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1. INTRODUCTION 
Text editors are the most heavily used programs on inter- 
active computing systems since the advent of time-shar- 
ing systems (e.g., [1]). Text editing, or worc[ processing, is 
also a very pervasive use of personal computers [15]. 
There are probably hundreds of different text editors in 
use today: many computation centers have their own lo- 
cal editors, and new computers often come with their 
own text editors. System programmers cannot seem to 
resist the temptation to design a better text editor. Heated 
debates rage over computer networks about text editor 
design. Yet, remarkably little objective information is 
known about the relative advantages of different kinds of 
editing paradigms. 

Systematic study of text editors is hampered, at least 
partially, by the complex of issues surrounding text editor 
usage. Text editors are flexible tools that are used for a 
wide variety of purposes, since many kinds of human 
communication are done by text, Simple informal notes, 
letters and memoranda, structured text (such as lists and 
tables), reports and specifications (requiring sophisticated 
formatting and layout), and program code (structured dif- 
ferently from narrative text) are all applications for which 
text editors are regularly used. There are many different 
kinds of editor users--f irst- t ime novices, hardened ex- 
perts, occasional users, and users with specialized appli- 
cations that lead them to know how to perform some 
tasks well and other tasks not at all. Finally, there are 
many different measures of the quality of user-editor in- 
teraction, including both objective measures of perform- 
ance, such as time and errors, and subjective measures of 
acceptability, such as feelings of enjoyment,  clumsiness, 
and so forth. 

The study of text editors up to now has been domi- 
nated by functional descriptions of editors, both by pro- 
ponents of particular systems (e.g., [16]) and by neutral 

ABSTRACT: This paper presents 
a methodology for evaluating text 
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evaluators (e.g., [10, 14, 8]). These reports mainly  present  
subjective opinions as the basis for comparing different 
systems, either by deciding a priori what  features are 
desirable or by informally trying out the systems to get a 
feel for what  works well and what  is lacking. Various 
arguments, which on the surface seem reasonable,  are 
also used to defend the conclusions in these reports,  but 
the validity of these arguments is seldom tested. The pur- 
pose of the present s tudy is to obtain objective, replicable 
results. A survey of related behavioral  studies done up to 
this time is given in [6]. 

Our purpose in this paper  is to present  a standardized 
evaluat/on of text editors. This kind of evaluat ion may  be 
contrasted with a specific evaluation, which is tai lored to 
a part icular  purpose or situation, such as the evaluation of 
a set of editors to determine their  utility in a part icular  
working environment.  A s tandardized  evaluation does not 
make assumptions  about the par t iculars  of any  given situ- 
ation, nor does it cover all of the various aspects  of editor 
usage. It focuses on the common propert ies  of text editors 
rather  than on the idiosyncracies  of part icular  editors. A 
s tandardized evaluat ion at tempts  to address  the most fun- 
damenta l  issues and is thus appl icable  to a variety of 
editors. A famil iar  example of a s tandardized  evaluat ion 
is the EPA rating of automobile  gasoline mileage. While  
the condit ions used to obtain the EPA rating do not match 
the driving condit ions of any specific car, the ratings do 
relate to common driving situations. Thus, the ratings can 
be used to compare different  cars and, to some extent, 
can be adjusted to tell about  specific driving situations. 

A benefit  of using a s tandardized evaluat ion over a 
period of t ime is the accumulat ion of a database  of con- 
sistent information about editors. This gives a s tandard  
for interpreting the results of any new evaluation, a criti- 
cal factor missing from many  specific evaluations (e.g., 
[7]). One of our goals in proposing a s tandar ized evalua- 
tion is to initialize a database  of information about the 
populat ion of existing editors. 

The methodology we present  here evaluates computer  
text editors from the viewpoint  of the performance of 
their use r s - - f rom novices learning the editor for the first 
time to dedicated experts  who have mastered the editor. 
Objectivity, thoroughness,  and ease-of-use were the crite- 
ria used in creating this methodology. Objectivity implies 
that the methodology not be biased in favor of any partic- 
ular editor 's  conceptual  structure. Thoroughness implies 
that multiple aspects of editor usage be considered. The 
methodology focuses on four dimensions of editor usage 
that are behavioral ly fundamental  and pract ical ly impor- 
tant. 

The Time to perform basic editing tasks by experts.  
The Error  cost for experts.  
The Learning of basic editing tasks by novices. 
The Functionality over a wide range of editing tasks. 

Ease-of-use means that the methodology should be usable 
by editor designers, managers of word  processing centers, 
or other nonpsychologists  who need this kind of evalua- 
tive information, but who have limited time and equip- 
ment resources. 

The structure of this paper  is as follows: In Sec. 2, we 
describe the evaluation methodology. In Sec. 3, we apply  
the methodology to nine different  text editors, presenting 
and discussing the empirical  results, and assessing the 
methodology itself. In Sec. 4, we turn the empirical  results 
around to gain some insight into user performance with 

computers,  part icular ly in the areas of individual  differ- 
ences and novice learning. 

2. DESCRIPTION OF THE METHODOLOGY 
The methodology is based on the specific kinds of tasks 
involved in text editing. It consists of exper imenta l ly  
measuring user performance on three d imens ions- -Time,  
Error, and Learn ing- -and  on an analysis  of Functionali ty.  
Also, expert  performance time can be calculated analyti-  
cally. 

2.1 Taxonomy of Editing Tasks 
An evaluation scheme for editors needs to have a com- 
mon ground on which to compare different  kinds of edi- 
tors. Editor design features (e.g., "modeless"  insertion of 
new text vs. having an "insert  mode") and design con- 
cepts (e.g., table creat ion using sequential  text with for- 
matting characters  such as tabs vs. using a two-dimen- 
sional structure) cannot serve this role, since the features 
and concepts differ so much from editor to editor. There 
is no evidence that  one feature is a lways  bett~r than an- 
other. In fact, the overall  consis tency in how well  the 
different design features of the editor fit together may  
well  be more important  than any individual  feature in 
determining the quali ty of the editor. 

What  is constant  across all text editors, in contrast  to 
design features, is the editing tasks they permit  their  users 
to accomplish.  Thus, the methodology here is based on a 
taxonomy of 212 editing tasks that  can potent ial ly  be per- 
formed by a text editor. These tasks are specified in terms 
of their  effect on a text document,  independent  of any  
specific editor 's  conceptual  model  [9]. The organizat ion of 
the task taxonomy, along with a sample  of tasks in each 
category, is given in Figure 1. The Funct ional i ty  dimen- 
sion of an editor is measured with respect  to the set of 
tasks in this taxonomy, by assessing how many  of the 
tasks the editor can perform. 

Comparisons between editors on the performance di- 
mensions (Time, Error, and Learning) must  be based on 
tasks that all editors can perform. For this purpose, we 
identify a small  set of core editing tasks (see Figure 2). 
The core tasks are the ones that  all text edi tors ,  by defini- 
tion, can perform; they are also the most common editing 
tasks in normal text-editing applications.  Most of the core 
tasks are generated by applying basic text editing opera- 
tions (e.g., insert,  delete, replace) to basic text entities 
(e.g., characters, words, llnes). Also included in the core 
set are the tasks of accessing and saving documents  and 
the simplest text-display and text-addressing operations.  

A lengthy specification is required to instruct  an evalu- 
ator to carry  out this methodology. In this paper  we can 
give only enough information to make clear the basic 
structure and procedure  of the methodology and the re- 
sulting measures.  Full instructions and materials  for run- 
ning the evaluat ion tests and analyses  may  be found in 
the report  by Roberts [11]. 

2.2 The Time Dimension 
The time it takes expert  users to accomplish routine text 
modifications is measured by observing expert  users as 
they perform a set of benchmark tasks, which are d rawn 
from the core tasks. 

Benchmark. There are 53 editing tasks in the bench- 
mark, embedded  in four documents:  a short  interoffice 
memo, two two-page reports, and a six-page chapter  from 
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FIGURE 1. Taxonomy of Editing Tasks on which the Evaluation Methodology is Based. 

Modify Document 
Content and st ructure of text 

Characters, words, numbers, sentences, paragraphs, lines, sections, document 
References [e.g., keep up-to-date references to section numbers in the document] 
Sources for text or attributes [e.g., make the text layout be the same as in another document] 

Layout of running text and structure 
Inside paragraphs [e.g., indent the first line of a paragraph so far from the left margin] 
Headings, random lines [e.g., center] 
Interparagraph layout [e.g., leave so much space between paragraphs] 
General [e.g., lay out document in so many columns] 

Page layout 
Every page [e.g., print a page heading that includes the current section number] 
Non-mainline text [e.g., position footnotes at the bottom of the Page] 

Attributes of characters 
Line break [e.g., automatic hyphenation] 
Shape [e.g., boldface] 

Tables 
Column beginning [e.g., columns are equally spaced] 
General alignment [e.g., align the column on the decimal points] 
Modify alignment [e.g., swap the positions of two columns] 
Treatment of table entries [e.g., line up the left and right edges of (justify) each table entry] 

Summary of text [e.g., table of contents] 
Special applications [e.g., mathematical formulas] 

Locate Change (Addressing) 
Text [e.g., find text which has specified content] 
Structure [e.g., find the next section heading] 
Layout/Attributes [e.g., find a boldface character] 
Misc. 

P rog ram Edits (Control) 
Command sequences [e.g., invoke a sequence of commands with parameters] 
Control structure [e.g., repeat a sequence of commands a specified number of times] 
Tests [e.g., compare strings for alphabetical order] 
Storage [e.g., store pointers to places in documents] 
User control [e.g., ask user for parameters during execution] 
Preexisting composite commands [e.g., sort a sequence of text strings] 

Find Task or Verify Change (Display) 
Display text and layout [e.g., show the outline structure of the text] 
Display system state [e.g., show where the selection is relative to the whole document] 

Miscellaneous 
Hardcopy 

Draft copy [e.g., print with extra space between lines] 
Misc. [e.g., print on envelopes] 

Intermediate Input/Output [e.g., save away the current version of a document] 
Other [e.g., perform arithmetic on numbers in the document] 

a phi losophy book. The types of tasks in the benchmark  
are randomly drawn from the core tasks, and the loca- 
tions and complexities of the benchmark tasks are also 
randomly distributed. The distr ibution of tasks in the 
benchmark is more uniformly distr ibuted than one would 
observe in normal  text-editing work, the benchmark  giv- 
ing more emphasis  to the more complex kinds of tasks 
(most real-world editing tasks are simple text modifica- 
tions involving a small  number  of characters).  For exam- 
ple, tasks involving "tr icky" boundary  condit ions are 
over-represented in order to identify special cases, such 
as insertion at the beginning of a paragraph,  which an 
editor may treat awkwardly .  The benchmark  also under- 
represents the typing of lengthy new text, since such typ- 

ing performance is more a reflection of the skill of the 
user than of the quali ty of the editor. We will discuss 
later how to relate this benchmark  to other distr ibutions 
of tasks. 

