
RESEARCH
CONTRIBUTIONS

~:~ ~i ~i~!~ ~i ~ii: ~!~i ii ~i:~ !~:~ ~iiiiiii~ ~i:~!! ¸ i:ii ii ̧ i!~i~

i i~ ¸̧ ~i ! ii i!~!!~ i i?j i ~ ii~i ~! y~i !i j I

~ ii ̧ ~: : ~ !/ ~! ¸̧ I̧̧ !!i i~ ~: ~i i? ~:i~ ~: ~ ~

~ i i i l i ii~i~ ̧̧

The Evaluation of
Text Editors:
Methodology and
Empirical Results
T e r e s a L. R o b e r t s Xerox O f f i c e Systems D i v i s i o n

T h o m a s Po MoTal] Xerox Palo A l t o Research Center

Thomas 1. Moron's major
research interests are in mental
models of systems, the learning

of systems, and the nature of
expertise in using systems, as

well as the formalization of the
issues and processes of

designing systems. Teresa L.
Roberts received her Ph.D. in

Computer Science from
Stanford University in 1979.

Authors' Present Addresses:
Teresa Roberts,

Xerox Office Systems
Division,

3333 Coyote Hill Road,
Pale Alto, CA 94304

Arpanet Roberts.
PA @ PARC-MAXC;

Thomas Moran,
Xerox Pale Alto Research

Center,
3333 Coyote Hill Road,

Pale Alto, CA 94304
Arpanet Moran.

PA @ PARC-MAXC.
Permission to copy

without fee all or part of this
material is granted provided
that the copies are not made

or distributed for direct
commercial advantage, the
ACM copyright notice and
the title of the publication

and its date appear, and
notice is given that copying is

by permission of the
Association for Computing

Machinery. To copy
otherwise, or to republish,

requires a fee and/or specific
permission.

© 1982/ACM
0001-0782/83/0400-0265 75¢.

1. INTRODUCTION
Text editors are the most heavily used programs on inter-
active computing systems since the advent of time-shar-
ing systems (e.g., [1]). Text editing, or worc[processing, is
also a very pervasive use of personal computers [15].
There are probably hundreds of different text editors in
use today: many computation centers have their own lo-
cal editors, and new computers often come with their
own text editors. System programmers cannot seem to
resist the temptation to design a better text editor. Heated
debates rage over computer networks about text editor
design. Yet, remarkably little objective information is
known about the relative advantages of different kinds of
editing paradigms.

Systematic study of text editors is hampered, at least
partially, by the complex of issues surrounding text editor
usage. Text editors are flexible tools that are used for a
wide variety of purposes, since many kinds of human
communication are done by text, Simple informal notes,
letters and memoranda, structured text (such as lists and
tables), reports and specifications (requiring sophisticated
formatting and layout), and program code (structured dif-
ferently from narrative text) are all applications for which
text editors are regularly used. There are many different
kinds of editor users--f irst- t ime novices, hardened ex-
perts, occasional users, and users with specialized appli-
cations that lead them to know how to perform some
tasks well and other tasks not at all. Finally, there are
many different measures of the quality of user-editor in-
teraction, including both objective measures of perform-
ance, such as time and errors, and subjective measures of
acceptability, such as feelings of enjoyment, clumsiness,
and so forth.

The study of text editors up to now has been domi-
nated by functional descriptions of editors, both by pro-
ponents of particular systems (e.g., [16]) and by neutral

ABSTRACT: This paper presents
a methodology for evaluating text
editors on several dimensions: the
time it takes experts to perform
basic editing tasks, the t ime ex-
perts spend making and correcting
errors, the rate at which novices
learn to perform basic editing
tasks, and the functionality of edl-
tors over more complex tasks.
Time, errors, and learning are
measured experimentally; func-
tionality is measured analytically;
t ime is also calculated analyti-
cally. The methodology has thus
far been used to evaluate nine di-
verse text editors, producing an
initial database of performance re-
suits. The database is used to tell
us not only about the editors hut
also about the users - - the magni-
tude of individual differences and
the factors affecting novice learn-
ing.

April 1983 Volume 26 Numt~.,r 4 Communications of the ACM 265

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2163.2164&domain=pdf&date_stamp=1983-04-01

RESEARCH CONTRIBUTIONS

evaluators (e.g., [10, 14, 8]). These reports mainly present
subjective opinions as the basis for comparing different
systems, either by deciding a priori what features are
desirable or by informally trying out the systems to get a
feel for what works well and what is lacking. Various
arguments, which on the surface seem reasonable, are
also used to defend the conclusions in these reports, but
the validity of these arguments is seldom tested. The pur-
pose of the present s tudy is to obtain objective, replicable
results. A survey of related behavioral studies done up to
this time is given in [6].

Our purpose in this paper is to present a standardized
evaluat/on of text editors. This kind of evaluat ion may be
contrasted with a specific evaluation, which is tai lored to
a part icular purpose or situation, such as the evaluation of
a set of editors to determine their utility in a part icular
working environment. A s tandardized evaluation does not
make assumptions about the par t iculars of any given situ-
ation, nor does it cover all of the various aspects of editor
usage. It focuses on the common propert ies of text editors
rather than on the idiosyncracies of part icular editors. A
s tandardized evaluat ion at tempts to address the most fun-
damenta l issues and is thus appl icable to a variety of
editors. A famil iar example of a s tandardized evaluat ion
is the EPA rating of automobile gasoline mileage. While
the condit ions used to obtain the EPA rating do not match
the driving condit ions of any specific car, the ratings do
relate to common driving situations. Thus, the ratings can
be used to compare different cars and, to some extent,
can be adjusted to tell about specific driving situations.

A benefit of using a s tandardized evaluat ion over a
period of t ime is the accumulat ion of a database of con-
sistent information about editors. This gives a s tandard
for interpreting the results of any new evaluation, a criti-
cal factor missing from many specific evaluations (e.g.,
[7]). One of our goals in proposing a s tandar ized evalua-
tion is to initialize a database of information about the
populat ion of existing editors.

The methodology we present here evaluates computer
text editors from the viewpoint of the performance of
their use r s - - f rom novices learning the editor for the first
time to dedicated experts who have mastered the editor.
Objectivity, thoroughness, and ease-of-use were the crite-
ria used in creating this methodology. Objectivity implies
that the methodology not be biased in favor of any partic-
ular editor 's conceptual structure. Thoroughness implies
that multiple aspects of editor usage be considered. The
methodology focuses on four dimensions of editor usage
that are behavioral ly fundamental and pract ical ly impor-
tant.

The Time to perform basic editing tasks by experts.
The Error cost for experts.
The Learning of basic editing tasks by novices.
The Functionality over a wide range of editing tasks.

Ease-of-use means that the methodology should be usable
by editor designers, managers of word processing centers,
or other nonpsychologists who need this kind of evalua-
tive information, but who have limited time and equip-
ment resources.

The structure of this paper is as follows: In Sec. 2, we
describe the evaluation methodology. In Sec. 3, we apply
the methodology to nine different text editors, presenting
and discussing the empirical results, and assessing the
methodology itself. In Sec. 4, we turn the empirical results
around to gain some insight into user performance with

computers, part icular ly in the areas of individual differ-
ences and novice learning.

2. DESCRIPTION OF THE METHODOLOGY
The methodology is based on the specific kinds of tasks
involved in text editing. It consists of exper imenta l ly
measuring user performance on three d imens ions- -Time,
Error, and Learn ing- -and on an analysis of Functionali ty.
Also, expert performance time can be calculated analyti-
cally.

2.1 Taxonomy of Editing Tasks
An evaluation scheme for editors needs to have a com-
mon ground on which to compare different kinds of edi-
tors. Editor design features (e.g., "modeless" insertion of
new text vs. having an "insert mode") and design con-
cepts (e.g., table creat ion using sequential text with for-
matting characters such as tabs vs. using a two-dimen-
sional structure) cannot serve this role, since the features
and concepts differ so much from editor to editor. There
is no evidence that one feature is a lways bett~r than an-
other. In fact, the overall consis tency in how well the
different design features of the editor fit together may
well be more important than any individual feature in
determining the quali ty of the editor.

What is constant across all text editors, in contrast to
design features, is the editing tasks they permit their users
to accomplish. Thus, the methodology here is based on a
taxonomy of 212 editing tasks that can potent ial ly be per-
formed by a text editor. These tasks are specified in terms
of their effect on a text document, independent of any
specific editor 's conceptual model [9]. The organizat ion of
the task taxonomy, along with a sample of tasks in each
category, is given in Figure 1. The Funct ional i ty dimen-
sion of an editor is measured with respect to the set of
tasks in this taxonomy, by assessing how many of the
tasks the editor can perform.

Comparisons between editors on the performance di-
mensions (Time, Error, and Learning) must be based on
tasks that all editors can perform. For this purpose, we
identify a small set of core editing tasks (see Figure 2).
The core tasks are the ones that all text edi tors , by defini-
tion, can perform; they are also the most common editing
tasks in normal text-editing applications. Most of the core
tasks are generated by applying basic text editing opera-
tions (e.g., insert, delete, replace) to basic text entities
(e.g., characters, words, llnes). Also included in the core
set are the tasks of accessing and saving documents and
the simplest text-display and text-addressing operations.

A lengthy specification is required to instruct an evalu-
ator to carry out this methodology. In this paper we can
give only enough information to make clear the basic
structure and procedure of the methodology and the re-
sulting measures. Full instructions and materials for run-
ning the evaluat ion tests and analyses may be found in
the report by Roberts [11].

2.2 The Time Dimension
The time it takes expert users to accomplish routine text
modifications is measured by observing expert users as
they perform a set of benchmark tasks, which are d rawn
from the core tasks.

Benchmark. There are 53 editing tasks in the bench-
mark, embedded in four documents: a short interoffice
memo, two two-page reports, and a six-page chapter from

266 Communications of the ACM April 1983 Volume26 Number4

RESEARCH CONTRIBIJ'rlONS

FIGURE 1. Taxonomy of Editing Tasks on which the Evaluation Methodology is Based.

Modify Document
Content and st ructure of text

Characters, words, numbers, sentences, paragraphs, lines, sections, document
References [e.g., keep up-to-date references to section numbers in the document]
Sources for text or attributes [e.g., make the text layout be the same as in another document]

Layout of running text and structure
Inside paragraphs [e.g., indent the first line of a paragraph so far from the left margin]
Headings, random lines [e.g., center]
Interparagraph layout [e.g., leave so much space between paragraphs]
General [e.g., lay out document in so many columns]

Page layout
Every page [e.g., print a page heading that includes the current section number]
Non-mainline text [e.g., position footnotes at the bottom of the Page]

Attributes of characters
Line break [e.g., automatic hyphenation]
Shape [e.g., boldface]

Tables
Column beginning [e.g., columns are equally spaced]
General alignment [e.g., align the column on the decimal points]
Modify alignment [e.g., swap the positions of two columns]
Treatment of table entries [e.g., line up the left and right edges of (justify) each table entry]

Summary of text [e.g., table of contents]
Special applications [e.g., mathematical formulas]

Locate Change (Addressing)
Text [e.g., find text which has specified content]
Structure [e.g., find the next section heading]
Layout/Attributes [e.g., find a boldface character]
Misc.

