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the procedure have certain algebraic properties. The transformed programs avoid redundancy by 
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1. INTRODUCTION 

F u n c t i o n s  o f t en  h a v e  e l egan t  def in i t ions  t h a t  a re  i n t e r p r e t a t i o n s  o f  t h e  r e c u r s i o n  
s c h e m a  50., de f ined  by  

~ :  p r o c e d u r e  f(x) ;  
v a l u e  x; a n y t y p e  x; 
i f p ( x )  

then f := a(x) 
e lse  f := b(x, f(cdx))  . . . . .  f(c,(x))). 

H o w e v e r ,  m a n y  of  t h e s e  def in i t ions  are  inef f ic ien t  b e c a u s e  t h e y  l ead  to  r e d u n d a n t  
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Fig. 1. A tree representation of the computation of f(5) under the 
Fibonacci interpretation of ~2. Each node represents a call on f and is 
labeled with the argument value for tha t  call. The children of a node 
represent recursive calls arising directly from the call represented by tha t  
node. 

computation. That  is, they cause f to be called recursively several times with 
identical arguments. 

For instance, one interpretation of ~2 is the following function, which, given a 
nonnegative integer x, returns the xth  element of the Fibonacci series: 

integer procedure f(x); 
value x; integer x; 
f f x = O o r x = l  

then f :-- 1 
else f := f(x - 1) + f ( x  - 2) 

The resulting computation for f(5) is pictured in Figure 1. Note that  f(3) is 
computed two times, and f(2) is computed three times. In all, there are fifteen 
calls on f, with only six distinct argument values. 

For certain interpretations of ~ ,  transformations exist that, when applied to 
the procedure f, yield a nonredundant program that is partially equivalent to f. 
The applicability of these transformations depends on the validity of two condi- 
tions: a descent  condition relating the functions ci, 1 <_ i <_ n, to each other and 
a frontier condition relating the ci to the predicate p and the function a. For the 
Fibonacci interpretation, such a transformation would yield the following nonre- 
dundant program: 

integer procedure f(x); 
value x; integer x; 
begin 

integer BACKO, BACK1, BACK2; 
f2(x); 
f := BACKO; 
procedure f2(x); 

v a l u e  x; integer x; 
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i f x = 0 o r x f f i l  
then begin 

BACKO := 1; 
BACK1 := 1 

end 
else begin 

f 2 ( x -  1); 
BACK2 :ffi BACK1; 
BACK1 := BACKO; 
BACKO :ffi BACK1 + BACK2 

end 
end 

The recursive procedure f2(x) is executed for the side effect of placing the value 
of f ( x )  (as originally defined) in BACKO. (It also places the value of f ( x  - 1) in 
B A C K 1  and the value of f ( x  - 2) in B A C K 2  for x > 1.) 

We present four transformations, each applicable under a weaker descent 
condition than the previous one. We explain these transformations in terms of 
the schema 9 ~ffi ~2, defined by 

Y~: anytype procedure f(x); 
value x; anytype x; 
ifp(x) 

then f :ffi a(x) 
else f := b(x, f(c(x)), f(d(x))). 

(For simplicity we use c and d in place of cl and c2.) We explore the constraints 
that  each descent condition places on the domain and present a program that, 
given the validity of an appropriate frontier condition, exploits these constraints 
to compute f without redundancy. The solutions for ~2 can be generalized to ~ ,  
n ~ 2. This generalization is detailed in [6, sec. IV.G.2]. 

We are interested both in exploration of the mathematical nature of redundant 
programs and in the practical improvement of redundant programs. After we 
consider the mathematical implications of each descent condition and present a 
transformed program reflecting the full generality of the schema ~, we discuss 
more specialized improvements that  result in simpler and more efficient programs. 

1.1 Assumptions and Terminology 

It  is assumed throughout that  evaluating a, b, c, d, or p entails no side effects. 
The function b is assumed to be strict, so that  call by value will compute the least 
fixpoint of the program f [18]. We guarantee that  the transformed function 
returns the same value as f throughout  the domain off,  but we do not at tempt to 
characterize the behavior of the transformed function on those values for which 
f is not defined. The parameter x may be regarded either as a scalar or as a k- 
tuple (xl . . . .  , x~ ). In the latter case, the descent functions will be k-tuple-valued. 
We denote the set of natural numbers by N. 

1.1.1 Descent  Trees  a n d  Compressed Descent  DAGs.  A descent  tree is a tree 
representing the computation of f ( x )  for some x. Each node corresponds to a call 
on f: The root corresponds to the original call, and each node has children 
corresponding to the calls arising from the call on f represented by that  node. 
Sometimes we identify nodes with the argument values of the corresponding 
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(a) 

Cb(xpb(c(x ) ,o ( ' c (c (x ) ) ) ,  o(d(c(x)))},  b (d ( x ) ,  o(c(d(x))),  o (d(d(x ) ) ) ) ) )  

(b) 

(c) 

/ 
•b(c(x) ,  o (c(c( x ))), a (d(c( x))))~ 

/ \ . 
(~a (c(c(x))))  (a(d(c ( x)))~ 

\ 
( b (  d( x ), o(c(d ( x ))), o (d(d( x )))):) 

Co(c(d(x)))) 

Fig. 2. Descent trees for the computation of f(x). Tree (a) has nodes labeled with 
argument values, tree (b) with result values (under the assumption tha t  p is true for 
every value in the third level of tree (a) and false for every value in the first and second 
levels of tha t  tree). Tree (c) is a convenient abbreviation for tree (a). 

calls, and sometimes we identify them with the result values of the corresponding 
calls. In the former case, we often abbreviate an argument value by indicating 
only a sequence of descent functions that  must be applied to x to obtain that  
value. Each of these conventions is depicted in Figure 2. The tree in Figure 1 is 
a descent tree for the computation of f(5), where f is the Fibonacci function. 

If we make certain assumptions about c and d, then we may compress the 
descent tree into a directed acyclic graph (DAG} by merging certain (but not 
necessarily all) nodes corresponding to calls with the same argument value. (Any 
two such nodes are roots of identical subtrees, and we merge the nodes by 
merging those subtrees.) The resulting graph is called a compressed descent 
DAG. Figure 3 shows a compressed descent DAG for the descent tree of Figure 
1. There can be many compressed descent DAGs for a given descent tree. 

When we have merged all the nodes of a descent tree that  can be shown to 
have the same value under a given set of assumptions, we call the resulting graph 
the minimal compressed descent DAG for that  set of assumptions. Formally, if 
there is an interpretation obeying a given set of assumptions for which no two 
nodes of a compressed descent DAG have the same value, the compressed descent 
DAG is minimal. The minimal compressed descent DAG of a computation of 
f (x) is uniquely defined. 

1.1.2 Programming Language. Our programs and schemata are written in an 
extended version of ALGOL 60. The extensions are the data type a n y t y p e  
{corresponding to the uninterpreted domain of a schema}; the data type list, 
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Fig. 3. A compressed descent DAG for the computation of f(5), where f is the 
Fibonacci function. (Since each of the nodes has a different value, this is the minimal 
compressed descent DAG for that computation.) 

together with list constants and list operations; the data type s tr ing,  together 
with the string concatenation operator "11"; and the arithmetic operator (+i), 
denoting addition modulo i where i is an integer constant. 

1.2 Previous Approaches to the Problem 

As in dynamic programming [1], we avoid redundant computation by saving 
results that  may be needed many times. Michie [13] proposes implementing 
recursively defined functions as memo functions consisting of a rote part (a large 
table) and a rule part (a procedure for calculating values to be placed in the 
table). To evaluate a function, one first looks up its value in the table; if no value 
is there, one calculates the appropriate value, places it in the table for future 
reference, and returns it. Most approaches to eliminating redundant recursive 
calls have been variations on this large-table method. 