Sub}ects. Four expert  users were tested individually on 
the benchmark.  The evaluator should select the set of 
subjects to represent  the diversi ty of the expert  user com- 
munity: at least one user should be nontechn ica l  (i.e., 
with no programming background) and at least one 
should be technical  (i.e., know how to program). Four is 
the absolute minimum number of subjects needed to get 
any reliabili ty of measurement  and to get some indication 
of individual user variation. 
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FIGURE 2. Core Editing Tasks used in the Methodology 
for Expert Time Performance and Novice Learning. 

Core tasks consist mainly of the cross-product (except 
for a few obvious semantic anomalies) of the following 
basic editing operations applied to the following basic 
text objects: 

Operations: insert Objects: character 
delete word 
replace l ine 
mo ve sentence 
copy paragraph 
transpose sect ion 
spl i t  
merge 

For example: 

- - i nse r t  character(s) 
---insert word(s) 
- -de le te  character(s) 
etc. 

Core tasks also contain the following miscellaneous tasks: 

---display a cont inuous chunk of text 
- -address  a speci f ied p lace 
---address accord ing to content  
---make a document  avai lable for edi t ing 
---put a document  away 
---start a new document  

Note. The formal definition of the core m the task taxonomy also 
includes operations on the object number;  however, no tasks using 
numbers were included in the experiments. The learning exper- 
iments omitted the operation transpose since it can be regarded 
as an optimization of two moves. 

Measurement. The evaluator  measures  the performance 
in the test sessions with a clock and a s topwatch,  measur-  
ing the overall  performance time with the clock and the 
times spent  in error with the stopwatch.  The evaluator  
also notes whether  or not each task is performed cor- 
rectly. When  the subject  is f inished with the tasks, the 
evaluator asks the subject  to make a second pass to com- 
plete any incorrect ly done tasks. This relat ively crude 
method of measurement  is used because it is easy for 
anyone to run (not everyone has an ins t rumented editor 
or a videotape setup, but anyone can acquire a s topwatch)  
and because s topwatch accuracy is sufficient. I 

Error-free and Error Time. The benchmark  typical ly  
takes about 30 minutes of s teady work to complete.  The 
elapsed time in the exper iment  is par t i t ioned into error- 
free time and error time, according to two types of ob- 
served behavior. The error time is the time the user 
spends dealing with errors (see below for more detail), 
and the error-free t ime is the elapsed time minus the error 
time. 

Scoring. The individual  user 's  Time score is the average 
error-free time to perform each task (i.e., the total error- 
free time divided by the number  of tasks). The overall  
Time score is the average score for the four subjects. 

] The reliability of the measurements  is de termined more  by the small  number  
of subjects than by the accuracy of measurement .  

2.3. The Error Dimension 
The effect of errors in an editor is measured by the error 
time, which is the time cost of errors on the benchmark  
tasks. The course of a typical  error includes committ ing 
the error, discovering it, correcting it, and then resuming 
productive behavior. Error t ime consists of all the act ivi ty 
up to the resumption of productive activi ty [4]. Only those 
errors that  take more than about 15 seconds to correct are 
counted by the evaluator (which is the best  that  can be 
done with a stopwatch).  Thus, the t ime for typographical  
and other simple errors is not included in the error time. 
We do not know exact ly  how close this method approxi-  
mates the true error time, but the true error  t ime is not 
l ikely to be dominated  by the time in these small  errors. 
In addi t ion to the time for the immedia te ly  corrected er- 
rors, the time for the second-pass  correct ions is also 
counted in the error time. 

Scoring. The individual  Error score for each user is the 
user 's  error t ime expressed as a percentage of h i s /he r  
error-free Time score. 2 The overall  Error score is the aver- 
age score for the four expert  users. 

2.4 The Learning Dimension 
The ease of learning of an editor is tested by actual ly  
teaching four novice subjects, individually,  to perform the 
core editing tasks. 

Subjects. Each subject  must  be a novice to computers  
(defined as someone with no previous experience with  
computers or word  processors). This gives us an easily 
defined baseline measure of learning, that is, from zero 
exper ience? 

Teaching Paradigm. The learning tests are performed in 
a one-on-one, oral teaching paradigm, wi th  an instructor  
individual ly teaching each novice the editor. Al though 
more expensive than group-teaching or self-teaching para-  
digms, this paradigm has the crucial advantage that  it is 
adaptable  to the individual  learner. The other paradigms 
are more rigid and may  tend to magnify the differences 
between different  learners,  which obscures the learnabi l-  
ity of the editor itself. For example,  in a self-teaching 
paradigm using the editor 's  documentat ion,  a learner  can 
easily get confused on a point because of a short  lapse of 
at tention or because of the par t icular  wording of the doc- 
umentat ion and not because the point is inherent ly  diffi- 
cult. In the one-on-one paradigm, on the other hand, the 
instructor can respond to the part icular  difficulties of 
each learner  by explaining things in a different  way, by  
correcting misconceptions,  and so forth. 

Teaching Procedure. The teaching procedure  is struc- 
tured as a series of five ins t ruct ion-quiz  cycles. In each 
cycle, the instructor first instructs the learner  on some 
new tasks or corrects the learner 's  difficulties, and  during 
this t ime the learner  is a l lowed to practice performing 
tasks on the system; finally, the learner  is given a quiz to 
test what  tasks s /he  can do independent ly .  The learner  
paces the session, deciding how much to practice, when  
to take the quiz, and so on. 

The methodology includes a s tandard  syl labus specify- 

2 Thus, the total t ime to per form an average  benchmark  task is T + Te, where  T 
is the error-free Time score and e is the Error score. 

More and more people today have some exposure  to computers,  and it m a y  
become more important  to look at the learning users exper ienced in other  
systems.  However ,  this would present  difficult methodological  problems in 
assessing their degree of experience and the s imilar i ty of their exper ience  to 
the editor to be learned. 
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ing what  core tasks are to be taught on each cycle. How- 
ever, it is up to the instructor to determine which specific 
editor commands  and facilities to teach in order  for the 
subject to be able to accomplish the core tasks. The struc- 
ture of a part icular  editor might also make it necessary to 
slightly alter which tasks are taught in which cycle. The 
teaching procedure is s trongly method-oriented;  by 
"teaching tasks" we mean teaching methods to accom- 
plish the tasks. 

The quizzes consist of documents  marked with changes 
to be made (similar to the benchmark  performed by the 
expert  users). Only a sample of the core tasks appears  on 
each quiz. Not all tasks on a quiz have necessar i ly  been 
taught up to that point, which allows learners to figure 
out, if possible, how to do tasks that have not been explic- 
ity taught. During the quizzes, the learners are given ac- 
cess to a one-page summary  sheet listing all the editor 
commands taught. Thus, a learner is not hung up a long 
time on a quiz because of a simple difficulty, such as not 
being able to remember  the name of a part icular  com- 
mand. 

Scoring. The amount  that a subject  learns is measured 
by counting the number  of different task types the subject  
is able to perform on the quizzes. Only half-credit  was 
given if the subject performed a task incompletely or had 
to look at the summary  sheet. The individual  Learning 
score is the amount  of t ime taken for the learning session 
divided by the total number  of tasks learned, that is, the 
average time it takes to learn how to do a task. The 
overall Learning score is the average Learning score for 
the four novice learners. 

2.5 The Functionality Dimension 
The range of functionali ty available in an editor is meas-  
ured by analyzing the editor against a checklist  of tasks 
covering the full task taxonomy (Figure 1). 

The Analys t .  The editor is rated on the funct ional i ty 
checklist by a very experienced user of the editor, the 
analyst, who uses whatever  documentat ion material  is 
necessary to ensure accuracy. 

Rating Criteria. Rating the funct ional i ty of an editor on 
a task involves deciding whether  the task can or cannot 
be done with the editor. This is not a simple binary deci- 
sion. Almost  any task can be performed on almost any  
editor with enough effort. Consequently,  the editor is 
given full credit for a task only if the task can be done 
efficiently with the editor. It is given half-credit  if the task 
can be done awkwardly ,  which can appear  in several  
guises: repeti t ion of commands,  excessive typing of text, 
l imitations in parameter  values to the task, interference 
with other functions, substant ial  planning required of the 
user, etc. The editor is given no credit  for a task if it 
cannot be done at all (such as trying to specify an italic 
typeface on a system designed for a line printer) or if 
doing the task requires as much effort as retyping all the 
affected text (such as having to manual ly  insert page 
numbers on every page). 

Scoring. The overall  Functional i ty score is the percent-  
age of the total number  of tasks in the task t axonomy that  
the editor can do, according to the rating criteria. This 
score may  be broken down into subscores according to 
the classes of tasks in the taxonomy, to show the 
strengths and weakness  of the editor. 

2.6 Calculation of Expert Performance Time 
The error-free performance time of an expert  using an 
editor can be calculated analytical ly,  using the Keystroke- 
Level Model [3, 4]. This model  predicts  expert  perform- 
ance time by counting the number  of physical  and mental  
operations required to perform a task and by assigning a 
s tandard  time for each operation. The model  counts oper- 
ations at the grain-level of keystrokes:  typing, pointing at 
a location on the display with a pointing device, homing 
the hands  onto a device, mental ly  preparing for a group of 
physical  operations,  and waiting for system responses.  
The Keystroke-Level Model analysis  gives a precise char- 
acterization of methods for accomplishing tasks. 