P rog ram Edits (Control)
Command sequences [e.g., invoke a sequence of commands with parameters]
Control structure [e.g., repeat a sequence of commands a specified number of times]
Tests [e.g., compare strings for alphabetical order]
Storage [e.g., store pointers to places in documents]
User control [e.g., ask user for parameters during execution]
Preexisting composite commands [e.g., sort a sequence of text strings]

Find Task or Verify Change (Display)
Display text and layout [e.g., show the outline structure of the text]
Display system state [e.g., show where the selection is relative to the whole document]

Miscellaneous
Hardcopy

Draft copy [e.g., print with extra space between lines]
Misc. [e.g., print on envelopes]

Intermediate Input/Output [e.g., save away the current version of a document]
Other [e.g., perform arithmetic on numbers in the document]

a phi losophy book. The types of tasks in the benchmark
are randomly drawn from the core tasks, and the loca-
tions and complexities of the benchmark tasks are also
randomly distributed. The distr ibution of tasks in the
benchmark is more uniformly distr ibuted than one would
observe in normal text-editing work, the benchmark giv-
ing more emphasis to the more complex kinds of tasks
(most real-world editing tasks are simple text modifica-
tions involving a small number of characters). For exam-
ple, tasks involving "tr icky" boundary condit ions are
over-represented in order to identify special cases, such
as insertion at the beginning of a paragraph, which an
editor may treat awkwardly . The benchmark also under-
represents the typing of lengthy new text, since such typ-

ing performance is more a reflection of the skill of the
user than of the quali ty of the editor. We will discuss
later how to relate this benchmark to other distr ibutions
of tasks.

Sub}ects. Four expert users were tested individually on
the benchmark. The evaluator should select the set of
subjects to represent the diversi ty of the expert user com-
munity: at least one user should be nontechn ica l (i.e.,
with no programming background) and at least one
should be technical (i.e., know how to program). Four is
the absolute minimum number of subjects needed to get
any reliabili ty of measurement and to get some indication
of individual user variation.

April 1983 Volume 26 Number 4 Communications of the ACM 267

RESEARCH CONTRIBUTIONS

FIGURE 2. Core Editing Tasks used in the Methodology
for Expert Time Performance and Novice Learning.

Core tasks consist mainly of the cross-product (except
for a few obvious semantic anomalies) of the following
basic editing operations applied to the following basic
text objects:

Operations: insert Objects: character
delete word
replace l ine
mo ve sentence
copy paragraph
transpose sect ion
spl i t
merge

For example:

- - i nse r t character(s)
---insert word(s)
- -de le te character(s)
etc.

Core tasks also contain the following miscellaneous tasks:

---display a cont inuous chunk of text
- -address a speci f ied p lace
---address accord ing to content
---make a document avai lable for edi t ing
---put a document away
---start a new document

Note. The formal definition of the core m the task taxonomy also
includes operations on the object number; however, no tasks using
numbers were included in the experiments. The learning exper-
iments omitted the operation transpose since it can be regarded
as an optimization of two moves.

Measurement. The evaluator measures the performance
in the test sessions with a clock and a s topwatch, measur-
ing the overall performance time with the clock and the
times spent in error with the stopwatch. The evaluator
also notes whether or not each task is performed cor-
rectly. When the subject is f inished with the tasks, the
evaluator asks the subject to make a second pass to com-
plete any incorrect ly done tasks. This relat ively crude
method of measurement is used because it is easy for
anyone to run (not everyone has an ins t rumented editor
or a videotape setup, but anyone can acquire a s topwatch)
and because s topwatch accuracy is sufficient. I

Error-free and Error Time. The benchmark typical ly
takes about 30 minutes of s teady work to complete. The
elapsed time in the exper iment is par t i t ioned into error-
free time and error time, according to two types of ob-
served behavior. The error time is the time the user
spends dealing with errors (see below for more detail),
and the error-free t ime is the elapsed time minus the error
time.

Scoring. The individual user 's Time score is the average
error-free time to perform each task (i.e., the total error-
free time divided by the number of tasks). The overall
Time score is the average score for the four subjects.

] The reliability of the measurements is de termined more by the small number
of subjects than by the accuracy of measurement .

2.3. The Error Dimension
The effect of errors in an editor is measured by the error
time, which is the time cost of errors on the benchmark
tasks. The course of a typical error includes committ ing
the error, discovering it, correcting it, and then resuming
productive behavior. Error t ime consists of all the act ivi ty
up to the resumption of productive activi ty [4]. Only those
errors that take more than about 15 seconds to correct are
counted by the evaluator (which is the best that can be
done with a stopwatch). Thus, the t ime for typographical
and other simple errors is not included in the error time.
We do not know exact ly how close this method approxi-
mates the true error time, but the true error t ime is not
l ikely to be dominated by the time in these small errors.
In addi t ion to the time for the immedia te ly corrected er-
rors, the time for the second-pass correct ions is also
counted in the error time.

Scoring. The individual Error score for each user is the
user 's error t ime expressed as a percentage of h i s /he r
error-free Time score. 2 The overall Error score is the aver-
age score for the four expert users.

2.4 The Learning Dimension
The ease of learning of an editor is tested by actual ly
teaching four novice subjects, individually, to perform the
core editing tasks.

Subjects. Each subject must be a novice to computers
(defined as someone with no previous experience with
computers or word processors). This gives us an easily
defined baseline measure of learning, that is, from zero
exper ience?

Teaching Paradigm. The learning tests are performed in
a one-on-one, oral teaching paradigm, wi th an instructor
individual ly teaching each novice the editor. Al though
more expensive than group-teaching or self-teaching para-
digms, this paradigm has the crucial advantage that it is
adaptable to the individual learner. The other paradigms
are more rigid and may tend to magnify the differences
between different learners, which obscures the learnabi l-
ity of the editor itself. For example, in a self-teaching
paradigm using the editor 's documentat ion, a learner can
easily get confused on a point because of a short lapse of
at tention or because of the par t icular wording of the doc-
umentat ion and not because the point is inherent ly diffi-
cult. In the one-on-one paradigm, on the other hand, the
instructor can respond to the part icular difficulties of
each learner by explaining things in a different way, by
correcting misconceptions, and so forth.

Teaching Procedure. The teaching procedure is struc-
tured as a series of five ins t ruct ion-quiz cycles. In each
cycle, the instructor first instructs the learner on some
new tasks or corrects the learner 's difficulties, and during
this t ime the learner is a l lowed to practice performing
tasks on the system; finally, the learner is given a quiz to
test what tasks s /he can do independent ly . The learner
paces the session, deciding how much to practice, when
to take the quiz, and so on.

The methodology includes a s tandard syl labus specify-

2 Thus, the total t ime to per form an average benchmark task is T + Te, where T
is the error-free Time score and e is the Error score.

More and more people today have some exposure to computers, and it m a y
become more important to look at the learning users exper ienced in other
systems. However , this would present difficult methodological problems in
assessing their degree of experience and the s imilar i ty of their exper ience to
the editor to be learned.

268 Comnmnicalions of lhe ACM Apri/1983 Volume 26 Number 4

RESEARCH CONTRIBUTIONS

ing what core tasks are to be taught on each cycle. How-
ever, it is up to the instructor to determine which specific
editor commands and facilities to teach in order for the
subject to be able to accomplish the core tasks. The struc-
ture of a part icular editor might also make it necessary to
slightly alter which tasks are taught in which cycle. The
teaching procedure is s trongly method-oriented; by
"teaching tasks" we mean teaching methods to accom-
plish the tasks.

The quizzes consist of documents marked with changes
to be made (similar to the benchmark performed by the
expert users). Only a sample of the core tasks appears on
each quiz. Not all tasks on a quiz have necessar i ly been
taught up to that point, which allows learners to figure
out, if possible, how to do tasks that have not been explic-
ity taught. During the quizzes, the learners are given ac-
cess to a one-page summary sheet listing all the editor
commands taught. Thus, a learner is not hung up a long
time on a quiz because of a simple difficulty, such as not
being able to remember the name of a part icular com-
mand.

Scoring. The amount that a subject learns is measured
by counting the number of different task types the subject
is able to perform on the quizzes. Only half-credit was
given if the subject performed a task incompletely or had
to look at the summary sheet. The individual Learning
score is the amount of t ime taken for the learning session
divided by the total number of tasks learned, that is, the
average time it takes to learn how to do a task. The
overall Learning score is the average Learning score for
the four novice learners.

2.5 The Functionality Dimension
The range of functionali ty available in an editor is meas-
ured by analyzing the editor against a checklist of tasks
covering the full task taxonomy (Figure 1).

The Analys t . The editor is rated on the funct ional i ty
checklist by a very experienced user of the editor, the
analyst, who uses whatever documentat ion material is
necessary to ensure accuracy.

Rating Criteria. Rating the funct ional i ty of an editor on
a task involves deciding whether the task can or cannot
be done with the editor. This is not a simple binary deci-
sion. Almost any task can be performed on almost any
editor with enough effort. Consequently, the editor is
given full credit for a task only if the task can be done
efficiently with the editor. It is given half-credit if the task
can be done awkwardly , which can appear in several
guises: repeti t ion of commands, excessive typing of text,
l imitations in parameter values to the task, interference
with other functions, substant ial planning required of the
user, etc. The editor is given no credit for a task if it
cannot be done at all (such as trying to specify an italic
typeface on a system designed for a line printer) or if
doing the task requires as much effort as retyping all the
affected text (such as having to manual ly insert page
numbers on every page).

Scoring. The overall Functional i ty score is the percent-
age of the total number of tasks in the task t axonomy that
the editor can do, according to the rating criteria. This
score may be broken down into subscores according to
the classes of tasks in the taxonomy, to show the
strengths and weakness of the editor.

2.6 Calculation of Expert Performance Time
The error-free performance time of an expert using an
editor can be calculated analytical ly, using the Keystroke-
Level Model [3, 4]. This model predicts expert perform-
ance time by counting the number of physical and mental
operations required to perform a task and by assigning a
s tandard time for each operation. The model counts oper-
ations at the grain-level of keystrokes: typing, pointing at
a location on the display with a pointing device, homing
the hands onto a device, mental ly preparing for a group of
physical operations, and waiting for system responses.
The Keystroke-Level Model analysis gives a precise char-
acterization of methods for accomplishing tasks.

When the model is appl ied to the set of benchmark
tasks, it produces a calculated performance time for a
"s tandard expert" that can be compared to the experi-
mental ly measured times. However, making this calcula-
tion requires the evaluator to predict what methods an
expert user would use to perform the benchmark tasks,
since the model requires that the methods be specified as
input. In the absence of knowledge about the style of
expert user interaction, the most useful heuristic is to first
identify the common, frequently used commands of the
editor and to pick the optimal method for each task
within that set of commands. The fact that the experi-
mental subjects sometimes use methods different from
those predicted, plus other differences between the as-
sumptions of the Keystroke-Level Model and the test con-
ditions in this methodology (e.g., the inclusion of small
errors) leads us to expect small - to-moderate differences
between the calculated performance and the exper imental
results.