Friedman, Wise, and Wand [10] implement such a table by using a LISP 
interpreter that  suspends evaluation of the arguments to CONS until their values 
are required. This interpreter allows the definition of infinite lists. (At any instant 
the representation of such a list consists of a finite chain of dotted pair cells, with 
the CDR field of the last cell pointing to a suspended form that  defines the rest 
of the list, together with a record of the environment in which that  form is to be 
evaluated.) An infinite list can be defined that  represents a table of values of a 
recursively defined function. Recursive calls can then be replaced by table 
lookups: The first time a table entry is referenced, the interpreter "coerces" a 
suspended form to obtain a value of the function. Successive references to that  
table entry find the value in place of the suspended form. 
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This scheme is similar to the delay rule of Vuillemin [18]. The delay rule is a 
computation rule specifying that  a formal parameter should be evaluated the first 
time by evaluating the corresponding actual parameter in the calling environment, 
as in call by name, and saving the value; but subsequent evaluations of the same 
formal parameter should simply fetch this stored value. Under call by name, a 
recursive call occurring as an actual parameter of another recursive call will be 
invoked repeatedly with the same arguments whenever the corresponding actual 
parameter is evaluated. The delay rule avoids these redundant invocations while 
retaining the least fixpoint semantics of call by name. However, the delay rule 
does nothing to avoid the kind of redundancy with which the present paper is 
concerned. In Vuillemin's words, "We should blame inefficiencies [like the redun- 
dancy in the recursive Fibonacci program] on the program, not the computation 
rule." (Redundancy arising from the choice of a computation rule is not an issue 
with the schema 5~,; we are concerned with the kind of redundancy that  should 
be "blamed on the program.") 

The large-table method is simple and elegant, but it has several potential 
drawbacks. These include profligate and inefficient use of storage, slow table 
access, and overhead of storage maintenance (such as garbage collection, rehash- 
ing, or copying of dynamic own  arrays). The extent to which any of these 
difficulties arise depends, of course, on the implementation of the table and the 
domain of the keys. 

These inefficiencies can be avoided by employing the small-table method. 
There are two versions of the small-table method. The constant small-table 
method depends on an analysis of the program to determine that  there is only a 
small set of values that  will ever be looked up in the table. A small table is filled 
once and for all at the beginning of the computation, in an order that  avoids 
redundant computation. The variable small-table method takes advantage of the 
fact that  many of the result values saved in large tables are never referenced 
again: The table holds only some small number of previously calculated values at 
any time, and the contents of the table change during the course of the compu- 
tation. 

Bird [3] demonstrates the constant small-table method. He transforms two 
string-processing functions, replacing stack operations by calls on a recursive 
subroutine. In both cases this subroutine takes a single integer argument that  is 
guaranteed to be within a certain reasonably small range. This makes the 
recursive function amenable to tabulation in an array. By a clever ad hoc analysis, 
Bird is able to find an order in which array elements may be efficiently filled with 
result values, using the definition of the recursive subroutine. The main program 
can then be modified so that  values of the recursive subroutine are tabulated 
once and for all at the beginning of the program, and calls on the recursive 
program are replaced by array references. Unfortunately, this strategy, while 
quite effective, is not widely applicable, and it requires a fresh in-depth analysis 
of each program to which it is applied. 

Hilden [11] applies the variable small-table method to the efficient computation 
of a statistical function, the Wilcoxan-Mann-Whitney probability. This function 
is defined by an interpretation of ~ with the property that  c(d(d(c(x))))  = 
d(c(c(d(x))))  for all x (which gives rise to redundant recursive calls). In a typical 
invocation, the function is called recursively over a range of argument values so 
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983. 



Eliminating Redundant Recursive Calls • 271 

large that  an exhaustive table would not be feasible. Thus, a small hash table is 
used to save certain previously computed values. Hilden explores various heuristic 
strategies for deciding whether a given computed value should be saved or thrown 
away, and which previously saved values may be discarded to make room for a 
new value. Typical strategies are to save results arising at deeper levels of 
recursion, to save results arising at shallower levels of recursion, to save the most 
recently computed result for which the argument has a given hash value, or to 
save results arising from left-hand recursive calls (those with argument c(x)); but 
the most successful heuristic takes advantage of the fact that  c(d(d(c(x)) ) )  = 
d(c(c(d(x)) ) )  for all x to assign priorities to various argument values. 

Various approaches to the use of tables to eliminate redundant recursive 
computation, including the approach presented here, are surveyed in [2]. 

1.3 Our  Approach 

Like Hilden, we use a variable small table to remember some of the previously 
computed results. However, our approach is not heuristic. We replace table 
entries in a systematic manner that  guarantees that, for the most general 
interpretations satisfying the constraints under consideration, 

(1) a result is placed in the table only if it will be needed again later (or, toward 
the end of the computation, if all results that  will be needed again are already 
in the table and there is room left over}; 

(2) a result that  will be needed later is always placed in the table; and 
(3) a result in the table is not replaced if it will be needed again later. 

For three of the forms of redundancy that  we consider, the size of the table 
required does not depend on the initial argument values. In such cases it is 
possible to compute f ( x )  in constant space. This is significant because it has been 
shown [14, 16] that  there exist interpretations of ~ that  cannot be computed 
using a fixed amount of storage. For the fourth form of redundancy that  we 
consider, the computation of f ( x )  does, in general, require an amount of storage 
that is dependent on the initial value of x. 

Unlike Friedman, Wise, and Wand [10], and unlike Bird [3], we do not save 
results from one "top-lever' invocation of f to another. Thus, if f is called 
repeatedly by a main program, exhaustive tabulation is more efficient in terms of 
time, but less efficient in terms of space, than the approach that  we propose. In 
such cases a more appropriate strategy is to transform the calling program instead 
of, or in conjunction with, f. 

Our approach is more analytic than Hilden's, but less analytic than Bird's. We 
believe that it is applicable to a wide range of programs and that  it could be 
incorporated into an automatic program-improvement system. This is discussed 
more fully in Section 6. 

1.3.1 General Strategy. For each form of redundancy we construct a tree 
representing a typical value of f (x ) .  We then merge those nodes of the tree that  
represent identical values, forming a directed acyclic graph. The determination 
that  certain nodes in the tree represent the same value is based on the descent 
condition, which asserts that  certain sequences of repeated applications of c and 
d produce identical values. The DAG is partitioned into an ordered set of rooted 
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subgraphs with the proper ty  tha t  the values in one subgraph can be de termined  
from the set of values in the next  subgraph. 

The  t ransformed program, f2, uses a nonlocal variable {usually an array) to 
store the result  values corresponding to one such subgraph. T h e  form of f2 is as 
follows: 

procedure /2(x) ;  
value x; any type  x; 
i fp(x)  

then initialize the nonlocal variable to the result values of the subgraph whose root 
corresponds to x 

else begin 
call/2 recursively with an argument equal to the root of the next subgraph, 

thus placing the result values of the next subgraph in the nonlocal 
variable; 

use the values in the nonlocal variable to compute the result values corre- 
sponding to the current subgraph, and update the variable with those 
values 

end 

We make the assumption that ,  i f p  is t rue for the a rgument  corresponding to the  
root  o f a  subgraph, t h e n p  is e i ther  t rue  or undefined for the a rgument  correspond- 
ing to any o ther  node in tha t  subgraph. This  assumption is expressed in the  
frontier  condition. In the base case off2 ,  the  frontier  condit ion allows the  e lement  
of the nonlocal variable corresponding to some value y to be initialized to a(y ) .  

