
Internet Nuggets

Mark Thorson
rnmm@cup.portal.com

March, 1995

This column consists of selected traffic from
the comp.arch newsgroup, a forum for dis-
cussion of computer architecture on Inter-
net--an international computer network.

As always, the opinions expressed in this
column are the personal views of the authors,
and do not necessarily represent the institu-
tions to which they are affiliated.

Text which sets the context of a message ap-
pears in italics; this is usually text the author
has quoted from earlier messages. The code-
like expressions below the authors' names
are their addresses on Internet.

S u p e r s c a l a r vs. VLIW
Marc Tremblay

tremblay@eng.sun.com

Superscalar seems unable to handle more
than four simultaneous operations, of which
only two or three can be integer. In principle,
VLIW could handle an arbitrary number of
parallel operations, limited only by the ability
of cornpilers to generate those operations...

...does everyone agree that future systems
will all be VLIW because superscalar can't
handle the vastly higher transistor count and
110 count of next-generation silicon technol-
ogy?

(My opening statement while on a panel on
VLIW at the recent Microprocessor Forum
basically addressed this issue.)

One of the main differences between VLIW
machines and superscalar processors is the
logic needed for resource allocation and de-
pendency checking. In order to maintain bi-

nary compatibility, superscalar processors do
the checking/dispatching in hardware while
VLIW machines give up hardware binary
compatibility and let the software organize in-
structions (and NOPs...).

The resource allocation and dependency
checking logic represents about 5% of the
total area on UltraSPARC, a 4-way super-
scalar processor. Most of the work required
to do the dispatch is done in a single stage.
Other stages are involved to speed up the
task, for instance the previous stage adds 32
bits of "pre-decoded" information to each in-
struction when they enter the instruction
buffer.

What happens to this logic if let's say we de-
cide to go to an 8-way machine? The reason I
choose 8-way is that several papers have
claimed that given the current state of the
software (both programming languages and
compilers), a machine offering more paral-
lelism would not be used very effectively.
Notice that the complexity of the grouping
logic is quadratic with respect to the maxi-
mum number of instructions dispatched. So,
for an 8-way superscalar processor:

1. The area grows by 4X (with respect to 4-
way).

2. Timing becomes prohibitive for a single
stage.

So, what can be done?

1. Area: 5% X 4 = 20%. New process tech-
nology combined with a larger die, brings
this percentage down to -8%_

2. Timing: dedicate two or even three stages
to the grouping logic.

m 2 5 - -

http://crossmark.crossref.org/dialog/?doi=10.1145%2F216585.564943&domain=pdf&date_stamp=1995-03-01

a) New branch prediction algorithms (2-
levels, using branch correlation) can now
reasonably reach 96% accuracy on
SPECint92 (vs. 86% for current 2-bit
counter algorithms used on UltraSPARC,
Alpha, PPC 620, etc.).

b) Consequently, each extra stage in the
front of the pipeline, i.e. before the
branch is resolved, now only cost around
0.8% (20% condit ional branches, 4%
mis-predicted, 1.0 CPU CPI => 0.8%
overhead).

Now would a company give up hardware bi-
nary compatibility for saving 8% of the die
area and gain 1.6% in performance (assum-
ing two extra stages)? No way.

Unless:

There is not much software based on the
previous generation (so compatibility is
not a strategic advantage).

The current instruction set makes it very
difficult to go to a wider machine (e.g.
variable length instructions).

So, superscalar processors should be around
for a long time. Now if people start writing
code in a different way (we all know how
long that takes), and if compilers can take ad-
vantage of it, then building a 20-wide ma-
chine may require dropping hardware check-
ing -:).

Notice that for a 4- to g-wide processor, let it
be VLIW or superscalar, many other parts
will also limit the cycle time (e.g. large multi-
ported register files, large mul t i -por ted
caches, complex bypass logic, etc.). And we
haven't even started addressing bigger bottle-
necks, specifically, memory bandwidth, both
for insa'uctions and data.

S u p e r s c a l a r vs. V L I W
John Setel O'Donnell

jod@equator.com

The best reference as an overview of the is-
sues is Rau and Fisher's paper "Instruction-
Level Parallel Processing: History, Overview
and Perspective" in The Journal of Super-

computing 7:1/2, 1993. This issue is also
available as a book, Instruction-Level Paral-
lelism, from Kluwer.

Fisher and Rau propose a model to categorize
the division of labor in inslruction-level paral-
lel execution. They point out that there's a
natural flow of tasks required, and that dif-
ferent architectures address these tasks with a
different division of labor:

Front-End
and Optimizer

I
Determine

Dependencies

Determine
Independencies

Sequential
(superscala r)

Dependence
(dataflow)

Independence
(e.g. Horizon)

Bind
Resources Independence

[{vLIw}

L

v

L

v

v

Execute

N o matter what the architecture style, when
you build a new processor model you're very
tempted to change the resources in the exe-
cute unit to take best advantage of the tech-
nology you're working with. In a VLIW, that
change is exposed, possibly requinng recom-
pilation to use the new machine.

Computer architecture is the contract between
the hardware guys and the software guys
about who'll handle what; it's a good contract
only to the extent that it's good for each of
them. A decade ago, the RISC architectures
had the characteristics that VLIW architecture
has today: they were incompatible with what
had gone before, but they resulted in the
smallest, fastest-t ime-to-market chips (re-
member Bill Joy talking about the semi-
conductor process advantage of getting to
market sooner7), and the best cost-perfor-
mance. Why? Because the archi tecture
matched the implementation. SPARC, MIPS,
etc. all exactly matched the pipeline structure
of the chips then being built.