3. EVALUATION OF NINE TEXT EDITORS
Nine text editors have been evaluated using this method-
ology, both as a test of the methodology and for the inher-
ent interest in the results. The results of these evaluations
provide the beginnings of a database of empirical results
giving us behavioral data on user performance, as well as
the basis for comparing editors.

3.1 Description of the Editors
The nine text editors evaluated are: TECO [20], WYLBUR
[24], EMACS [23], NLS [18, 19], BRAVOX [21], BRAVO [22], a
WANG word processor [26], STAR [27], and GYPSY [25].
These represent a wide variety of text editors and word
processors, some in wide use around the country and
some experimental . The first two of these editors were
designed for teletypelike terminals, and the rest were de-
signed for display-based terminals or personal computers.
The intended users of these editors range from devoted
system hackers to publishers and secretaries who have
had little or no contact with computers.

Text editors are complex interactive systems. Thus, it is
difficult to succinctly describe the design of these nine
editors. Figure 3 at tempts to character ize the editors ac-
cording to a set of commonly discussed design features.
For example, the Command Invocation column describes
the design feature concerned with the ways in which a
user designates commands to the system. The nine editors
cover a wide range of choices for this feature: (1) type all
or part of an English verb, (2) type a one-letter mnemonic
for the command name, (3) hold down a control key while
typing a one-letter mnemonic, (4) type a one-letter mne-
monic on a chordset, (5) press a special function key,
(6) select a command from a menu on the display.

April 1983 Volume 26 Number 4 Communications of the ACM 269

RESEARCH CONTRIBUTIONS

FIGURE 3. Feature Description of Nine Text Editors.

Featu re

E d i t o r Display Auto Strong Text Command Insert Means of Addressing Computer

[Ref.] Line Line Units Invocation Mode Addressing c Hardware Processor d
Wrap a Concept b

TECO TTY e No Yes Characters, 1 -letter Yes Relative to Keyboard PDP-t 0
[20] style lines mnemonfc current equivalent,

position via 3Mb net

WYLBUR TTY e No Yes Characters, English-like, Yes Absolute Keyboard IBM 370,
[24] style lines abbreviated line 1200 baud

numbers

EMACS Partial Yes Yes Characters, ! -letter No Relative to Keyboard PDP-10
[23] page words, lines, mnemOnic, current equivalent,

Sentences, control keys position approximately
paragraphs 1200 baud

NLS Partial Yes No Characters, l- letter Yes Screen Mouse PDP-10
[18, 19] page words, English-like position with local

paragraphs on keyboard or processor
5-key chordset

BRAVOX Full Yes No Characters, I -letter No Screen Mouse Xerox Alto
[21] page words, lines, mnemonic, position personal

paragraphs menu, computer
function keys

BRAVO Partial Yes No Characters. 1-letter Yes Screen Mouse Xerox Alto
[22] page words, lines, mnemonic position persOnal

paragraphs corn puter

WANG Partial Yes No Characters Function Yes Screen Step keys f Stand-alone
[26] page keys position Wang word

processor

STAR Full Yes No Characters, Function No Screen Mouse Xerox 8000
[27] page words, keys, position processor

Sentences, menus
paragraphs

GYPSY Partial Yes No Characters, Function No Screen Mouse Xerox Alto
[25] page words, keys position personal

paragraphs computer

a Automatic line wrap means that during type-m a new line is automatically begun when a word
overflows the old line, without any intervention from the user.

b This refers to editors that require the user to type RETURN at the end of each line of text. Usually,
this also means that there is an explicit CARRIAGE-RETURN character at the end of each line in the
internal representation of the document.

c This refers to the primary means of addressing (all editors have the ability to search).

d Time-shering computers were used under conditions of light load. Terminals and computer displays
were all CRTs, except that one WYLBUR user preferred her own hardcopy terminal.

e A TT~ (teletype) style display is one that does not continuously show the state of the document, but
only shows the sequence of commands entered by the user. Snapshots of pieces of the document are
displayed when the user explicitly asks for them.

f Four keys with arrows on them, which move the cursor up, down, left, and right (see [2]).

270 Communications of the ACM April 1983 Volume 26 Number 4

RESEARCH CONTRIB(n'IONS

Figure 3 also gives the conditions under which the edi-
tors were used for the experiments. For example, T~.CO
was run on a time-sharing machine connected to a termi-
nal over a 3-megabit local network, while the WANG word
processor was run on its own stand-alone hardware. Note
that the methodology does not provide an evaluation of
an editor in the abstract, but only of a particular imple-
mentation under a particular set of conditions. It is possi-
ble that the particular conditions (e.g., the quality of the
terminal or the bandwidth of its connection to the central
processor) dominate the abstract characteristics of the ed-
itor (e.g., its command language conventions) in determin-
ing an expert's performance. Therefore, an attempt was
made to run each editor under reasonably optimal condi-
tions, in order to make the overall evaluation results as
generally useful as possible. 4

Figure 4 gives a different characterization of the editors.
It shows in detail how a user would go about performing
a specific word-replacement task in each of the editors,
using the notation of the Keystroke-Level Model (the foot-
note to the figure lists the different types of Keystroke-
Level Model operations). For example, it can be seen that
the editors described in Figure 3 as having an insert mode
(TECO, WYLBUR, NLS, B R A V O , and W A N G) all require the
typing of a special character (preceded by a mental opera-
tion) after the insertion to terminate the insertion of new
text. On tee other hand, the "modeless" editors (EMACS,
BRAVOX, STAR, and GYPSY) do not require any operations
after typing in new text. These methods also show where
moving the hands from the keyboard to the pointing de-
vice and back (homing) add extra motions to the methods
used with editors which have a mouse or step keys (NLS,
BRAVOX, BRAVO, W A N G , STAR, and G Y P S Y) .

This Keystroke-Level Model analysis can be used to
calculate the expected expert performance time for each
editor, and to give a detailed quantitative decomposition
of the times for each type of operation in each editor. To
do this, the Keystroke-Level Model analysis was applied
to all the benchmark tasks for each of the nine editors.
The calculated task times thus obtained were averaged
over the 53 benchmark tasks to give times for an "average
editing task" for each editor. Figure 5 presents these first
empirical (not experimental) results.

Figure 5(a) gives the calculated average task times for
each editor. This leads us to expect a certain pattern of
experimental results, for example, for there to be an over-
all factor of 2.5 between the fastest and the slowest edi-
tors. The figure also shows how each average task time is
decomposed into the times for each operator type. For
instance, the cost of slow system response stands out
clearly. If EMACS had been run on a fast terminal, its
speed would be faster than NLS'S; STAR would be the fast-
est editor of all if system response times for all editors
could be effectively reduced to zero. A weak point of the
WANG, on the other hand, is the pointing time required by
the step keys; it would be improved at least 2 sec/task
(over 10 percent) by using a mouse.

The task time decomposition can also be considered as
a percentage of total task time, as shown in Figure 5(b).
This shows, for example, that homing time between the
keyboard and pointing device is not a major problem (ex-
cept perhaps with the WANG, which relies heavily on

4 EMACS was the only sys tem for which optimal conditions were not found. The
workstat ion used was actually a pe r sona lcompute r running a rather s low
terminal-emulation package. This cut the effective communica t ion rate be-
tween the main computer and the worksta t ion to around 1200 baud, which is
much slower than is often available with EMACS.

function keys that are separate from the main typing ar-
ray). An interesting contrast exists between TECO and
WYLBUR. Both use the same set of operations: Acquire,
Keying, Mental time, and system Response. But TECO,
with its emphasis on minimal typing, only spends one-
third of its user's time in typing, while WYLBUR spends
over half. This is paid for, however, in Mental time,
where the ratios are reversed.

3.2. Overall Evaluation Results
All nine editors were run through all the evaluation tests.
According to the methodology, the overall evaluation of a
text editor is a four-tuple of numbers, one numeric score
from each dimension. The overall evaluation scores for
the nine editors are presented in Figure 6.

Differences were found between the editors on all di-
mensions. The expert Time results show, for instance,
that TECO, WYLBUR, and EMACS are the slowest editors and
that GYPSY and STAR are the fastest. Most of the display-
based systems are about twice as fast to use as the non-
display systems. The difference between the fastest and
slowest system was a factor of 2.5, as the Keystroke-Level
Model analysis led us to expect. The Error dimension
shows a range of a factor of 5 in the cost of errors be-
tween systems. On the Learning dimension, TBCO is
clearly the slowest to learn, with the next system being a
factor of 2 faster to learn, and the rest of the editors
ranging over another factor of 2 in learning speed. We
also see large differences in the Functionality dimension,
with scores ranging smoothly from under 40 percent of
the tasks to almost 80 percent.

We see that no editor is superior on all dimensions,
indicating that tradeoffs must be made in deciding which
editor is most appropriate for a given situation. For exam-
ple, consider the editor BRAVOX, which was developed at
Xerox as an extension to the earlier editor BRAVO. Its
purpose was to increase functionality and speed and to
try out fashionable design features such as command
menus and modeless text insertion. Is BRAVOX really an
improvement over BRAVO? From Figure 6 we see that BRA-
VOX is indeed an improvement over BRAVO in Functional-
ity; it is also faster to learn, possibly justifying the design
innovations that were incorporated. The analysis in Fig-
ure 5 shows that BRAVOX should be faster than BRAVO, but
that improvement does not materialize in the experimen-
tal Time score (the reason for this is unknown).

Rel iabi l i ty . 5 Thus far we have only been considering the
mean evaluation scores for each editor without consider-
ing the variability associated with these scores. Figure 6
expresses the variability of each experimentally measured
score by the Coefficient of Variation (CV), 6 which repre-
sents the between-user variability. We see that the vari-
ability is very high for the Error scores, but quite moder-
ate for the Time and Learning scores. However, the statis-
tical reliability of the scores depends on the number of
subjects as well as on the variability. Since we ran only
four subjects, only large differences between scores are
statistically reliable. For example, we can say that WYLBUR
is reliably faster to learn than TECO, but we cannot say

In this paper we use the term "reliabili ty" instead of the more usual term
"(statistical) significance," since we are trying to emphas ize the difference
between statistical and substantive significance, the latter of which we call
" importance."
~W e use the CV, wh]ch Is the Standard Deviation normahzed by the Mean,
instead of the Standard Deviation, because CVs are more constant across the
different scores. That is to say, the absolute size of the varia~tion is approxi-
mately proportional to the mean.

April 1983 Volume26 Number4 Communications of the ACM 271

RESEARCH CONTRIBUTIONS

FIGURE 4. Example of the Use of each Text Editor: An Illustrative Method for Accomplishing
the Specific Task of Replacing the Word "European" with the Words "Far Eastern".