T h e  recursion in f2 is linear. T h a t  is, each pa th  th rough  the t ransformed 
program contains at  most  one recursive call. Linear  recursions can always be 
removed  wi thout  a stack, often quite efficiently [5, 6, 9, 17]. In the  Fibonacci  
example, elimination of  the recursion yields this program: 

in teger  p rocedure  f(x); 
value x; in teger  x; 
begin 

in teger  BACKO, BACK1, BACK2, i; 
BACKO :-- 1; 
BACK1 :-- 1; 
for  i f rom 1 until x - 1 do 

begin 
BACK2 := BACK1; 
BACK1 := BACKO; 
BACKO :-- BACK1 + BACK2 

end; 
f:ffi BACKO 

end 

1.3.2 Descent  Conditions.  We part i t ion the domain of f into two subsets, 
and ~ .  ~ consists of the base cases, those values in the  domain of f for which p 
is true; ~ consists of  the  recursive cases, those values in the domain  of f for  which 
p is false. 

We refer  to c and d as the descent  funct ions  of ~. (In the  general formulation,  
ei is a descent  function of ~ ,  for 1 _ i -_- n.) A descent  condi t ion is a requ i rement  
tha t  certain relationships hold among the descent  functions on ~ .  In Sect ion 2 
we consider the very  strong descent  condition tha t  c(x)  -- d ( x )  for all x in ~ .  In 
Section 3 we require the existence of  a function g and integers m and n such tha t  
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c(x) = gm(x) and d(x) = g"(x) for all x in ~ .  (The notation gi(x) means x if i --- 
0 and g(g'-l(x)) otherwise.) In Section 4 our descent condition asserts that  c"(x) 
= din(x) and c(d(x)) = d(c(x)) on ~ for some m and n, but we do not insist on 
the existence of g. The descent condition for Section 5 is the relatively weak 
requirement that  c(d(x)) = d(c(x)) on ~.  (We say that  c and d commute on ~.)  
Each of the descent conditions introduced in Sections 3, 4, and 5 is implied by the 
descent condition introduced in the previous section. Not surprisingly, as we 
consider progressively weaker descent conditions, our transformations become 
more intricate. 

1.3.3 The Frontier Condition. The purpose of the frontier condition is to 
assure that  there is a "nice" boundary between ~ and ~ and that  the descent 
functions map values monotonically toward "easier" cases. Stating this formally, 
let S be a set of functions. (Typically, these functions are compositions of descent 
functions.) The frontier condition for S is the requirement that, for all x in ~ and 
all h in S, 

(1) a(h(x)) (and thus h(x)) is defined; and 
(2) if f (h(x) )  is defined, then f (h(x) )  -- a(h(x)).  

(This is always the case, for example, when h maps ~ into ~ ,  that  is, when p (x) 
implJesp(h(x)) for all h in S.) This condition assures us that, whenever we are 
asked for the value of f (h(x) ) ,  where h is in S and x is in ~ ,  we may provide the 
answer a(h(x)): The computation of a(h(x))  is guaranteed to terminate, and the 
answer provided is correct whenever the value we were asked for is, in fact, 
defined. Put another way, the frontier condition assures us that, if x is a base 
case, then h(x) may be treated as a base case for all h in S. 

2. EXPLICIT REDUNDANCY 

2.1 Definition of Explicit Redundancy 

An interpretation of ~exhibits explicit redundancy if c(x) = d(x) for all x in ~ .  
Consider, for example, the domain of LISP lists. Let p (x) be the predicate 
NULL(x); let a(x) be the constant function whose only value is the one-element 
list (());  let b(x, y, z) = APPEND(y, DISTRIBUTE(CAR(x), z)); let c(x) = 
d(x) = CDR(x). DISTRIBUTE is a function taking an atom and a list of sublists 
and returning the result of CONSing the atom onto each sublist. (For example, 
DISTRIBUTE('A, '(( )(B)(C D))) is equal to the list ((A)(A B)(A C D)).) This 
interpretation leads to the following explicitly redundant definition mapping sets, 
represented as lists, to their power sets: 

list procedure f(x); 
v a l u e  x; l i s t  x; 
if NULL(x) 

then f : - - ' ( ( ) )  
e l se  f:= APPEND(f(CDR(x)), 

DISTRIBUTE(CAR(x), f ( CDR(x)))) 

2.2 Solution to Explicit Redundancy 

Explicit redundancy is a very simple form of redundancy and is very easy to 
eliminate. The following solution models the solutions to be presented later for 
more complicated forms of redundancy. 
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We transform f in to  a recursive procedure f2(x) that  does not return a result 
but always leaves the value o f f (x )  in a nonlocal variable T. Then f simply calls 
f2 and returns the value left in T, as follows: 

anytype procedure f(x); 
value x; anytype x; 
begin 

anytype T; 
f2(x); 
f:= T; 
procedure  f2(x); 

value x; anytype x; 
ifp (x) 

then T := a(x) 
else begin f2(c(x)); T :ffi b(x, T, T) end 

end 

The transformation is valid without the imposition of a frontier condition. 
(Formally, we require that  the frontier condition hold for all functions in the 
empty set.) Of course, d may be used in place of c in the transformed program if 
it is preferable to do so. 

2.3 Transformed Example 

Applied to the power set program, this transformation results in the following 
nonredundant program: 

list procedure f(x); 
value x; list x; 
begin 

l ist  T; 
f2(x); 
f:ffi T; 
procedure  f2(x); 

va lue  x; l ist  x; 
if NULL(x) 

then T :-- '(()) 
else  begin 

f2(CDR(x)); 
T :-- APPEND(T, DISTRIBUTE(CAR(x), T)) 

end 
end 

2.4 Causes of Explicit Redundancy 

Explicit redundancy need not arise from poor programming. It is likely to be 
found in mechanically generated programs, or in programs written to maximize 
clarity rather than efficiency. The program above could have been a mechanical 
translation from pure LISP--in which there is no notion of assignment--to an 
ALGOL-like language. The original LISP programmer could have introduced an 
auxiliary function 

(LAMBDA (X Y) 
(APPEND Y (DISTRIBUTE (CAR X) Y))) 

and called it with arguments x and ( f  (CDR x)) to avoid the redundant compu- 
tation, since ( f (CDR x)) would be evaluated once and bound to Y. The resulting 
program would have been less clear, however. 
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Fig. 4. Descen t  tree for c o m m o n  genera tor  redundancy .  T h e  k t h  level of  the  tree ha s  2 h-1 nodes  

bu t  a t  mos t  k dis t inct  values.  

3. COMMON-GENERATOR REDUNDANCY 

3.1 Definition of Common-Generator Redundancy 

Suppose tha t  for a given interpretat ion of ~9 ~ there exist a function g and positive 
integers m and n such tha t  c(x)  = gm(x)  and d ( x )  = g " ( x )  for all x in ~ .  We call 
g a c o m m o n  g e n e r a t o r  o f  c and d and say tha t  the interpretat ion exhibits 
c o m m o n - g e n e r a t o r  r e d u n d a n c y .  We assume without  loss of generality tha t  
m and n are relatively prime; if this is not  the case, we consider ggcd~m.,~, 
m / g c d ( m ,  n), and n / g c d ( m ,  n) in place of g, m, and n, respectively, wi thout  
affecting the value of gm or g". Figure 4 shows the structure of the descent tree 
under these assumptions. In this section we present  a t ransformation tha t  
eliminates common-genera tor  redundancy,  provided that  the frontier condition 
holds for the set of functions {g/J0 < i __ max(m, n)}. 