When  the model  is appl ied to the set of benchmark  
tasks, it produces a calculated performance time for a 
"s tandard  expert"  that can be compared  to the experi-  
mental ly  measured times. However,  making this calcula- 
tion requires the evaluator  to predict  what  methods an 
expert  user would use to perform the benchmark  tasks, 
since the model  requires that the methods be specified as 
input. In the absence of knowledge about the style of 
expert  user interaction, the most useful heuristic is to first 
identify the common, frequently used commands  of the 
editor and to pick the optimal method for each task 
within that  set of commands.  The fact that  the experi-  
mental  subjects sometimes use methods different from 
those predicted, plus other differences between the as- 
sumptions of the Keystroke-Level Model and the test con- 
ditions in this methodology (e.g., the inclusion of small  
errors) leads us to expect  small - to-moderate  differences 
between the calculated performance and the exper imental  
results. 

3. EVALUATION OF NINE TEXT EDITORS 
Nine text editors have been evaluated using this method- 
ology, both as a test of the methodology and for the inher- 
ent interest in the results. The results of these evaluations 
provide the beginnings of a database  of empirical  results 
giving us behavioral  data on user performance,  as well  as 
the basis for comparing editors. 

3.1 Description of the Editors 
The nine text editors evaluated are: TECO [20], WYLBUR 
[24], EMACS [23], NLS [18, 19], BRAVOX [21], BRAVO [22], a 
WANG word processor  [26], STAR [27], and GYPSY [25]. 
These represent  a wide variety of text editors and word  
processors,  some in wide use around the country and 
some experimental .  The first two of these editors were 
designed for teletypelike terminals,  and the rest were de- 
signed for display-based terminals  or personal  computers.  
The intended users of these editors range from devoted 
system hackers to publishers  and secretaries who have 
had little or no contact  with computers.  

Text editors are complex interactive systems. Thus, it is 
difficult to succinctly describe the design of these nine 
editors. Figure 3 at tempts to character ize the editors ac- 
cording to a set of commonly discussed design features. 
For example,  the Command Invocation column describes 
the design feature concerned with the ways  in which a 
user designates commands  to the system. The nine editors 
cover a wide range of choices for this feature: (1) type all 
or part of an English verb, (2) type a one-letter mnemonic  
for the command name, (3) hold down a control key while 
typing a one-letter mnemonic,  (4) type a one-letter mne- 
monic on a chordset,  (5) press a special  function key, 
(6) select a command from a menu on the display.  
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FIGURE 3. Feature Description of Nine Text Editors. 

Featu re 

E d i t o r  Display Auto Strong Text Command Insert Means of Addressing Computer 

[Ref.]  Line Line Units Invocation Mode Addressing c Hardware Processor d 
Wrap a Concept b 

TECO TTY e No Yes Characters, 1 -letter Yes Relative to Keyboard PDP-t 0 
[20] style lines mnemonfc current equivalent, 

position via 3Mb net 

WYLBUR TTY e No Yes Characters, English-like, Yes Absolute Keyboard IBM 370, 
[24] style lines abbreviated line 1200 baud 

numbers 

EMACS Partial Yes Yes Characters, ! -letter No Relative to Keyboard PDP-10 
[23] page words, lines, mnemOnic, current equivalent, 

Sentences, control keys position approximately 
paragraphs 1200 baud 

NLS Partial Yes No Characters, l- letter Yes Screen Mouse PDP-10 
[18, 19] page words, English-like position with local 

paragraphs on keyboard or processor 
5-key chordset 

BRAVOX Full Yes No Characters, I -letter No Screen Mouse Xerox Alto 
[21] page words, lines, mnemonic, position personal 

paragraphs menu, computer 
function keys 

BRAVO Partial Yes No Characters. 1-letter Yes Screen Mouse Xerox Alto 
[22] page words, lines, mnemonic position persOnal 

paragraphs corn puter 

WANG Partial Yes No Characters Function Yes Screen Step keys f Stand-alone 
[26] page keys position Wang word 

processor 

STAR Full Yes No Characters, Function No Screen Mouse Xerox 8000 
[27] page words, keys, position processor 

Sentences, menus 
paragraphs 

GYPSY Partial Yes No Characters, Function No Screen Mouse Xerox Alto 
[25] page words, keys position personal 

paragraphs computer 

a Automatic line wrap means that during type-m a new line is automatically begun when a word 
overflows the old line, without any intervention from the user. 

b This refers to editors that require the user to type RETURN at the end of each line of text. Usually, 
this also means that there is an explicit CARRIAGE-RETURN character at the end of each line in the 
internal representation of the document. 

c This refers to the primary means of addressing (all editors have the ability to search). 

d Time-shering computers were used under conditions of light load. Terminals and computer displays 
were all CRTs, except that one WYLBUR user preferred her own hardcopy terminal. 

e A TT~ (teletype) style display is one that does not continuously show the state of the document, but 
only shows the sequence of commands entered by the user. Snapshots of pieces of the document are 
displayed when the user explicitly asks for them. 

f Four keys with arrows on them, which move the cursor up, down, left, and right (see [2]). 
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Figure 3 also gives the conditions under which the edi- 
tors were used for the experiments. For example, T~.CO 
was run on a time-sharing machine connected to a termi- 
nal over a 3-megabit local network, while the WANG word 
processor was run on its own stand-alone hardware. Note 
that the methodology does not provide an evaluation of 
an editor in the abstract, but only of a particular imple- 
mentation under  a particular set of conditions. It is possi- 
ble that the particular conditions (e.g., the quality of the 
terminal or the bandwidth of its connection to the central 
processor) dominate the abstract characteristics of the ed- 
itor (e.g., its command language conventions) in determin- 
ing an expert's performance. Therefore, an attempt was 
made to run each editor under  reasonably optimal condi- 
tions, in order to make the overall evaluation results as 
generally useful as possible. 4 

Figure 4 gives a different characterization of the editors. 
It shows in detail how a user would go about performing 
a specific word-replacement task in each of the editors, 
using the notation of the Keystroke-Level Model (the foot- 
note to the figure lists the different types of Keystroke- 
Level Model operations). For example, it can be seen that 
the editors described in Figure 3 as having an insert mode 
(TECO,  WYLBUR,  NLS,  B R A V O ,  and W A N G )  all require the 
typing of a special character (preceded by a mental  opera- 
tion) after the insertion to terminate the insertion of new 
text. On tee other hand, the "modeless" editors (EMACS, 
BRAVOX, STAR, and GYPSY) do not require any operations 
after typing in new text. These methods also show where 
moving the hands from the keyboard to the pointing de- 
vice and back (homing) add extra motions to the methods 
used with editors which have a mouse or step keys (NLS, 
BRAVOX,  BRAVO,  W A N G ,  STAR,  and G Y P S Y ) .  

This Keystroke-Level Model analysis can be used to 
calculate the expected expert performance time for each 
editor, and to give a detailed quantitative decomposition 
of the times for each type of operation in each editor. To 
do this, the Keystroke-Level Model analysis was applied 
to all the benchmark tasks for each of the nine editors. 
The calculated task times thus obtained were averaged 
over the 53 benchmark tasks to give times for an "average 
editing task" for each editor. Figure 5 presents these first 
empirical (not experimental) results. 

Figure 5(a) gives the calculated average task times for 
each editor. This leads us to expect a certain pattern of 
experimental results, for example, for there to be an over- 
all factor of 2.5 between the fastest and the slowest edi- 
tors. The figure also shows how each average task time is 
decomposed into the times for each operator type. For 
instance, the cost of slow system response stands out 
clearly. If EMACS had been run on a fast terminal, its 
speed would be faster than NLS'S; STAR would be the fast- 
est editor of all if system response times for all editors 
could be effectively reduced to zero. A weak point of the 
WANG, on the other hand, is the pointing time required by 
the step keys; it would be improved at least 2 sec/task 
(over 10 percent) by using a mouse. 

The task time decomposition can also be considered as 
a percentage of total task time, as shown in Figure 5(b). 
This shows, for example, that homing time between the 
keyboard and pointing device is not a major problem (ex- 
cept perhaps with the WANG, which relies heavily on 

4 EMACS was  the only sys tem for which optimal conditions were  not found. The  
workstat ion used was  actually a pe r sona lcompute r  running a rather  s low 
terminal-emulation package. This  cut the effective communica t ion  rate be- 
tween the main computer  and the worksta t ion to around 1200 baud, which is 
much slower than is often available with EMACS. 

function keys that are separate from the main typing ar- 
ray). An interesting contrast exists between TECO and 
WYLBUR. Both use the same set of operations: Acquire, 
Keying, Mental time, and system Response. But TECO, 
with its emphasis on minimal typing, only spends one- 
third of its user's time in typing, while WYLBUR spends 
over half. This is paid for, however, in Mental time, 
where the ratios are reversed. 

3.2. Overall Evaluation Results 
All nine editors were run through all the evaluation tests. 
According to the methodology, the overall evaluation of a 
text editor is a four-tuple of numbers,  one numeric score 
from each dimension. The overall evaluation scores for 
the nine editors are presented in Figure 6. 

Differences were found between the editors on all di- 
mensions. The expert Time results show, for instance, 
that TECO, WYLBUR, and EMACS are the slowest editors and 
that GYPSY and STAR are the fastest. Most of the display- 
based systems are about twice as fast to use as the non- 
display systems. The difference between the fastest and 
slowest system was a factor of 2.5, as the Keystroke-Level 
Model analysis led us to expect. The Error dimension 
shows a range of a factor of 5 in the cost of errors be- 
tween systems. On the Learning dimension, TBCO is 
clearly the slowest to learn, with the next system being a 
factor of 2 faster to learn, and the rest of the editors 
ranging over another factor of 2 in learning speed. We 
also see large differences in the Functionality dimension, 
with scores ranging smoothly from under 40 percent of 
the tasks to almost 80 percent. 

We see that no editor is superior on all dimensions, 
indicating that tradeoffs must be made in deciding which 
editor is most appropriate for a given situation. For exam- 
ple, consider the editor BRAVOX, which was developed at 
Xerox as an extension to the earlier editor BRAVO. Its 
purpose was to increase functionality and speed and to 
try out fashionable design features such as command 
menus and modeless text insertion. Is BRAVOX really an 
improvement over BRAVO? From Figure 6 we see that BRA- 
VOX is indeed an improvement over BRAVO in Functional- 
ity; it is also faster to learn, possibly justifying the design 
innovations that were incorporated. The analysis in Fig- 
ure 5 shows that BRAVOX should be faster than BRAVO, but 
that improvement does not materialize in the experimen- 
tal Time score (the reason for this is unknown).  

