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Abstract
Aspect-orientation is a mechanism for modularizing cross-
cutting concerns that has been added to many existing soft-
ware engineering languages. The implementations of aspect-
oriented language extensions, however, are typically tied to
a specific base language. There is little or no code reuse
between aspect-oriented extensions for different base lan-
guages, which makes these extensions difficult and expen-
sive to build. In addition, existing software engineering tools
do not work with the resulting aspect-oriented languages un-
less new plugins are developed.

We present Carpenter, an object-oriented framework for
developing aspect-oriented language extensions. An aspect
language is developed by reusing classes for generic lan-
guage constructs from Carpenter, and writing subclasses of
the abstractions in Carpenter to define new language con-
structs. An aspect weaver is created by implementing frame-
work interfaces to weave language-specific constructs. The
coordination of the weaving process is done by the Carpen-
ter framework. Aspect languages developed with Carpenter
get full IDE support with only a few lines of code. We have
used our framework to create aspect weavers for Java, JLo,
and AspectU.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Frameworks

General Terms Languages

Keywords Aspect, language, framework

1. Introduction
Aspect-orientation is an increasingly used technique to mod-
ularize cross-cutting concerns. Originally developed for pro-
gramming languages, with AspectJ [20] as the main imple-
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mentation, the technique is now being used in more and
more languages in various stages of the software devel-
opment process. Aspect-orientation has been added to use
cases [17, 19, 33], to architectural description languages
[10, 25, 27, 28], and to many programming languages such
as C++ [34] and C# [32]. In addition to adding aspect-
orientation to existing languages, there is also a need to add
new aspect-oriented capabilities to existing aspect-oriented
languages [13, 22, 24, 36].

The implementations of the aspect-oriented extensions of
most languages, however, are typically written from scratch.
This is an error-prone and costly way to create an aspect
language. To make matters worse, advanced programming
tools, which are essential in a modern software development
process, do not work with the aspect-oriented versions of the
languages they were designed for. Plugins must be devel-
oped to provide tool-support for the new aspect language.

Fradet and Südholt [8] already recognized in 1998 that as-
pect weaving can be performed using a general transforma-
tion framework because the mechanism is always the same.
A cross-cutting concern is captured as an advice that is wo-
ven into the model at the places (join point shadows) speci-
fied by pointcut expressions.

A number of approaches exist to improve the develop-
ment of aspect-oriented languages. SourceWeave.NET [18],
Weave.NET [21], LOOM.NET [32], and Aspect.NET [30]
exploit the common language infrastructure of the .NET
platform to add aspect-orientation to a language. These ap-
proaches, however, are inherently limited to programming
languages supporting .NET. In addition, they force pro-
grammers to write aspects using language constructs of the
common intermediate language (CIL), which is not appro-
priate for logic or functional programming. The abc com-
piler [1] and Reflex AOP [35] simplify the development of
aspect languages, but the host language is limited to Java,
or an extension of Java. Roychoudhury et al. [29] present a
model-driven approach for creating aspect languages. Their
approach is generic, but the developer of an aspect lan-
guage must work with multiple transformation languages,
and transformations that generate other transformations.

The contribution of this paper is the development of an
object-oriented framework for developing aspect-oriented
languages, called Carpenter. In our approach, aspect lan-
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guages are developed by implementing only the language-
specific constructs and their accompanying weavers directly
using standard object-oriented techniques. Common lan-
guage constructs for aspect languages, and most of the in-
frastructure for aspect weavers are provided by Carpenter. To
provide more specialized support for families of languages,
paradigm-specific layers can be developed. The current Car-
penter framework contains such a layer for object-oriented
programming languages. We evaluated the Carpenter frame-
work to develop aspect-oriented extensions of Java, JLo, and
a language for use cases.

Outline
The remainder of the paper is structured as follows. In Sec-
tion 2 we discuss the requirements for easily creating aspect-
oriented languages. In Section 3 we give an overview of the
Carpenter framework, which is discussed in more detail in
Section 4. We discuss the creation of parsers in Section 5.
We evaluate our approach in Section 6 by implementing a
aspect-oriented extensions for Java, JLo, and a language for
use cases. We discuss related work in Section 7, and con-
clude in Section 8.

2. Requirements
In this section, we discuss the requirements for simplifying
the development of aspect-oriented languages.

In the process of developing aspect-oriented languages,
we identify three main stakeholders: the developer of the
base language, the developer of the aspect-oriented exten-
sion of a language, and the developer of an aspect weaver
for an aspect-oriented language. Note that the second and
third stakeholders are not necessarily the same. For example,
multiple aspect weavers can be created for a single aspect-
oriented language to perform different kinds of optimiza-
tions, such as maximizing the execution speed of the woven
program, or minimizing its size.

To simplify the development of aspect-oriented lan-
guages, we identify the following main requirements for the
different stakeholders. The involved stakeholders are shown
between parentheses for each requirement.

1. A language- and paradigm-independent approach:
(all) The approach must be applicable to all types of
languages, from requirements engineering languages to
domain specific programming languages.

2. Modularity of aspect weavers: (aspect weaver devel-
oper) Similarly, the aspect weaving mechanisms for
many aspect-oriented languages have much functional-
ity in common. Such common functionality should be
provided in reusable modules that can be composed by
the developer of an aspect-oriented language. For exam-
ple, the high-level orchestration is always the same: find
join point shadows, sort the advices per shadow, and per-
form the actual weaving. The developer for a particular

aspect-oriented language extension should not have to
implement this process from scratch.

3. Modularity of aspect-oriented language constructs:
(aspect weaver developer, aspect language developer)
Multiple aspect-oriented languages can have language
constructs in common, such as generic pointcut expres-
sions and advice types. The developer of an aspect-
oriented language extension must be able to reuse the
implementations of the semantics of these language con-
structs in a modular way.