The  Fibonacci program discussed in Section 1 exhibits common-genera tor  
redundancy.  Recall tha t  under  tha t  interpretat ion c(x)  =- x - 2 and d ( x )  =- x - 1. 
If  we define g ( x )  = x - 1, then c(x)  = gm(x)  and d(x )  = gn(x)  for m = 2, n = 1, 
and x in ~ -= {2, 3 . . . .  }. The  frontier condition requires that,  for each function 
h in S = { ~ x . x - 1 ,  ~ x . x - 2 }  and each x in ~ = {0, 1}, f ( h ( x ) )  is either undefined 
or equal to a ( h ( x ) ) .  The values of h ( x )  for h in S and x in ~ are 0 - 1 = - 1 ,  
0 - 2 = - 2 ,  1 - 1 = 0, and 1 - 2 -- - 1 .  The  function a is a constant  function, 
equal to 1 at  all these points. Since f(0) = 1 = a(0) and f ( - 1 )  and f ( - 2 )  are 
undefined, the frontier condition for S is satisfied. 

3.2 Implications of Common-Generator Redundancy 

The set of expressions occurring in the descent tree of Figure 4 is (gim+Jn(x) I i E 
N, j ~ N}. Since m and n are relatively prime, almost  every natural  number  can 
be expressed in the form im  + i n .  Specifically, it is shown in [6, app. C] tha t  all 
but  (m - 1)(n - 1)/2 of the natural  numbers  can be so expressed; the highest 
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Fig. 5. T h e  min imal  compressed  descent  D A G  for a compu ta t i on  o f f 2 ( x )  based  on 
a recursive call f2(g(x)). The chain  cont inues  downward  until ,  for some  k, p (gk(x)) 
is true.  

number  tha t  cannot  be is (m - 1)(n - 1) - 1. Typically,  m and n will be small 
numbers.  

Thus  the tree contains expressions equivalent  to almost  every  expression of 
the form gk(x), k E N. This  makes  it reasonable to compute  f(x) by computing, 
in turn, each of the values f(gk(x)), f(gk-l(X)), . . . ,  f(gl(x)),  f(gO(x)) = f(x) for 
some appropriate  k. We shall write a procedure  f2(x) t ha t  calls itself recursively 
on g (x) and then, using previous results, calculates the value off (x) .  Th e  resulting 
descent  t ree  for f2 is a simple chain, as shown in Figure 5. This  t ree  is also a 
minimal compressed descent  DAG. 

Suppose we want  to find the value of f at  a given node in the  chain, say tha t  
corresponding to gi(x), and p ( g i ( x ) )  is false. If  we look at  the value computed  m 
nodes down the chain, we find the value f(gi+m(x)) ffi f(gm(gi(x)) ) = f(c(gi(x))). 
Similarly, the value computed  n nodes down the chain is f(d(gi(x))). Using these, 
we can compute  

b(gi(x), f(c(gi(x))), f(d(gi(x)))), 

which equals f(gi(x)). 

3.3 Solution to Common-Generator Redundancy 

We use a non]ocal array B A C K g [ O : m a x ( m ,  n)] to remember values that may be 
needed later, and we t ransform f i n t o  a recursive procedure,  f2(x), tha t  does not  
re turn  a value but  has the side effect of leaving the value off(gi(x))  in BACKg[i],  
0 _< i _ max(m, n). (If f(gi(x)) is undefined for some i, a meaningless value is left  
in BACKg[i].) When p(x) is true, the frontier  condition assures us tha t  e i ther  
f(gi(x)) ffi a(gi(x)) orf(gi(x)) is undefined, 0 _ i ___ max(m, n), so we m ay  simply 
set BACKg[i] to a(gi(x)) for each i in this range. I fp (x )  is false, we call f2(g(x)) 
to place f (gi(g(x)))  = f(gi+l(x)) into BACKg[i],  0 <__ i <_ max(m, n), shift 
BACKg[i] up to BACKg[i + 1], 0 _< i --< max(m, n) - 1, and then  place 
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b(x, BACKg[m],  BACKg[n]) = b(x, f(c(x)), f (d(x)))  = f(x) in BACKg[O]. T h e  
program is as follows: 

anytype  p rocedure  f(x); 
value x; any type  x; 
begin 

any type  a r r ay  BACKg[O:(max(m, n))]; 
f2(x); 
f : =  BACKg[O]; 
procedure  f2(x); 

value x; any type  x; 
ifp(x) 

then  begin 
in teger  i; 
for  i f rom 0 until  (max(m, n)) do 

begin 
BACKg[i] :ffi a(x); 
x : = g(x) 

end  
end  

e lse  beg in  
integer  i; 
f2(g(x)); 
for  i f rom (max(m, n)) step -1  unti l  I do 

BACKg[i] := BACKg[i - 1]; 
BACKg[O] := b(x, BACKg[m], BACKg[n]) 

end  
end 

Note  tha t  BACKg behaves as a queue: Newly calculated values are placed in 
BACKg at  the low end of the ar ray and migrate toward the high end as we ascend 
from the recursion. The  values are referenced as they  pass through the m t h  and 
n t h  positions, in order  to calculate a new value to be placed at  the beginning of 
BACKg. I t  is possible tha t  a value will be calculated and placed in BACKg but  
never  migrate far enough to be referenced, or tha t  it will be referenced only to 
compute  results tha t  themselves never  migrate far enough to be referenced, etc. 
However,  the fact tha t  all but  (m - 1)(n - 1)/2 of the  natural  numbers  can be 
expressed in the form im + in, i E N, j E N, ensures tha t  no more  than  

max(m - 1, n - 1, (m - 1 ) ( n -  1) /2)  

useless values are computed  for any x. (Any value a(gi(x))  placed in BACKg, 
such tha t  f (gi(x))  is undefined, must  tu rn  out  to be one of these useless values.) 

3 4  Improving the Solution to Common Generator Redundancy 

The  queue BACKg can be implemented as a circular list by  leaving e lements  of 
the queue s ta t ionary and advancing a pointer  to the front  of the  queue. Recall, 
however, tha t  m and n are constants  whose values will, in practice, be small. Th u s  
the f o r  loops above may  be unfolded into a sequence of assignments. Since array 
references in these assignments will have constant  subscripts, we m ay  replace 
BACKg by max(m, n) + 1 scalar variables. Shifting each e lement  of the  queue 
then  involves only max(m, n) scalar assignments, while a circular list requires  
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subscript calculations and code to handle  wraparound.  Unless m and n are 
unusually large, the circular list could well be less  efficient. 

Often there  is a form tha t  will evaluate direct ly to a ( g i ( x ) )  in an amoun t  of 
t ime independent  of i. For  example, i f g (x )  = x - 1, a ( g i ( x ) )  = a ( x  - i).  In such 
cases we ma y  replace the sequence " B A C K g [ i ]  := a(x);  x := g (x ) "  in the  first 
f o r  loop by the equivalent  of " B A C K g [ i ]  := a ( g i ( x ) ) .  '' 

3.5 Transformed Example 

The  program resulting from elimination of redundancy  in the  Fibonacci  p rogram 
was presented in Sect ion 1. 

4. COMMUTATIVE PERIODIC REDUNDANCY 1 

4.1 The Impatient Commuter Problem 

Consider the following shor tes t -path  problem, which we shall call the Impat ien t  
Commute r  Problem: The re  are two parallel highways into a city, and k inter- 
changes at  which a commute r  may  switch f rom one highway to the other.  T h e  
t ime involved in switching is negligible, but  all interchanges exit f rom the left  
lane and enter  into the right lane. Since it takes t ime to cross several lanes of 
rush-hour  traffic safely, we do not  permi t  the commute r  to switch highways at  
two consecutive interchanges. (Tha t  is, if a commute r  switches highways at  
interchange i, he may  not  do so again until  in terchange i + 2.) T h e  problem is to 
determine the min imum amount  of t ime in which the commute r  can reach  the  
city, given the amount  of t ime it takes to t ravel  be tween each pair  of consecutive 
interchanges on each highway. 

