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Abs t rac t -  In this paper, we propose a constant time sorting algorithm on an array 
composed of comparators and single-pole-double-throw switches, which is far more 
feasible than other constant time sorting algorithms [21]-[23]. Our results shown that 
the algorithm uses time T =O(1)  and area A = O ( N 3 ) .  T h i s  nearly matches the 
A T  2 = ~ ( N  2 log 2 N)  lower bound for sorting in the VLSI model. 
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1. In t roduc t ion  

Many exciting developments have made 
in the field of computerized sorting 
since publications of the special issues 
on this subject 31 years ago in 
C o m m u n i c a t i o n s  o f  the  A C M  and 9 
years ago in I E E E  T r a n s a c t i o n s  on  
C o m p u t e r s .  These special issues cover 
several aspects of sorting from both 
theoretical and practical points of view. 
An early treatment of the subject of 
sorting networks is provided in [1]. The 
basic idea of enumeration sort is due to 
[2]-[3]. Networks for odd-even sort and 
bitonic sort were first described in 
Batcher 's  seminal paper [4]. Many 
researches extended Batcher' s 
fundamental ideas and adapted them to 
a variety of parallel architectures. Such 
work is described, for examples, in [5]- 
[14]. Sequential sorting has been 
studied extensively for many years. Its 
best time complexity, O ( N l o g N ) ,  is 
well known. On some parallel 
compulation models [15]-[16], the 
parallel counterpart of sequential sorting 

algorithms, have O ( l o g N )  complexity. 
There has also been much research in 
sorting algorithms for parallel 
processors [ 17-20]. 

Bilardi and Preparata [16] describe a 
VLSI implementation for sorting N 
numbers which uses time T = O(log N )  

and area A = O(N2).  This matches the 
A T  z = f~(N z log z N)  lower bound for 
sorting in the VLSI  mode l  Leighton 
[15] gives another solution to designing 
optimum A T  2 = f2(N 2 log 2 N) VLSI  

networks for sorting N numbers. 

Constant time sorting can be achieved 
on an extremely powerful machine 
model, the Concurrent-Read 
Concurrent-Write Parallel Random 
Access Machine (CRCW PRAM),  in 
which simultaneous accesses to the 
same memory location are allowed and 
the write conflict resolution process is 
to store the sum of all numbers that arc 
written to the same memory location 
[21]. Although powerful, this machine is 
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too idealistic to be i m p l e m e n t e d  with 
the cur rent  hardware  technology.  
A n o t h e r  cons tan t  time sort ing a lgor i thm 
is d r ived  by [22], in which  a three- 
d imens iona l  p rocessor  array with a 
reconf igurab le  bus sys tem is used. The  
p r o c e s s o r  array consists  of  N triangular 
axrays w h o s e  b o t t o m  processors  are 
c o n n e c t e d  to fot~,~ an N x N square 
array, w h e r e  N is the number  of  data  
i tems to be sorted.  Since this machine  
requires  a th ree-d imens iona l  array of  
O ( N  ~) processors  wi th  a rreconfigurable 

bus sys tem,  it is s o m e w h a t  cost ly  to be 
i m p l e m e n t e d  with the cur rent  hardware  
t echno logy .  Recent ly ,  Chen  and Chen 
[23] fur ther  deve lopes  a cons tan t  t ime 
sor t ing  a lgor i thm by using a 3-D 
reconf igurab le  m e s h  with only 

O ( N  3j2 ) processors. M o r e o v e r ,  they 

fur ther  ex t end  the result  to k -  
d imens iona l  reconf igurable  meshes  for 

k > _ 3 .  The i r  results are: an 0 ( 4  ~+~) 

t ime  sor t ing a lgor i thm is ob ta ined  by 

us ing  an N ~/¢*-~ x N ~/(k-~) x-- . xN ~/(k-~ 
k - d i m e n s i o n a l  reconf igurable  mesh  of  

size O(N~+~/ck-~). In this paper ,  we  

p r o p o s e  a cons tan t  t ime sort ing 
a lgor i thm based  on an array of 
c o m p a r a t o r s  and s ingle-pole-double-  
th row switches .  