4. Modularity of the base language: (all) The semantics
and the parser for the base language can be very complex.
Therefore, their implementations should be reusable to
build language extensions. The semantics of language
extensions should be plugged into the semantics of the
base language. In addition, if a base language is changed
(for example in a new version) in a way that does not
affect an extension of that language, then that extension
should not require any changes to work with the new
version of the base language.

Requirements 2 and 3 apply at multiple levels in the lan-
guage hierarchy. For example, aspect-oriented extensions of
languages that belong to a particular family, such as object-
oriented programming languages, should be able to share
common pointcut expressions and weaving functionality.
Similarly, an aspect-oriented extension of JLo, which itself
is an extension of Java, should be able to reuse the imple-
mentation of the aspect-oriented extension of Java.

For requirements 2, 3, and 4 the set of stakeholders be-
comes bigger with every step. This reflects the stack struc-
ture of the process. An aspect weaver is built for an aspect
language, which is built for a base language. Reusing as-
pect weaving functionality across different aspect-oriented
languages is very difficult if those languages cannot share
language constructs. Reusing aspect-oriented language con-
structs and their semantics is very difficult if the base lan-
guages cannot share language constructs.

3. An Object-Oriented Approach
Our approach is based on the Chameleon framework, which
is a generic object-oriented framework for language devel-
opment. Figure 1 illustrates the architecture of our approach.
Layers with a thick black border are part of Carpenter, while
layers with a thick gray border are part of Chameleon. To
keep the figure simple, arrows for uses relations are only
drawn towards the most specific layer that is used by another
layer. The super layers are used as well.

The top of the language hierarchy is the Chameleon layer
for generic language constructs. Language constructs do not
only contain the structure of a program – like AST nodes
– but they also encapsulate the static semantics. For exam-
ple, each language construct has a verify method to deter-
mine whether it is valid, such tool developers do not have
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Figure 1. The architecture of Carpenter.

to duplicate these semantics. The top layer also contains
many abstractions for similar language constructs. For ex-
ample, a Declaration is any language construct that has a
Signature, such as a type, a method, or a use case. These
abstractions greatly improve the language-independence of
software engineering tools.

Below the top layer, there are paradigm-specific layers.
Top layer of the Carpenter framework provides classes for
generic aspect-oriented language constructs. Many pointcut
expressions can implemented directly in this layer by us-
ing the abstractions provided by the top layer. The within

pointcut expression, for example, matches any element that
is lexically within a certain Declaration. As such, this
pointcut expression can be reused directly in any aspect-
oriented language. The top layer of Carpenter also pro-
vides abstractions to improve the language-independence
of aspect-oriented tools.

Multi-paradigm layers provide additional language con-
structs for language that belong to a specific combination
of paradigms. For example, we have implemented a layer in
Carpenter for aspect-oriented extensions of object-oriented
programming languages. This layer contains for example a
pointcut expression for method invocations.

At the bottom of the hierarchy are the implementations
of concrete languages. A concrete aspect-oriented language
AO-L reuses both the implementation of the base language
L, and the implementation of the aspect-oriented language
constructs for the paradigm of L. Aspect-oriented language
constructs that are specific for L are implemented in AO-L.

parent(): Element
children(): List<Element>
verify(): VerificationResult

Element

name(): String
Signature

signature():Signature
scope(): Scope

Declaration
resolve(): Declaration
CrossReference

parent

0..1

0..*

Figure 2. A few core abstractions of Chameleon.

The hierarchy for aspect weavers – or any other tool – fol-
lows the same layering structure. The language-independent
weaving code is written in the top layer, while subsequent
layers add support for weaving specific paradigms of lan-
guage or specific languages. For example, the top layer of
the aspect weaver of Carpenter contains the code to co-
ordinate the weaving process. It uses abstractions such as
PointcutExpression to find join point shadows without
having to know which aspect-oriented language is used. The
actual weaving is performed by lower layers since that re-
quires paradigm-specific or language-specific knowledge.

3.1 Core Abstractions of Chameleon
Figure 2 shows a simplified class diagram of the most impor-
tant classes of Chameleon that are used in Carpenter. Every
language construct implements the top interface Element,
which has methods for navigating the lexical structure of a
model. The verify method checks whether or not an ele-
ment is valid.

A Declaration is any element that has a signature
(name). Examples of declarations are methods, class, as-
pects, use cases, and so forth. A Signature has at least a
string that represents its name, but can also contain addi-
tional information such as parameter names and types.

A cross-reference is any element that references a decla-
ration. Examples are method invocations, type names, and
so forth. The resolve method encodes part of the seman-
tics of the cross-reference by computing which declaration
is referenced. The Chameleon IDE, for example, uses this
method to support navigable hyperlinks without having to
know which concrete language is used.

4. A Framework for Aspect Languages
In this section, we discuss the most important classes of the
Carpenter framework. In section 4.1, we discuss the top layer
for aspect-oriented languages. In section 4.2 we discuss the
top layer for aspect weavers. In section 4.3 we discuss the
layer for object-oriented languages.

Because of space concerns, the class diagrams that we use
throughout the paper are simplifications of the real frame-
work. As such, we omit all elements that are not required for
explaining our approach.
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signature(): Signature
declarations(): List<Declaration>

Aspect

shadows(Doc): List<MatchResult>
body() : Element

Advice

shadows(Doc): List<MatchResult>
matches(Element): MatchResult
filter(Predicate)

PointcutExpression

signature(): Signature
Pointcut

11
0..* 0..*

0..1
0..1

11

properties(): List<Property>
Modifier

Before Around After

Figure 3. Aspects.

