ARTS) algorithm using First-In-First-Out (FIFO) Hadoop Scheduler 

Hadoop FIFO Scheduler performs sequential scheduling of jobs such that atmost one job 

can execute in every phase. This means that there can be no two concurrent jobs 

competing for the Reduce slots. Hence in this scenario, an early start of Reduce phase (by 

configuring a low slow-start threshold) helps to improve the overlap between the 

compute and I/O intensive phases of a MapReduce job and as a result its response time. 
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The goal of this experiment is to evaluate the performance of adaptive slow-start 

algorithm using the First-In-First-Out (FIFO) Hadoop scheduler.  

In this experiment we setup a three node Hadoop cluster on CAC cluster at Rutgers 

University. The hardware configurations for both the nodes is given as follows. 

Intel(R) Xeon(R) CPU 2.40GHz (4 processors) 

3.6 GB memory 

1TB storage 

64-bit platform 

For this experiment, we used TeraSort benchmark (please refer section 5.1.3 for details) 

since it is sensitive to the changes in the slow start threshold. To verify that this algorithm 

is not sensitive to the size of the input dataset, we used datasets of different sizes starting 

from 256MB up to 4GB.  

For every dataset, we measured response time for early-start scheduling (by setting a low 

value for slow-start threshold such as 0.05) as well as using the proposed adaptive slow-

start algorithm.  The results of this experiment are shown in figure 21.  

From the graph in figure 21, we can see that the ARTS algorithm provides comparable 

results with respect to the early-start scheduling. Also the proposed algorithm is not 

sensitive to the size of the dataset (and hence the nature of the job for example a short-

interactive job OR a long running batch-job) being executed.  

Hence we can conclude that it is feasible to use the proposed ARTS algorithm in case of 

a FIFO Hadoop scheduler. 
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Figure 21: Average response time for TeraSort benchmark for different Reduce 
phase scheduling alternatives 
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substantial for short (interactive) jobs. The goal of this experiment is evaluate the 

performance of adaptive slow-start algorithm using Hadoop Fair Share scheduler.  

For this experiment, we used a 20 node Hadoop cluster on Amazon EC2 (using large 

instances). The cluster is configured such that each node has 2 Map slots and 2 Reduce 

slots. Hence the cluster has total number of 40 Map slots and 40 Reduce slots. The 

configuration each node is as follows, 

7.5 GB memory 

4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each) 

850 GB instance storage 

64-bit platform 

 

In this experiment, we wanted to evaluate the performance of the proposed ARTS 

algorithm for different combinations of workloads executing concurrently on a Hadoop 

cluster configured with a Fair Share scheduler. Here our intention is to select one 

workload executing a large (batch-processing) job and one or more workloads executing 

short (interactive) jobs. Since TeraSort benchmark (explained in section 5.1.3) is 

sensitive to the slow-start threshold, we use it for short interactive jobs. For long batch-

processing job, we alternate between WordCount (an aggregation workload – explained 

in section 5.1.4) and TeraSort.  
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Following table shows the configurations of different workloads used for this experiment. 

TeraSort (Long batch-processing) job 30GB input dataset 434 Map Tasks 
37 Reduce Tasks 

TeraSort (Short interactive) job 512MB input dataset 11 Map Tasks 
5 Reduce Tasks 

WordCount (Long batch-processing) 
job 

6GB input dataset 396 Map Tasks 

37 Reduce Tasks 

 

For this experiment, we configure a queue (named ‘production’) to execute batch jobs. 

This queue is configured to have minimum 20 Map slots and 29 Reduce slots. (These 

numbers are selected at random). The remaining capacity of the cluster is shared fairly 

among the other queues in the system.  

For this experiment, the Hadoop cluster is configured to have five queues – one for long 

running batch jobs (named production) and other four for short interactive jobs. Users 

submit a job in the one of the configured queues and wait for it to complete before 

submitting the next job.  

During each iteration of the experiment, we ensure that at least one batch job is always in 

progress by executing X number of batch jobs (X is a configurable parameter set to fairly 

high value).  