The  main differences be tween  our  
a lgor i thm and that o f  [23] are n o t e d  in 
the fo l lowing.  (1) The  sys tem of  [23] is 
a genera l  system,  but we  p ropose  a 
special  subsystem.  (2) The  archi tecture  
o f  [23] is a reconf igurable  mesh,  but we  
do  no t  use it. (3) The  p rocesso r  e l emen t  
o f  [23] is a processor ,  but  we jus t  use 
c ompa ra to r s  and s ingle-pole-double-  
th row switches.  (4) The  cons tan t  factor 
o f  the complex i ty  of  [23] is large, but  
our  a lgor i thm is small. If we  def ine  the 
p ropaga t ion  delay of  a compara to r  and 

the p ropaga t ion  delay of  a s ingle-pole-  
double-  throw swi tch  as xc and x,~, 

respect ively,  we  will s h o w  that  the 
shor tes t  t ime e lapsed  is z~ + x ,  for  our  

algorithm; in general ,  the o r d e r  o f  x c or  

x s is nsec. So,  we  say that  the cons t an t  

factor  of  our  m e t h o d  is small,  but  the 
a lgor i thm of  [23] consis ts  of  six steps. 
The  major  opera t ions  in steps 1, 3, 5, 
and 6 are sor t ing r data  i tems on  an 
r / m x rn x r / m reconf igurab le  
submesh.  Opera t ions  in steps 2 and  4 
axe " Pe r fo rm the t ranspose  ope ra t ion  of  
the r x s matr ix  on  the  
r / rn x ms x r / m 3-D reconf igurab le  

m e s h "  and " P e r f o ~  the inverse  
t ranspose opera t ion  o f  the r × s matr ix  
on the r / m x r n s × r / m  3-D 
reconf igurable  mesh" ,  respect ively .  

A l though  their  resul t  is an 0(43+=) t ime 

sort ing a lgor i thm for  k = 3 ,  the 
cons tan t  factor  is too large. By  the  way, 

since [23] is an 0 ( 4  k+~) t ime sor t ing  

algori thm, ff k is too large,  then  it is 
may  not m s k e  sense. 

Sec t ion  II will descr ibe  the c o n c e p t  of  
sor t ing o f  ranking.  The  a rch i tec ture  for  
the sor t ing a lgor i thm is p r e s e n t e d  in 
sect ion III. Finally, the conc lus ion  is 
g iven  in sect ion IV. 

2. Sorting by Ranking 

In this paper ,  w e  formal ly  def ine  the 
sort ing p rob lem:  
Input: A s e q u e n c e  of  N values 

(a0, a, ,  - - . ,  aN_l>. 

O u t p u t :  A peH~mtation 

(so, sl, " " ,  SN_i) o f  the input  

s equence  such that so -< s~ _<---_< s v_ t. 



Given an input sequence such as <50, 
34.3, 99, -23>, a sorting a lgonthm 
should return as output  the sequence <- 
23, 34.3, 50, 99>. 

The rank R~ of a+ is defined to be the 

posit ion of a+ in the sorted sequence 

minus one. For example, ff a0 = 50,  

a t = 34.3,  a 2 = 99,  a 3 = - 2 3 ,  then the 

sorted sequence is <-23, 34.3, 50, 99> 
and R 0 = 2 ,  R t = l ,  R 2 = 3 ,  R 3 = 0 .  

After  the rank of each input data is 
determined,  we know its position in the 
sorted sequence.  

Applying the ranking concept  to the 
sort ing problem, the pay-off  matrix of 
this sorting problem is shown in Table 
1. 

In Table 1, we define the pay-off  values 
and the ranking  parameters:  

1, i f a i  > a i 

a~j= 0, i f a+_<a  i (1) 

R i = ~ a+i 
J 

where 0 <_ i, j _< N - 1. Then the sorted 
result  can be represented in the output  
values so, st . . . . .  SN_ t with s o being the 

smallest  value of VR+, s I being the 

second value of VR+, and so on. The 

result  is similar to the enumerat ion sort 

which has been called by various, 
including the "or thogonal  tree ne twork"  
and the "mesh  of  trees". 

In Table 1, all  a~ can  be c o n s t r u c t e d  

s imu l t aneous ly .  There are many high 
speed differential cornparators; for 
example the LM161 /LM261 /LM361  is a 
very high speed di.fferenfial input, 
complementary 'IT/_, output  vol tage 
comparator.  We  can use them to 
construct  the sorting ch'cuits as shown 
in Figure 1. The basic module,  a 
comparison module,  for the digital- 
computat ion condit ion is very similar to 
Figure 1; it is easy to implement  by 
hardware or simulate by software. 

In the Figure 1, the time complexi ty  is 

using ~- N ( N  - 1) comparators .  
I 

O(1),  
2 

3. The a r c h i t e c t u r e  of so r t i ng  s y s t e m  

Figure 2 depicts the architecture of the 
proposed sorting sys tem that can sort  
sequences of length N (where 
0 _ < i _ < N - 1 ) .  In Figure 2, a 0, a I . . . . .  
a~,_ x are the N input data. The sorted 
result is represented in the output  values 
so, st, ..., s~_ t with s o being the smallest 
value and S,v_t being the largest value. 