4.1 Abstractions For an Aspect-oriented Language
Figure 3 shows the generic classes to model aspects. An
aspect has a name, pointcuts, and advices. A pointcut has
a name and a pointcut expression. An advice has a body,
which in general can be any kind of element, and a pointcut
expression. The types of advice are modeled as modifiers
and accompanying properties, which are omitted to save
space. Neither a pointcut nor an advice can have formal
parameters in the top layer of the framework, since they
are not available in all languages. Support for parameters is
added in the layer for object-oriented languages.

Figure 4 shows a number of language constructs of the
generic pointcut language. The semantics of a pointcut ex-
pression is defined by its matches method, which deter-
mines whether the pointcut expression matches a potential
join point shadow. Note that redefinitions of the matches

methods are not shown to save space. The filter method is
used to compute the pointcut residue, which is the dynamic
subtree of a pointcut expression.

The generic pointcut language supports disjunction, con-
junction, and negation, and provides classes for a number of
concrete pointcuts. A pointcut expression (PointcutRef)
delegates join point shadow matching to an existing pointcut.
It matches each element that is matched by the referenced
pointcut. The CrossRefPointcutExpr class selects join
point shadows that are cross-references and that reference
a declaration that satisfies a certain pattern. Similarly, the
Within expression matches elements that are lexically de-
fined within a declaration that satisfies a pattern. A number
of typical patterns for aspect-oriented programming are pro-
vided by the framework. The regular expression and wild-
card patterns constrain the signature of a declaration, while
the container pattern puts a constraint on the nearest lexi-
cal parent declaration of a certain type. This can be used for
example, to match references to a field name f of class T.

matches(Element): MatchResult
filter(Predicate)

PointcutExpression

Dual

Or

Node

Within

ref:SimpleReference
PointcutRef

And

Not

second

first

CrossRefPointcutExpr

matches(Declaration)
and(Pattern): Pattern
or(Pattern): Pattern
not(): Pattern

Pattern

regex(): String
RegexPattern

pattern(): String
WildCardPattern

type(): java.lang.Class<? extends Declaration>
nestedPattern(): Pattern

AncestorPattern

pattern():Pattern
DeclPointcutExpr

1

1

0..*

0..*

0..*

0..*

Figure 4. Pointcut expressions.

It is important to note that the leaf classes in Figure
4 are concrete and have only dependencies with classes
from the top-level Chameleon layer. Therefore, the classes
shown in Figure 4 can be used regardless of the language
to which aspect-orientation is added. The developer of the
aspect language must only add classes for new language
constructs.

4.2 The Weaving Process
In this section, we present the generic weaving infrastructure
of Carpenter. It is important to note, however, that whereas
the generic aspect language of the previous section resem-
bles a library due to the amount of concrete classes, the
weaving infrastructure is more like a real framework with
many abstract classes. This is because selection of join point
shadows can be done easily based on high-level abstractions,
but the actual weaving requires construction and manipula-
tion of elements at the level of the concrete language.

Figure 5 shows the top classes of the aspect weaver in-
frastructure. The AspectWeaver class represents the entire
aspect weaver. The actual weaving is delegated to a linked
list of Weaver objects that implement the Chain of Respon-
sibility design pattern [9]. To define the order in which mul-
tiple aspects are applied to a single join point shadow, the
aspect weaver uses a sorting strategy. Each aspect language
defines a concrete subclass of AspectWeaver that initializes
the weaver chain and the sorting Strategy. Each subclass of
Weaver is responsible for weaving one or more combina-
tions of a type of advice and and type of join point shadow.

The weavers do not immediately perform the weaving
because the order in which the aspects for a particular
join point shadow must be woven does not correspond to
the order in which advice objects are selected by the as-
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weave(List<Doc>)
sorter(): Comparator<ShadowWeaver>
initialiseWeavers()

AspectWeaver

weave(Advice, MatchResult): ShadowWeaver
setNext(Weaver)
next(): Weaver

Weaver

next

1

0..1

weave()
ShadowWeaver

next0..10..1

1

previous

1

 
Advice

shadow():Element
expr(): PointcutExpression

MatchResult

Figure 5. The aspect weaver infrastructure.

pect weaver. Instead, they create ShadowWeaver objects. A
ShadowWeaver is responsible for weaving one particular
advice for a particular join point shadow. A ShadowWeaver

contains a reference to the advice that must be woven and a
MatchResult object. A MatchResult object is created dur-
ing selection of the join point shadows and keeps a reference
to the shadow and the pointcut (sub)expression that matched
the shadow. The reference to the pointcut (sub)expression
is stored to allow support for dynamic pointcut expressions.
For such pointcut expressions, it is necessary to know ex-
actly which part of the pointcut expression of an advice
matched the join point shadow such that the correct dy-
namic code can be inserted. For example, if pointcut expres-
sion within(T) & if(f()) | within(S) & if(g())

matches within T, only code for evaluating f() should be in-
serted. The ShadowWeaver objects for a particular shadow
will be connected to form a doubly linked list. This allows
the various advices for a single join point shadow to be
chained together correctly during the actual weaving.

Figures 6, 7, and 8 illustrate the weaving process. The
solid arrows in collaboration diagrams denote references
that are stored in fields, whereas the striped arrows denote
references via local variables. Note that the messages in
the collaboration diagrams are not exact representations of
the code in the classes of Figure 5 since these classes are
abstract. For example, the create call will be performed by
a subclass of Weaver, and will create an object of a subclass
of ShadowWeaver.

For each advice in the model, the aspect weaver asks the
advice to which join point shadows it must be applied. The
advice delegates this call to its pointcut expression, which
encapsulates the semantics of join point shadow matching.
The resulting MatchResult objects (mr in the figure) are
then given to the chain of weavers, together with the advice.