For each experiment, we start with a single user executing N number of short jobs (N is a 

configurable parameter) and measure average response time for the short jobs. At this 

point, we also calculate average response time for batch jobs by considering all the batch 

jobs which were submitted during the time span of the iteration. Then we gradually 
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increase the number of users executing short jobs (by using a step of 1 and going up to 4). 

Again for each case, we calculate the average response time for the short jobs 

(irrespective of the associated queues) and the average response time for batch jobs. The 

graphs represented for this experiment are normalized with respect to the response time 

of the job in the best case (i.e. having an early start of the reduce phase in a dedicated 

cluster). 

5.5.2.1 A combination of aggregating and write-intensive 
workloads 

As per the description above, we conducted an experiment with an aggregating workload 

(A large WordCount job) and one or more short jobs executing write-intensive workload 

(A short TeraSort job).  

The figure 22 depicts the average response time for a short job (relative to corresponding 

value on a dedicated cluster configured with early-start policy) against the total number 

of concurrent jobs in the system. Here the case of a single job represent the average 

response time for a job on a dedicated Hadoop cluster configured with early-start policy 

which is used to normalize all other values in the graph.   

We can see that on a dedicated cluster (without any contention), early start of Reduce 

phase helps to improve the response time. In such scenario, the delayed start of Reduce 

phase results into degradation of average response time (approximately 10%). 



65 
 

 
 

 

Figure 22: Average relative response time for short (interactive) jobs for different 
Reduce phase scheduling alternatives 

But as the contention in the cluster grows, the early start of Reduce phase helps batch job 

to occupy the Reduce slots for longer duration and as a result the short jobs are starved 

for Reduce slots in the cluster. Hence in such scenario the average response time for short 

jobs degrades substantially (as shown in figure 21).  

Delaying the start of Reduce phase helps to avoid the starvation of short jobs for the 

Reduce phase and as a result average response time improves with respect to early-start at 

the same level of contention. As shown in figure 22, the delayed start of Reduce phase 

improves the average response time for short jobs in the range of 4% to 20% 

(approximately) in a contented Hadoop cluster.  
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Figure 23: Average relative response time for long (batch) jobs for different Reduce 
phase scheduling alternatives 

 

The figure 23 depicts the average response time for a batch job (relative to corresponding 

value on a dedicated cluster configured with early-start policy)  against the total number 

of concurrent jobs in the system. Here the case of a single job represent the average 

response time for a batch job on a dedicated Hadoop cluster configured with early-start 

policy which is used to normalize all other values in the graph. 

From figure 23, we can see that early-start of Reduce phase is especially helpful for batch 

jobs as their average response time doesn’t degrade considerably (as compared to short 

jobs). On careful analysis we observed that while the short jobs are starved for Reduce 

slots in the cluster (after completing the Map phase), batch job gets access to more 

number of Map slots (since there is no contention in the cluster for the Map slots) 

resulting into an early completion of Map phase (compared to a contented cluster with 

multiple jobs active in Map phase). This behavior clearly violates the basic design goal of 
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the Hadoop scheduler (in this case Fair Share scheduler) to provide a fair share of 

Hadoop cluster to jobs submitted to different queues in the system. 

As we delay the start of Reduce phase, the contention for Reduce slots decreases which 

results in an increase in the contention for the Map slots. This affects the time required to 

complete the Map phase and hence the response time for a batch job. From figure 23 we 

can see that as the contention in the system increases, the average response time for a 

batch job degrades in the range of 5% to 10% as the contention in the cluster increases. 

The proposed ARTS algorithm attempts to find an optimum balance between these two 

alternatives (early-start vs. delayed-start) by taking into consideration factors such as 

class of workload as well as the size of job.  

In case of a short job, the proposed algorithm recognizes the fact that it is a write-

intensive workload and hence attempts to schedule the Reduce phase early. Hence when 

there is no contention in the cluster, the proposed algorithm provides comparable results 

with respect to early-start (thereby improving the overlap between I/O and computation 

in the cluster). But as the contention grows, it outperforms both early-start algorithm (in 

the range of 8% to 25%) and delayed- start algorithm (approximately 5%) in the average 

response time. (Please refer to figure 22) 

In case of a batch job, the proposed algorithm recognizes the fact that it is an aggregating 

workload and hence attempts to delay the scheduling of Reduce as far as possible. (We 

observed that the Reduce phase is scheduled after approximately 95% completion of Map 

phase resulting into slow-start threshold of 0.95). From figure 23 we can see that the 
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adaptive slow-start algorithm provides comparable results with respect to the delayed-

start algorithm.  

