A Simple Architecture for Constant Time Sorting Machines

Tsong-Chih Hsu and Sheng-De Wang

Dept. of Electrical Engineering
EE Building, Rm. 441
National Taiwan University
Taipei, Taiwan, R.O.C.

Abstract- In this paper, we propose a constant time sorting algorithm on an array
composed of comparators and single-pole-double-throw switches, which is far more
feasible than other constant ime sorting algorithms [21]-[23]. Our results shown that
the algorithm uses time T =©(1) and area A= O(N?). This nearly matches the
AT? = Q(N?log? N) lower bound for sorting in the VLSI model.

Keywords: constant time sorting, sorting by ranking, enumeration sort, parallel

algorithm, mesh of trees.

1. Introduction

Many exciting developments have made
in the field of computerized sorting
since publications of the special issues
on this subject 31 years ago in
Communications of the ACM and 9
years ago in IEEE Transactions on
Computers. These special issues cover
several aspects of sorting from both
theoretical and practical points of view.
An early teatment of the subject of
sorting networks is provided in [1]. The
basic idea of enumeration sort is due to
[2]-[3]. Networks for odd-even sort and
bitonic sort were first described in
Batcher’s seminal paper [4]. Many
researches extended Batcher’s
fundamental ideas and adapted them to
a variety of parallel architectures. Such
work is described, for examples, in [5]-
[14]. Sequential sorting has been
studied extensively for many years. Its
best time complexity, O(Nloghl), is
well known. On some parallel
compulation models [15]-[16], the
parallel counterpart of sequential sorting

—13—

algorithms, have O(log N) complexity.
There has also been much research in
sorting algorithms for parallel
processors [17-20].

Bilardi and Preparata [16] describe a
VLSI implementaton for sorting N
numbers which uses time T = O(log N)
and area A = O(N?). This matches the
AT? =Q(N?*log®* N) lower bound for
sorting in the VLSI model. Leighton
[15] gives another solution to designing
optimum AT?=Q(N%log?N) VLSI
networks for sorting N numbers.

Constant time sorting can be achieved
on an extremely powerful machine
model, the Concurrent-Read
Concurrent-Write Parallel Random
Access Machine (CRCW PRAM), in
which simultaneous accesses to the
same memory location are allowed and
the write conflict resolution process is
to store the sum of all numbers that are
written to the same memory location
[21]. Although powerful, this machine is

http://crossmark.crossref.org/dialog/?doi=10.1145%2F216585.216587&domain=pdf&date_stamp=1995-03-01

too idealistic to be implemented with
the current hardware technology.
Another constant time sorting algorithm
is drived by [22], in which a three-
dimensional processor array with a
reconfigurable bus system is used. The
processor array consists of N triangular
arrays whose bottom processors are
connected to form an N XN square
array, where N is the number of data
items to be sorted. Since this machine
requires a three-dimensional array of
O(N?) processors with a reconfigurable
bus system, it is somewhat costly to be
implemented with the current hardware
technology. Recently, Chen and Chen
[23] further developes a constant time
sorting algorithm by wusing a 3-D
reconfigurable mesh with only
O(N*?*) processors. Moreover, they

further extend the result to k-
dimensional reconfigurable meshes for
k=3. Their results are: an O(4*")
time sorting algorithm is obtained by
using an NYED 5 NVED LNy VED
k -dimensional reconfigurable mesh of
size O(N"™*™)_ In this paper, we
propose a constant time sorting
algorithm based on an array of
comparators and single-pole-double-
throw switches.