Suppose we represent  the highways by the integers 1 and 2 (so that ,  if  we are 
on highway h, the other  highway is 3 - h), and we initiMize the array D E L A Y  
[0:k + 1, 1:2] so tha t  D E L A Y [ i ,  h]  is the t ime needed to t ravel  be tween 
interchanges i and i + 1 on highway h, 1 _< i < k, and D E L A  Y[ i ,  h] = 0 for i = 
0 and i = k + 1. (The interchange numbers  are assumed to be in ascending order  
as we approach the city, and "interchange k + 1" is the final destination.) T h e n  
the following recursive program computes  the solution to the Impat ien t  Com- 
muter  Problem: 

in teger  p rocedure  f(i, h); 
value x; in teger  i, h; 
i f i ~ _ k  

then  f := rain(DELAY[i ,  h], D E L A Y [ i ,  3 - h]) 
else f :  = min (DELAY[ i ,  h] + f( i  + 1, h), 

D E L A Y [ i ,  3 - h] 
+ D E L A Y [ i  + 1, 3 - h] 
+ f ( i  + 2, 3 - h ) )  

The  value of f(i, h)  is the  min imum t ime to reach  the city if we are now 
approaching interchange i on highway h. If  i = k, then  we are at  the  last 
interchange, and we can simply select whichever  highway takes us f rom inter- 

~In a preliminary report on this work [7], commutative periodic redundancy was called simply 
"periodic redundancy." We now use the name "periodic redundancy" for another form of redundancy, 
described in Section 6. 
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change k to in terchange k + 1 (the destination) mos t  quickly. T h e  t ime required 
to do this is 

m i n ( D E L A Y [ k ,  hi ,  D E L A Y [ k ,  3 - h i ) .  

I f  i = k + 1, we are a l ready a t  the  destination, so t ha t  the t ime required is 

m i n ( D E L A Y [ k  + 1, h],  D E L A Y [ k  + 1, 3 - h]) = min(0, 0) = 0. 

Otherwise, we take the  smaller  of the m i n i m u m  t ime to reach  the city if we s tay  
on highway h and the  m i n i m u m  t ime to reach  the  city if we switch to h ighway 
3 - h. T h e  first of these values is 

D E L A Y [ i ,  h] + f ( i  + 1, h); 

the second is 

D E L A Y [ i ,  3 - h] + D E L A Y [ i  + 1, 3 - h] + f ( i  + 2, 3 - h), 

since the c o m m u t e r  is constrained to s tay  on highway 3 - h until  a t  least  the  
(i + 2)th interchange.  T h e  (k + 1)th row of D E L A Y  allows the  base  cases to be  
handled uniformly (by prevent ing the  c o m m u t e r  f rom "overshoot ing"  the  ci ty if 
he changes highways a t  intersect ion k); the  zeroth row of delay allows us to 
assume wi thout  loss of general i ty  t ha t  the c o m m u t e r  s tar ts  out  a t  " in te rchange  
0" on highway 1, so tha t  we m a y  solve the  p rob lem by  calling f(0, 1). (The  
c o m m u t e r  is allowed to switch highways a t  " in terchange 0," so t rave l  with 
nonzero cost m a y  begin on ei ther  h ighway at  in terchange 1, with f reedom to 
switch highways a t  interchange 2.) 

T h e  function f is ,  of course, an instance of ~ ,  with x corresponding to the pair  
(i, h) .  Let t ing xl and x2 denote the first and second componen t s  of  the  pair  x, 

p ( x )  = (Xl -- k), 

a(x )  = m i n ( D E L A Y [ x l ,  x2], D E L A Y [ x ~ ,  3 - x2]), 

b(x,  y, z) = m i n ( D E L A  Y [ x l ,  x2 ] + y, 

D E L A Y [ x l ,  3 - x2] + D E L A Y [ x ~  + 1, 3 - x2] + z), 

c(x)  = (xl  + 1, x2),  

and 

d(x )  = (xl  + 2, 3 - x2).  

The  computa t ion  of f i s  redundant ,  as shown by  the  descent  t ree for f(0, 1) with 
k = 4 in Figure 6. Th is  is not  surprising when we observe  t ha t  c4(x) = d2(x) = 
(xl - 4, x2) and c (d (x ) )  = d ( c ( x ) )  = (xl  + 3, 3 - x2).  

4.2 Defini t ion of Commutat ive Periodic Redundancy  

In general, we say t ha t  an in terpre ta t ion  of 5 P exhibits  c o m m u t a t i v e  p e r i o d i c  
r e d u n d a n c y  whenever  there  exist integers i and j such t ha t  ci(x) = dJ{x) and 
c (d (x ) )  = d ( c ( x ) )  for all x in ~ .  This  is a generalization of common-gene ra to r  
redundancy:  I f  c and  d have  a c o m m o n  genera tor  g such t ha t  c(x)  = gin(x) and 
d(x )  = gn(x)  on ~ ,  then  c"(x)  = din(x) = g m n ( x )  and c (d (x ) )  = d ( c ( x ) )  = gm+n on 
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Fig. 6. Descent  tree for the  call f(0, 1), where  f is the  program comput ing the  solution to the  
Impat ient  Commuter  Problem for k = 4. Each  node is labeled with a pair  (i, h) represent ing the  
argument  values at  tha t  call. 

~.  However, c and d in the solution to the Impatient Commuter Problem have 
no common generator. Thus the generalization is strict. We present a transfor- 
mation for programs exhibiting commutative periodic redundancy that  is valid 
whenever the frontier condition holds for the set of functions ( c ~ d "  I 0 <_ m < i, 
O < _ n < j , m + n > O } .  

4.3 Implications of Commutative Periodic Redundancy 

Let e ffi ci = d j on ~ .  Since c and d commute, all values in the minimal compressed 
descent DAG of f ( x )  are of the form c md ' ( x )  where m and n are nonnegative 
integers. But rn can be expressed as ri + s where r and s are nonnegative integers 
and s < i, and n can be expressed as t j  + u where t and j are nonnegative integers 
and u < j. Then cmd n ~- c r i + s d  t j+u = ercSetd" = er+tcSd u. Thus each argument 
value in a compressed descent DAG for f ( x )  has a unique representation of the 
form eVc'd" where s < i and u < j .  

Consider the subgraph of the compressed descent DAG consisting of the values 
e % ' d " ,  0 <_ s < i, 0 <_ u < j ,  for a given k. This subgraph is depicted in Figure 7. 
The subgraph forms an i x j rectangle. One can envision a comparable i x j 
rectangle whose upper right-hand side lies adjacent to the lower left-hand side of 
the depicted rectangle, and a third i x j rectangle whose upper left-hand side lies 
adjacent to the lower right-hand side of the depicted rectangle. In fact, the entire 
descent DAG may be compressed into a network of rectangles, as shown in Figure 
8. Given result values corresponding to the upper sides of, for instance, rectangles 
D and E,  it is possible to compute the result values corresponding to rectangle B. 
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Fig. 7. T h e  subgraph  of a compressed  descent  D A G  consis t ing of the  nodes  ekc"d u, 
O<_s<i,O<_u<j. 

Let us assume that  the rectangle labeled A represents the subgraph shown in 
Figure 7. The node in the uppermost comer of B is the one just below and to the 
left of the node in A corresponding to ekci-ld°; thus, it corresponds to c (ekc/-ld°) 
ffi ekcid °. The node in the uppermost corner of C occurs just below and to the 
right of the node in A corresponding to ekc°dJ-1; thus, it corresponds to 
d(ekc°d j - l )  ffi ekcOd j. 