Weaver Weaver

:Aspect
Weaver

:Weaver Weaver

2*: jw = weave(a,mr)

2.1: weave(a,jp) 2.1.1: weave(a,jp)

a:Advice

1: mrs=joinPoints(doc)

sw: ShadowWeaver

3: create(a,mr)

mr: Match 
Result

:PointcutExpression

1.1: joinPoins(doc)

J: Element

1.1.1: create()

Figure 6. Phase 1: creating shadow weavers.

:

:Aspect
Weaver c:Comparator

1: sort(c)

 
sw1: ShadowWeaver

2*: setNext(jw)

:MatchResult

j1:Element

:

 
sw2: ShadowWeaver

:MatchResult

j2:Element

Figure 7. Phase 2: sorting the shadow weavers.

In this figure, only the call for weaving a single combina-
tion of advice and match result is shown. In this case, the
third weaver decides it is responsible for weaving this com-
bination, and creates a shadow weaver that will perform the
actual weaving.

After passing all join point shadows to the chain of
weavers, the aspect weaver builds a map with the shadows
as keys, and a collection of ShadowWeaver objects as the
value. These collections are then sorted, and the shadow
weavers are linked together.

Finally, the weave method is invoked on the first shadow
weaver to start the actual weaving process. Each shadow
weaver first passes control to the next one in the list, and then
weaves its own advice. The actual weaving is performed in
two steps. In the first step, any infrastructure is generated
to store the advice. This can for example be a method. In
the second step, the join point shadow is transformed to
incorporate the advice, for example an expression can be
replaced with an invocation of the method that contains the
advice code. The second step is only performed by the first
shadow weaver in the chain. Every shadow weaver N beyond
the first one will instead return an element that allows the
previous shadow weaver P in the chain to incorporate the
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:Shadow 
Weaver

:Shadow 
Weaver

:Shadow 
Weaver

:Match 
Result

3: weave()
4: weave() 5: weave()

:Match 
Result

:Match 
Result

shadow: Element

:Aspect
Weaver

Figure 8. Phase 3: performing the weaving.

advice woven by N in the advice woven by P. Therefore, all
shadow weavers restrict the kind of shadow weaver that they
can be connected to, such that they know how to process the
result of the next shadow weaver. We do not consider this to
be a severe restriction since we do not know of a situation
where this would be inappropriate

4.3 The Object-Oriented Layer of Carpenter
The OO layer of Carpenter provides additional support for
adding aspects to object-oriented programming languages
and for the corresponding weavers. The code in this layer
assumes that the host language is an object-oriented pro-
gramming language, and can therefore rely on abstractions
defined in the OO layer of Chameleon.

4.3.1 A Pointcut Language for OO Languages
Figure 9 shows the support for exposing context informa-
tion via parameters is provided. Both pointcuts and advice
get a list of formal parameters, which are defined in the
Chameleon OO layer. The pointcut expressions that expose
parameters are taken from the AspectJ pointcut language.
They are used within the shadow weavers to insert local vari-
able in the generated code. In addition, a pointcut expression
is added to reference a pointcut that has parameters.

Support for matching method and constructor invoca-
tions, and field reads is provided through new subclasses
of DeclarationPattern that are similar to those of Fig-
ure 4. For reasons of space, we do not show a separate class
diagram for the new patterns. These patterns can be used
together with the pointcut expression for cross-references,
which is defined in the top layer of Carpenter.

4.3.2 Advice Weaving for OO Languages
Support for advice weaving is limited to providing helper
classes to perform the weaving. Generating the actual lan-
guage specific code is the responsibility of the language
module of the specific aspect language. The OO layer of
Carpenter offers classes to facilitate weaving advice for ex-
pressions and statements. TO create language constructs that

matches(Element): MatchResult
filter(Predicate)

PointcutExpression

renameParameter(String, String)
hasParameter(FormalParameter p)

ParameterExposurePointcutExpression

ArgsTypeCheck

This Target

shadows(Doc): List<MatchResult>
body() : Element

Advice
signature(): Signature

Pointcut

params(): List<FormalParam>
OOPointcut

params(): List<FormalParam>
returnType(): Type

OOAdvice

PointcutReference
WithArguments

declarations(): List<Declaration>
DeclarationContainer

Figure 9. Exposing context in pointcuts and advice.

are represented differently in different object-oriented lan-
guages, such as if-then-else statements and exception
handlers, factories are used.

The OO layer also contains classes for orchestrating the
binding of context information in the form of parameters.
Shadow weavers for pointcut expressions that support pa-
rameter exposure the RuntimeContextProvider interface.
This interface is used by the parameter binder class of the
OO layer to add parameters to the advice and bind them to
the appropriate values in the context.

5. Creating Parsers for Aspect Languages
Gray et al. identify parser construction as one of the main
challenges for constructing aspect weavers [11]. First, there
is a need for a good parser for the base language. Second, the
parser for the base language must be extended with a syntax
for defining aspects.

In this section, we report on our experience with using
the ANTLR [26] parser generator to construct parser for
aspect-oriented languages. ANTLR supports composition of
grammars, and grammar files are available for many existing
languages. Other parsing technologies can be used, though,
since Chameleon hides parsing behind a generic interface.

Figure 10 illustrates how a parser for an aspect-oriented
extension of Java is created in ANTLR. In this figure, the
double arrows denotes imports. The grammar of Java is de-
fined in two files: one for the lexer (JavaL.g) and one for the
parser (JavaP.g). The parser file contains the syntax rules for
Java, along with semantics actions that create on object rep-
resentation of the model. To construct an actual Java parser,
both files are imported in a root parser file (Java.g). To add
syntax definitions for aspect-oriented programming, both the
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JavaP.g

JavaL.g

JavaParser.g

AspectJava.g AspectJavaP.g

AspectJavaL.g

Figure 10. Extending a parser to support aspects.

lexer and parser are extended and the recombined into a new
parser. Extending the lexer and parser of Java is done by im-
porting them in the lexer and parser of AspectJava, and then
overriding and adding syntax definitions.

