
A Simple Architecture for Constant Time Sorting Machines

Tsong-Chih Hsu and Sheng-De Wang

Dept. of Electrical Engineering
EE Building, Rm. 441

National Taiwan University
Taipei, Taiwan, R.O.C.

Abs t rac t - In this paper, we propose a constant time sorting algorithm on an array
composed of comparators and single-pole-double-throw switches, which is far more
feasible than other constant time sorting algorithms [21]-[23]. Our results shown that
the algorithm uses time T =O(1) and area A = O (N 3) . T h i s nearly matches the
A T 2 = ~ (N 2 log 2 N) lower bound for sorting in the VLSI model.

Keywords: constant time sorting, sorting by ranking, enumeration sort, parallel

algorithm, mesh of trees.

1. In t roduc t ion

Many exciting developments have made
in the field of computerized sorting
since publications of the special issues
on this subject 31 years ago in
C o m m u n i c a t i o n s o f the A C M and 9
years ago in I E E E T r a n s a c t i o n s on
C o m p u t e r s . These special issues cover
several aspects of sorting from both
theoretical and practical points of view.
An early treatment of the subject of
sorting networks is provided in [1]. The
basic idea of enumeration sort is due to
[2]-[3]. Networks for odd-even sort and
bitonic sort were first described in
Batcher 's seminal paper [4]. Many
researches extended Batcher' s
fundamental ideas and adapted them to
a variety of parallel architectures. Such
work is described, for examples, in [5]-
[14]. Sequential sorting has been
studied extensively for many years. Its
best time complexity, O (N l o g N) , is
well known. On some parallel
compulation models [15]-[16], the
parallel counterpart of sequential sorting

algorithms, have O (l o g N) complexity.
There has also been much research in
sorting algorithms for parallel
processors [17-20].

Bilardi and Preparata [16] describe a
VLSI implementation for sorting N
numbers which uses time T = O(log N)

and area A = O(N2). This matches the
A T z = f~(N z log z N) lower bound for
sorting in the VLSI mode l Leighton
[15] gives another solution to designing
optimum A T 2 = f2(N 2 log 2 N) VLSI

networks for sorting N numbers.

Constant time sorting can be achieved
on an extremely powerful machine
model, the Concurrent-Read
Concurrent-Write Parallel Random
Access Machine (CRCW PRAM), in
which simultaneous accesses to the
same memory location are allowed and
the write conflict resolution process is
to store the sum of all numbers that arc
written to the same memory location
[21]. Although powerful, this machine is

m 1 3 m

http://crossmark.crossref.org/dialog/?doi=10.1145%2F216585.216587&domain=pdf&date_stamp=1995-03-01

too idealistic to be i m p l e m e n t e d with
the cur rent hardware technology.
A n o t h e r cons tan t time sort ing a lgor i thm
is d r ived by [22], in which a three-
d imens iona l p rocessor array with a
reconf igurab le bus sys tem is used. The
p r o c e s s o r array consists of N triangular
axrays w h o s e b o t t o m processors are
c o n n e c t e d to fot~,~ an N x N square
array, w h e r e N is the number of data
i tems to be sorted. Since this machine
requires a th ree-d imens iona l array of
O (N ~) processors wi th a rreconfigurable

bus sys tem, it is s o m e w h a t cost ly to be
i m p l e m e n t e d with the cur rent hardware
t echno logy . Recent ly , Chen and Chen
[23] fur ther deve lopes a cons tan t t ime
sor t ing a lgor i thm by using a 3-D
reconf igurab le m e s h with only

O (N 3j2) processors. M o r e o v e r , they

fur ther ex t end the result to k -
d imens iona l reconf igurable meshes for

k > _ 3 . The i r results are: an 0 (4 ~+~)

t ime sor t ing a lgor i thm is ob ta ined by

us ing an N ~/¢*-~ x N ~/(k-~) x-- . xN ~/(k-~
k - d i m e n s i o n a l reconf igurable mesh of

size O(N~+~/ck-~). In this paper , we

p r o p o s e a cons tan t t ime sort ing
a lgor i thm based on an array of
c o m p a r a t o r s and s ingle-pole-double-
th row switches .