However, c i = d j --- e on ~ .  That  is, the nodes in the uppermost corners of 
rectangles B and C both correspond to ek+lc°d °. (These rectangles would not be 
part of the descent DAG if ekci-~(X) and ekdJ-l(x),  respectively, were not in ~ . )  
It follows that all the nodes in B correspond to the same values as their 
counterparts in C. In other words, rectangles B and C are coextensive. Similarly, 
rectangles D, E, and F are mutually coextensive. Thus the descent DAG may be 
further compressed into the form shown in Figure 9. This compression preserves 
connections between rectangles; that is, if there is an edge between a certain node 
in rectangle x and a certain node in rectangle y in Figure 8, there is a connection 
between the corresponding nodes in the representatives of rectangles x and y in 
Figure 9. 
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°° ~° 

Fig. 8. An abstraction of the descent DAG. Each rectangle represents i × j nodes arranged in the 
configuration of Figure 7. 

A 

Fig. 9. The result of compressing the de- 
scent DAG by merging identical rectangles. 

Band C 
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Each rectangle in Figure 8 has an uppermost corner corresponding to a value 
of the form ekc°d °. Every other node in that  rectangle corresponds to some value 
ekcSd ~, where s and u are uniquely determined by the position of the node within 
the rectangle. There is a linear ordering among the rectangles in the descent DAG 
of Figure 9, based on the various rectangles' values for k. {Each value of k 
corresponds to a level of the tree.) Therefore, the compressed descent DAG of 
Figure 9 is minimal under the given assumptions. 

4.4 Solution to Commutative Periodic Redundancy 

These observations lead us to the following method for computing the value of 
f (x)  without redundancy: We maintain a nonlocal array, R E S U L T [ O : i  - 1, 
0 : j  - 1]. We transform f in to  a procedure f2(x) with the property that  a call on 
f2(x) leaves the value of f(cSd"(x)) (if that  value is defined) in R E S U L T [ s ,  u], 0 
_ s < i, 0 _ u < j .  Ifp(x) is true, this can be done immediately, according to the 
frontier condition, by setting R E S U L T [ s ,  u] to a(cSdU(x)). Otherwise, we call f2 
recursively on e(x) = ci(x) = dJ(x), which has the effect of initializing R E S U L T  
to the values appropriate for the next lower rectangle in the compressed descent 
DAG. Given these values, f2 can set R E S U L T  to the appropriate values for the 
current rectangle as follows (where (+i) and (+j) represent addition modulo i and 
modulo j, respectively): 

begin 
anytype array ARGUMENT[O: (i - 1), 0: (j - 1)]; 
integer M, N; 
f o r  M from 0 until (i - 1) d o  

begin 
ARGUMENT[M, 0] := 

i fM ffi 0 t h e n  x else c ( A R G U M E N T [ M -  1, 0]); 
f o r  N f r o m  I u n t i l  ( j  - 1) d o  

ARGUMENT[M, N] :-- d(ARGUMENT[M, N - 1]) 
end;  

f o r  M f r o m  (i - 1) s t e p  - 1  u n t i l  0 d o  
f o r  N f r o m  ( j  - 1) s t e p  - 1  u n t i l  0 d o  

RESULT[M, N] := 
i f  p(ARGUMENT[M, N]) 

then a (ARGUMENT[M, N]) 
else b(ARGUMENT[M, N], 

RESULT[M (+i) 1, N], 
RESULT[M, N (+j) 1]) 

e n d  

The loop assigning a new value to R E S U L T [ M ,  N]  proceeds backward through 
each row of R E S U L T  and, within each row, backward through each column. The 
assignments to the last row reference the values left in the first row by the 
recursive call. These values are replaced during the last iteration of the outer 
loop. Within each row, the assignment to the last column references the value 
left in the first column by the recursive call. That  value is replaced during the 
last iteration of the inner loop. (The parenthesized expressions (i - 1) and 
( j  - 1) can be replaced by constants for a given interpretation. Of course, the 
roles of c and d are interchangeable, simply by interchanging the roles of i andj.) 
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4.5 Improving the Solution to Commutative Periodic Redundancy 

A slightly less clear version of this program uses i + j locations to store 
intermediate  results, instead of  the i x j locations in R E S U L T .  Observe tha t  the  
only locations in R E S U L T  t ha t  are impor tan t  e i ther  a t  the beginning or the end 
of the second " f o r  M "  loop are those in row zero and column zero of  R E S U L T .  
We introduce nonlocal vectors B A C K c [ O : i  - 1] to represent  column zero of 
R E S U L T  and BACKd[O :j  - 1] to represent  each row of R E S U L T  in turn.  (Just  
before the M ffi q i terat ion of the loop below, B A C K d  will represent  the 
(q (+i) 1)th row of R E S U L T ;  just  af ter  t ha t  i teration, it  will represent  the  q t h  
row of R E S U L T . )  In the improved version of the algorithm, the  second " f o r  M "  
loop is rewri t ten as follows: 

for  M f r o m  (i - 1) s tep  - 1  unt i l  0 do 
begin 

B A C K d [ ( j -  1)]:= 
i f  p (ARGUMENT[M,  ( j  - 1)]) 

t h e n  a(ARGUMENT[M,  ( j  - 1)]) 
else b(ARGUMENT[M, ( j  - 1)], BACKd[( j  - 1)], BACKc[M]); 

for  N f r o m  ( j  - 2) s tep  -1  unti l  0 do 
BACKd[N] := 

i f  p (ARGUMENT[M,  N]) 
t h e n  a(ARGUMENT[M,  N]) 
else b(ARGUMENT[M, N], BACKd[N],  BACKd[N + 1]); 

BACKc[M] := BACKd[O] 
end  

In addition, the ar ray A R G U M E N T  can be el iminated if c and d have inverses. 
Le t  c lnv  and d l n v  be functions such tha t  cInv(c(x))  ffi x and dInv (d (x ) )  = x for  
all x in the domain of c and d. If  the s ta tements  initializing A R G U M E N T  are 
replaced by  s ta tements  sett ing a new scalar variable S a v e A r g  to the value of 
ci- ldJ-l(x) ,  then  the  loop updat ing B A C K c  and B A C K d  can be rewri t ten  as 
follows: 

for  M f rom (i - 1) step -1  unti l  0 do 
begin 

Arg := SaveArg; 
B A C K d [ ( j -  1)] :ffi 

i f  p(Arg) 
t h e n  a(Arg) 
else b(Arg, BACKd[( j  - 1)], BACKc[M]); 

for  N f r o m  (j  - 2) s tep  - 1  unt i l  0 do 
begin 

Arg := dInv(Arg); 
BACKd[N] :ffi 

i f  p(Arg) 
then  a(Arg) 
else b(Arg, BACKd[N],  BACKd[N + 1]) 

end; 
BACKc[M] :ffi BACKd[O]; 
SaveArg := cInv(SaveArg) 

end; 

Alternatively, if the value of cMdN(x) Can be expressed in an explicit form tha t  
can be evaluated directly in an amoun t  of t ime independent  of M and N, it  is no t  
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necessary to maintain SaveArg and Arg: We simply replace assignments of the  
form 

BACKd[n] := 
if  p(Arg) 

then  a (Arg) 
else b(Arg . . . . . . . .  ) 

by 

T := (explicit form for cMd"(x)); 
BACKd[n] := i fp (T)  then  a(T) else b(T, . . . . . . .  ) 