Editor Method (informal) Method (Keystroke-Level Model encoding) a

TECO Get task. A[task]
Place pointer af ter old word. MK[S] 9K[European] MK[ESC]
Delete previOus 8 characters. M 3K[-ad]
Insert new words. MK[i] 13K[Far Eastern] MK[ESC]
Display line to verify. M 2K[v ESC] R(0.4)

W Y L B U R Get task. A[task]
Get number of l ine with old word M 2 K [L ~] 10K['European] M 3 K [' RETURN]

(system returns line 1 t) . R(1.0)
Change old word M 3 K [c h ~] 1 0K[* European] M 6 K [' ~ t o ~]

to new words. 14K [' Far Eastern] M 6 K [' ~ i n ~] 2K [11] M K[RETURN]

EMACS

N L S

BRAVOX

BRAVO

WANG

STAR

G Y P S Y

Get task and f ind it on display. A[teak] S[European]
Place Ix)inter in o ld word. M 4K[CTRL Se u] R(2.0)
Back up to beginning of word. 2K[META 13]
Call Delete Word command. M 2K[META O]
Type new words. 13K[Far Eastern]

Get task and f ind it on display.
Call Replace Word command.
Point to o ld word.
Type new words.

A[task] S[European]
H[chordset ar¢l mouse] MK[r] MK[w]
P[European] K[OK] H[keyboard]
13K[Far Eastern] MK[OK]

Get task and f ind it on display.
Point to old word.
Delete o ld word.
Type new words.

A [task] S[European]
H[mouse] PlEuropean] K[BUTTON2] H[keyboard]
MK[OEL]
1 3K [Far Eastern]

Get task and f ind it on display.
Point to old word.
Call Replace command.
Type new words.

A[task] S[Eurepean]
H[mouse] P[Eurepean] K[BU'I-rON2] H[keyboard}
MK[r]
13K[Far Eastern] MK[ESC] R(2.7)

Get task and f ind it on display. A[task] S[European]
Call Replace command. H[function keys and step keys] M K[REPL^CE]
Select ends of old word. Ps~E] K[EXECUTE] Ps(n] K[EXECUTE] H[keyboard]
Type new words. 13K[Far Eastern] H[function keys] MK[EXECUTE]

Get task and f ind it on display.
Point to o ld word.
Delete old word.
Type new words.

A [task] S[EurolP-.an]
H[mouse and function keys] P[European] 2K[SELECT SELECT]
MK[DELETE|
H[keyboard] 1 4K[Far Eastem~]

Get task and f ind it on display.
Point to ends of o ld word.
Type new words.

A[task] S[European]
H[mouse] P[E] K[BUTTONll Pin] K[BUTrON1] H[keyt~oar~]
13K[Far Eeatem]

a Methods are enCodod in the Keystroke-Level Model [3] as a sequence Of primitive operations that the user
must perform, All operations are encodecl as one of the following types of operations:

& AcQuire a task by looking at the manuscript (1,8 ssc).
S Search the display for the location of the task (2.2 ssc),
K Type a key or press 8 button (measured by typing tests: ,23 sec used here).
P Point to a location with a mouse (1.1 sec).
Ps Point to a location with step keyS (2.3 sac).
H Home the hands on a physical device (,4 sec).
M Mentally orepera for physical actions (1.35sec).
R(n) wait n seconds for a system response (measured for each system).

The notation in square brackets after each ot0eration is an informal comment telling, e.g., what keys are pressed.
All operat'mns, except A, S, and Ps, are the same as in [3]. The A and S operations used hem simply encode
[3]'S notion of task acquisition into new operations. PS represents a tyDe of pointing not covered in [3], The
time attributed to Ps comes from [2].

t h a t it is r e l i a b l y f a s t e r to u s e . ~ W e a l s o s e e t h a t t h e
L e a r n i n g d i f f e r e n c e n o t e d a b o v e b e t w e e n BRAVOX a n d
BRAVO is r e l i ab l e , 8 b u t t h e T i m e d i f f e r e n c e in t h e o t h e r
d i r e c t i o n is no t . N o n e o f t h e d i f f e r e n c e s i n t h e E r r o r di -

7 Quantitative formulas for computing which differences between scores are
rel'iable (derived from the standard statistical concept of confidence limits) are
given in the notes to Figure 6.
a This result was obtained using the actual variances of the BRAVOX and BRAVO
data, rather than by using the general formulas given in Figure 6.

m e n s i o n a r e r e l i a b l e , b e c a u s e t h e b e t w e e n - s u b j e c t v a r i a -
t i o n is s o h i g h .

T h e r e l i a b i l i t y o f t h e s c o r e s c a n be i m p r o v e d b y in-
c r e a s i n g t h e n u m b e r o f s u b j e c t s t e s t e d ? F o r e x a m p l e , c o n -
s i d e r t h e T i m e d i f f e r e n c e b e t w e e n WANC a n d STAR. A l -

9 Reliability, as measured by the confidence interval around a score, is approxi-
mately inversely proportional to the square root of the number of subjects used
to determine the score.

272 Communications of the ACM April 1983 Volume 26 Number 4

R E S E A R C H C O N T R I B U T I O N S

F I G U R E 5. D e c o m p o s i t i o n of t h e C a l c u l a t e d E d i t i n g T i m e s in to t h e D i f f e r e n t T y p e s of K e y s t r o k e - L e v e l M o d e l O p e r a t i o n s .

(a) A v e r a g e t i m e (in s e c o n d s) p e r c o r e ed i t ing

O p e rat ion T y p e
Edi to r

A S K P PS H M

T E C O 4.1 - - 15.3 - -

W Y L B U R 2,7 - - 18.3 - - - -

E M A C S 2.0 2.5 4 .6 - - - -
N L S 2,5 3 ,0 4 ,3 2,0 - - 1.0

B R A V O X 1.9 2.3 2.7 2.0 - - 0,7

B R A V O 2.1 2.6 2.5 2.2 - - 0.4
W A N G 2.3 2.8 2 .0 - - 4.6 2,0
S T A R 2.2 2.7 2 .2 2.3 - - 0.4

G Y P S Y 2,1 2.6 2.2 2,6 - - 0.7

(b) P e r c e n t a g e of t a s k t i m e in e a c h t y p e of o p e r a t i o n .

- - 20.3
w 10.1

2 .8 42.5

1.4 32 .5

7.8 8 .9 23.8

4.9 1.3 19.0

2.6 3 .5 15,7

3.0 5 ,6 18.4

3.1 2.4 19.2

2.1 8 .3 20.2

2.8 3 .3 16.3

Edi tor
A S

O p e ra t ion T y p e

K P Ps H M R

T E C O 10% - - 34% - -

W Y L B U R 8% 56% - - - -

E M A C S 8% 10% 19% - - - -
N L S 13% 16% 22% 11% - -

B R A V O X 12% 15% 17% 13% - -
B R A V O 12% 14% 14% 12% - -
W A N G 12% 15% 11'% - - 24%
S T A R 11% 13% 11"% 11"%
G Y P S Y 13"% 16"% 14"% 16"%

- - 48% 7%
- - 31% 4%
- - 33% 29%

5% 26% 7%

5% 17% 22%

2% 16%

10% 16% 13%

2% 10% 41%

5% 17% 20%

though the Time difference between these editors is not
reliable with only four subjects per editor, this difference
would be reliable if it had been found with ten subjects
for each editor.

Importance. We want to emphasize the obvious fact
that reliability is quite different from importance. Any
observed difference between scores, however small, can
be made reliable by running enough subjects. The real
question is whether the observed difference is important ,
which is a substantive, not a statistical, question. For ex-
ample, small differences between editors on the Error di-
mension, even if they were reliable, may not be as impor-
tant as the fact that the user population is highly variable;
even large differences in the Time dimension would not
be important in a situation where there were not many
dedicated expert users.

In practical situations, small differences are usually not
important, for they will be washed out by a host of inter-
acting factors in the larger context. Thus, the fact that
small observed differences are unreliable (except in ex-
tensive, expensive tests) is of little consequence. The util-
ity of a relatively cheap test, such as the methodology
proposed in this paper, is that it reveals potentially impor-
tant (i.e., large) differences. Once a potentially important
difference is identified, then it is a cost-benefit issue to
determine how reliable the difference needs to be. But
even if the difference is found to be reliable, it is not as
important to be certain that there is some difference as to

be certain that the difference is reliably large enough to
matter.

One reason that the reliability issue arises is that only
overall scores are being considered. Often, an informal
visual inspection of the more detailed data comprising the
overall scores can tell us more than a formal reliability
analysis.

3.3 A Closer Look at the Data
The next several figures present breakdowns of the over-
all evaluation scores in Figure 6. Note that the editors in
each of the figures are shown in different orders, corre-
sponding to the order of scores on the different dimen-
sions.

3.3.1. Time. Figure 7 is a scatter graph showing each
individual expert user's error-free Time score. This graph
shows the actual spread of user performance for each
editor. The greater the overlap of the performance ranges
of two editors, the less likely that the editors are reliably
different. The individual points also allow us to identify
outliers among the users. An outlier can penalize an edi-
tor's score compared to editors that were not unlucky
enough to get an unusual user. For instance, the BRAVO
outlier suggests that our mean is higher than it would be
if the population of subjects had been larger and thus
more' evenly representative.

Also playing a part in the data is the mix of technical
and nontechnical users run on each editor, since the tech-

April 1983 Volume 26 Number 4 Communications of the ACM 273

RESEARCH CONTRIBUTIONS

nical users were on the average somewhat faster than the
nontechnical users (this will be discussed in Sec. 4.1). We
can adjust the overall editor scores to compensate for the
different mix of technical and nontechnical users in each
editor, but this adjustment does not change any score by
more than 2 sec / task and turns out not to change the rank
ordering of the editors.

CALCULATED TIME. The task times calculated with the
Keystroke-Level Model [Figure 5(a)] are also shown in
Figure 7. These calculated t imes correlate quite well with
the empirical Time scores (R = .90). The calculated t imes
are on average about 75 percent of the error-free Time
scores (the worst case is 54 percent for BRAVOX, and the
best case is 96 percent for STAR). The reader will note that
there are two calculated times shown for TECO. The origi-
nal predict ion (shown in parentheses) predicted only
about 49 percent of the actual error-free time. Because
this calculation was so low and because we had time-
s tamped keystroke records of the users ' actual behavior
with T~.CO, we recalculated the task t imes using the actual
methods that the subjects used (rather than trying to pre-
dict the methods, as we did for the original calculation).

This second calculated time is 87 percent of the actual
time. The discrepancy between the method predict ions in
the two calculations was due to the fact that the users
were much more conservative, hence, less optimal, than
predicted. The predicted methods used a minimum of
searching, displaying, and verifying, while three of the
four users were much more careful in their use of this
nondisplay-based system. One user was much more dar-
ing, and the original calculation was about 70 percent of
the actual t ime for that u s e r - - a n outcome similar to the
calculation results for the other editors.

The reasons for the ra ther consistent d ispar i ty be tween
the Keystroke-Level Model calculations and the actual ed-
iting times have to do with the differences between the
assumptions of the Keystroke-Level Model and the condi-
tions of our experiments , as noted in Sec. 2.6. There are
several differences: (1) The Keystroke-Level Mode as-
sumes that the user 's method for performing each task is
known. However, we cannot a lways predict the methods,
as we saw with TECO. We can usual ly predict the shorter,
easier methods; but the longer, more complex methods
are more difficult to predict. Since predicted methods are
near ly optimal methods, when a user deviates from a

FIGURE 6. Overall Evaluation Scores for Nine Text Editors.