The main differences be tween our
a lgor i thm and that o f [23] are n o t e d in
the fo l lowing. (1) The sys tem of [23] is
a genera l system, but we p ropose a
special subsystem. (2) The archi tecture
o f [23] is a reconf igurable mesh, but we
do no t use it. (3) The p rocesso r e l emen t
o f [23] is a processor , but we jus t use
c ompa ra to r s and s ingle-pole-double-
th row switches. (4) The cons tan t factor
o f the complex i ty of [23] is large, but
our a lgor i thm is small. If we def ine the
p ropaga t ion delay of a compara to r and

the p ropaga t ion delay of a s ingle-pole-
double- throw swi tch as xc and x,~,

respect ively, we will s h o w that the
shor tes t t ime e lapsed is z~ + x , for our

algorithm; in general , the o r d e r o f x c or

x s is nsec. So, we say that the cons t an t

factor of our m e t h o d is small, but the
a lgor i thm of [23] consis ts of six steps.
The major opera t ions in steps 1, 3, 5,
and 6 are sor t ing r data i tems on an
r / m x rn x r / m reconf igurab le
submesh. Opera t ions in steps 2 and 4
axe " Pe r fo rm the t ranspose ope ra t ion of
the r x s matr ix on the
r / rn x ms x r / m 3-D reconf igurab le

m e s h " and " P e r f o ~ the inverse
t ranspose opera t ion o f the r × s matr ix
on the r / m x r n s × r / m 3-D
reconf igurable mesh" , respect ively .

A l though their resul t is an 0(43+=) t ime

sort ing a lgor i thm for k = 3 , the
cons tan t factor is too large. By the way,

since [23] is an 0 (4 k+~) t ime sor t ing

algori thm, ff k is too large, then it is
may not m s k e sense.

Sec t ion II will descr ibe the c o n c e p t of
sor t ing o f ranking. The a rch i tec ture for
the sor t ing a lgor i thm is p r e s e n t e d in
sect ion III. Finally, the conc lus ion is
g iven in sect ion IV.

2. Sorting by Ranking

In this paper , w e formal ly def ine the
sort ing p rob lem:
Input: A s e q u e n c e of N values

(a0, a, , - - . , aN_l>.

O u t p u t : A peH~mtation

(so, sl, " " , SN_i) o f the input

s equence such that so -< s~ _<---_< s v_ t.

Given an input sequence such as <50,
34.3, 99, -23>, a sorting a lgonthm
should return as output the sequence <-
23, 34.3, 50, 99>.

The rank R~ of a+ is defined to be the

posit ion of a+ in the sorted sequence

minus one. For example, ff a0 = 50,

a t = 34.3, a 2 = 99, a 3 = - 2 3 , then the

sorted sequence is <-23, 34.3, 50, 99>
and R 0 = 2 , R t = l , R 2 = 3 , R 3 = 0 .

After the rank of each input data is
determined, we know its position in the
sorted sequence.

Applying the ranking concept to the
sort ing problem, the pay-off matrix of
this sorting problem is shown in Table
1.

In Table 1, we define the pay-off values
and the ranking parameters:

1, i f a i > a i

a~j= 0, i f a+_<a i (1)

R i = ~ a+i
J

where 0 <_ i, j _< N - 1. Then the sorted
result can be represented in the output
values so, st SN_ t with s o being the

smallest value of VR+, s I being the

second value of VR+, and so on. The

result is similar to the enumerat ion sort

which has been called by various,
including the "or thogonal tree ne twork"
and the "mesh of trees".

In Table 1, all a~ can be c o n s t r u c t e d

s imu l t aneous ly . There are many high
speed differential cornparators; for
example the LM161 /LM261 /LM361 is a
very high speed di.fferenfial input,
complementary 'IT/_, output vol tage
comparator. We can use them to
construct the sorting ch'cuits as shown
in Figure 1. The basic module, a
comparison module, for the digital-
computat ion condit ion is very similar to
Figure 1; it is easy to implement by
hardware or simulate by software.

In the Figure 1, the time complexi ty is

using ~- N (N - 1) comparators .
I

O(1),
2

3. The a r c h i t e c t u r e of so r t i ng s y s t e m

Figure 2 depicts the architecture of the
proposed sorting sys tem that can sort
sequences of length N (where
0 _ < i _ < N - 1) . In Figure 2, a 0, a I
a~,_ x are the N input data. The sorted
result is represented in the output values
so, st, ..., s~_ t with s o being the smallest
value and S,v_t being the largest value.