When this improvement  is possible, the final result  takes on the following form: 

anytype  p rocedure  f(x); 
value x; any type  x; 
begin 

f2(x); 
f := BACKc[O]; 
p r o c e d u r e  f2(x); 

v a l u e  x; any type  x; 
ifp(x) 

t h e n  begin 
in teger  M, N; 
for  M f r o m  0 unt i l  (i - 1) do  

BACKc[M] :ffi 
a((explicit form for cMd°(x))); 

for N f r o m  0 unt i l  ( j  - 1) do  
BACKd[N] :ffi 

a((explicit form for c°dN(x))) 
end  

e l s e  b e g i n  
i n t e g e r  M, N; 
anytype  T; 
f2(e(x)); 
for  M f rom (i - 1) s t ep  - 1  unt i l  0 do  

begin 
T := (explicit form for cMd~J-I)(x)); 
B A C K d [ ( j -  1)] :-- 

f fp(T)  
then  a(T) 
else b(T, BACKd[(j  - 1)], BACKc[M]); 

for  N f rom ( j  - 2) step -1  unti l  0 do  
begin 

T := (explicit form for cMdN(x)); 
BACKd[N] :ffi 

i fp (T)  
then  a(T) 
else b(T, BACKd[N], BACKd[N + 1]) 

end; 
BACKc[M] := BACKd[O] 

end  
end  

end 

(As before, the use of f o r  loops and arrays is only a notat ional  convenience. Loops 
can be replaced by  a sequence of assignments to scalar variables, and we m ay  
have a different explicit form for each value cmdn(x) occurring in tha t  sequence.) 
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4.6 Transformed Example 

As the Impat ient  Commuter  Problem is described, the frontier condition does 
not  hold for any of the functions {c°d 1, cld °, cld 1, ced °, ced 1, c3d °, c3dl}. This is 
because f can be called recursively with its first argument  as high as k + 1, and 
evaluating a ( g ( ( k  + 1, h>)), where g is any one of these functions, results in a 
subscript going out  of bounds. This is easily remedied by adding sentinel rows k 
+ 2 through k + 6 to DELA Y, with each element in these rows equal to zero. 

In applying the transformation, it is convenient to retain the " fo r  M "  loops 
indexing BACKc, but  to unfold the " fo r  N "  loops indexing B A C K d  and replace 
the array B A C K d  by scalars BACKdO and B A C K d l .  (The second " fo r  N "  loop 
would only be executed for N ffi 0 anyway.) A further improvement  can be 
obtained by examining the single recursive cal l /2( i  + 4, h) and deducing tha t  the 
value of h in any invocation of f2 is identical to its value in the top-level invocation 
o f / 2 .  Since we intend to i nvoke /2  initially only with h = 1, we can drop the 
second argument  t o / 2 ,  replacing all occurrences of h and 3 - h by 1 and 2, 
respectively. This  results in the following version of f2: 

procedure  f2(i); 
value i; integer i; 
f f i>_k 

then  begin 
integer  M; 
for M from 0 unti l  3 do 

BACKc[M] := min(DELAY[i + M, 1], DELAY[i + M, 2]); 
BACKdO := min(DELAY[i, 1], DELAY[i, 2]); 
BACKdl :ffi min(DELAY[i + 2, 2], DELAY[i + 2, 1]) 

end 
else  begin 

integer  M; 
integer T; 
f2(i + 4); 
for M from 3 step - 1  unti l  0 do 

begin 
T : = i + M + 2 ;  
BACKdl := 

i fT>_k 
then  min(DELAY[T, 2], DELAY[T, 1]) 
else min(DELAY[T, 2] + BACKdl, 

DELAY[T, 1] + DELAY[T + 1, 1] + BACKc[M]); 
T : f i + M ;  
BA CKdO : ffi 

i fT>_k 
then  min(DELAY[T, 1], DELAY[T, 2]) 
else min(DELAY[T, 1] + BACKdO, 

DELAY[T, 2] + DELAY[T + 1, 2] + BACKdl) 
BACKc[M] := BACKdO 

end 
end 

Since D E L A Y [ i  + 2, 1] = D E L A Y [ i  + 2, 2] = 0 whenever  i ___ k, the first 
assignment to B A C K d l  can be replaced by " B A C K d l  := 0". A further  improve- 
ment  can be obtained by dividing the recursive case into two subcases, k - 5 _ 
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. . "  **" ** .** . . . '  '% 

(a) 

I n 
x d ( x )  d2(x) . .  • 

c (x )  cd(x)  cd2(x) . . .  
c2( x ) cZd (x) cZd2( x ) • • • 

I 

(b) 

Fig. 10. The minimal compressed descent DAG for commutat ive redundancy. In 
(b), the DAG of (a) has been rotated 45 ° counterclockwise to illustrate the structure 
of the frontier whenever the frontier condition holds. 

287 

i __ k - I and 0 __ i _ k - 6. In  the second subcase,  the two " i f  T __ k "  s t a t emen t s  
in the  f o r  loop can be replaced by  their  respect ive e l se  parts .  

5. COMMUTATIVE REDUNDANCY 

5.1 Definition of Commutative Redundancy 

Finally, we consider in terpre ta t ions  for which the  only descent  condit ion is t ha t  
c(d(x)) = d(c(x)) for all x in ~ .  Th is  general izat ion of commuta t ive  periodic 
redundancy  is called commutative redundancy. Figure 10a shows the  min imal  
compressed  descent  DAG under  this descent  condition. Our t r ans fo rmat ion  for 
el iminating commuta t ive  redundancy  is valid whenever  the  front ier  condit ion 
holds for the set  of  functions {cidJ I i ~ N, j ~ N}. Wheneve r  this is the  case, the  
DAG for the  entire computa t ion  takes  on the  shape  shown in Figure 10b (where 
the D A G  has  been  tu rned  on its side for clarity); t ha t  is, the  front ier  be tween  
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and ~ proceeds  monotonica l ly  upward  and  r igh tward  f rom point  I to poin t  II. 
Formal ly  stated,  

and 

min{k IP(ck(d(x)))} <_ min{k  Ip(ck(x)) } 

mYm{k Ip(d'(c(x)))} <- min{k  Ip(d'(x))},  

for all x in ~ .  
An example  of  commuta t ive  r edundancy  is the  following recursive defmit ion of  

the  binomial  coefficient of  n and k, n ! / ( k ! (n -k ) ! ) ,  defined for n _ 0 and  0 _ 
k < n :  

integer  procedure  f(n, k); 
va lue  n, k; in teger  n, k; 
i l k  = 0 o r k - -  n 

then  f : --  1 
else f : =  f ( n -  1, k -  1) + f ( n -  1, k) 

This  is an instance of 5 ° wi th  

x = (n, k ) ,  

p((x~, x2)) = (x2 = 0 o r  x2 = Xl), 

a(x) = 1, 

b(x, y, z) = y + z, 

c((xl, x2)) -- (xl - 1, x2 - 1), 

and 

d((Xl, x=)) = (Xl - 1, x2). 

Since c(d((xl, x2))) - d(c((xl, x2))) = (Xl - 2, x2 - 1), c and  d c o m m u t e  o n ~ .  
For  i and j  in N, cidJ((xl, x2)) = (Xl - i - j ,  x2 - j ) .  T h u s  the  front ier  condit ion 
asserts  t ha t  for all i and j in N, if x2 = 0 or x= = xl, the  b inomial  coefficient of  
Xl - i - j and x2 - j is e i ther  equal  to one or undefined.  T h e  p roof  of  the  front ier  
condit ion is s t raightforward.  