Since the improvement in average response time for short jobs is not at the expense of 

corresponding degradation of batch job, we can conclude the proposed adaptive slow-

start algorithm is able to improve the utilization of Hadoop cluster without compromising 

on the objectives of Hadoop scheduler.  

5.5.2.2 Write intensive workloads in batch and interactive modes 

In this experiment we use write-intensive workload for both the long running batch jobs 

(a TeraSort job operating on 30GB of input data) and one or more short jobs (a TeraSort 

job operating on 512MB of input data). The main goal of this experiment is to evaluate 

the performance of adaptive slow-start algorithm in case of write-intensive batch jobs 

(since this workload hints the algorithm to start the Reduce phase early).  

The figure 24 depicts the average response time for a short job (relative to corresponding 

value on a dedicated cluster configured with early-start policy) against the total number 

of concurrent jobs in the system. Here the case of a single job represent the average 

response time for a batch job on a dedicated Hadoop cluster configured with early-start 

policy which is used to normalize all other values in the graph.   

From figure 24 we can see that as in previous experiment (please refer to section 5.5.2.1), 

the proposed adaptive slow-start algorithm outperforms early-start algorithm by 

approximately 2% to 10% for short jobs on a contended cluster while providing 

comparable results when there is not contention.  
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Figure 24: Average relative response time for short (interactive) jobs for different 
Reduce phase scheduling alternatives 

For this combination of workloads, it provides comparable results with respect to 

delayed-start algorithm on a contented cluster (degradation in average response time is in 

the range of 1% - 2%). This is different from previous experiment (please refer to section 

5.5.2.1) since the class of workload for the batch job is different (explained later in this 

section). 

The figure 25 depicts the average response time (relative to corresponding value on a 

dedicated cluster configured with early-start policy) for a batch job against the total 

number of concurrent jobs in the system. Here the case of a single job represent the 

average response time for a batch job on a dedicated Hadoop cluster configured with 

early-start policy which is used to normalize all other values in the graph.  
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Figure 25: Average relative response time for long (batch) jobs for different Reduce 
phase scheduling alternatives 

In case of a batch job, the proposed algorithm recognizes the fact that it is a write-

intensive workload and hence attempts to schedule Reduce phase early. But unlike early-

start algorithm, it doesn’t start all the Reduce tasks immediately. At every point it 

intelligently selects a partition which would take maximum (estimated) time for the 

shuffle operation and the task is scheduled only if the time to copy exceeds (estimated) 

Map phase completion time (please refer section 0). We observed that after 

approximately 50% completion of Map phase, all the Reduce tasks are scheduled 

(resulting into a slow-start threshold of 0.5). Hence this algorithm outperforms the 

delayed-start algorithm (slow-start threshold of 0.8) by approximately 5% in average 

response time on a contended cluster.    

The proposed algorithm uses a linear model to speed up the scheduling of Reduce tasks 

(please refer section 0). This helps to shield against the wrong estimation of network 

bandwidth value. We observe that in case of large job this linear model ends up forcing 

early start for too many Reduce tasks. This results into increased contention for Reduce 
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slots for short jobs (similar to early-start). We plan to experiment with different models 

which can help to reduce the contention for the Reduce slots. This may further improve 

the average response time for the short jobs. 

5.6 Performance evaluation of Adaptive Reduce Task Scheduling 
(ARTS) algorithm in a distributed Hadoop cluster involving multiple 
datacenters  
 

In this experiment we evaluate the performance of proposed Adaptive Reduce Task 

Scheduling (ARTS) algorithm in a distributed Hadoop cluster involving two datacenters 

one at CAC Lab at Rutgers University and the other at Amazon EC2. For this 

experiment, we use a TeraSort benchmark with 2GB input dataset. During the experiment 

we very the distribution of input dataset between two datacenters and measure the 

response time as well as total Map output copied over the Internet for both schemes (a) 

the proposed ARTS algorithm and (b) Native Hadoop Reduce task scheduling algorithm. 