Rel iabi l i ty .  5 Thus far we have only been considering the 
mean evaluation scores for each editor without consider- 
ing the variability associated with these scores. Figure 6 
expresses the variability of each experimentally measured 
score by the Coefficient of Variation (CV), 6 which repre- 
sents the between-user variability. We see that the vari- 
ability is very high for the Error scores, but quite moder- 
ate for the Time and Learning scores. However, the statis- 
tical reliability of the scores depends on the number  of 
subjects as well as on the variability. Since we ran only 
four subjects, only large differences between scores are 
statistically reliable. For example, we can say that WYLBUR 
is reliably faster to learn than TECO, but we cannot say 

In this paper we use the term "reliabili ty" instead of the more  usual term 
"(statistical) significance," since we are trying to emphas ize  the difference 
between statistical and substantive significance, the latter of which we call 
" importance."  
~W . . . . .  e use the CV, wh]ch Is the Standard Deviation normahzed  by the Mean, 
instead of the Standard Deviation, because CVs are more constant  across the 
different scores. That  is to say, the absolute size of the varia~tion is approxi-  
mately proportional to the mean. 
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FIGURE 4. Example of the Use of each Text Editor: An Illustrative Method for Accomplishing 
the Specific Task of Replacing the Word "European" with the Words "Far Eastern". 

Editor Method (informal) Method (Keystroke-Level Model encoding) a 

TECO Get task. A[task] 
Place pointer af ter  old word. MK[S]  9K[European] MK[ESC] 
Delete previOus 8 characters. M 3K[ -ad ]  
Insert new words. MK[ i ]  13K[Far Eastern] MK[ESC] 
Display line to verify. M 2K[v ESC] R(0.4) 

W Y L B U R  Get task. A[task] 
Get number  of l ine with old word M 2 K [ L ~ ]  10K[  'European] M 3 K [ '  RETURN] 

(system returns line 1 t ) .  R(1.0) 
Change old word  M 3 K [ c h ~ ]  1 0K[  * European] M 6 K [ '  ~ t o ~ ]  

to new words. 14K [ '  Far Eastern] M 6 K [ '  ~ i n ~ ]  2K [11] M K[RETURN] 

EMACS 

N L S  

BRAVOX 

BRAVO 

WANG 

STAR 

G Y P S Y  

Get task and f ind it on  display. A[teak] S[European] 
Place Ix)inter in o ld word. M 4K[CTRL Se u] R(2.0) 
Back up to beginning of  word. 2K[META 13] 
Call  Delete Word command. M 2K[META O] 
Type new words. 13K[Far Eastern] 

Get task and f ind it on  display. 
Call Replace Word command. 
Point  to o ld word. 
Type new words. 

A[task] S[European] 
H[chordset ar¢l mouse] MK[r ]  MK[w] 
P[European] K[OK] H[keyboard] 
13K[Far Eastern] MK[OK] 

Get task and  f ind it on display. 
Point  to old word. 
Delete o ld  word. 
Type new words. 

A [task] S[European] 
H[mouse] PlEuropean] K[BUTTON2] H[keyboard] 
MK[OEL] 
1 3K  [Far Eastern] 

Get task and f ind it on display. 
Point  to old word. 
Call Replace command. 
Type new words. 

A[task] S[Eurepean] 
H[mouse] P[Eurepean] K[BU'I-rON2] H[keyboard} 
MK[r ]  
13K[Far Eastern] MK[ESC] R(2.7) 

Get task and f ind it on  display. A[task] S[European] 
Call Replace command.  H[function keys and step keys] M K[REPL^CE] 
Select  ends of old word. Ps~E] K[EXECUTE] Ps(n] K[EXECUTE] H[keyboard] 
Type new words. 13K[Far Eastern] H[function keys] MK[EXECUTE] 

Get task and f ind it on display. 
Point  to o ld  word. 
Delete old word. 
Type new words. 

A [task] S[EurolP-.an] 
H[mouse and function keys] P[European] 2K[SELECT SELECT] 
MK[DELETE| 
H[keyboard] 1 4K[Far Eastem~] 

Get task and f ind it on  display. 
Point  to ends of  o ld word.  
Type  new words. 

A[task] S[European] 
H[mouse] P[E] K[BUTTONll Pin] K[BUTrON1] H[keyt~oar~] 
13K[Far Eeatem] 

a Methods are enCodod in the Keystroke-Level Model [3] as a sequence Of primitive operations that the user 
must perform, All operations are encodecl as one of the following types of operations: 

& AcQuire a task by looking at the manuscript (1,8 ssc). 
S Search the display for the location of the task (2.2 ssc), 
K Type a key or press 8 button (measured by typing tests: ,23 sec used here). 
P Point to a location with a mouse (1.1 sec). 
Ps Point to a location with step keyS (2.3 sac). 
H Home the hands on a physical device (,4 sec). 
M Mentally orepera for physical actions (1.35sec). 
R(n) wait n seconds for a system response (measured for each system). 

The notation in square brackets after each ot0eration is an informal comment telling, e.g., what keys are pressed. 
All operat'mns, except A, S, and Ps, are the same as in [3]. The A and S operations used hem simply encode 
[3]'S notion of task acquisition into new operations. PS represents a tyDe of pointing not covered in [3], The 
time attributed to Ps comes from [2]. 

t h a t  it is  r e l i a b l y  f a s t e r  to  u s e .  ~ W e  a l s o  s e e  t h a t  t h e  
L e a r n i n g  d i f f e r e n c e  n o t e d  a b o v e  b e t w e e n  BRAVOX a n d  
BRAVO is r e l i ab l e ,  8 b u t  t h e  T i m e  d i f f e r e n c e  in  t h e  o t h e r  
d i r e c t i o n  is  no t .  N o n e  o f  t h e  d i f f e r e n c e s  i n  t h e  E r r o r  di -  

7 Quantitative formulas for computing which differences between scores are 
rel'iable (derived from the standard statistical concept of confidence limits) are 
given in the notes to Figure 6. 
a This result was obtained using the actual variances of the BRAVOX and BRAVO 
data, rather than by using the general formulas given in Figure 6. 

m e n s i o n  a r e  r e l i a b l e ,  b e c a u s e  t h e  b e t w e e n - s u b j e c t  v a r i a -  
t i o n  is  s o  h i g h .  

T h e  r e l i a b i l i t y  o f  t h e  s c o r e s  c a n  be  i m p r o v e d  b y  in-  
c r e a s i n g  t h e  n u m b e r  o f  s u b j e c t s  t e s t e d ?  F o r  e x a m p l e ,  c o n -  
s i d e r  t h e  T i m e  d i f f e r e n c e  b e t w e e n  WANC a n d  STAR. A l -  

9 Reliability, as measured by the confidence interval around a score, is approxi- 
mately inversely proportional to the square root of the number of subjects used 
to determine the score. 
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F I G U R E  5.  D e c o m p o s i t i o n  of  t h e  C a l c u l a t e d  E d i t i n g  T i m e s  in to  t h e  D i f f e r e n t  T y p e s  of  K e y s t r o k e - L e v e l  M o d e l  O p e r a t i o n s .  

(a) A v e r a g e  t i m e  (in s e c o n d s )  p e r  c o r e  ed i t ing  

O p e  rat ion T y p e  
Edi to  r 

A S K P PS H M 

T E C O  4.1 - -  15.3 - -  

W Y L B U R  2,7 - -  18.3 - -  - -  

E M A C S  2.0 2.5 4 .6  - -  - -  
N L S  2,5 3 ,0  4 ,3  2,0 - -  1.0 

B R A V O X  1.9 2.3 2.7 2.0 - -  0,7  

B R A V O  2.1 2.6 2.5 2.2 - -  0.4 
W A N G  2.3 2.8 2 .0  - -  4.6 2,0 
S T A R  2.2 2.7 2 .2  2.3 - -  0.4 

G Y P S Y  2,1 2.6 2.2 2,6 - -  0.7 

(b) P e r c e n t a g e  of t a s k  t i m e  in e a c h  t y p e  of o p e r a t i o n .  

- -  20.3 
w 10.1 

2 .8  42.5 

1.4 32 .5  

7.8 8 .9  23.8  

4.9 1.3 19.0 

2.6 3 .5  15,7 

3.0 5 ,6  18.4 

3.1 2.4 19.2 

2.1 8 .3  20.2  

2.8 3 .3  16.3 

Edi tor  
A S 

O p e  ra t ion  T y p e  

K P Ps H M R 

T E C O  10% - -  34% - -  

W Y L B U R  8% 56% - -  - -  

E M A C S  8% 10% 19% - -  - -  
N L S  13% 16% 22% 11% - -  

B R A V O X  12% 15% 17% 13% - -  
B R A V O  12% 14% 14% 12% - -  
W A N G  12% 15% 11'% - -  24% 
S T A R  11% 13% 11"% 11"% 
G Y P S Y  13"% 16"% 14"% 16"% 

- -  48% 7% 
- -  31% 4% 
- -  33% 29% 

5% 26% 7% 

5% 17% 22% 

2% 16% 

10% 16% 13% 

2% 10% 41% 

5% 17% 20% 

though the Time difference between these editors is not 
reliable with only four subjects per editor, this difference 
would be reliable if it had been found with ten subjects 
for each editor. 

Importance. We want  to emphasize the obvious fact 
that reliability is quite different from importance. Any  
observed difference between scores, however small, can 
be made reliable by running enough subjects. The real 
question is whether the observed difference is important ,  
which is a substantive, not a statistical, question. For ex- 
ample, small differences between editors on the Error di- 
mension, even if they were reliable, may not be as impor- 
tant as the fact that the user population is highly variable; 
even large differences in the Time dimension would not 
be important in a situation where there were not many 
dedicated expert users. 