Multiple inheritance in ANTLR should make it possible
to reuse the grammar rules for generic aspect-oriented lan-
guage constructs, but a bug in ANTLR prevented us from
writing the required grammar compositions. In addition,
ANTLR does not allow the addition of a case to a syntactic
rule in a modular way. This is needed for example to add
proceed to the existing Java expressions such that it can be
used in advice code. Currently, either all existing cases of
the rule for expressions must be duplicated in the overriding
definition, or the original Java must be refactored. We plan to
experiment with PPG [3] or Rats! [12] to reuse the grammar
rules for generic aspect-oriented language constructs.

6. Evaluation
In this section we evaluate Carpenter by building a number
of aspect oriented language extensions and measuring the
amount of work that is required. We first discuss the eval-
uation approach in Section 6.1. We then discuss the three
aspect-oriented languages that we developed in Sections 6.2,
6.3 and 6.4. Finally we summarize the results of the case
studies by revisiting the requirements in Section 6.5.

6.1 Evaluation Approach
We have used the Carpenter framework by building aspect
weavers for the Java and JLo, which is an extension of Java.
We have also developed a weaver for the AspectU language,
which adds aspect-orientation to use cases. The implemen-
tations of these languages and the Carpenter framework are
available online [37].

We use the size of the code base for each extension as
an indication of the amount of work that is required to cre-
ate the extension. Therefore, the line counts do not include
comments, generated code (such as imports), and lines that
contain only braces or brackets. Figure 11 shows the size
of the generic and object-oriented layers of Chameleon and
Carpenter, along with the size of the Chameleon IDE. The
bold rows in the tables in this section are used for code that
is related to aspect-orientation.

The Chameleon Eclipse IDE is an Eclipse plugin that uses
Chameleon for modeling the source of a project. The IDE

uses only a few abstractions of Chameleon to support a num-
ber of essential features for modern IDEs. An outline shows
a tree structure of the declarations in a file. Navigable hyper-
links allows a user to click on a cross-reference after which
the IDE jumps to the definition of the referenced declaration.
Errors in the model are reported by underlining the prob-
lem region in red and adding an entry to the problem view
of Eclipse. Language-specific requirements of the IDE are
hidden behind interfaces that must be implemented to pro-
vide support for a concrete language. This mostly concerns
parsing, providing meta-information such as the positions of
elements, and optionally custom visualizations.

6.2 An Aspect-oriented Extension of Java
We have implemented an aspect weaver for Java 1.5, which
we call AspectJava in the remainder of this paper. The As-
pectJava weaver does not generate bytecode, but generates
Java source code instead. The supported advice types are:
after, before, around, after returning, and after throwing.
AspectJava supports the following pointcut expressions:
calls of methods based on their signature or annotation, field
reads, catch clauses, delegation to pointcuts, elements within
a certain type or method, class cast expressions, dynamic
pointcut conditions (if), run-time condition based on the
type of arguments, and the target or receiver of a message.

The advice infrastructure factories for all expressions
generate static methods that contain the advice. Each shadow
weaver provides support for weaving multiple advices into
a single join point shadow by generating an invocation of
the static method generated by the next shadow weaver in
the chain. Passing of arguments and invoking the original
method call (if the join point shadow is a method or con-
structor invocation) is done using reflection.

The motivation for using reflection was to make it easier
to get the generated Java source code accepted by the Java
type checker. The downside of using reflection in the gen-
erated advice infrastructure, however, is that the code of the
shadow weavers becomes less reusable. The reflective capa-
bilities of for example Java, Smalltalk, and C++ are too dif-
ferent to be able to extract much common code. The static
structures of these languages, however, have much more in
common. Implementing a factory to generate for example,
a method that behaves like a static method in Java is much

LOC
Top layer of Chameleon 4644
Chameleon Eclipse IDE 6989
Top layer for aspect-oriented Languages 856
Top layer for aspect weavers 433
OO layer of Chameleon 7640
OO layer for aspect-oriented languages 895
OO layer for aspect weavers 234

Figure 11. Line counts for Chameleon and Carpenter.
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Java language 5183
Java grammar file 1170
Java plugin for Chameleon IDE 223
AspectJava language 126
AspectJava weaver 1438
AspectJava grammar file 151
AspectJava plugin for Chameleon IDE 39

Figure 12. Line counts for Java and AspectJava.

easier. In addition, such factories are also reusable for creat-
ing other tools such as a refactoring tool. Having a refactor-
ing tool that generates reflective code, even if it does so cor-
rectly, does not seem like a good idea. The use of reflective
code also prevented us from implementing the functionality
for exposing context information in Carpenter. The orches-
tration of the process is done in Carpenter, but since formal
method parameters are part of the context information, the
code mechanism for context information also suffers from
our choice to generate reflective code. An additional prob-
lem is that the code for generating the reflective Java code in
some of the shadow weavers for run-time pointcut expres-
sions is hard to read.

The table in Figure 12 shows the line counts for Aspect-
Java and the language module for Java. It is clear from these
numbers that the framework approach works very well for
the definition of the AspectJava language itself. Most aspect-
oriented language constructs can be reused from Carpen-
terThe entire base language is reused from the Java language
module. The code for Java specific aspect-oriented language
constructs (126 LOC) is less than 7% of the total code for
the aspect-oriented language constructs in AspectJava. Since
AspectJava reuses virtually all code for aspect-oriented lan-
guage constructs from the generic and OO layers of Car-
penter, this total is 126+895+856=1877 LOC. In reality this
number is even better since it does not yet include code that
is reused from Chameleon, such as code for resolving cross-
references. The precise amount of code that is reused from
Chameleon, however, is hard to count.