To ensure that the distribution of Map output remains the same in both of these cases, we 

modified the Map phase scheduling algorithm to disable the execution of Map tasks 

across the datacenters. 

In the first experiment we setup the entire 2GB input dataset in Amazon EC2 and 

executed the TeraSort benchmark for both of the Reduce task scheduling policies. The 

following table shows the results for this experiment, 
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  Native Hadoop ARTS 

Map Output - EC2 2129.92 2129.92 

Map Output - CAC 0 0 

Reduce Tasks - EC2 1 3 

Reduce Tasks - CAC 2 0 
Data Transfer over 

Internet (MB) 
1418.08 0 

AVG Runtime (s) 186.25 132.67 

 

Here we can see that since the entire Map output is available in EC2 datacenter, the 

proposed ARTS algorithm schedules all the Reduce tasks in EC2 and as a result there is 

no copy of Map output across the datacenters. The native Hadoop scheme, on the other 

hand, does not understand the datacenter-locality of the Map output and hence scatters 

the Reduce tasks across the datacenters resulting into copy of substantial size of Map 

output. 

In the second experiment, we divide the input dataset such that distribution is 4:5 (EC2: 

CAC). The following table shows the results, 

  Native Hadoop ARTS 

Map Output - EC2 946.63 946.63 

Map Output - CAC 1183.29 1183.29 

Reduce Tasks - EC2 1 2 

Reduce Tasks - CAC 2 1 
Data Transfer over 

Internet (MB) 
1022.03 1100.78 

AVG Runtime (s) 208.25 171.33 

 

From the table above we can see that in this case Native Hadoop scheduling algorithm 

performs better in terms of total data transfer over the Internet with respect to proposed 

ARTS algorithm. But in terms of execution time the ARTS algorithm outperforms the 

Native Hadoop scheduling algorithm. Careful analysis of job execution for both of these 
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policies reveal that the relative performance of Reduce phase depends upon the 

capabilities of the worker executing the Reduce tasks as well as the total amount of data 

transfer over the Internet. Since the workers in EC2 have better I/O performance 

(medium-large instances) than the workers in CAC lab, the ARTS policy provides better 

execution time (although this not by design). As a future work, we would like to 

incorporate the understanding of worker node profile in the scheduling algorithm (along 

with the total data transfer over the Internet).  
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6. Summary, conclusion and future work 

6.1 Summary 

The primary objective of this research was to study and evaluate design assumptions 

behind different components of Hadoop eco-system (specifically Hadoop Distributed File 

System (HDFS) and MapReduce) which mandate the processing of MapReduce 

computations in a centralized environment.  

The study and evaluation of Hadoop MapReduce framework on different types on 

workloads in a distributed environment involving multiple datacenters (namely CAC Lab 

at Rutgers University and the Amazon EC2) reveled inefficiencies in the design of 

Hadoop Distributed File System (HDFS) as well as the Reduce phase scheduling 

algorithm in MapReduce.  

The fundamental design assumption of Hadoop framework is the availability of a single 

logical distributed file-system storing the input dataset. Hence for executing MapReduce 

computation across multiple datacenters, it is essential for Hadoop Distributed File 

System (HDFS) to scale over the Internet. We observed that in such an environment 

performance of HDFS write operations suffer severely since the default replica placement 

policy does not take into consideration the datacenter-locality of the client during replica 

selection resulting into unnecessary copy of data blocks over the Internet.  

To solve this problem, we have designed a WAN-aware replica placement policy which 

ensures that the replicas are placed in the same datacenter as the client, provided 

sufficient storage space is available in that datacenter. With this policy clients in multiple 
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datacenters would be able to share a unified namespace without the overhead of data 

transfer over the Internet. 