Table 1. A pay-off matrix.

an I a~ -.. a~_L R~

ao aoo aot -.- ae (~- t) go

at alo G,/tl ... aL(N_L) g t

aN_ L a(N-I)0 a(N_l) l ... a(N_i)CN_i) RN-£

- - 1 5 - -

ao, ao-~-aoz ao--[~ao~,_,
a t - - L ~ / ~ - - a ~ o a2--~--a~ "'" aN_~---~-~a(N_t)o

al i_ 2 a 1 2 ~ ...
a2---~,~--a2!

Figure 1.

a t - - h a l (t O _ j)

a N - z ~ G(N-2X~v-~)

The aq generator .

In Figure 2, the detail of the ao

genera t ion is shown as Figure 1. As
shown in Figure 2, we use the
conf igura t ion

a i o , a l l ,- . . , a w - l) • ai(i+l) , . . . , ai(~,-1) to
con t ro l s i m u l t a n e o u s l y the sorter
consis t ing o f (N - 1) stages of single-
pole , doub le - th row switches.
Specifically, the settings of all the
switches of the ith sort ing input e lement

at the j t h stages are cong ruen t and are
cont ro l led by the binary variable ai(i-t)-

It is c lear that if we feed ai into the
sorter and k a ~ ' s in digits

{ a~o, a , aw_]), ai(i+L) a~(A,_,) } are

all equal to 1, al will emerge at the
(k + 1) - th terminal o f the output , and
sort ing is comple t ed in t ime
p ropor t iona l to O(1) . For the digital-

• I I 0'
o:
Q,

|

, SN.-O

I - , ° - I~s~ ' - '
|

a i ~ - o

Come f rom aij generator .

Figure 2. The architecture of sorter that can sort sequences of length N .

1 6 m

b 0 b

i

i |

1 1 0

i

0 0

Figure 3. Controlling the switch units.

computa fon condition, we can apply a
physical data. moving or a logical data
moving (link) technique to routing the
input data. I.f we use the physical data
moving, then the single-pole, double-
throw switch in Figure 2 should be
replaced by the single-pole, double-
throw bus switch.

Example 3. If a 0 = 5 0 , a a = 3 4 . 3 ,

a z = 99, and a s = - 2 3 , then from (1),

we have R o = 2 , R ~ = i , R 2 = 3 , and

R 3 = 0 . From Figure 2, the final results

are shown in Figure 3 and Figure 4:
s o = - 2 3 , s t = 34.3, s 2 = 50, and

s~ = 99.

From Figures 1 and 2, the hardware

0 .

1.

50

9

34 31

-23

34.3 -23
0 - . 0

0 - . " O.

1-- I O.

99

1 - () ~

)

U
OutpUts

Figure4. A four input data example.

m l 7 m

complexity of the constant time sorter is
noted in the following: (1) the

computat ion of the digits {a# } requires

-~- N (N - 1) comparators; (2) each of
2
the N switch control units contains

1 + 2 + - - - + N - 1 = ~ N (N - 1)
2

switches.

Thus, we conclude that the constant
time sorter requires a number of
elements proport ional to N ~. We use
dme T = O (1) and area A = O (N 3) .
This nearly matches the
A T 2 = ~ (N 2 log 2 N) lower bound for
sorting in the VLSI model.

Our final observation concerns
sequences with repeated elements. The
sorter as described above cannot handle
such sequences. Indeed, if a i = a j, say,

then R i = R i and the two elements

occupy the same position in the final
sor ted sequence. One way to solve this
"col l is ion" problem would be to assign a
larger pay-of f values to the element with
the larger index_ This can be
accomplished by modifying the
fol lowing test to (1):

{1, i f (a i > a i) o r (a i = a j a n d i > j)

a~i = 0, otherwise

In this way, the relative positions of
equal elements are preserved in the
sorted sequence.

4. Conc lu s ion

In this paper, we proposed a very simple
architecture for constant time sorting.
This method is also suitable for VLSI
implementation and has been analyzed

using Thompson ' s model of VLSI. By
using the parallel techniques, we have
O(1) time complexity for the sorting
problem. It could be a good choice for
some special applications, for example,
analog computat ions and high speed
computations.

5. References

[1] D. E. Knuth, The art o f computer
Programming, Vol. 3, Addison-
Wesley, reading, Massachuset ts ,
1973.