In practical situations, small differences are usually not 
important, for they will be washed out by a host of inter- 
acting factors in the larger context. Thus, the fact that 
small observed differences are unreliable (except in ex- 
tensive, expensive tests) is of little consequence. The util- 
ity of a relatively cheap test, such as the methodology 
proposed in this paper, is that it reveals potentially impor- 
tant (i.e., large) differences. Once a potentially important 
difference is identified, then it is a cost-benefit  issue to 
determine how reliable the difference needs to be. But 
even if the difference is found to be reliable, it is not as 
important to be certain that there is some difference as to 

be certain that the difference is reliably large enough to 
matter. 

One reason that the reliability issue arises is that only 
overall scores are being considered. Often, an informal 
visual inspection of the more detailed data comprising the 
overall scores can tell us more than a formal reliability 
analysis. 

3.3 A Closer Look at the Data 
The next several figures present breakdowns of the over- 
all evaluation scores in Figure 6. Note that the editors in 
each of the figures are shown in different orders, corre- 
sponding to the order of scores on the different dimen- 
sions. 

3.3.1. Time. Figure 7 is a scatter graph showing each 
individual expert user's error-free Time score. This graph 
shows the actual spread of user performance for each 
editor. The greater the overlap of the performance ranges 
of two editors, the less likely that the editors are reliably 
different. The individual points also allow us to identify 
outliers among the users. An outlier can penalize an edi- 
tor's score compared to editors that were not unlucky 
enough to get an unusual  user. For instance, the BRAVO 
outlier suggests that our mean is higher than it would be 
if the population of subjects had been larger and thus 
more' evenly representative. 

Also playing a part in the data is the mix of technical 
and nontechnical users run on each editor, since the tech- 
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nical users were on the average somewhat  faster  than the 
nontechnical  users (this will be discussed in Sec. 4.1). We  
can adjust the overall  editor scores to compensate  for the 
different mix of technical  and nontechnical  users in each 
editor, but this adjustment  does not change any score by 
more than 2 sec / task  and turns out not to change the rank 
ordering of the editors. 

CALCULATED TIME. The task times calculated with the 
Keystroke-Level Model [Figure 5(a)] are also shown in 
Figure 7. These calculated t imes correlate quite well  with 
the empirical  Time scores (R = .90). The calculated t imes 
are on average about 75 percent  of the error-free Time 
scores (the worst  case is 54 percent  for BRAVOX, and the 
best case is 96 percent  for STAR). The reader  will note that  
there are two calculated times shown for TECO. The origi- 
nal predict ion (shown in parentheses)  predicted only 
about 49 percent  of the actual  error-free time. Because 
this calculation was so low and because we had time- 
s tamped keystroke records of the users '  actual  behavior  
with T~.CO, we recalculated the task t imes using the actual  
methods that  the subjects used (rather than trying to pre- 
dict the methods,  as we did for the original calculation). 

This second calculated time is 87 percent of the actual 
time. The discrepancy between the method predict ions in 
the two calculations was due to the fact that the users 
were much more conservative,  hence, less optimal,  than 
predicted. The predicted methods used a minimum of 
searching, displaying, and verifying, while three of the 
four users were much more careful in their  use of this 
nondisplay-based system. One user was much more dar- 
ing, and the original calculation was about 70 percent  of 
the actual  t ime for that  u s e r - - a n  outcome similar  to the 
calculation results for the other editors. 

The reasons for the ra ther  consistent  d ispar i ty  be tween 
the Keystroke-Level Model calculations and the actual  ed- 
iting times have to do with  the differences between the 
assumptions of the Keystroke-Level Model  and the condi- 
tions of our experiments ,  as noted in Sec. 2.6. There are 
several  differences: (1) The Keystroke-Level Mode as- 
sumes that  the user 's  method for performing each task is 
known. However,  we cannot  a lways  predict  the methods,  
as we saw with TECO. We can usual ly predict  the shorter,  
easier methods; but the longer, more complex methods 
are more difficult to predict.  Since predicted methods  are 
near ly  optimal methods,  when a user deviates from a 

FIGURE 6. Overall Evaluation Scores for Nine Text Editors. 

E v a l u a t i o n  D i m e n s i o n s  

T i m e  b E r r o r  c L e a r n i n g  d F u n c t i o n a l i t y  e 

Editor a M -!- CV f M ± CV M + CV 
(sec/task) (% Time) (min/task) (% tasks) 

T E C O  49 ± .17 15% ± .70 19.5:1: .29 39% 

W Y L B U R  42 :1 : ,15  18% ± .85 8.2 ± .24 42% 

EM A C S  . . . . . . . .  6% ± 1.16 6.6 + .22 49% 

N L S  29 ± .15 22% ± .71 7,7 ± .26 77% 

B R A V O X  29 :± .29 8% :::1:: 1.03 5.4 ± .08 70% 

B R A V O  2 6 : 1 : 3 2  8% ± .75 7.3 ± .14 59% 

W A N G  26 :i: .21 11% ± 1 . t l  6.2 ± ,45 50% 

S T A R  21 ± .18 19% ± .51 6.2 ± .42 62% 

G Y P S Y  19 ± .11 4% ± 2.00 4.3 ± .26 37% 

M(M)  M(CV)  9 3t  .19 12% .98 7.9 .26 54% 

C V(M) g .31 .49 3 3  .25 

a The evaluations for TECO, WYLBUR, NLS, and WANG are from the first author's thesis [11]; the 
first author also evaluated STAR. The evaluations of the other editors were done in the second author's 
laboratory. 

b The Time score is the average error-free expert performance time per benchmark task on the 
given editor. A difference between editors with mean values M 1 and M 2 is statistically reliable (95% 

confidence) if IM 1 --M21 ) 0.33"(M 1 ÷M2)/2. 

c The Errors score is the average time, as a percentage of the error-free performance time, that 
experts spend making and correcting errors on the given editor, A difference between editors with 
mean values M 1 and M 2 is statistically reliable (95% confidence) if IM 1 -M21 > 20%. Thus, no 
differences between editor means are reliable in this data. 

d The Learning score is the average time for a novice to learn how to do a core editing task on the 
given editor. A difference between editors with mean values M 1 and M 2 is statistically reliable (95% 

confidence) if IM 1 - M2| > 0.45=(M 1 +M2)/2. 

e The Functionality score is the percentage of the tasks in the task taxonomy (Figure 1) that can be 
accomplished with the given editor. 

f The Coefficient of Variation (CV) = Standard Deviation / Mean is a normalized measure of 
variability. The CVs on the individual scores indicate the amount of between-user variability. 

g The M(CV)s give the mean between.user variability on. each evaluation dimension, and the CV(M}s 
give the mean between-editor variability on each dimension. 
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FIGURE 7. Error-Free Time Scores 
for Individual Expert UserS. The 
editors are ordered by descending 
Time score. 

E d i t o r  

predicted method, it is usually in the direction of using a 
slower method. (2) Some of the users may have had to 
engage in problem-solving to perform some of the more 
complex tasks in some editors (e.g., to transpose phrases 
with TF.CO) and their behavior would not be the simple 
method-execution behavior assumed by the model. (3) 
The error time for small errors is included in the experi- 
mental error:free time, but is not considered in the calcu- 
lated time. (4) The experimental  time includes all the time 
between tasks. Some of this time is not considered in the 
model, such as page turning time, pauses for rest, etc. But 
even without such differences, it should be remembered 
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that the Keystroke-Level Model is an approximate model, 
and we should not expect its calculations to be perfect. 

The data for individual users show that, for most edi- 
tors, one user comes very close to the level of perform- 
ance represented by the Keystroke-Level Model calcula- 
tion. Since the calculations were based on predictions of 
optimal methods, this suggests that only a minority of 
users are likely to approach optimal performance, t° 

]o T h e  o n e  e x c e p t i o n  to t h i s  o b s e r v a t i o n  is  in  STAR, w h i c h  h a d  o n e  u s e r  w h o  
performed much better than the Keystroke-Level Model calculation. We believe 
that that is because the user constantly overlapped his actions with STAR'S long 
system response times; he often did not wait for the machine to catch up with 
him between tasks, but typed ahead whenever possible. 

FIGURE 8. Error Time Scores for 
Individual Expert Users. The edi- 
tors are ordered by descending Er- 
ror score. 

E d i t o r  
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3.3.2,. Error. Figure 8 is a scatter  plot of the individual  
expert  users '  Error scores. This data shows a factor of 5 
difference between the best and the worst  editors; even 
so, these differences are swamped  by the large ranges of 
error within editors. The relative variabili t ies are summa- 
rized in Figure 6: the between-edi tor  CV is .49, whereas  
the between-user  CV averages .98. Thus, no conclusions 
can be drawn about the differences between editors in 
error cost. 

It might be noted that the indiv idual  users who have 
large Error scores do not have them because they were 
unfortunate enough to be struck by rare, disastrous errors; 
rather, these users merited their Error scores by commit- 
ting several errors throughout the experiment. Among the 
seven users whose Error scores were greater than 20 per- 
cent, the error time came from an average of 7.4 individ- 
ual errors: 3.1 during the first pass over the benchmark 
and 4.3 incomplete tasks that had to be f ixed up on the 
second pass. The errors during both passes took an aver- 
age of over 70 seconds each. 

3.3.3 Learning. The overall Learning scores are broken 
down in two ways:  by time and by individual  learners.  
Figure 9 gives learning curves over t ime for all of the 
editors, each curve being the average of four learners.  
Each learning curve is d rawn in a s tyl ized fashion as a 
series of five steps, one step for each cycle in the learning 
session. The instruction part  of a cycle is represented by 

25 

the sloped part  of the step, and the quiz part  of the cycle 
is represented by the fiat part  of the step (as if no learn- 
ing occurs during the quiz). These curves can be seen to 
be fair ly straight overall, indicating that  it is reasonable  to 
summarize  them using their  overall  slopes, which is just 
what  the Learning scores are. 

The reader  will  note that there are two learning curves 
for T~.CO. The learning test was repl icated for T~.CO with  a 
second instructor, who ran the test complete ly  indepen- 
dently. The second instructor,  using only the materials  in 
[11], taught a slightly different  set of T~.CO commands  
than the first instructor  and of course taught a different  
set of four subjects. The results of this second evaluat ion 
test (marked JF) can be seen to be quite close to the first 
(marked TR). 