The main differences between our
algorithm and that of [23] are noted in
the following. (1) The system of [23] is
a general system, but we propose a
special subsystem. (2) The architecture
of [23] is a reconfigurable mesh, but we
do not use it. (3) The processor element
of [23] is a processor, but we just use
comparators and single-pole-double-
throw switches. (4) The constant factor
of the complexity of [23] is large, but
our algorithm is small. If we define the
propagation delay of a comparator and

—14 —

the propagation delay of a single-pole-
double-throw switch as T, and <,

respectively, we will show that the
shortest time elapsed is T, + T, for our

algorithm; in general, the order of T, or
T, is nsec. So, we say that the constant

factor of our method is small, but the
algorithm of [23] consists of six steps.
The major operations in steps 1, 3, 5,
and 6 are sorting r data items on an
r/imxmXxr/m reconfigurable
submesh. Operations in steps 2 and 4
are “ Perform the transpose operation of
the rxs matrix on the
r/mxmsxr/m 3-D reconfigurable
mesh” and “Perform the inverse
transpose operation of the r xXs matrix
on the rimxmsxr/m 3-D
reconfigurable mesh”, respectively.
Although their result is an O(4>*") time
sorting algorithm for 4k =3, the
constant factor is too large. By the way,
since [23] is an O(4*"') time sorting
algorithm, if k is too large, then it is
may not mske sense.

Section II will describe the concept of
sorting of ranking. The architecture for
the sorting algorithm is presented in
section III. Finally, the conclusion is
given in section IV.

2. Sorting by Ranking

In this paper, we formally define the
sorting problem:

Input: A sequence of N values
(ao, (11, Y aN_l).
Output: A permutation

(so, S, Tty S~-1) of the input

sequence such that s, <5, <--<5,_,-

Given an input sequence such as <50,
343, 99, -23>, a sorting algorithm
should return as output the sequence <-
23, 34.3, 50, 99>.

The rank R, of a; is defined to be the
position of ag; in the sorted sequence
minus one. For example, if g, =50,
a, =343, a, =99, a, =23, then the
sorted sequence is <-23, 34.3, 50, 99>
and R, =2, R =1, R,=3, R;=0.
After the rank of each input data is

determnined, we know its position in the
sorted sequence.

Applying the ranking concept to the
sorting problem, the pay-off matrix of
this sorting problem is shown in Table
1.

In Table 1, we define the pay-off values
and the ranking parameters:

1, ifa; > aq,
% =1o, ifag, <a;

R, =2a,-j
J

where 0<i,j <N —1. Then the sorted
result can be represented in the output
values s,, S, ..., Sy_, with 5, being the
smallest value of VR;, s being the
second value of VR,, and so on. The
result is similar to the enumeration sort

¢Y)

which has been called by various,
including the “orthogonal tree network”
and the “mesh of trees™.

In Table 1, all a; can be constructed

simultaneously. There are many high
speed differendal comparators; for
example the LM161/LM261/LM361 is a
very high speed differental input,
complementary TTL output voltage
comparator. We can use them to
construct the sorting circuits as shown
in Figure 1. The basic module, a
comparison module, for the digital-
computation condition is very similar to
Figure 1; it is easy to implement by
hardware or simulate by software.

In the Figure 1, the time complexity is
©(), using %N (N —1) comparators.

3. The architecture of sorting system

Figure 2 depicts the architecture of the
proposed sorting system that can sort
sequences of length N (where
0<i<N-1). In Figure 2, q,, a,, ...,
ay_, are the N input data. The sorted
result is represented in the output values
5oy |5 ---» Sy-; With 5, being the smallest
value and s5,_, being the largest value.

Table 1. A pay-off matrix.

a2, aq Ay R,

a, Ay Ay, dyn-1) R,

Q ay, a, ayN-1) R,
ay_) a(N—l)O a(N—l)l a(N—l)(N—l) RN—I

—15 —

a ao Qo
a adio az—]

%
58

8 8
| |

V
[

asz

a—

an-1—

aN—z—

an—1—

YR

ao—+ don -1
an-1I" | a(N-1)o

aynN-1)
an-n1

A(N-2XN-1)
Q(N-IXN-2)

Figure 1. The a; generator.