E v a l u a t i o n D i m e n s i o n s

T i m e b E r r o r c L e a r n i n g d F u n c t i o n a l i t y e

Editor a M -!- CV f M ± CV M + CV
(sec/task) (% Time) (min/task) (% tasks)

T E C O 49 ± .17 15% ± .70 19.5:1: .29 39%

W Y L B U R 42 :1 : ,15 18% ± .85 8.2 ± .24 42%

EM A C S 6% ± 1.16 6.6 + .22 49%

N L S 29 ± .15 22% ± .71 7,7 ± .26 77%

B R A V O X 29 :± .29 8% :::1:: 1.03 5.4 ± .08 70%

B R A V O 2 6 : 1 : 3 2 8% ± .75 7.3 ± .14 59%

W A N G 26 :i: .21 11% ± 1 . t l 6.2 ± ,45 50%

S T A R 21 ± .18 19% ± .51 6.2 ± .42 62%

G Y P S Y 19 ± .11 4% ± 2.00 4.3 ± .26 37%

M(M) M(CV) 9 3t .19 12% .98 7.9 .26 54%

C V(M) g .31 .49 3 3 .25

a The evaluations for TECO, WYLBUR, NLS, and WANG are from the first author's thesis [11]; the
first author also evaluated STAR. The evaluations of the other editors were done in the second author's
laboratory.

b The Time score is the average error-free expert performance time per benchmark task on the
given editor. A difference between editors with mean values M 1 and M 2 is statistically reliable (95%

confidence) if IM 1 --M21) 0.33"(M 1 ÷M2)/2.

c The Errors score is the average time, as a percentage of the error-free performance time, that
experts spend making and correcting errors on the given editor, A difference between editors with
mean values M 1 and M 2 is statistically reliable (95% confidence) if IM 1 -M21 > 20%. Thus, no
differences between editor means are reliable in this data.

d The Learning score is the average time for a novice to learn how to do a core editing task on the
given editor. A difference between editors with mean values M 1 and M 2 is statistically reliable (95%

confidence) if IM 1 - M2| > 0.45=(M 1 +M2)/2.

e The Functionality score is the percentage of the tasks in the task taxonomy (Figure 1) that can be
accomplished with the given editor.

f The Coefficient of Variation (CV) = Standard Deviation / Mean is a normalized measure of
variability. The CVs on the individual scores indicate the amount of between-user variability.

g The M(CV)s give the mean between.user variability on. each evaluation dimension, and the CV(M}s
give the mean between-editor variability on each dimension.

274 Communications of the ACM April 1983 Volume 26 Number 4

RESEARCH CONTRIBUTIONS

o)
E
i -

(3

o~

o ~

ILl
I :
(1)

x
LU

60

50

40

30

20

10

I I

E)

E)

O

I I

O = Non-Technical Expert User
~) = Technical Expert User

. = Average for Four Users
I----I = Keystroke.Level Model Calculat ion

I - - 4

" ' i ' " 0
0 O

0
~--~ C~

8
0

(~ - - 0 1--~ • o o • e o

(1)
• . , , , . q ~ 1.:4~- •

1---I ' ~ ' I----I "'~'"
I----I ~ :m,,

I I I I I I I

TECO WYLBUR EMACS NLS BRAVOX WANG BRAVO STAR GYPSY

FIGURE 7. Error-Free Time Scores
for Individual Expert UserS. The
editors are ordered by descending
Time score.

E d i t o r

predicted method, it is usually in the direction of using a
slower method. (2) Some of the users may have had to
engage in problem-solving to perform some of the more
complex tasks in some editors (e.g., to transpose phrases
with TF.CO) and their behavior would not be the simple
method-execution behavior assumed by the model. (3)
The error time for small errors is included in the experi-
mental error:free time, but is not considered in the calcu-
lated time. (4) The experimental time includes all the time
between tasks. Some of this time is not considered in the
model, such as page turning time, pauses for rest, etc. But
even without such differences, it should be remembered

40"/° I ' ' 0 ' ' ' ' ' |

t { I t i 0 = Non-Technical Expert User
= Technical Expert User

30% Average for Four Users

(1) E
E i7- 0

o,,, 20, ! ; : '

1: ,,, @

~ o ,,, (.

. 0 l O ~

• m

o ~ m "

NLS STAR WYLBUR TECO WANG BRAVOX BRAVO EMACS GYPSY

that the Keystroke-Level Model is an approximate model,
and we should not expect its calculations to be perfect.

The data for individual users show that, for most edi-
tors, one user comes very close to the level of perform-
ance represented by the Keystroke-Level Model calcula-
tion. Since the calculations were based on predictions of
optimal methods, this suggests that only a minority of
users are likely to approach optimal performance, t°

]o T h e o n e e x c e p t i o n to t h i s o b s e r v a t i o n is in STAR, w h i c h h a d o n e u s e r w h o
performed much better than the Keystroke-Level Model calculation. We believe
that that is because the user constantly overlapped his actions with STAR'S long
system response times; he often did not wait for the machine to catch up with
him between tasks, but typed ahead whenever possible.

FIGURE 8. Error Time Scores for
Individual Expert Users. The edi-
tors are ordered by descending Er-
ror score.

E d i t o r

April 1983 Volume26 Number4 Communications of the ACM 275

RESEARCI! CONTRIBUTIONS

3.3.2,. Error. Figure 8 is a scatter plot of the individual
expert users ' Error scores. This data shows a factor of 5
difference between the best and the worst editors; even
so, these differences are swamped by the large ranges of
error within editors. The relative variabili t ies are summa-
rized in Figure 6: the between-edi tor CV is .49, whereas
the between-user CV averages .98. Thus, no conclusions
can be drawn about the differences between editors in
error cost.

It might be noted that the indiv idual users who have
large Error scores do not have them because they were
unfortunate enough to be struck by rare, disastrous errors;
rather, these users merited their Error scores by commit-
ting several errors throughout the experiment. Among the
seven users whose Error scores were greater than 20 per-
cent, the error time came from an average of 7.4 individ-
ual errors: 3.1 during the first pass over the benchmark
and 4.3 incomplete tasks that had to be f ixed up on the
second pass. The errors during both passes took an aver-
age of over 70 seconds each.

3.3.3 Learning. The overall Learning scores are broken
down in two ways: by time and by individual learners.
Figure 9 gives learning curves over t ime for all of the
editors, each curve being the average of four learners.
Each learning curve is d rawn in a s tyl ized fashion as a
series of five steps, one step for each cycle in the learning
session. The instruction part of a cycle is represented by

25

the sloped part of the step, and the quiz part of the cycle
is represented by the fiat part of the step (as if no learn-
ing occurs during the quiz). These curves can be seen to
be fair ly straight overall, indicating that it is reasonable to
summarize them using their overall slopes, which is just
what the Learning scores are.

The reader will note that there are two learning curves
for T~.CO. The learning test was repl icated for T~.CO with a
second instructor, who ran the test complete ly indepen-
dently. The second instructor, using only the materials in
[11], taught a slightly different set of T~.CO commands
than the first instructor and of course taught a different
set of four subjects. The results of this second evaluat ion
test (marked JF) can be seen to be quite close to the first
(marked TR).

Figure 10 is a scat ter graph of the individual novices '
Learning scores. This graph, as well as Figure 9, shows
large differences in the learnabi l i ty of the different edi-
tors. TECO is clearly different from all the others, taking
over twice as long to learn as the next editor (WYLBUR).
The rest of the editors lie in a tight group with consider-
able overlap between adjacent editors. But this group still
covers another factor of two in learning time, so GYPSY is
four times as fast to learn as TECO. The large amounts of
overlap in the range of learners within editors indicate
that the differences between adjacent editors are most ly
not reliable. The difference in Learning scores between
TECO and WYLBUR is reliable, as are the differences be-

FIGURE 9. Average Leaming
Curves over all Learners on each
Editor. The two TECO curves were
produced by different instructors.

E
(9
.-I

I--
'5

.Jo
E
Z

20

15

10

e
ST jAR r-- , ,o BRAVO

WAr~G
~ - - = NLS

- WYLBUR

TECO
(JF]

TECO
(TR)

60 120

Learning Time
(minutes)

180 240

276 Communications of the ACM April 1983 Volume 26 N u m b e r 4

RESEARCH CONTRIBUTIONS'

tween GYPSY and each of TECO, WYLBUR, NLS, and BRAVO.

Figure 10 allows us to identify outlier learners, as we
did with the Time scores. One such outlier is a STAR
learner, which suggests that the mean Learning score for
STAR might be slightly lower from a more representat ive
subject sample. In addition, there was one subject who
Was comple te ly unable to learn TECO at a l l (that subject's
part ial data is not included in any of our data or graphs).
The fact that the only learning failure of the whole set of
learning experiments occurred with T~.CO reinforces the
notion that TRCO is more difficult to learn than the rest.

INSTRUCTOR EFFECTS. The instructor plays a strong role
in the learning expe r imen t s - - s /he decides what subset of
commands to teach, and s /he tries to maximize the learn-
ing rate by keeping the subject from getting bogged down
in nonproductive efforts. Thus, the instructor could have
a potential ly strong effect on the learning results. To
show instructor effects, the specific instructors are noted
in Figure 10. Since the scores for the different editors
overlap so much, it seems that no instructor is consist-
ently faster or s lower than the others. This can be seen
most clearly in the cases where the learning tests have
been replicated. In the TRCO case (mentioned above), the
second instructor obtained a mean Learning score within
12 percent of the score obtained by the first instructor. In
the second case, the EMACS learning tests were replicated
in a different laboratory, obtaining a vir tual ly identical
overall Learning score [13].

The differences in teaching style of the different in-

structors can, on the other hand, be seen in the between-
subject variations. The t w o TRCO data sets show this dif-
ference most c lea r ly - - the second instructor has very
much less between-subject variation. This can also be
seen in the between-subject CVs in the editor evaluations
run by TR and BS, the two instructors who ran most of
the tests. TR's CVs range from .24 to .45, while BS's CVs
range from .08 to .26. The instructors seem to be exerting
different amounts of control over the learners. However,
this does not seem to affect the mean Learning scores.

3.3.4. Functionality. Figure 11 gives a breakdown of the
Functionali ty scores by the different categories in the task
taxonomy. These funct ional i ty results show that most of
the editors can perform about half of the tasks in the task
taxonomy. Each system has its areas of strength and
weakness. To show this, the scores are broken down into
subscores in Figure 11. For instance, EMACS is excellent in
programming capabili ty, while NLS and BRAVOX are espe-
cially good in formatting and layout tasks. Because the
number of tasks in the taxonomy was weighted more
toward text layout than programming, the document-ori-
ented editors general ly scored somewhat better overall
than EMACS. But NLS, which tries to cover all needs, is
clearly superior in overall functionality.

We can question the reliabil i ty of these Funct ional i ty
scores, as well as the other scores generated by this meth-
odology. An analyst ' s rating of the funct ional i ty of an
editor is part ly a mat ter of judgment, as was noted in Sec.
2.5, and part ly a matter of detai led knowledge of the edi-

FIGURE 10. Learning Scores for
Individual Novice Learners. The
editors are ordered by descending
Learning score. The instructors are
noted below each editor.