[2] D. E. Muller and F. P. Preparate,
"Bounds to complexities of networks
for sorting and for switching," J.
Assoc. Comput. , Vol. 22, No. 2, pp.
195-201, 1975.

[3] D. Nath, S. N. Maheshwari , and P.
C. Bhatt, "Efficient VLSI networks
for parallel processing based on
orthogonal trees," I E E E Trans.
Comput. , Vol. c-32, No. 6, pp. 569-
581, 1983.

[4] K. E. Batcher, "Sorting networks
and their applications," Proc. A F I P S
1968 Spring Joint Comput . Con.f
Atlantic city, N e w Jersey, pp. 307-
314, 1968.

[5] H. S. Stone, "Sorting on STAR,"
1EEE Trans. Software Engrg. , Vol.
se-4, No. 2 , pp. 138-146, 1978.

[6] H. S. Stone, "Parallel Processing
with the perfect shuffle," I E E E Trans.
Comput. , Vol. c-20, No. 2 , pp. 153-
161, 1971.

[7] C. D. Thompson and H. T. Kung,
"Sorting on a mesh-connected parallel
computer ," Comm. ACM, Vol. 20, No.
4, pp. 263-271, 1977.

m 1 8 w

[8] D. Nassimi and S. Sahni, "Bitonic
Sort on a mesh-computer parallel
computer," IEEE Trans. Comput.,
Vol. c-28, No. 1 , pp. 2-7, 1979.

[9] D. Nassirni and S. Sahni, "Parallel
pe , , ,u ta t ion and Sorting Algorithms
and a new generalized connection
network," J. Assoc. Comput., Vol. 29,
No. 3 , pp. 642-667, 1982.

[10] G. Baudet and D. Stevenson,
"Optimal Sorting Algorithms for
Parallel Computers," IEEE Trans.
Comput., Vol. c-27, No. 1 , pp. 84-87,
1978.

[11] F. P. Prepa.rata, "New Parallel
Sorting Schemes," IEEE Trans.
Comput., Vol. c-27, No. 7 , pp. 669-
673, 1978.

[12] F. P. Prarata and J. Vuillernin, "The
cube-connected cycles: a versatile
network for parallel computation,"
Comm. ACM Vol. 24, No. 5 , pp.
300-309, 1981.

[13] P. M. Flanders, "A unified
approach to a class of data
movements on an array processor,"
IEEE Trans. Comput., Vol. c-31, No.
9 , pp. 809-819, 1982.

[14] M. Kumar and D. S. Hirschberg,
"An efficient implernentation of
Batcher 's odd-even merge algorithm
and its application in parallel sorting
schemes," 1EEE Trans. Comput., Vol.
c-32, No. 3 , pp. 254-264, 1983.

[15] F. T. Leighton, "Tight bounds on
the complexity of parallel sorting,"
IEEE Trans. Comput., Vol. c-34, pp.
344-354, 1985.

[16] G. Bilardi and F. Preparata, "A
minimum area VLSI network for
O(log N) time sorting," IEEE Trans.
Comput., Vol. c-34, pp. 336-343,
1985.

[17] A. Borodin and J. E. Hopcroff,
"Routing, merging and sorting on
parallel models of computation," in
Proc. 14th Annu. ACM Syrup. Theory
Comput., pp. 338-344, 1982.

[18] C. P. Kruskal, "Searching,
merging, and sorting in parallel
computation," IEEE Trans. Comput.,
Vol. c-32, pp. 942-946, 1983.

[19] L. Rudolph, "A robust sorting
network," IEEE Trans. Comput., Vol.
c-34, pp. 326-335, 1985.

[20] D. Rotem, N. Santoro, and B.
Sidneg, "Distributed Sorting," IEEE
Trans. Comput., Vol. c-34, pp. 372-
375, 1985.

[21] S. G. Akl, The design and analysis
of parallel algorithms, Prentice-Hall,
Englewood Cliffs, NJ, 1989, pp. 93-
96.

[22] B. F. Wang, G. H. Chen, and F. C.
Lin, "Constant time sorting on a
processor atray with a reconfigurable
bus system," Information processing
letters., Vol. 34, No. 4, pp. 187-192,
1990.

[23] Y. C. Chen and W. T. Chen,
"Constant Time Sorting on
Reconfigurable Meshes," IEEE Trans.
Comput., Vol. 43, No. 6, pp. 749-
751, 1994.

- - 1 9 - -