Table 1. A pay-off  matrix. 

an I a~ -.. a~_L R~ 

ao aoo aot -.- ae (~- t )  go  

at alo G,/tl ... aL(N_L) g t  

aN_ L a( N-I)0 a(N_l) l ... a(N_i)CN_i) RN-£ 
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ao, ao-~-aoz ao--[~ao~,_, 
a t - - L ~ / ~ - - a ~ o  a2--~--a~ "'" aN_~---~-~a(N_t)o 

al i_ 2 a 1 2 ~  ... 
a2---~,~--a2! 

Figure 1. 

a t - - h a l ( t O _ j )  

a N - z  ~ G(N-2X~v-~) 

The aq generator .  

In Figure  2, the detail  of  the ao 

genera t ion  is shown as Figure 1. As 
shown in Figure 2, we use the 
conf igura t ion  

a i o ,  a l l  ,- . . ,  a w - l )  • ai(i+l) , . . . ,  ai(~,-1) to 
con t ro l  s i m u l t a n e o u s l y  the sorter  
consis t ing  o f  ( N -  1) stages of  single- 
pole ,  doub le - th row switches. 
Specifically,  the settings of  all the 
switches  of  the ith sort ing input  e lement  

at the j t h  stages are cong ruen t  and are 
cont ro l led  by the binary variable ai(i-t)- 

It is c lear  that if we feed  ai into the 
sorter  and k a ~ ' s  in digits 

{ a~o, a ,  . . . . .  aw_]), ai(i+L) . . . . .  a~(A,_,) } are 

all equal  to 1, al will emerge  at the 
(k + 1) - th terminal  o f  the output ,  and 
sort ing is comple t ed  in t ime 
p ropor t iona l  to O(1) .  For  the digital- 

• I I 0'  
o: 
Q, 

| 

, SN.-O 

I - ,  ° - I~s~ ' - '  
| 

a i ~ - o  

Come f rom aij generator .  

Figure  2. The  architecture of  sorter that can sort sequences  of  length  N .  
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Figure 3. Controlling the switch units. 

computa fon  condition, we can apply a 
physical data. moving or a logical data 
moving (link) technique to routing the 
input data. I.f we use the physical data 
moving, then the single-pole, double- 
throw switch in Figure 2 should be 
replaced by the single-pole, double- 
throw bus switch. 

Example  3. If a 0 = 5 0 ,  a a = 3 4 . 3 ,  

a z = 99, and a s = - 2 3 ,  then from (1), 

we have R o = 2 ,  R ~ = i ,  R 2 = 3 ,  and 

R 3 = 0 .  From Figure 2, the final results 

are shown in Figure 3 and Figure 4: 
s o = - 2 3 ,  s t = 34.3, s 2 = 50, and 

s~ = 99. 

From Figures 1 and 2, the hardware 

0 .  

1. 

50 

9 

34 31 

-23  

34.3 -23  
0 - .  0 

0 - .  " O. 

1-- I O. 

99 

1 - ( ) ~  

) 

U 
OutpUts 

Figure4.  A four input data example. 
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complexity of  the constant time sorter is 
noted in the following: (1) the 

computat ion of the digits {a# } requires 

-~- N ( N  - 1) comparators;  (2) each of 
2 
the N switch control units contains 

1 + 2 + - - - + N - 1 =  ~ N ( N - 1 )  
2 

switches. 

Thus,  we conclude that the constant 
time sorter  requires a number of  
elements proport ional  to N ~. We use 
dme T = O ( 1 )  and area A = O ( N 3 ) .  
This nearly matches the 
A T  2 = ~ ( N  2 log 2 N )  lower bound for 
sorting in the VLSI  model. 

Our  final observation concerns 
sequences with repeated elements. The 
sorter  as described above cannot  handle 
such sequences.  Indeed, if a i = a j, say, 

then R i = R i and the two elements 

occupy the same position in the final 
sor ted sequence. One way to solve this 
"col l is ion" problem would be to assign a 
larger  pay-of f  values to the element with 
the larger index_ This can be 
accomplished by modifying the 
fol lowing test to (1): 

{1, i f ( a  i > a  i)  o r ( a i = a j a n d i > j )  

a~i = 0, otherwise 

In this way,  the relative positions of 
equal elements are preserved in the 
sorted sequence. 

4. Conc lu s ion  

In this paper, we proposed a very simple 
architecture for constant  time sorting. 
This method is also suitable for VLSI  
implementation and has been analyzed 

using Thompson ' s  model of  VLSI.  By 
using the parallel techniques, we have 
O(1) time complexity for the sorting 
problem. It could be a good choice for 
some special applications, for example, 
analog computat ions and high speed 
computations. 
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