For the aspect weaver, the percentage of reused code
is significantly lower. Only about a third of the code for
the AspectJ weaver could be reused – it uses virtually all
code from the Carpenter weaving layers. While this is still a
good result, we expect that reuse can be improved further
by generating regular code instead of reflective code. We
expect that generating regular code will allow more generic
OO code to be moved to the OO layer of Carpenter.

The line count parser for the ANTLR grammar files is
calculated in a similar way. Grammar reuse is very good,
only two rules from the Java grammar had to be overridden:
compilationUnit to add aspects, and expression to add
proceed. As such, there is still some duplication, but it only
concerns about 20 lines of code.

LOC
JLo language 1663
JLo to Java compiler 1703
JLo grammar file 233
JLo plugin for Chameleon IDE 92
AspectJLo language 9
AspectJLo weaver 267
AspectJLo grammar file 235 (86)
AspectJLo plugin for Chameleon IDE 37

Figure 13. Line counts for JLo and AspectJLo.

A remarkable result is that IDE support is virtually free.
Plugin functionality that is specific for Java – mostly code
for visualizing method signatures – is reused by extending
the plugin for Java. The two classes in the AspectJava plu-
gin take only 39 lines of code, 14 of which are methods for
creating user interface strings such as the version number.
The outline shows the aspects and pointcuts in a file, using a
reference to a parameter of a pointcut or advice as a hyper-
link make the cursor jump to its definition, and syntactic and
semantic errors are reported. Not a single line of code was
written for AspectJava to support these features.

It is hard to compare line counts of our approach with
those of other approaches, but Avgustinov et al. report 167
lines of code to add support for matching and weaving cast
join point to AspectJ with the abc compiler [1]. We need
176 lines for the cast join point, so the effort is similar. The
advantage of abc is that is offers advanced optimization of
the woven code for Java. The advantage of our approach is
that it is much more generic.

6.3 An Aspect-Oriented Extension of JLo
To test the extensibility of AspectJava, we developed an
aspect weaver for JLo, which adds a dedicated composition
relation to Java [38]. It is not in the scope of this paper to
discuss the benefits or full semantics of this composition
relation. What is important is that JLo extends Java with
new language constructs that have a significant influence
on the lookup mechanism of the language. AspectJLo is
implemented as a layer that specializes AspectJava, and can
therefore reuse all functionality defined for AspectJava.

The aspect weaver for AspectJLo supports all of the ad-
vice types and pointcut expressions of AspectJava, but adds
a pointcut expression for subobject reads. These are simi-
lar to field reads, but the AspectJava weaver cannot process
them since it has no knowledge of subobjects.

The table in Figure 13 shows the size of the AspectJLo
implementation. The sizes of the JLo components are in-
cluded for reference. The AspectJLo language module con-
tains only a subclass of Language to represent the Aspec-
tJLo language. No new language construct is needed for sub-
object reads because they can be modeled directly with the
Carpenter classes of Figure 4.
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LOC
Use case language 2665
Use case grammar file 435
Use case plugin for Chameleon IDE 33
AspectU language 72
AspectU weaver 125
AspectU grammar file 104 (64)
AspectU plugin for Chameleon IDE 39

Figure 14. Line counts for use cases and AspectU.

For AspectJLo, the Carpenter framework allowed us to
define an aspect weaver with very little work. Because JLo
is a Java extension, the use of reflection in the generated
code caused no problems, and we could reuse the complete
AspectJava weaver. Only the code for matching and weaving
subobject reads must be written. Everything else is reused
from the AspectJava weaver.

The grammar definitions in AspectJava could not be
reused because we could not get the multiple inheritance
mechanism of ANTLR to work correctly, as mentioned in
Section 5. Therefore, the AspectJLo grammar extends the
JLo grammar, and the syntax definitions for aspects and
pointcuts are copied from the AspectJava grammar. Other-
wise, the grammar would only be 86 lines long.

As with AspectJava, obtaining support for the Chameleon
IDE requires some trivial configuration code.

6.4 An Aspect-Oriented Extension of Use Cases
To study how well Carpenter works for a non-programming
language, we implemented AspectU [33]. AspectU is an
aspect-orientated extension of a language for use cases, and
provides support for pointcut expressions for matching steps,
use cases, and use case extensions. All use cases, steps, and
extensions in the base language are annotated with a name
that can be used in the pointcuts. Context information is
exposed via the pointcut expression bind(var,val). An
advice consists of a list of steps and a list of extensions that
can be added to a use case. A special proceed step can be
used in around advice.

The table in Figure 14 shows the size of the AspectU im-
plementation. The base use case language is included for
reference. Note that our base use case language is more
advanced than that of AspectU. Both the implementations
of the AspectU language and the AspectU weaver are very
small. The fact that the semantics of the bind pointcut ex-
pression of AspectU can be expressed as simple text substi-
tution makes it much easier to insert the context informa-
tion than is the case for Java. As with AspectJLo, the gram-
mar definition duplicates grammar rules for generic aspect-
oriented language constructs. The line count between paren-
thesis shows the size of the grammar if we could reuse those
definitions. Again, IDE support is virtually free.

6.5 Conclusion of the Case Studies
In this section, we revisit the requirements that we presented
in Section 2, and summarize the results of the case studies.

1. A language- and paradigm-independent approach:
By developing aspect-oriented extensions of two pro-
gramming languages and a language for use cases, we
have shown that the approach works for languages in two
completely different paradigms. We found no indications
that the approach would not work for other paradigms.