In Figure 2, the detail of the g

generation is shown as Figure 1. As
shown in Figure 2, we use the
configuration

Qi0: Gy 5--+5Digic1y » Figiwny 5+ - Bi(v-1) to
control simultaneously the sorter
consisting of (NN —1) stages of single-
pole, double-throw switches.
Specifically, the settings of all the
switches of the ith sorting input element

at the jth stages are congruent and are
controlled by the binary variable q;;_,,-
It is clear that if we feed a; into the

sorter and & a;’s in digits
{a.'osanv----ai(.'—l)vai(.'+|)-----a;(N-l)} are
all equal to 1, g; will emerge at the
(k+1)—th terminal of the output, and

sorting 1s completed in tdme
proportional to ©(1). For the digital-

1 SO

%

Q
1

Ie=im

a.-—-oi/o'f

T

Lsaa. (ﬁ

o+ H |
e
e

a; a;

-0

;..T

Come from g; generator.
Figure 2. The architecture of sorter that can sort sequences of length N .

L : }_SN_J

—3SNv1

iy

—16 —

physical data moving or a logical data
moving (link) technique to routing the
input data. If we use the physical data
moving, then the single-pole, double-
throw switch in Figure 2 should be
replaced by the single-pole, double-
throw bus switch.

oh -
[0 : ;
) o I :l— : " o : 343
50— O 34. o,/g_ : . O
O _ ' o ¥ .
: Z : 10:\2
i 0 i 0 0 1
: —23
' O— -O./O-
o = 1 o ol >
ol L= ? 23— : .
A N> : O~ B O-—L_O/‘/O- Sa
) v O' !
1 1 1 0 0 0
Figure 3. Controlling the switch units.
computation condition, we can apply a Example 3. If a,=50, g =343,

a, =99, and a, =-23, then from (1),
we have R, =2, R =1, R, =3, and
R, = 0. From Figure 2, the final results

are shown in Figure 3 and Figure 4:
5o =—23, 5,=343, ,=50, and
s, =99.

From Figures 1 and 2, the hardware

. .. 343
. . o

0. 0 0.

1. 1 . 0.

1-. Inl:lut

ontrol -j |-
Q

1
Outputs

Figure 4. A four input data example.

— 17—

complexity of the constant time sorter is
noted in the following: (1) the
computation of the digits {a,.j} requires
-;—N (N —1) comparators; (2) each of
the N switch control units contains
1+2+4+-+N -1 =%N(N -1

switches.

Thus, we conclude that the constant
time sorter requires a number of
elements proportional to N®. We use
ime 7T =0©(1) and area A= O(N?).
This nearly matches the
AT? =Q(N?*log* N) lower bound for
sorting in the VLSI model.

Our final observation concerns
sequences with repeated elements. The
sorter as described above cannot handle
such sequences. Indeed, if g, =a j» say,

then R, =R; and the two elements

occupy the same position in the final
sorted sequence. One way to solve this
“collision” problem would be to assign a
larger pay-off values to the element with
the larger index. This can be
accomplished by modifying the
following test to (1):

i

_JL if(g; > a;) or (g; = a; and i > j)
0, otherwise

In this way, the relative positions of
equal elements are preserved in the
sorted sequence.

4. Conclusion

In this paper, we proposed a very simple
architecture for constant time sorting.
This method is also suitable for VLSI
implementation and has been analyzed

— 18 —

using Thompson’s model of VLSI. By
using the parallel techniques, we have
©(1) time complexity for the sorting
problem. It could be a good choice for
some special applications, for example,
analog computations and high speed
computations.

5. References

[1] D. E. Knuth, The art of computer

Programming, Vol. 3, Addison-
Wesley, reading, Massachusetts,
1973.

[2] D. E. Muller and F. P. Preparate,
"Bounds to complexities of networks
for sorting and for switching,” J.
Assoc. Comput., Vol. 22, No. 2, pp.
195-201, 1975.

[3] D. Nath, S. N. Maheshwari, and P.
C. Bhatt, "Efficient VLSI networks
for parallel processing based on
orthogonal trees," [EEE Trans.
Comput., Vol. c-32, No. 6, pp. 569-
581, 1983.