Figure 10 is a scat ter  graph of the individual  novices '  
Learning scores. This graph, as well  as Figure 9, shows 
large differences in the learnabi l i ty  of the different  edi- 
tors. TECO is clearly different  from all the others, taking 
over twice as long to learn as the next  editor (WYLBUR). 
The rest of the editors lie in a tight group with  consider-  
able overlap between adjacent  editors. But this group still 
covers another  factor of two in learning time, so GYPSY is 
four times as fast to learn as TECO. The large amounts  of 
overlap in the range of learners within editors indicate 
that the differences between adjacent  editors are most ly  
not reliable. The difference in Learning scores between 
TECO and WYLBUR is reliable, as are the differences be- 

FIGURE 9. Average Leaming 
Curves over all Learners on each 
Editor. The two TECO curves were 
produced by different instructors. 
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tween GYPSY and each of TECO, WYLBUR, NLS, and BRAVO. 

Figure 10 allows us to identify outlier learners,  as we 
did with the Time scores. One such outlier is a STAR 
learner, which suggests that  the mean Learning score for 
STAR might be slightly lower from a more representat ive 
subject sample. In addition, there was one subject  who 
Was comple te ly  unable to learn  TECO at a l l  ( that subject's 
part ial  data is not included in any of our data  or graphs). 
The fact that the only learning failure of the whole set of 
learning experiments  occurred with T~.CO reinforces the 
notion that TRCO is more difficult to learn than the rest. 

INSTRUCTOR EFFECTS. The instructor plays a strong role 
in the learning expe r imen t s - - s /he  decides what  subset  of 
commands to teach, and s /he  tries to maximize the learn- 
ing rate by keeping the subject from getting bogged down 
in nonproductive efforts. Thus, the instructor could have 
a potential ly strong effect on the learning results. To 
show instructor effects, the specific instructors are noted 
in Figure 10. Since the scores for the different editors 
overlap so much, it seems that  no instructor is consist- 
ently faster or s lower than the others. This can be seen 
most clearly in the cases where the learning tests have 
been replicated. In the TRCO case (mentioned above), the 
second instructor obtained a mean Learning score within 
12 percent of the score obtained by the first instructor.  In 
the second case, the EMACS learning tests were replicated 
in a different laboratory,  obtaining a vir tual ly identical  
overall Learning score [13]. 

The differences in teaching style of the different  in- 

structors can, on the other hand, be seen in the between- 
subject variations. The t w o  TRCO data  sets show this dif- 
ference most c lea r ly - - the  second instructor has very 
much less between-subject  variation. This can also be 
seen in the between-subject  CVs in the editor evaluations 
run by TR and BS, the two instructors who ran most of 
the tests. TR's CVs range from .24 to .45, while BS's CVs 
range from .08 to .26. The instructors seem to be exerting 
different amounts of control over the learners. However,  
this does not seem to affect the mean Learning scores. 

3.3.4. Functionality. Figure 11 gives a breakdown of the 
Functionali ty scores by the different categories in the task 
taxonomy. These funct ional i ty results show that  most of 
the editors can perform about half of the tasks in the task 
taxonomy. Each system has its areas of strength and 
weakness.  To show this, the scores are broken down into 
subscores in Figure 11. For instance, EMACS is excellent  in 
programming capabili ty,  while NLS and BRAVOX are espe- 
cially good in formatting and layout  tasks. Because the 
number of tasks in the taxonomy was weighted more 
toward text layout  than programming, the document-ori-  
ented editors general ly scored somewhat  better  overall  
than EMACS. But NLS, which tries to cover all needs, is 
clearly superior in overall  functionality.  

We can question the reliabil i ty of these Funct ional i ty  
scores, as well as the other scores generated by this meth- 
odology. An analyst ' s  rating of the funct ional i ty of an 
editor is part ly a mat ter  of judgment,  as was noted in Sec. 
2.5, and part ly a matter  of detai led knowledge of the edi- 

FIGURE 10. Learning Scores for 
Individual Novice Learners. The 
editors are ordered by descending 
Learning score. The instructors are 
noted below each editor. 
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F I G U R E  11.  F u n c t i o n a l i t y  S u b s c o r e s  fo r  t h e  N i n e  T e x t  E d i t o r s .  

T a s k  Edito r c 

C a t e g o r y  a 

(No, of Tasks) b NLS BRAVOX STAR BRAVO WANG EMACS WYLBUR TECO 

TOTAL (212) b 77% 70% 62% 59% 50% 49% 42% 39% 

Modification 

Content (66) 94% 89% 93% 90% 87% 74% 63% 

Text  Layout (19) 89% 71% 66% 71% 37% 37% 26% 

Page Layout (25) 74% 62% 56% 40% 34% 2% 6% 

Characters (21) 43% 76% 57% 62% 38% 14% 21% 

Other (16) 53% 59% 50% 22% 34% O~ 16% 

Addressing (22) 68% 36% 30% 30% 16% 61% 34% 

Control (23) 56% 37% 24% 20% 24% 89% 61% 

Display (8) 94% 94% 63% 69% 19% 81% 62% 

Misc. (12) 100% 88% 100% 71% 71% 46% 71% 

All 
Ed i tors  d 

GYPSY M::I:CV 

37% 54%:t:,25 

a The Task Categories are described in the task taxonomy shown in Figure 1. 

88% 80% 84%i .13  

3% 26% 47%:1:.56 

4% 4% 31%±.85 

0% 17% 36%:1:.66 

3% 0% 26%:t:.84 

25% 18% 35%:!:.48 

48% 9% 41%:1:.58 

38% 50% 63%:I:.42 
25% 42% 68%± .38 

b The number m parentheses after the task category name gives the total number of tasks in that 
task category. The Functionality scores and sub-scores are given as a percentage of the total number 
of tasks in each task category. The scores in the TOTAL row are the same as in Figure 6. 

c The editors are ordered in descending order of their overall Functionality scores, 

d The numbem in the All Editors column tell how well the task categories are handled by the whole 
collection of editors and the amount of between-editor variability there is. 

tor (e.g., knowing about limitations that may not be ap- 
parent from the documentation). To quantify the varia- 
tion between analysts, three different analysts were asked 
to independently rate WYLBUR. The overall Functionality 
scores for the three analysts were 42 percent, 45 percent, 
and 39 percent. Scores within task categories differed 
more, but the differences between the analysts tended to 
be averaged out over the total set of tasks. Thus, as a rule 
of thumb, we can consider the overall Functionali ty 
scores to be accurate to around 10 percent. 

3.4 Assessment  of the Methodology 
The above results show that diverse editors can indeed be 
evaluated and compared. As a whole, the evaluation 
methodology seems to successfully provide an objective, 
multidimensional picture of text editors. This methodol- 
ogy is also quite practical. For an experienced evaluator, 
about one week of time is required to evaluate a new 
editor. Thus, it should be practical for a system designer 
or a potential buyer. 

Several other issues surrounding the methodology de- 
serve discussion. 

3.4.1. Reliability. The main drawback in the use of this 
methodology is that the small number  of subjects used for 
each of the tests makes the results very coarse. In addi- 
tion, the results point out that the Error dimension needs 
a more reliable measure to differentiate editors, which 
will have to take into account the effect of large differ- 
ences among the users. 

Another way to increase reliability, besides increasing 
the number  of subjects, is to decrease the between-user 
variability by homogenizing the subject sample. For in- 
stance, potential subjects could take a pretest, and only 
people who scored within a certain range could be used. 
This, however, specializes the results so that they only 

represent a small segment of the user population, decreas- 
ing the generality of the methodology, n 

Given that the methodology accepts a wide range of 
subjects, we can check whether the methodology is being 
applied to a restricted sample. If the between-user vari- 
ance is ever substantially less than in the data here, the 
reason may be that the evaluator has picked a restricted 
sample of subjects. This is a useful caution for designers 
who are testing their own systems and who especially 
have to guard against bias. For example, in the data pre- 
sented here, we note that the Time data for GYPSY does in 
fact have a lower than normal CV,  which in this case is 
largely explained by the fact that only technical subjects 
were used. 

3.4.2. Coverage. Although the methodology covers sev- 
eral basic aspects of editor usage, there are still aspects 
not covered. When this methodology was being developed 
[11], a variety of easy-to-obtain measures of other aspects 
were explored. Some examples are: (1) The error-prone- 
ness of an editor was measured by putting external stress 
on expert users while they performed editing tasks. (2) 
The possibility of disastrous errors in an editor was meas- 
ured by a procedure for analyzing the editor's command 
language. (3) The display capabilities of an editor were 
measured by users performing proofreading tasks. (4) The 
learning and use of advanced features was addressed by 
using a questionnaire to measure experts' knowledge of 
how to perform complex editing tasks. Unfortunately,  all 
of these attempts turned out to be too crude to be reliable 
and too unproductive in differentiating systems. The tests 
presented in this paper are the only ones we know cur- 
rently that work well enough to be included in a method- 
ology. 

n Another way"to increase reliability is to use all the subjects, but to use the 
pretest scores to normalize the overall results. This would require a model of 
the relation between pretest scores and performances results. 
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3.4.3. Representativeness. 
TIME. A general criticism of benchmark testing is that the 
items in the benchmark are not appropr ia te  or appropri-  
ately weighted for any part icular  application. Specifically, 
the benchmark used in the present methodology has been 
criticized for not representing the true mix of tasks in real 
text-editing situations [17]. This is true, as we noted in 
Sec. 2.2. However,  we are skeptical that there is a single 
benchmark set representing the majori ty  of text-editing 
situations. This is an empirical  issue, and we know of no 
data currently that settles it. But there remains the issue 
of bow to use the results of the present  methodology if 
one is interested in a part icular  si tuation that has a differ- 
ent mix of tasks from the benchmark.  