25

20

._E 15 I -

~.~
~ E
0 "N 10
O
z

0 1 I I I I I I

0

I O = Novice Learner
. . . . Average for Four Learners

"~ Novice Learner (with another instructor)

®

®

0

~ 0 ® 0

0

O O

O

..... ® O

o® 8
® 8 o

TECO WYLBUR NLS BRAVO EMACS WANG STAR BRAVOX GYPSY
(TR JF-) (TR) (TR) (BS) (BS RA) (TR) (TR) (BS) (BS)

Editor
(I n s t r u c t o r)

April 1983 Volume26 Number4 Communications of the ACM 277

RESEARCH CONTRIBUTIONS

F I G U R E 11. F u n c t i o n a l i t y S u b s c o r e s fo r t h e N i n e T e x t E d i t o r s .

T a s k Edito r c

C a t e g o r y a

(No, of Tasks) b NLS BRAVOX STAR BRAVO WANG EMACS WYLBUR TECO

TOTAL (212) b 77% 70% 62% 59% 50% 49% 42% 39%

Modification

Content (66) 94% 89% 93% 90% 87% 74% 63%

Text Layout (19) 89% 71% 66% 71% 37% 37% 26%

Page Layout (25) 74% 62% 56% 40% 34% 2% 6%

Characters (21) 43% 76% 57% 62% 38% 14% 21%

Other (16) 53% 59% 50% 22% 34% O~ 16%

Addressing (22) 68% 36% 30% 30% 16% 61% 34%

Control (23) 56% 37% 24% 20% 24% 89% 61%

Display (8) 94% 94% 63% 69% 19% 81% 62%

Misc. (12) 100% 88% 100% 71% 71% 46% 71%

All
Ed i tors d

GYPSY M::I:CV

37% 54%:t:,25

a The Task Categories are described in the task taxonomy shown in Figure 1.

88% 80% 84%i .13

3% 26% 47%:1:.56

4% 4% 31%±.85

0% 17% 36%:1:.66

3% 0% 26%:t:.84

25% 18% 35%:!:.48

48% 9% 41%:1:.58

38% 50% 63%:I:.42
25% 42% 68%± .38

b The number m parentheses after the task category name gives the total number of tasks in that
task category. The Functionality scores and sub-scores are given as a percentage of the total number
of tasks in each task category. The scores in the TOTAL row are the same as in Figure 6.

c The editors are ordered in descending order of their overall Functionality scores,

d The numbem in the All Editors column tell how well the task categories are handled by the whole
collection of editors and the amount of between-editor variability there is.

tor (e.g., knowing about limitations that may not be ap-
parent from the documentation). To quantify the varia-
tion between analysts, three different analysts were asked
to independently rate WYLBUR. The overall Functionality
scores for the three analysts were 42 percent, 45 percent,
and 39 percent. Scores within task categories differed
more, but the differences between the analysts tended to
be averaged out over the total set of tasks. Thus, as a rule
of thumb, we can consider the overall Functionali ty
scores to be accurate to around 10 percent.

3.4 Assessment of the Methodology
The above results show that diverse editors can indeed be
evaluated and compared. As a whole, the evaluation
methodology seems to successfully provide an objective,
multidimensional picture of text editors. This methodol-
ogy is also quite practical. For an experienced evaluator,
about one week of time is required to evaluate a new
editor. Thus, it should be practical for a system designer
or a potential buyer.

Several other issues surrounding the methodology de-
serve discussion.

3.4.1. Reliability. The main drawback in the use of this
methodology is that the small number of subjects used for
each of the tests makes the results very coarse. In addi-
tion, the results point out that the Error dimension needs
a more reliable measure to differentiate editors, which
will have to take into account the effect of large differ-
ences among the users.

Another way to increase reliability, besides increasing
the number of subjects, is to decrease the between-user
variability by homogenizing the subject sample. For in-
stance, potential subjects could take a pretest, and only
people who scored within a certain range could be used.
This, however, specializes the results so that they only

represent a small segment of the user population, decreas-
ing the generality of the methodology, n

Given that the methodology accepts a wide range of
subjects, we can check whether the methodology is being
applied to a restricted sample. If the between-user vari-
ance is ever substantially less than in the data here, the
reason may be that the evaluator has picked a restricted
sample of subjects. This is a useful caution for designers
who are testing their own systems and who especially
have to guard against bias. For example, in the data pre-
sented here, we note that the Time data for GYPSY does in
fact have a lower than normal CV, which in this case is
largely explained by the fact that only technical subjects
were used.

3.4.2. Coverage. Although the methodology covers sev-
eral basic aspects of editor usage, there are still aspects
not covered. When this methodology was being developed
[11], a variety of easy-to-obtain measures of other aspects
were explored. Some examples are: (1) The error-prone-
ness of an editor was measured by putting external stress
on expert users while they performed editing tasks. (2)
The possibility of disastrous errors in an editor was meas-
ured by a procedure for analyzing the editor's command
language. (3) The display capabilities of an editor were
measured by users performing proofreading tasks. (4) The
learning and use of advanced features was addressed by
using a questionnaire to measure experts' knowledge of
how to perform complex editing tasks. Unfortunately, all
of these attempts turned out to be too crude to be reliable
and too unproductive in differentiating systems. The tests
presented in this paper are the only ones we know cur-
rently that work well enough to be included in a method-
ology.

n Another way"to increase reliability is to use all the subjects, but to use the
pretest scores to normalize the overall results. This would require a model of
the relation between pretest scores and performances results.

278 Comnmnications o/the ACM April 1983 Volume 26 Number 4

RESEARCH CONTRIBUTIONS

3.4.3. Representativeness.
TIME. A general criticism of benchmark testing is that the
items in the benchmark are not appropr ia te or appropri-
ately weighted for any part icular application. Specifically,
the benchmark used in the present methodology has been
criticized for not representing the true mix of tasks in real
text-editing situations [17]. This is true, as we noted in
Sec. 2.2. However, we are skeptical that there is a single
benchmark set representing the majori ty of text-editing
situations. This is an empirical issue, and we know of no
data currently that settles it. But there remains the issue
of bow to use the results of the present methodology if
one is interested in a part icular si tuation that has a differ-
ent mix of tasks from the benchmark.

We propose an analytic procedure for adjusting the
Time score from the benchmark test to correspond to a
new situation, which is character ized as a new set of
tasks (weighted by the frequency of the individual tasks).
This adjustment procedure is based on the assumption
that there is a constant ratio between the exper imental ly
measured Time score and the time calculated with the
Keystroke-Level Model. This can be expressed in a for-
mula:

T / C = T ' / C '

where T is the Time score on the benchmark, C is the
calculated time on the same benchmark (as in Figure 5),
C' is the calculated time for the new mix of tasks, and T'
is the Time score we would expect from an exper imental
test on the new mix of tasks. T and C are given by the
present methodology. T ' is the desired result. It can be
estimated by calculating C', which is done by using the
Keystroke-Level Model on the new (weighted) set of
tasks. One must be cautious about the assumption behind
this adjustment procedure, especial ly if the new task set
contains many complex editing tasks, for the assumptions
behind the Keystroke-Level Model (see [3]) might be vio-
lated (such as was our experience with the first TECO
calculation).

LEARNING. The part icular set of tasks chosen for the
learning experiments undoubtedly affects the results ob-
tained here, but it is l ikely to be less influential than
which teaching paradigm is used. For example, we would
expect the results of a self-teaching paradigm to be most ly
determined by the quali ty of documentation. We do not
in general know how teaching paradigms differ, but there
is one prel iminary result in a recent s tudy by Robertson
and Akscyn [13] comparing different teaching paradigms.
They applied the present learning methodology to the z o c
frame editor, using an instructor and using two self-teach-
ing paradigms by substituting online and offline docu-
mentation for the instructor. They found that the instruc-
tor produced about 13 percent faster learning than the
self-teaching documentaton; and they found that the off-
line documentat ion was about 6 percent faster than the
online documentation. The reason for the small difference
caused by mode of documentat ion was that all the
learners used the documentat ion in the same way in both
cases - -by reading through it at the beginning of the ses-
sion. The lesson here is that real learners do not necessar-
ily follow the paradigms laid out for them by the system
documenters.

FUNCTIONALITY. Finally, the issue of representat iveness
also applies to the checklist of tasks for testing functional-

ity: the tasks in the checklist do not represent the needs of
any part icular situation. The degree of e laborat ion of the
tasks in the task taxonomy was influenced by the capabil-
ities of the editors existing or being envisioned at the time
the taxonomy was being created. Thus, there are eight
tasks relating to the layout of paragraphs but only one
about the abil i ty to typeset mathemat ical formulas
properly. An editor that performs both functions equally
well gets far more credit for one than the other. This
problem is best addressed by using the funct ional i ty sub-
scores; for a given applicat ion more weight can be given
to the areas relevant to the application.

3.4.4. Applicability.
EXTRAPOLATION TO A LARGER CONTEXT. All of the data we
have gathered have been from people performing a small
number of preset tasks in a labora tory environment. What
relationship do these results have to product ivi ty in an
office where the tasks may be different (e.g., proofreading
and editing one's own work) and the environmental con-
ditions may be different (e.g., a receptionist with constant
small interruptions from people walking by)? A 20 per-
cent improvement in the Time score for this methodology
would not necessari ly translate into a 20 percent improve-
ment in overall office productivity. This is because an
improvement in editing speed may not be accompanied
by a proport ional improvement in the speed of other ac-
tivities that the user is doing along with editing, such as
thinking about the proper wording of the text, typing in
large amounts of new text, or proofreading for errors.
Another possible factor is that the intense concentrat ion
on the editing task al lowed by laboratory conditions, but
often not al lowed by real situations, may differential ly
affect the performance of different editors. Such prob-
lems beset all laboratory work, and the questions raised
can only be answered when labora tory studies are sup-
plemented by on-site studies to determine the relat ionship
between the two.

USE BY EDITOR DESIGNERS. The full methodology requires
an implemented text editor that has been running long
enough to have at least a few expert users, which suggests
that the methodology is not useful for a designer of a new
editor. However, the designer can use parts of the meth-
odology to get an early indication of how well the pro-
posed editor compares with existing editors and where
the strengths and weaknesses of the new editor lie. Two
of the evaluation measures, Time and Functionality, can
be obtained analytically, when the design is still on paper.
Learning can be measured exper imental ly on a prototype
(that need only be complete enough to cover the core
tasks). The Error measure is the only one that cannot be
obtained easily; this should pose no problem, since editors
cannot be differentiated on this dimension anyhow.