[4] K. E. Batcher, "Sorting networks
and their applications," Proc. AFIPS
1968 Spring Joint Comput. Conf.
Atlantic city, New Jersey, pp. 307-
314, 1968.

[5] H. S. Stone, "Sorting on STAR,”
IEEE Trans. Software Engrg., Vol
se-4, No. 2, pp. 138-146, 1978.

[6] H. S. Stone, "Parallel Processing
with the perfect shuffle,” JEEE Trans.
Comput., Vol. c-20, No. 2 , pp. 153-
161, 1971.

[7] C. D. Thompson and H. T. Kung,
"Sorting on a mesh-connected parallel
computer," Comm. ACM, Vol. 20, No.
4,pp.263-271, 1977.

[8] D. Nassimi and S. Sahni, "Bitonic
Sort on a mesh-computer parallel
computer," IEEE Trans. Comput.,
Vol. c-28, No. 1, pp. 2-7, 1979.

[9] D. Nassimi and S. Sahni, "Parallel
permutation and Sorting Algorithms
and a new generalized connection
network," J. Assoc. Comput., Vol. 29,
No. 3, pp- 642-667, 1982.

(10] G. Baudet and D. Stevenson,
"Optimal Sorting Algorithms for
Parallel Computers," IEEE Trans.
Comput., Vol. c-27, No. 1 , pp. 84-87,
1978.

[11] F. P. Preparata, "New Parallel
Sorting Schemes,” IEEE Trans.
Comput., Vol. c-27, No. 7 , pp. 669-
673, 1978.

[12] F. P. Prarata and J. Vuillemin, "The
cube-connected cycles: a versatle
network for parallel computation,”
Comm. ACM Vol. 24, No. 5 , pp.
300-309, 1981.

[13] P. M. Flanders, "A unified
approach to a class of data
movements on an array processor,”
IEEE Trans. Comput., Vol. c-31, No.
9, pp- 809-819, 1982.

[14] M. Kumar and D. S. Hirschberg,
"An efficient implementadon of
Batcher’s odd-even merge algorithm
and its application in parallel sorting
schemes," IEEE Trans. Comput., Vol.
c-32, No. 3, pp. 254-264, 1983.

[15] F. T. Leighton, "Tight bounds on
the complexity of parallel sorting,”
[EEE Trans. Comput., Vol. c-34, pp.
344-354, 1985.

—19 —

[16] G. Bilardi and F. Preparata, "A
minimum area VLSI network for
O(log N) time sorting," IEEE Trans.
Comput., Vol. c-34, pp. 336-343,
1985.

[17] A. Borodin and J. E. Hopcroff,
"Routing, merging and sorting on
parallel models of computation,” in
Proc. 14th Annu. ACM Symp. Theory
Comput., pp. 338-344, 1982.

[18] C. P. Kruskal, "Searching,
merging, and sorting in parallel
computation," IEEE Trans. Comput.,
Vol. c-32, pp- 942-946, 1983.

[19] L. Rudolph, "A robust sorting
network," IEEE Trans. Comput., Vol.
c-34, pp- 326-335, 1985.

[20] D. Rotem, N. Santoro, and B.
Sidneg, "Distributed Sorting," [EEE
Trans. Comput., Vol. c-34, pp. 372-
375, 1985.

[21] S. G. Akl, The design and analysis
of parallel algorithms, Prentice-Hall,
Englewood Cliffs, NJ, 1989, pp. 93-
96.

[22] B. F. Wang, G. H. Chen, and F. C.
Lin, "Constant tme sorting on a
processor array with a reconfigurable
bus system," Information processing
letters., Vol. 34, No. 4, pp. 187-192,
1990.

(23] Y. C. Chen and W. T. Chen,
"Constant Time Sorting on
Reconfigurable Meshes,"” IEEE Trans.
Comput., Vol. 43, No. 6, pp. 749-
751, 1994.