We propose an analytic procedure for adjusting the 
Time score from the benchmark test to correspond to a 
new situation, which is character ized as a new set of 
tasks (weighted by the frequency of the individual  tasks). 
This adjustment procedure is based on the assumption 
that there is a constant  ratio between the exper imental ly  
measured Time score and the time calculated with the 
Keystroke-Level Model. This can be expressed in a for- 
mula: 

T / C  = T ' / C '  

where T is the Time score on the benchmark,  C is the 
calculated time on the same benchmark (as in Figure 5), 
C'  is the calculated time for the new mix of tasks, and T'  
is the Time score we would expect  from an exper imental  
test on the new mix of tasks. T and C are given by the 
present methodology. T '  is the desired result. It can be 
estimated by calculating C', which is done by using the 
Keystroke-Level Model on the new (weighted) set of 
tasks. One must be cautious about the assumption behind 
this adjustment  procedure,  especial ly if the new task set 
contains many  complex editing tasks, for the assumptions 
behind the Keystroke-Level Model (see [3]) might be vio- 
lated (such as was our experience with the first TECO 
calculation). 

LEARNING. The part icular  set of tasks chosen for the 
learning experiments  undoubtedly  affects the results ob- 
tained here, but it is l ikely to be less influential  than 
which teaching paradigm is used. For example,  we would 
expect the results of a self-teaching paradigm to be most ly  
determined by the quali ty of documentation.  We do not 
in general know how teaching paradigms differ, but there 
is one prel iminary result in a recent s tudy by Robertson 
and Akscyn [13] comparing different teaching paradigms. 
They applied the present  learning methodology to the z o c  
frame editor, using an instructor and using two self-teach- 
ing paradigms by substituting online and offline docu- 
mentation for the instructor. They found that the instruc- 
tor produced about 13 percent  faster learning than the 
self-teaching documentaton;  and they found that the off- 
line documentat ion was about 6 percent faster than the 
online documentation.  The reason for the small  difference 
caused by mode of documentat ion was that  all the 
learners used the documentat ion in the same way  in both 
cases - -by  reading through it at the beginning of the ses- 
sion. The lesson here is that real learners do not necessar-  
ily follow the paradigms laid out for them by the system 
documenters.  

FUNCTIONALITY. Finally, the issue of representat iveness  
also applies to the checklist of tasks for testing functional-  

ity: the tasks in the checklist do not represent  the needs of 
any part icular  situation. The degree of e laborat ion of the 
tasks in the task taxonomy was influenced by the capabil-  
ities of the editors existing or being envisioned at the time 
the taxonomy was being created. Thus, there are eight 
tasks relating to the layout of paragraphs  but only one 
about the abil i ty to typeset  mathemat ical  formulas  
properly. An editor that performs both functions equally 
well gets far more credit for one than the other. This 
problem is best addressed by using the funct ional i ty sub- 
scores; for a given applicat ion more weight can be given 
to the areas relevant to the application. 

3.4.4. Applicability. 
EXTRAPOLATION TO A LARGER CONTEXT. All of the data we 
have gathered have been from people performing a small  
number of preset  tasks in a labora tory  environment.  What  
relationship do these results have to product ivi ty  in an 
office where the tasks may be different (e.g., proofreading 
and editing one's own work) and the environmental  con- 
ditions may be different (e.g., a receptionist  with constant  
small interruptions from people walking by)? A 20 per- 
cent improvement  in the Time score for this methodology 
would not necessari ly translate into a 20 percent  improve- 
ment in overall office productivity.  This is because an 
improvement in editing speed may  not be accompanied 
by a proport ional  improvement  in the speed of other ac- 
tivities that the user is doing along with editing, such as 
thinking about the proper  wording of the text, typing in 
large amounts  of new text, or proofreading for errors. 
Another  possible factor is that the intense concentrat ion 
on the editing task al lowed by laboratory  conditions, but 
often not al lowed by real situations, may differential ly 
affect the performance of different  editors. Such prob- 
lems beset all laboratory  work, and the questions raised 
can only be answered when labora tory  studies are sup- 
plemented by on-site studies to determine the relat ionship 
between the two. 

USE BY EDITOR DESIGNERS. The full methodology requires 
an implemented text editor that has been running long 
enough to have at least a few expert  users, which suggests 
that the methodology is not useful for a designer of a new 
editor. However,  the designer can use parts of the meth- 
odology to get an early indication of how well the pro- 
posed editor compares with existing editors and where 
the strengths and weaknesses  of the new editor lie. Two 
of the evaluation measures,  Time and Functionality,  can 
be obtained analytically,  when the design is still on paper. 
Learning can be measured exper imental ly  on a prototype 
(that need only be complete enough to cover the core 
tasks). The Error measure is the only one that cannot be 
obtained easily; this should pose no problem, since editors 
cannot be differentiated on this dimension anyhow. 

On the Time dimension, the Keystroke-Level Model can 
be used to produce a calculated task time, along with a 
decomposit ion of the time into the times for the different  
operations. These times can be compared to the calcu- 
lated task times for other editors in Figure 5 to see 
whether  the times are in line with similar editors and to 
reveal possible bott lenecks on some operations. (The cal- 
culated task time can also be adjusted, by mult iplying by 
1.3, to compensate  for the model 's  tendency to underpre-  
dict the exper imental  Time scores. The ad jus ted  time can 
then be compared to the Time scores in Figure 6). In this 
analysis, the only parameters  which must be es t imated 
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FIGURE 12. Normalized Time and Error Scores for all Expert 
Users. A user's score is normalized by dividing it by the aver- 
age score in the editor. 

are the system response times. If these are not available, 
this analysis can be turned around to provide the designer 
with a specification for acceptable limits for the response 
times (by showing how different response times make the 
proposed editor compare to other editors). Finally, if a 
prototype system is available, experimental  benchmark 
tests can be run using the designers and implementors 
themselves as subjects. These data would be useful to 
provide a check on the calculated times and the predicted 
methods that the times are based on. 

4. BEHAVIORAL RESULTS 
The database of results from the experimental  studies 
gives us information not only about the specific editors, 
but about user behavior in general, such as the gross 
levels of user performance in text editing. The data show 
that the core editing tasks require about 20-45 seconds 
per task for most expert users on most systems, and it 
shows that a period of about two hours of one-on-one 
training is enough to teach novice users about 20 core 
tasks in most editors. These results should be of interest 
to researchers in office productivity, for example, to 
measure the cost-effectiveness of word processing. More 
detailed results are interesting in two principal ways: for 
the light they shed on (1) the individual differences in 
performance between users and (2) the factors influencing 
novice learning. 

4.1 Individual  User Differences 
4.1.1. Magnitude of I n d i v i d u a l  User Differences .  The 
greatest individual differences by far are found in Error 
time scores (ranging from 0 to 39 percent), which reflects 
a wide variation among expert users in how careful they 

are in avoiding errors and in performing tasks completely. 
There is much less variation among experts in speed of 
edi t ing--about  a factor of 1.5 to 2 between the fastest and 
slowest users' Time scores within each editor. This range 
is much smaller than the factor of 3.5 reported in [4]. 
However, [4] tested a more diverse sample of users, in- 
cluding casual users as well as dedicated expert users. 

A somewhat surprising result is that the variation 
among novice learners is not much greater than among 
expert users. Learners exhibit about the same range of 
variation (up to a factor of 2.5 between the fastest and 
slowest learners within an editor) and CV (.19 for experts 
and .26 for novice learners). This is partly due, no doubt, 
to the fact that the learning tests are designed to minimize 
variation due to idiosyncratic learners (e.g., the command 
summary sheet and the always present instructor). A self- 
teaching paradigm is likely to yield much more variation 
among learners. 

4.1.2. T i m e  vs.  Errors. It is common wisdom that there 
is a speed-accuracy tradeoff: that when  people work 
faster, they make more errors. Our data can be used to 
investigate whether the users who spend more time in 
error do so because they are working faster, that is, 
whether users with higher Error time scores have lower 
error-free Time scores. We cannot directly compare 
scores of users on different editors, however, unless we 
normalize over editors. A user's score on an editor can be 
normalized by dividing it by the overall (mean) score for 
the editor. That  is, a normalized score of 1.0 indicates an 
average user, and a score of .5 indicates a user twice as 
good as the average. Figure 12 plots the normalized Time 
vs. Error scores for all the expert users. What  is immedi- 
ately obvious from this plot is the much larger variation 
on the Error dimension than on the Time dimension. 
However, we do not see the tradeoff between Time and 
Error scores that a speed-accuracy tradeoff would sug- 
gest, but rather a modest positive correlation between 
them (R = .58). Some users tend to be better than others 
on both dimensions. 

4.1.3. Technica l  vs. N o n t e c h n i c a l  Expert  Users. The in- 
dividual users plotted in Figure 12 are marked as being 
technical or nontechnical.  The technical users are clearly 
the better users on both Time and Error (clustering in the 
lower left quadrant). Also plotted in the figure is the aver- 
age technical user and the average nontechnical  user. 
These two fictitious average users account for the major 
features of the plot. The average nontechnical  user is 15 
percent slower than the average technical user (.94 vs. 
1.08) and spends a factor of 3 more time in error (.50 vs. 
1.56). TM The factor 1.15 difference between technical and 
nontechnical  users on the Time dimension is comparable 
to the factor of 1.3 reported in [4]. 

The underlying reason for the difference between tech- 
nical and nontechnical  users is not 'known. It is not due to 
physical skill factors, such as typing proficiency, for 
which nontechnical  users are superior. 13 It could just be 

13 This data allows us to calculate an adjus tment  for the effects of using differ- 
ent proportions of technical and nontechnical  subjects  in different  editors. As  
ment ioned in Sec. 3.3.1, such an adjus tment  does not change the rank  ordering 
of the editors of the T ime  dimension.  A similar  adjus tment  on the Error  dimen-  
sion also makes  little difference in the results: the range of Error scores he- 
comes a factor of 4 instead of a factor of 5, and dif ferences  be tween editors are 
still not statistically reliable. 
13 The nontechnical  users  were  1,4 t imes fas ter  than the technical users. Given 
that an average of about 22 percent of the t ime is spent  in typing [Figure 5(b)], 
this would give the nontechnical  users  about a 7 percent  advantage  over  the 
technical users. 
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due to a difference in general  intelligence or education, 
rather than anything due to technical  experience per se. 
(The programmers  we used as technical  subjects have 
been preselected to be very bright and highly educated, 
whereas  the secretarial  and support  personnel  we used as 
nontechnical  subjects have undergone less of such prese- 
lection.) Other possible factors, suggested by a recent 
s tudy [5], are that technical  users might have more spatial  
abil i ty or be younger than nontechnical  users. These two 
factors have been shown to affect editor learning rates, 
and they are also likely to apply  to expert  performance.  