2. Modularity of aspect weavers: The framework ap-
proach worked well for the aspect weavers. All aspect
weavers reuse the framework classes of Carpenter. In ad-
dition, the AspectJava weaver reuses functionality from
the OO layer of Carpenter, and the AspectJLo weaver
reuses the complete AspectJava weaver.
The developed languages also revealed a number of lim-
itations of our approach. First, the generation of reflec-
tive code in the AspectJava weaver prevents reusing that
code for other object-oriented languages because the re-
flection mechanisms of these languages differ too much.
An important research challenge is to study whether gen-
erating regular code can lead to reusable weaving code
for object-oriented languages.
Second, the current weavers insert the advice body in
some form for every matched join point shadow, which is
problematic for large programs. Such optimizations can
be implemented in the language-specific weavers, but an
important research challenge is to study how they can be
supported by Carpenter.

3. Modularity of aspect-oriented language constructs:
The framework approach worked very well for defining
the aspect languages. Only a few language-specific ele-
ments had to be implemented for each language. The rest
of the language could be used from Carpenter. AspectJLo
completely reuses the language definition of AspectJava.
ANTLR has proven helpful for creating parser for the
aspect languages, but did not result in fully modular
parsers. The inability to add cases to an extended gram-
mar resulted in some duplicated cases. In addition, prob-
lems with multiple inheritance prevented the extraction
of the common grammar rules for the generic aspect-
oriented language constructs.

4. Modularity of the base language: Aspect-oriented lan-
guage constructs were be added to the base language
without modifying the latter. The base language seman-
tics are completely reused. Even though the concrete
aspect-oriented languages contain no code for name res-
olution, the lookup mechanisms of the base language still
works within an advice body still works. In addition, vari-
able names in the base language code resolve to a param-
eter of an advice block if the name matches, even though
the base language has no knowledge of advice.
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Carpenter significantly reduced to work to define aspect-
oriented extensions of Java, JLo, and our use case language.
Most of the aspect-oriented language constructs and the code
to orchestrate the weaving process could be reused from Car-
penter. For the aspect weavers, a significant amount of code
could be reused but we think that the support for weavers can
be further improved. The use of Chameleon in the aspect-
oriented languages made it very easy to obtain IDE support.
Only a few lines of code were needed for each language,
giving support for syntax highlighting, an outline, navigable
hyperlinks, and error-reporting.

The development of Carpenter also revealed a few short-
comings in Chameleon. Carpenter revealed the need for a
generic mechanism for modifying Declarations. This is
needed to support for example inter-type declarations. Such
a mechanism is implemented for particular elements, but is
not yet available in general. In addition, the builder infras-
tructure had to be modified because the aspect weavers must
know which parts of a model represent the user project in
which aspects must be woven, and which parts (if any) rep-
resent unmodifiable elements such as the language library.

7. Related Work
Roychoudhury et al. present a model driven approach for
construction of aspect weaver[29]. They identify four main
challenges: 1) parser construction , 2) weaver construc-
tion , 3) accidental complexity of transformations, and 4)
language-independent generalization of transformations.
The authors address challenges 1 and 2 by using pro-
gram transformation techniques. They address challenge 3
by defining an abstract layer for aspect-orientation (called
GAspect), and using ATL transformations to generate RSL
program transformation rules which incorporate low-level
language details. This allows the aspect developer to fo-
cus on the language concepts without dealing with low-
level details. Challenge 4 is addressed by using higher-order
transformations, which allow reuse across multiple aspect
languages. The authors construct aspect weavers for FOR-
TRAN and Object Pascal. In our approach, challenge 1 is
addressed by using a parser generator, challenge 2 by us-
ing Carpenter, and challenges 3 and 4 by using Chameleon.
The main differences with our approach are the following.
First, the metamodels in Carpenter encapsulate the language
semantics instead of having them spread over data mod-
els, transformations, and program analyzers. Second, we
implement the aspect languages and weavers directly us-
ing object-orientation instead of defining transformations to
generate other transformation rules.

JastAdd [7] provides a DSL and accompanying tools for
implementing languages. The AST structure is defined in an
attribute grammar from which corresponding AST classes
are generated. Additional functionality is implemented in
inter-type declarations and woven into the AST classes. Sim-
ilar to Chameleon, a language can reuse elements from other

languages. But JastAdd does not provide a library of generic
abstractions. As such, the implementation for Java and a use
case language would share nothing. But even if such ab-
stractions were defined, it would be impossible to develop
a tool that works with multiple languages. The generated
AST classes are never shared between languages, even if
they share the definitions of the language constructs. There-
fore, there are no interfaces that a generic tool could use. Jas-
tAdd would work well for defining AspectJava and Aspec-
tJLo, but there would be no IDE support. Defining AspectU
would require more work because both the aspect weaver
and the pointcut language would have to be reimplemented.
In case of AspectU, this is a relatively large overhead.

Dinkelaker et al. present the POPART [5] meta-aspect
protocol (MAP) on top of a meta-object protocol (MOP).
The MAP extends the MOP such that it can intercept method
calls, and adds support for aspect-orientation. Both POPART
and Carpenter provide a generic aspect language that can be
extended by creating subclasses, and both approach use a
similar modularization of the weaving process. The key dif-
ference between both approaches is that POPART processes
aspects at run-time, while Carpenter does that at compile-
time. The MAP makes developing a language extension in
POPART easier than in Carpenter, but the dependency on
a MOP limits its applicability. Mainstream languages such
Java, C#, and C++ do not natively support a MOP. To sup-
port JLo, its implementation would have to be rewritten as a
dedicated virtual machine with MOP support instead a trans-
formation to Java code. In addition, POPART cannot be used
for the use case language, as it is not executable.