On the Time dimension, the Keystroke-Level Model can
be used to produce a calculated task time, along with a
decomposit ion of the time into the times for the different
operations. These times can be compared to the calcu-
lated task times for other editors in Figure 5 to see
whether the times are in line with similar editors and to
reveal possible bott lenecks on some operations. (The cal-
culated task time can also be adjusted, by mult iplying by
1.3, to compensate for the model 's tendency to underpre-
dict the exper imental Time scores. The ad jus ted time can
then be compared to the Time scores in Figure 6). In this
analysis, the only parameters which must be es t imated

April 1983 Volume 26 Number 4 Communications of the ACM 279

P, E S E A ~ H C O N T N ~ I I O N $

3 [, , ,

!
= Individual Technical User I

I
O Individual Non-Technical User

N Average Non-Technical User

T Average Technical User

2

0

LI.I

0
Z

1

0 I I

0

0 l i

0
0

T

CO

0

%

Normalized
Error-Free Time Score

FIGURE 12. Normalized Time and Error Scores for all Expert
Users. A user's score is normalized by dividing it by the aver-
age score in the editor.

are the system response times. If these are not available,
this analysis can be turned around to provide the designer
with a specification for acceptable limits for the response
times (by showing how different response times make the
proposed editor compare to other editors). Finally, if a
prototype system is available, experimental benchmark
tests can be run using the designers and implementors
themselves as subjects. These data would be useful to
provide a check on the calculated times and the predicted
methods that the times are based on.

4. BEHAVIORAL RESULTS
The database of results from the experimental studies
gives us information not only about the specific editors,
but about user behavior in general, such as the gross
levels of user performance in text editing. The data show
that the core editing tasks require about 20-45 seconds
per task for most expert users on most systems, and it
shows that a period of about two hours of one-on-one
training is enough to teach novice users about 20 core
tasks in most editors. These results should be of interest
to researchers in office productivity, for example, to
measure the cost-effectiveness of word processing. More
detailed results are interesting in two principal ways: for
the light they shed on (1) the individual differences in
performance between users and (2) the factors influencing
novice learning.

4.1 Individual User Differences
4.1.1. Magnitude of I n d i v i d u a l User Differences . The
greatest individual differences by far are found in Error
time scores (ranging from 0 to 39 percent), which reflects
a wide variation among expert users in how careful they

are in avoiding errors and in performing tasks completely.
There is much less variation among experts in speed of
edi t ing--about a factor of 1.5 to 2 between the fastest and
slowest users' Time scores within each editor. This range
is much smaller than the factor of 3.5 reported in [4].
However, [4] tested a more diverse sample of users, in-
cluding casual users as well as dedicated expert users.

A somewhat surprising result is that the variation
among novice learners is not much greater than among
expert users. Learners exhibit about the same range of
variation (up to a factor of 2.5 between the fastest and
slowest learners within an editor) and CV (.19 for experts
and .26 for novice learners). This is partly due, no doubt,
to the fact that the learning tests are designed to minimize
variation due to idiosyncratic learners (e.g., the command
summary sheet and the always present instructor). A self-
teaching paradigm is likely to yield much more variation
among learners.

4.1.2. T i m e vs. Errors. It is common wisdom that there
is a speed-accuracy tradeoff: that when people work
faster, they make more errors. Our data can be used to
investigate whether the users who spend more time in
error do so because they are working faster, that is,
whether users with higher Error time scores have lower
error-free Time scores. We cannot directly compare
scores of users on different editors, however, unless we
normalize over editors. A user's score on an editor can be
normalized by dividing it by the overall (mean) score for
the editor. That is, a normalized score of 1.0 indicates an
average user, and a score of .5 indicates a user twice as
good as the average. Figure 12 plots the normalized Time
vs. Error scores for all the expert users. What is immedi-
ately obvious from this plot is the much larger variation
on the Error dimension than on the Time dimension.
However, we do not see the tradeoff between Time and
Error scores that a speed-accuracy tradeoff would sug-
gest, but rather a modest positive correlation between
them (R = .58). Some users tend to be better than others
on both dimensions.

4.1.3. Technica l vs. N o n t e c h n i c a l Expert Users. The in-
dividual users plotted in Figure 12 are marked as being
technical or nontechnical. The technical users are clearly
the better users on both Time and Error (clustering in the
lower left quadrant). Also plotted in the figure is the aver-
age technical user and the average nontechnical user.
These two fictitious average users account for the major
features of the plot. The average nontechnical user is 15
percent slower than the average technical user (.94 vs.
1.08) and spends a factor of 3 more time in error (.50 vs.
1.56). TM The factor 1.15 difference between technical and
nontechnical users on the Time dimension is comparable
to the factor of 1.3 reported in [4].

The underlying reason for the difference between tech-
nical and nontechnical users is not 'known. It is not due to
physical skill factors, such as typing proficiency, for
which nontechnical users are superior. 13 It could just be

13 This data allows us to calculate an adjus tment for the effects of using differ-
ent proportions of technical and nontechnical subjects in different editors. As
ment ioned in Sec. 3.3.1, such an adjus tment does not change the rank ordering
of the editors of the T ime dimension. A similar adjus tment on the Error dimen-
sion also makes little difference in the results: the range of Error scores he-
comes a factor of 4 instead of a factor of 5, and dif ferences be tween editors are
still not statistically reliable.
13 The nontechnical users were 1,4 t imes fas ter than the technical users. Given
that an average of about 22 percent of the t ime is spent in typing [Figure 5(b)],
this would give the nontechnical users about a 7 percent advantage over the
technical users.

280 Communications o/the ACM April 1983 Volume 26 Number 4

RESEARCH CONTRIBUTIONS

due to a difference in general intelligence or education,
rather than anything due to technical experience per se.
(The programmers we used as technical subjects have
been preselected to be very bright and highly educated,
whereas the secretarial and support personnel we used as
nontechnical subjects have undergone less of such prese-
lection.) Other possible factors, suggested by a recent
s tudy [5], are that technical users might have more spatial
abil i ty or be younger than nontechnical users. These two
factors have been shown to affect editor learning rates,
and they are also likely to apply to expert performance.

4.2. Novice Learning
Learning behavior is less well unders tood than expert per-
formance. The Keystroke-Level Model [3] (along with its
theoretical underpinnings [4]) provides a usefully accurate
account of the time performance of expert users. How-
ever, we have no similar account of why some editors are
easier for novices to learn than others. Our learning data
provide the opportuni ty to test some ideas about the main
factors affecting learnabili ty.

4.2.1. Factors A f f e c t i n g Editor Learnability. How does
the structure of an editor affect its learnabil i ty? Perhaps
the most obvious hypothesis to consider is that the com-
mand languages of some editors are more complex. One
measure of command language complexi ty is the number
of distinct commands in an editor. According to this hy-
pothesis, the editors with fewer commands should be
faster to learn. (This might be called the "weigh-the-man-
ual" theory of learnabili ty, since most reference manuals
consist of an enumerat ion of the different commands.) In
this methodology, since only commands necessary to do
core editing tasks are taught, we restrict our measure to
the number of these "core commands." Figure 13 shows
that this measure correlates poorly (R = .37) with the
Learning scores. TM

FIGURE 13. Correlations of Learning Scores with Various Meas-
ures.

Measure

N u m b e r of C o r e C o m m a n d s in Ed i to r

N u m b e r of PhySica l OPera t i ons Per Task

N u m b e r of M e t h o d C h u n k s (M ' s + A ' s) Per T a s k

ExPe r t T ime S c o r e

Correlation (R)

A l l N i n e A l l Editors
Editors except T E C O a

.37 .19

.68 ,58

.93 .65

,79 .67

a Since the Learning score for TECO Is an extreme value, it has a large influence on the
correlations. Hence, it is useful to present a separate set of correlations with the influence of the
TECO score removed,

The crucial point missed by this hypothesis is that com-
mands are not useful in isolation, rather they are used in
the context of methods or procedures to accomplish edit-
ing tasks. Thus, the second hypothesis to consider as a
predictor of learnabil i ty is that learning is related to the
procedural complexity of a command language. This is
quite different from command language complexity. For
example, a "simple" command language with only three
commands might require lengthy and intricate procedures
to accomplish editing tasks, whereas an editor with a

~4 One problem with this measure is deciding what a command is (e.g., is a
preselection a command itself or j u s t an argument to a command that follows
it?). This issue can be sidestepped somewhat by counting parts of commands,
such as commands names, arguments, terminators, etc. However, this "finer"
measure does no better than just counting "whole" commands (see [11]).

large variety of commands might only require a couple of
those commands to do any one task. The procedural com-
plexity hypothesis says that a user must learn not just
what each command does, but how each command is
used in various ways in different methods. This leads us
to consider the number of dist inct uses of commands,
which is related to the length of the methods (rather than
the length of the list of commands).

One way to approximate the procedural complexi ty of
an editor is to compute the average number of steps in the
methods for accomplishing a representat ive set of tasks,
such as the benchmark used in the Time and Error di-
mensions of our methodology. 15 The physical operat ions
in the Keystroke-Level Model encodings of methods (see
Figure 4) provide a simple, unambiguous set of steps to
count. Figure 13 shows that the average number of physi-
cal operations per task correlates substant ia l ly better with
the Learning scores (R = .68) than do the commands,
although the correlation is still modest.

The length (in physical operations) of a method, al-
though it may correlate with procedural complexity, can
be a misleading indicator. For example, a method requir-
ing the user to type n E L E T E RETURN is not seven t imes
more complex than a method requiring only D to be
typed. Thus, we see that procedural complexi ty has more
to do with the menta l "chunking" of physical steps into
coherent fragments than the physical steps themselves.
To operationalize this notion, let us return to the Key-
stroke-Level Model encoding of methods. This model has
two kinds of mental operations, A's and M's. When a
large editing task is broken into subtasks, the subtasks are
each preceded by an A operation, representing the user 's
having to acquire a mental representat ion of the subtask.
Within a subtask, the sequence of physical operations is
punctuated with M operations, which represents small
mental preparat ions for the upcoming physical operat ions
(rules for placing M operations are given in [3]). The A
and M operations have the effect of breaking the se-
quence of physical operations into procedural chunks. For
example, consider the method encodings of the example
task in Figure 4. The method for WVLaUR is:

A M 12K M 3K R M 13K M 20K M 8K M K

Here the physical operat ions are divided into seven
chunks by the A's and M's. The methods for the same
task in EMACS and STAR contain only three and two
chunks, respectively.

A s M 4r R 2K M 15K
A s n P 2K M K H 14K

The number of chunks in a method, which can be esti-
mated by s imply counting the A's and M's, should be a
better indicator of the procedural complexi ty of the
method than the physical operat ions we counted before.
In fact, the mental chunking measure correlates better
with the Learning scores (R = .93) than do the physical
operations, as Figure 13 shows. It is the best correlate we
have of Learning time.

This notion of procedural complexi ty as determined by
mental ly defined chunks is an instance of the "zeroth-
order theory of learning" [4]: that learning time is propor-
tional to the number of chunks of information that must

,5 It may seem paradoxical that we are using the expert benchmark test to
measure learnability by novices. But note that we are only using the bench-
mark test as a convenient sample of tasks to get at the procedural complexity
required by the core [unctions o[the editor. Since the novices are trying to
acquire this same expertise, it represents the target competence they are trying
to achieve.

April 7983 Volume 26 Numlx;r 4 Communications qf the ACM 281

RESEARCH CONTRIBUTIONS

O
O A
00~

E~
0)

_J

F I G U R E 14 , P l o t o f L e d r n i n g S c o r e s
v s . t h e M e n t a l - C h u n k s M e a s u r e
o f P r o c e d u r a l C o m p l e x i t y , (N o t e t h a t
STAR is abbreviated as ST and
W A N G a s W G .)