4.2. Novice Learning 
Learning behavior  is less well unders tood than expert  per- 
formance. The Keystroke-Level Model [3] (along with its 
theoretical  underpinnings [4]) provides a usefully accurate 
account of the time performance of expert  users. How- 
ever, we have no similar account of why  some editors are 
easier for novices to learn than others. Our learning data 
provide the opportuni ty  to test some ideas about the main 
factors affecting learnabili ty.  

4.2.1. Factors  A f f e c t i n g  Editor Learnability. How does 
the structure of an editor affect its learnabil i ty? Perhaps 
the most obvious hypothesis  to consider  is that the com- 
mand languages of some editors are more complex. One 
measure of command language complexi ty  is the number  
of distinct commands  in an editor. According to this hy- 
pothesis, the editors with fewer commands  should be 
faster to learn. (This might be called the "weigh-the-man- 
ual" theory of learnabili ty,  since most reference manuals  
consist of an enumerat ion of the different commands.)  In 
this methodology, since only commands  necessary to do 
core editing tasks are taught, we restrict  our measure to 
the number  of these "core commands."  Figure 13 shows 
that this measure correlates poorly (R = .37) with the 
Learning scores. TM 

FIGURE 13. Correlations of Learning Scores with Various Meas- 
ures. 

Measure 

N u m b e r  of C o r e  C o m m a n d s  in  Ed i to r  

N u m b e r  of PhySica l  OPera t i ons  Per  Task  

N u m b e r  of M e t h o d  C h u n k s  ( M ' s  + A ' s )  Per  T a s k  

ExPe r t  T ime  S c o r e  

Correlation (R)  

A l l  N i n e  A l l  Editors 
Editors except T E C O  a 

.37 .19 

.68 ,58 

.93 .65 

,79 .67 

a Since the Learning score for TECO Is an extreme value, it has a large influence on the 
correlations. Hence, it is useful to present a separate set of correlations with the influence of the 
TECO score removed, 

The crucial point missed by this hypothesis  is that com- 
mands are not useful in isolation, rather  they are used in 
the context of methods or procedures  to accomplish edit- 
ing tasks. Thus, the second hypothesis  to consider  as a 
predictor of learnabil i ty is that learning is related to the 
procedural complexity of a command language. This is 
quite different from command language complexity.  For 
example, a "simple" command language with only three 
commands might require lengthy and intricate procedures 
to accomplish editing tasks, whereas  an editor with a 

~4 One problem with this measure is deciding what a command is (e.g., is a 
preselection a command itself or j u s t  an argument to a command that follows 
it?). This issue can be sidestepped somewhat by counting parts of commands, 
such as commands names, arguments, terminators, etc. However, this "finer" 
measure does no better than just counting "whole" commands (see [11]). 

large variety of commands  might only require a couple of 
those commands  to do any one task. The procedural  com- 
plexity hypothesis  says that a user must  learn not just 
what  each command does, but how each command is 
used in various ways  in different  methods.  This leads us 
to consider the number  of dist inct  uses of commands,  
which is related to the length of the methods (rather than 
the length of the list of commands).  

One way  to approximate  the procedural  complexi ty  of 
an editor is to compute the average number  of steps in the 
methods for accomplishing a representat ive set of tasks, 
such as the benchmark used in the Time and Error di- 
mensions of our methodology. 15 The physical  operat ions 
in the Keystroke-Level Model encodings of methods (see 
Figure 4) provide a simple, unambiguous set of steps to 
count. Figure 13 shows that the average number  of physi-  
cal operations per task correlates substant ia l ly  better with 
the Learning scores (R = .68) than do the commands,  
although the correlation is still modest.  

The length (in physical  operations) of a method, al- 
though it may correlate with procedural  complexity,  can 
be a misleading indicator. For example,  a method requir- 
ing the user to type n E L E T E RETURN is not seven t imes 
more complex than a method requiring only D to be 
typed. Thus, we see that procedural  complexi ty  has more 
to do with the menta l  "chunking" of physical  steps into 
coherent fragments than the physical  steps themselves. 
To operationalize this notion, let us return to the Key- 
stroke-Level Model encoding of methods.  This model  has 
two kinds of mental  operations,  A's  and M's. When  a 
large editing task is broken into subtasks,  the subtasks are 
each preceded by an A operation,  representing the user 's  
having to acquire a mental  representat ion of the subtask. 
Within a subtask, the sequence of physical  operations is 
punctuated with M operations,  which represents  small  
mental  preparat ions for the upcoming physical  operat ions 
(rules for placing M operations are given in [3]). The A 
and M operations have the effect of breaking the se- 
quence of physical  operations into procedural  chunks. For 
example,  consider the method encodings of the example 
task in Figure 4. The method for WVLaUR is: 

A M 12K M 3K R M 13K M 20K M 8K M K 

Here the physical  operat ions are divided into seven 
chunks by the A's  and M's. The methods for the same 
task in EMACS and STAR contain only three and two 
chunks, respectively.  

A s M 4r  R 2K M 15K 
A s n P 2K M K H 14K 

The number  of chunks in a method, which can be esti- 
mated by s imply counting the A's  and M's, should be a 
better indicator  of the procedural  complexi ty  of the 
method than the physical  operat ions we counted before. 
In fact, the mental  chunking measure  correlates better 
with the Learning scores (R = .93) than do the physical  
operations,  as Figure 13 shows. It is the best correlate we 
have of Learning time. 

This notion of procedural  complexi ty  as determined by 
mental ly  defined chunks is an instance of the "zeroth- 
order theory of learning" [4]: that  learning time is propor-  
tional to the number  of chunks of information that must 

,5 It may seem paradoxical that we are using the expert benchmark test to 
measure learnability by novices. But note that we are only using the bench- 
mark test as a convenient sample of tasks to get at the procedural complexity 
required by the core [unctions o[ the editor. Since the novices are trying to 
acquire this same expertise, it represents the target competence they are trying 
to achieve. 
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be learned. To make this theory operational,  we must be 
able to specify what  the chunks are. In this case, the 
chunks are the procedural  fragments bounded by mental  
operations. 

Figure 14 shows a plot of the mental-chunking measure 
of procedural  complexi ty  against the Learning scores. 
This plot shows how raw correlations must be interpreted 
with caution, for we see that the learning score for TECO, 
which lies far out from the others, has great leverage on 
the correlation (which is why  we also give the correla- 
tions excluding TECO in Figure 13). Wha t  we see in Figure 
14 is that procedural  complexi ty  accounts for the differ- 
ence between the fastest  and slowest  editors, but that  it 
tells us little about the observed differences among the set 
of fastest  editors. Procedural  complexi ty  is not the only 
factor affecting learnabili ty;  in fact, it seems to be domi- 
nated by other factors among fast editors. TM However,  pro- 
cedural  complexi ty  may be the most dominant  factor in 
learning overall, s tat ist ically accounting for about half the 
variance between editors. 

4.2.2. Learning vs. Time. The conventional  wisdom 
among designers is that there is a t radeoff  between sys- 
tems that are easy to learn by novices and systems that 
are efficient to use by experts.  However,  if we correlate 

~ A candidate for one of the other factors is what  we  might  call "conceptual  
unfamlllarlt w h m h  ta s how well novice • " " y," ' p ' users understand,  a priori, the  
conceptual constructs involved in an editor. This  notion is currently being 
explored by the second author and Sally Douglas in Learning to Text  Edit: 
Semantics in Procedural Skill Acquisition. Ph.d dissertation, Stanford Univer-  
sity, March '83. 

the Learning scores with the Time scores, we see exact ly  
the opposite.  The data from our s tudy shows a high posi- 
tive correlation (/:[ = .79, Figure 13) between the Time and 
Learning scores. 17 The concept of procedural  complexi ty  
introduced in the last section explains  this correlation. It 
says that  the same fac to r - -p rocedura l  complex i ty - -un -  
derlies both expert  performance (longer methods  take 
longer to execute) and novice learning (longer methods 
imply that there are more chunks to learn). TM 

5. CONCLUSION 
A standardized four-dimensional  methodology for evalu- 
ating text editors has been presented and appl ied to nine 
different editors. The methodology seems to be an effec- 
tive tool for the empirical  evaluation of text editors along 
the dimensions of Time, Error, Learning, and Functional-  
ity. Of course, the methodology has l imi ta t ions- -hav ing  to 
do with reliability, coverage, representat iveness,  and ap- 
p l i c a b i l i t y - w h i c h  is the price of keeping the methodol-  
ogy simple to use. It is obvious that the methodology 
could be improved by both ref inement  and extension. 

~: This  is the only substantial  correlation between scores on the methodology 's  
dimensions.  Correlations between the other d imensions  range between .24 and 
.36. All of these correlations are positive, in the sense that editors tend to 
improve in the two dimensions together, wi th  the exception that there is a 
tradeoff between Error and Functionality. 
' 8We can use this result to conjecture that the main reason for the superiori ty 
of display-based systems,  on both the Time and Learning dimensions,  over  
nondisplay sys tems  is not the display itself, but rather  that the display-based 
sys tems permit  much less complex procedures.  
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However, even in its present  form, it provides for the 
generation of a valuable user-edi tor  performance data- 
base of objective measures.  We would urge others who 
need to do evaluations of editors to use this methodology. 
Its main advantage is that the numbers produced can be 
put in the context of the database  of a l ready evaluated 
editors (without such a context,  numbers  are difficult to 
interpret). At the same time, the addit ional  evaluations 
(either replications of existing evaluations or evaluations 
of new editors) would be contributing to extending the 
database,  allowing our knowledge of editor performance 
to systematical ly accumulate.  

We have also shown how the database  of results can 
help us understand user performance,  by making clear the 
magnitude of individual  differences of both experts and 
novices, and by providing a testing ground for under- 
standing the factors affecting learning. Although we pres- 
ently favor a theory of learning based on the notion of 
procedural  complexity,  a larger database will show 
whether  this theory holds up. Finally, we have shown 
that Keystroke-Level Model calculations of editor per- 
formance, which also belong in the database,  are useful 
analyses against which to compare and interpret  the ex- 
perimental  results. 
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