Dyer and Rajan [6] present Nu, an aspect-oriented inter-
mediate language. The added bind and remove primitives
add and destroy advising relations. The authors implemented
Nu in the JVM and show that there is no significant perfor-
mance impact, and demonstrate that Nu can model a wide
range of aspect-oriented features. Similar to POPART, the
approach is limited to executable languages, and requires
modifications of the native implementations of mainstream
languages. Because Nu reduces the gap between an aspect-
oriented language and its execution environment, using Nu
as a compilation target would significantly simplify our As-
pectJava weaver.

Haupt and Schippers [14] define a machine model for
aspect-oriented programming. Aspect-oriented program-
ming is modeled in a prototype based object-oriented lan-
guage. Each object has a proxy that determines the identity
of the object. Method calls are sent through a delegation
chain with the proxy at the start and the object at the end.
Class-based languages are supported by appending a shared
class proxy to the chains for objects. Schippers et al. [31]
demonstrate the expressiveness of the machine model by en-
coding four different languages. The machine model directly
and elegantly models aspect-orientation instead of modify-
ing join point shadows, which is the approach taken in Car-
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penter. The downside is that it would have to be implemented
separately for each language run-time, which is not practical
for mainstream languages. Carpenter does not depend on the
implementation of a language run-time and is applicable to
languages other than programming languages.

Tanter and Noyé propose Reflex, a kernel for multi-
language aspect-oriented programming [35]. Their approach
uses three layers. The first layer performs the actual weav-
ing. The second layer manages aspect interactions. The third
layer enables modular definitions of aspect languages. The
authors use reified links to model the connection between
advices and join point shadows. Interactions between as-
pects are resolved using link composition rules. To define
an aspect language, a plugin is implemented which trans-
lates aspect programs written in that aspect language into a
Reflex configuration. The authors implemented plugins for
SOM and AspectJ. While Reflex AOP enables the definition
of modular aspect languages, the host language is limited to
Java. The principle is not Java-specific, but the kernel would
have to be reimplemented for other host languages.

Heidenreich et al. present a model-driven approach to
add modularization technique to a language [16]. They of-
fer two ways of adding modularization to languages. The
first approach is to extend the metamodel of the language
by defining component interfaces. The second approach ex-
tracts those interfaces automatically. The latter technique
has the advantage that existing tools keep working, but is
sometimes more difficult to implement than a metamodel
extension. They evaluate their approach by creating adding
component capabilities to UML activity diagrams and the
domain-specific language TaiPan. In earlier work, the au-
thors have added aspect-orientation to Java [15]. The authors
implemented the ReuseWare composition framework on top
of the Eclipse Modeling Framework [4].

Weave.NET [21], Aspect.NET [30], and LOOM.NET [32]
offer language-independent aspect-oriented programming
by operating on the common language infrastructure (CLI)
of the .NET platform. The use of CLI allows these aspect
weavers to work with large collection of programming lan-
guages, and even support cross-language weaving. The latter
is not supported by our framework, since there is no inter-
mediate language that supports all possible languages. These
approaches, however, reflect the object-oriented model be-
hind the common intermediate language (CIL) in the aspect
language that they define. While this is not a problem for
object-oriented languages such as C# and Visual Basic, this
is problematic for languages whose language constructs do
not map well to object-oriented languages, such as func-
tional and logical programming languages. The approach is
also limited to programming languages.

SourceWeave.NET [18] uses an approach that is similar
to that of the .NET approaches that operate on the CLI,
but instead of operating on .NET assemblies, it operates
on CodeDOM models. CodeDOM is the .NET standard for

representing models of source code. Because CodeDOM is
strongly related to CIL, SourceWeave.NET has the same
limitations as the assembly based approaches.

Avgustinov et al. present abc, an extensible AspectJ com-
piler [1]. The abc compiler can use Polyglot [23] or Jas-
tAdd [7] for the front-end. A program is transformed to an
intermediate representation called Jimple to perform the ac-
tual aspect weaving. The abc compiler uses a generic inter-
mediate representation for pointcuts to simplify the devel-
opment of new pointcut expressions. This representation is
similar to the generic top layer of Carpenter. The abc com-
piler is limited to extensions of Java, but implements many
optimizations to improve the performance of the woven pro-
gram, which Carpenter does not do.

ALIA4J is an execution model for advanced-dispatching
languages [2]. ALIA4J defines a language-independent
metamodel for advanced-dispatching (LIAM), which is sim-
ilar to the top layer of Carpenter. Concrete languages extend
this model to define additional constructs. A plugin inter-
acts with the JVM to ensure that the custom dispatching
mechanism is used at run-time. An intermediate representa-
tion of a program is used to make the approach language-
independent. The approach is not limited to building aspect-
oriented extensions of languages, but because it uses run-
time interception, it is limited to executable languages. The
authors evaluate their approach by implementing language
constructs from languages such as AspectJ and CaesarJ.

8. Conclusion
Aspect-orientation is added to ever more software engineer-
ing languages. Existing approaches to simplify the develop-
ment of aspect-oriented language extensions are either lim-
ited in the types of supported host languages, or use compli-
cated code generation techniques.

We defined Carpenter, an object-oriented framework
for the development of aspect-oriented languages. Aspect-
oriented languages constructs and the corresponding weavers
are implemented directly in an object-oriented programming
language. This approach enables the definition of abstrac-
tions that improve the language-independence of the as-
pect weavers without having to write a tool for generating
weavers. Classes for generic aspect-oriented language con-
structs and generic weaving functionality can be reused from
the Carpenter framework.

We used Carpenter to create aspect-oriented extensions
of Java, JLo, and a language for use cases. This showed that
a significant amount of work was saved by using Carpenter.
Providing IDE support for aspect-oriented languages devel-
oped with Carpenter requires only a few lines of code.
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