We also observed that in Hadoop framework Reduce phase is started after completion of 

user-specified fraction Map phase for a job. Once the Reduce phase starts, Hadoop 

assigns a Reduce task to any node at random. This static task scheduling policy is very 

inefficient in distributed environment involving multiple datacenters as well as in a 

shared environment executing concurrent MapReduce jobs. We have designed an 

Adaptive Reduce Task Scheduling (ARTS) algorithm which performs well both in 

distributed and shared environments. This algorithm keeps a track of total size of Map 

phase output for each partition segregated with respect to datacenters. In a distributed 

environment, this information helps to identify the datacenter-locality while scheduling 

Reduce task. Also this information is used to classify the workload for the job. Adapting 

start time for Reduce phase with respect to type of workload as well as size job helps this 

algorithm to consistently outperform default Reduce phase scheduling algorithm in a 

shared Hadoop environment.  

6.2 Conclusion 

The investigation conducted as part of this research points out the necessity of a large-

scale data processing framework for geographically scattered datasets. MapReduce being 

a popular programming model for large-scale data processing; we have proposed two 

extensions for Hadoop MapReduce framework which improve its performance in 

distributed environment involving multiple datacenters. 

Firstly, proposed WAN aware replica placement policy in HDFS improves the 

performance of write operations in the range of 100% up to 200% over the default policy 
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in a distributed Hadoop cluster involving CAC cluster at Rutgers University as well as 

Amazon EC2.  

Secondly, proposed Adaptive Reduce Task Scheduling (ARTS) algorithm significantly 

reduces the size of Map phase output copied across datacenters over the Internet by 

understanding the datacenter-locality of the Map phase output during the scheduling 

Reduce tasks. In addition in a shared Hadoop environment, this algorithm adapts the start 

time of the Reduce phase for a job by taking into consideration factors like type of 

workload as well as the size of job. This algorithm consistently outperforms default 

Reduce phase scheduling policies (namely early-start and delayed-start) in a shared 

Hadoop environment for different combinations of workloads. 

6.3 Future Work 

During our current evaluation we have not considered many design aspects such as Map 

phase scheduling, speculative execution etc. of the MapReduce framework. Improving 

efficiency of these aspects is critical to truly achieve the goal of extending MapReduce 

framework in a distributed environment involving multiple datacenters connected over 

the Internet. 

Specifically, we plan to evaluate and improve following aspects of MapReduce 

framework. 

• Map phase scheduling. Whenever a worker requests for a Map task, the Hadoop 

master attempts to find out if there is any Map task which is either data-local (i.e. 

having an input data block on the requesting node) or rack-local (i.e. having an 

input data block on one of the nodes in the same rack as the requesting node). If 
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no such Map task can be found, it assigns any Map task at random. In a 

centralized environment, this helps to improve the utilization of Hadoop cluster.  

But as we scale Hadoop cluster over the Internet, this scheduling may not be 

efficient as the cost to copy the data block to the remote node over the Internet 

may be substantial. Hence in such environment, Master should carefully weigh 

different criteria such as cost (and time) required to copy the data block to the 

remote location, cost (and time) required for the remote worker to perform the 

Map computation as well as the gain in the response time achieved by remote 

execution. We are planning to extend the Map phase scheduling framework with 

different policies which optimize factors such as cost of computation, cost of 

network bandwidth consumed over the Internet or user specified deadlines etc.   

• Speculative execution. The speculative execution mechanism in Hadoop 

MapReduce improves the response time of a MapReduce job in the presence of a 

poorly performing faulty worker nodes (called stragglers) executing Map or 

Reduce tasks. This is achieved by speculating which worker nodes (and 

corresponding tasks) are stragglers and executing another copy of such tasks as a 

backup. The master accepts the result of whichever task completes first (either 

original or the backup) and other task is killed. Hadoop scheduler assumes that 

there is no cost of launching a speculative task on any idle worker available. This 

assumption may not be valid in a distributed Hadoop cluster. We are planning to 

evaluate this aspect of MapReduce framework. 

We are also planning evaluate following aspects of Adaptive Reduce Task Scheduling 

(ARTS) algorithm, 
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• The linear model used during the design of ARTS algorithm (please refer to 

section 4.1 for details) is not optimized for scheduling Reduce tasks for write-

intensive workloads (Please refer to section 5.5.2.2 for details). We are planning 

to evaluate different models which can improve its efficiency. 

• At present the ARTS algorithm depends upon the value of network bandwidth 

provided by the user for calculating the time required for Shuffle phase. We are 

planning to automatically infer the network bandwidth available in the given 

Hadoop cluster. 
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