- - 2 6 - -

The RISC architectures were (unfortunately
or fortunately, depending on your point of
view) kept relatively static while the hardware
evolved radically, so that machines now have
a very high degree of "superscalar pressure":
the in-order sequence of operations no longer
remotely resembles what happens at runtime.

This does mean you can run your existing
software right away (the schedule hit was
taken during chip development--most/all su-
perscalars so far have gone 20 months over
original schedule), but it means the chip car-
ries a substantial penalty in complexity.

By the way, today's superscalars have not
significantly simplified the job of compilers;
the high-performance compilers model what
the machine does at runtime and do instruc-
tion scheduling to try create sequences with
the minimum number of runtime-detected
conflicts.

In the "pure" VLIW approach (Multiflow-
style VLIW), the architecture totally reflects
the underlying implementation. This removes
the complexity and area penalty from the
chip, removes the N 2 complex scheduling
logic, and opens a much wider range of im-
plementation choices which allow scaling to
higher degrees of parallelism.

This has good effects: VLIWs can scale to
higher clock frequencies (c.f. Alpha, the
most VLlW-style implementation). It also has
the effect that you must recompile for each
new implementation; at Multiflow we had
eight different ISAs for the six models we
shipped (and the two that didn't make it out
the door). In some applications/markets this
is of little or no concern (e.g. in embedded
systems, PDA's, multimedia: no reason to
care a whit about object code compatibility);
in others, x86 is the really important object
code to be compatible with.

The HP/Intel project has the challenge of re-
taining x86 (and PA?) compatibility while
bringing "VLlW-ness" to the processor. This
might mean a machine with the full super-
scalar scheduling logic which can somehow
be bypassed in "VLIW mode"-- imagine an
AMD-style front end for the x86 side and a
VLIW mode where the compiler output goes
directly to the decoded cache. However, it

seems likely that the range of architectural
choices will be greatly restricted. For exam-
ple, growing the number of register files as
the number of functional units increases--a
key technique to maintain simplicity and
clock rate is obviously out.

Fisher and Rau have publicly described their
"new, improved, not-your-father's-Oldsmo-
bile" ideas for compatibility among members
of a VLIW product family. They've de-
scribed an architecture approach--"split is-
sue"--for handling latency variation among
implementations, but have only discussed
emulation--left-to-right semantics and piece-
wise execut ion--as a means for handling
increases in width as you describe above.

(If the manufacturer had been really clever
and had planned a 4-way and an 8-way
VLIW, the 4-way machine could natively ex-
ecute the 8-way's code at half speed, so the
8-way could be the compiler default.)

The best scaling comes when you let the im-
plementors start anew in each generation of
the process technology and reexamine the
tradeoffs they made last time. Obviously, in
doing such a project the compiler writers are
first-class members of the chip architecture
team, because almost every tradeoff crosses
over into the compiler.

Someone recently quipped on comp.arch that
the real problem with VLIW architectures is
that they require the hardware and software
folks to work together, and that they're
doomed on that score alone_ Until companies
that design chips place the same responsibil-
ity for performance, clock rate, etc. on their
compiler writers as they do on their chip de-
signers---and the same rewards for success
he's probably right.

Three broad classes of problems exist in
VLIW self-compatibility:

1. Latency management. If we generate a
schedule for a VLIW of a given width,
with given latencies, and then later want
to run that code on another VLIW of the
same width but with different lateneies,
we have a problem. If the real latencies
are longer than expected, we could solve
the problem by stalling the machine--but
bad performance might result and we

m 2 7 m

.

might need N 2 dependency checkers just
like a superscalar machine. If the real la-
tencies are shorter than expected, we have
a problem; the data is written early and
results might be incorrect.

Mul t i f low handled this last issue by
declaring registers "dead" between the
cycle a pipelined operation targeting the
register was issued and the cycle it com-
pleted; this increases register pressure but
makes for simple context switching.

Rau proposes that we solve this one by
"split issue": when issuing the floating-
point add, you just specify its operands.
Later, you issue a "grab fpadd output into
rdest" operation. This operation will stall
if the hardware isn't done yet, and has a
FIFO backing it up to absorb early-arriv-
ing data.

Functional unit management. E.g., build
a 4-wide and an 8-wide. Fisher discussed
a couple of ideas for this one:

a) Piecewise execution. Make the opera-
tions in the VLIW correctly issuable se-
quent ia l ly in left- to-right order. This
means that an operation targeting RI must
be issued left of one reading R 1 if they're
in the same instruction; otherwise the re-
sults of simultaneous vs. sequential issue
would be different. (The Multiflow ma-
chines did n o t have this restriction on
their semantics.) Then any machine can
execute "pieces" of the code of any other
machine; in particular, the 4-wide can is-
sue S-wide code.

.

This is not an unrealistic situation; you
can imagine desktops wanting to run the
same code as the big hairy server ma-
chines. This gets downward but not up-
ward compatibility.

b) Install-time recompilation. Have "fat
binaries" a ill PowerMAC with more than
one version of the object code in the file.
Bury the final register allocation and in-
struction scheduling stuff in the OS, and
invoke it when a program is "installed".
This way, stuff you use often you take
the one-time hit to get full performance,
stuff you use less often runs, but not at
peak performance.

Resource management (other than issue
slots and registers) . The Mul t i f low
VLIWs achieved their cost/performance
partly by software management of bus,
memory bank, a n d register bank con-
flicts. Limited (saturable) interconnect
was built, but built without locks or ar-
biters. Software was responsible for en-
suring tha t , for example, pipelined op-
erations started three instructions ago
didn't oversubscribe the write ports on a
register bank when coupled with the
short-latency ops being issued in this in-
struction.

No solution on this one; you can't have
this kind of thing in the architecture if you
want any compatibility. This isn't such a
big deal.

2 8 m