20

15

10

5

0

0

i I I I I I I I I I I I I I I I I I I

WYLBUR

BRAVO NLS

ST WG f
E M A C S

P
BRAVOX

~ YPSY

I I I I I I I I [I I I : ', : : : : ',

5 10 15 20

P r o c e d u r a l C o m p l e x i t y
(as Measured by M's + A's per Task)

be learned. To make this theory operational, we must be
able to specify what the chunks are. In this case, the
chunks are the procedural fragments bounded by mental
operations.

Figure 14 shows a plot of the mental-chunking measure
of procedural complexi ty against the Learning scores.
This plot shows how raw correlations must be interpreted
with caution, for we see that the learning score for TECO,
which lies far out from the others, has great leverage on
the correlation (which is why we also give the correla-
tions excluding TECO in Figure 13). Wha t we see in Figure
14 is that procedural complexi ty accounts for the differ-
ence between the fastest and slowest editors, but that it
tells us little about the observed differences among the set
of fastest editors. Procedural complexi ty is not the only
factor affecting learnabili ty; in fact, it seems to be domi-
nated by other factors among fast editors. TM However, pro-
cedural complexi ty may be the most dominant factor in
learning overall, s tat ist ically accounting for about half the
variance between editors.

4.2.2. Learning vs. Time. The conventional wisdom
among designers is that there is a t radeoff between sys-
tems that are easy to learn by novices and systems that
are efficient to use by experts. However, if we correlate

~ A candidate for one of the other factors is what we might call "conceptual
unfamlllarlt w h m h ta s how well novice • " " y," ' p ' users understand, a priori, the
conceptual constructs involved in an editor. This notion is currently being
explored by the second author and Sally Douglas in Learning to Text Edit:
Semantics in Procedural Skill Acquisition. Ph.d dissertation, Stanford Univer-
sity, March '83.

the Learning scores with the Time scores, we see exact ly
the opposite. The data from our s tudy shows a high posi-
tive correlation (/:[= .79, Figure 13) between the Time and
Learning scores. 17 The concept of procedural complexi ty
introduced in the last section explains this correlation. It
says that the same fac to r - -p rocedura l complex i ty - -un -
derlies both expert performance (longer methods take
longer to execute) and novice learning (longer methods
imply that there are more chunks to learn). TM

5. CONCLUSION
A standardized four-dimensional methodology for evalu-
ating text editors has been presented and appl ied to nine
different editors. The methodology seems to be an effec-
tive tool for the empirical evaluation of text editors along
the dimensions of Time, Error, Learning, and Functional-
ity. Of course, the methodology has l imi ta t ions- -hav ing to
do with reliability, coverage, representat iveness, and ap-
p l i c a b i l i t y - w h i c h is the price of keeping the methodol-
ogy simple to use. It is obvious that the methodology
could be improved by both ref inement and extension.

~: This is the only substantial correlation between scores on the methodology 's
dimensions. Correlations between the other d imensions range between .24 and
.36. All of these correlations are positive, in the sense that editors tend to
improve in the two dimensions together, wi th the exception that there is a
tradeoff between Error and Functionality.
' 8We can use this result to conjecture that the main reason for the superiori ty
of display-based systems, on both the Time and Learning dimensions, over
nondisplay sys tems is not the display itself, but rather that the display-based
sys tems permit much less complex procedures.

282 COmmLmi(:(llions ()fthc ACM April1983 Volume26 Number4

RESEARCH CONTRIBUTIONS

However, even in its present form, it provides for the
generation of a valuable user-edi tor performance data-
base of objective measures. We would urge others who
need to do evaluations of editors to use this methodology.
Its main advantage is that the numbers produced can be
put in the context of the database of a l ready evaluated
editors (without such a context, numbers are difficult to
interpret). At the same time, the addit ional evaluations
(either replications of existing evaluations or evaluations
of new editors) would be contributing to extending the
database, allowing our knowledge of editor performance
to systematical ly accumulate.

We have also shown how the database of results can
help us understand user performance, by making clear the
magnitude of individual differences of both experts and
novices, and by providing a testing ground for under-
standing the factors affecting learning. Although we pres-
ently favor a theory of learning based on the notion of
procedural complexity, a larger database will show
whether this theory holds up. Finally, we have shown
that Keystroke-Level Model calculations of editor per-
formance, which also belong in the database, are useful
analyses against which to compare and interpret the ex-
perimental results.

Acknowledgements. We thank Betsey Summers for or-
ganizing and running many of these evaluation studies
and for helping us analyze the data. We thank Allen
Newell and Stu Card for many helpful discussions and
Alien Newell for commenting on drafts of this paper.

This paper is based in part on the first author's thesis research (re-
ported in [11]) which was done under the supervision of the second au-
thor, and on continuing research by the second author. A short, prelimi-
nary version of this paper was published as [12]. The authors are listed in
reverse-alphabetic order.

REFERENCES

1. Bates, S. J. User behavior in an interactive computer system. IBM
Systems lournal 13 (1974) 1-18.

2. Card, S. K., English, W. K,, and Burr, B. J. Evaluation of mouse, rate-
controlled isometric joystick, step keys, and text keys for text selection
on a CRT. Ergonomics 21 (1978) 601-613.

3. Card, S. K., Moran, T. P., and Newell, A. The Keystroke-Level Model
for user performance time with interactive systems. Comm. ACM 23, 7
(July 1980) 396-410.

4. Card, S. K., Moran, T. P., and Newell. A. The Psychology of Human-
Computer Interaction. Lawrence Erlbaum Associates, Hinsdale, NJ,
1983.

5. Egan, D. E, Bowers, C., and Gomez, L. M. Learner characteristics that
predict success in using a text-editor tutorial. Proc. Conference on
Human Factors in Computer Systems, Gaithersburg, MD, (March
1982), 337-340.

6, Embley, D. W, and Nagy, G. Behavioral aspects of text editors. Com-
puting Surveys 13, 1 (March 1981) 33-70.

7. Good, M. An ease of use evaluation of an integrated document pro-
cessing system. Proc. Conference on Human Factors in Computer Sys-

terns, Gaithersburg, MD, (March 1982), 142-147.
8. Meyrowitz, N., and van Dam, A. Interactive editing systems. Comput-

ing Surveys 14, 3 (Sept. 1982) 321-415.
9. Moran, T. P. The Command Language Grammar: A representation for

the user interface of interactive computer systems. Int. Journal of
Man-Machine Studies 15, 1 (July 1981) 3-50.

18. Riddle, E. A. Comparative Study of Various Text Editors and Format-
ting Systems. Report AD-A029 050, Air Force Data Services Center,
The Pentagon, Washington, D.C., (Aug. 1976).

11. Roberts, T. L. Evaluation of Computer Text Editors. Ph.D. dissertation,
Department of Computer Science, Stanford University, Stanford,
Calif., (1980). Available as Report AAD 80-11699 from University Mi-
crofilms, Ann Arbor, Mich.

12. Roberts, T. L., and Moran, T. P. Evaluation of text editors. Proc. Con-
ference on Human Factors in Computer Systems, Gaithersburg, MD,
(March 1982), 136-141.

13. Robertson, C. K., and Akscyn, R. Experimental evaluation of tools for
teaching the ZOG frame editor. Computer Science Department, Carne-
gie-Mellon University, Pittsburgh, PA, (1982).

14. The Seybold Report on Office Systems (through 1981 called The Sey-
bold Report on Word Processing). Media, PA.

15. The Seybold Report on Word Processing. 4, 4, (April 1981). Issue on
Personal Computers: Word Processing Packages.

16. Smith, D. C., Irby, C., Kimball, R., Verplank, W., and Harslem, E.
Designing the Star user interface. Byte 7, 4 (April 1982) 242-282.

17. Whiteside, J., Archer, N., Wixon, D., and Good, M. How do people
really use text editors? Proe. S1GOA Conference on Office Information
Systems, Philadelphia, (1982) 29-40.

References (for Editor Documentation)
18. Augmentation Research Center. NLS-8 Command Summary. Stanford

Research Institute, Menlo Park, Calif., (May 1975).
19. Augmentation Research Center. NLS-8 Glossary. Stanford Research

Institute. Menlo Park, Calif., (July 1975).
20. Bolt, Beranek, and Newman, Inc. TENEX Text Editor and Corrector

(Manual DEC10-NGZEB-D). Cambridge, Mass., (1973). (Documents
TECO.)

21. Garcia, K. Xerox Document System Reference Manual. Xerox Office
Products Division, Palo Alto, Calif, (1980). (Documents BRAVOX.)

22. Lampson, B. Bravo manual. Alto User's Handbook. Xerox Palo Alto
Research Center, Palo Alto, Calif., (1979).

23. Stallman, R. M. EMACS Manual for ITS Users. AI Lab Memo 554,
MIT, Cambridge, Mass., (1980),

124. Stanford Center for Information Processing. Wylbur/370 The Stanford
Timesharing System Reference Manual, 3rd ed. Stanford University,
Stanford, Calif,, (1975).

25. Tesler, L. The Smalltalk environment. Byte 6, 8, (Aug. 1981) 90-147.
(There is no available GYPSY documentation. This paper describes the
Smalltalk editor, which is based on many of the same design ideas as
GYPSY.)

26. Wang Laboratories, Inc. Wang Word Processor Operator's Guide, 3rd
release. Lowell, Mass., (1978).

27. Xerox Corporation. 8010 Star Information System Reference Guide.
Dallas, Texas, (1981). (See also [16].)

CR Categories and Subject Descriptors: H.1.2 [Models and Principles]:
User/Machine Systems--human factors; 1.7.1 [Text Processing:] Text Edit-
ins--languages; 1.7.2 [Text Processing]: Document Preparation--languages

General Terms: Experimentation, Human Factors.
Aditional Key Words and Phrases: human-computer interface, human-

computer interaction, user model, user performance, user psychology, er-
gonomics, human factors, system design, system evaluation, text editing.

Received 3/82; revised and accepted 1/83

ACM Algoritluns
Collected Algorithms from ACM (CALGO) now includes quar-
terly issues of complete algorithm listings on microfiche as part
of the regular CALGO supp lemen t service.

The ACM Algor i thms Distribution Service now offers microf iche
conta in ing comple t e listings of ACM algori thms, and also offers
compi la t ions of a lgor i thms on tape as a subst i tute for t apes
containing s ingle algori thms. The fiche and tape compi la t ions
are available by quar ter and by year. Tape compi la t ions covering
five years will a lso be available.

To subscr ibe to CALGO, request an order form and a free
A C M Publ icat ions Cata log from the A C M Subscr ip t ion De-
par tment , Associa t ion for Compu t ing Machinery, 11 Wes t
42nd Street, New York, NY 10036. To order from the A C M
Algor i thms Dis t r ibu t ions Service, refer to the order form that
appears in every issue of A C M Transact ions on Mathemat i ca l
Sof tware beginn ing wi th March 1980, and in the March 1980
issue of C o m m u n i c a t i o n s of the A C M (page 191).

@

April 1983 Volume26 Numb(~r 4 Communiculions of lhe ACM 283