5.2 Implications of Commutative Redundancy 

Pate r son  and Hewi t t  [14] showed tha t  for each  n there  exist in te rpre ta t ions  for 
the  schema  50 for which the  funct ion f cannot  be  compu ted  using fewer t h a n  n 
storage locations for par t ia l  results. An adap ta t ion  of the i r  p roof  shows t h a t  this  
is t rue  even if the  in te rpre ta t ions  are res t r ic ted to be  commuta t i ve ly  redundant .  
Consequently,  if we are to e l iminate  commuta t i ve  r edundancy  by  using a nonlocal  
a r ray  to store needed t e m p o r a r y  results, we shall, in general,  have  to al locate t h a t  
a r ray  dynamical ly.  

T h e  adap ted  p roof  differs f rom the original only in t ha t  i t  replaces  a descent  
t ree with the  corresponding min imal  compressed  descent  DAG.  For  each  n, we 
consider the  in te rpre ta t ion  J , ,  which is free except  for the  assumpt ions  t h a t  
c(d(x)) = d(c(x)) whenever  p ( x )  is false and thatp(cidJ(xo)) is t rue  if and  only 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983. 



Eliminating Redundant Recursive Calls • 289 

YO: f(xo) = a(Xo) 

® ® 
o~: f(x~)= b(xo, a(e(Xo)), a(d(xo))) 

& &  
o¢2: f(Xo) = b(xo, b(c(xo), a(c2(xo)), a(cd(xo))), b(d(x~), a(cd(xo)), a(d 2 (xo)))) 

Y3: f(xo) = b(xo, b(c(xo), b(c2(xo), a(c3(xo)), a(c2d(xo))), b(cd(xo), a(c2d(xo)), a(cd2(xo)))), 

b(d(xo), b( cd(xo), a( c2 d( xo ) ), a( cd2 (xo ) ) ), b(d2(xo), a( cd2(xo) ), a( d3(xo) ) ) ) ) 

S 
Fig. 11. The  value of f(xo) under  each of the  interpretat ions Yo, Yl, Y2, and J3. The  descent  t ree and 
minimal compressed descent  DAG are shown for each interpretat ion.  

if i + j --> n, for constant x0. The value of f(xo), along with the descent trees and 
minimal compressed descent DAGs, is displayed in Figure 11 for interpretations 
J0, J1, Y2, and Ja. 

We now show that  the computation of f(xo) under interpretation J ,  requires at 
least n + 1 storage locations. Each step of the computation involves either (1) 
placing the value corresponding to a leaf of the DAG in a storage location or (2) 
taking the values corresponding to children of a given interior node from two 
storage locations, computing the value corresponding to that  interior node, and 
placing the computed value in a storage location. We call the DAG open if there 
is a path from the root to a leaf consisting only of nodes whose corresponding 
values are not currently held in any storage location. Otherwise, the DAG is 
closed. The computation begins with the DAG open and concludes with the DAG 
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Fig. 12. A mapp i ng  f rom t he  D A G  for J ,  to t he  DAG for Y~-I. T h e  i t h  node  on 
the k t h  level of  t he  first D A G  is m a p p e d  to t he  (i - 1)th node  on t he  (k - 1)th 
level of  the  second DAG. 

closed (with the value corresponding to the root in a storage location). Thus, it 
suffices to show that  n + i storage locations are required at the moment a DAG 
shaped like the minimal compressed descent DAG for J ,  becomes closed. 

We do this by observing that  the computation of f(x0) under Y0 trivially requires 
one storage location and proving that  computation of f(xo) under Yn requires at 
least one storage location more than under J,-1. Consider the following iso- 
morphic mapping from a subgraph of the DAG for Y, to the DAG for Yn-l: The 
i th  node on the k th  level of the DAG for J~ is mapped to the (i - 1)th node on 
the (k - 1)th level of the DAG for Y,-1, 1 < i <_ k. (Speaking intuitively, this 
mapping creates a graph the same shape as the DAG for Y~-I by cutting off the 
nodes on the upper left-hand edge of the DAG for J~, as shown in Figure 12.) 
Now consider a sequence of operations that  closes the DAG for J~ leaving the 
fewest possible storage locations in use at the moment the DAG is closed. We can 
map this sequence to a sequence of operations closing the DAG for J,-~ by 
ignoring operations involving the first node on any level of the DAG for J~ and 
applying the node mapping just described to all other operations. However, for 
the DAG for J~ to be closed, at least one value corresponding to the first node on 
some level of the DAG must be in a storage location; otherwise, the leftmost path 
in the DAG must be open. Since this node plays no role in the sequence of 
operations we have created to close the DAG for J~_~, there is a way for the DAG 
for J~-i to become closed using one storage location less at the moment of closure 
than the minimum number of storage locations required by Jn at the moment of 
closure. That  is, the minimum number of locations required by J ,  at the moment 
the DAG becomes closed is one more than the minimum for J~_~. This establishes 
that  there exist interpretations for 50 for which there is no way to calculate f 
using a fixed amount of storage, even though those interpretations exhibit 
commutative redundancy. 

(Proofs such as this are often explained in terms of a game played with pebbles 
[15]. Each pebble corresponds to a storage location, and placing a pebble on a 
node of a DAG corresponds to computing and storing the value associated with 
that  node. In order to do this, one must already have stored the values corre- 
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sponding to any children of tha t  node. Thus,  a pebble may  be placed on a node 
only if each child of tha t  node is already pebbled. A pebble m ay  be removed  f rom 
a node at  any time. T h e  object  of the game is to place a pebble at  the  root  of the 
DAG using as few pebbles as possible.) 

5.3 Solution to Commutative Redundancy 

Define the d-depth of x to be the smallest natural  number  i such t h a t p  (di(x))  is 
true. Clearly, d-depth(x)  has a value whenever  f ( x )  is defined. This  value can be 
computed by  the program 

integer  p rocedure  d-depth(x); 
value x; any type  x; 
begin 

in teger  i; 
i := 0; 
while not  p (x) d o  

begin x :ffi d(x); i := i + I end; 
d-depth :-- i 

end, 

or, depending on the interpreta t ion of p and d, it m ay  be computable  directly. 
(For instance, if d(x)  = x - 1 ,p (x )  is "x  = 0," and x E N,  d-depth(x)  ffi x.) Our 
solution to commutat ive  redundancy uses a nonlocal  ar ray with d-depth(x)  
locations to c ompu te  f (x ) .  We do not  specify how d-depth(x)  is to be computed.  

T h e  solution is to think of the DAG as drawn in Figure 10b and let  the nonlocal  
array B A C K d  represent  the result  values in a row of tha t  ro ta ted  DAG. Another  
nonlocal array, A R G U M E N T ,  will h01d the argument  values in tha t  row. We 
transform f into a procedure  f2(x,  y) tha t  leaves the value of f ( d i ( x ) )  in 
BACKd[i] ,  0 <_ i <_y. When d-depth(x)  is 0 (i.e.,p (x) is true),  this is done simply 
by placing a ( di ( x ) ) in B A  CKd[ i ], 0 <_ i <_ y. (The frontier  condition guarantees  
tha t  this is valid.) Otherwise, we call f2 recursively with arguments  c(x)  and 
d-depth(x)  - 1, which places f ( d i ( c ( x ) ) )  in BACKd[ i] ,  0 <_ i < d-depth(x) .  We 
then  set the ar ray A R G U M E N T  so tha t  A R G U M E N T [ i ]  ffi di(x) ,  0 <_ i < 
d-depth(x) .  Next, we place a(d i (x ) )  in BACKd[ i ]  for i = d-depth(x)  and any i 
such tha t  d-depth(x)  < i <__ y. Finally, we execute the loop 

f o r  i f r o m  d-depth(x) - 1 s t e p  - 1  u n t i l  0 d o  
BACKd[ i] :ffi b(ARGUMENT[ i], BACKd[ i J, BACKd[ i + 1 ]), 

which leaves f (d i (x ) )  in BACKd[i] ,  0 <_ i <_ y. (At the beginning of the i = k 
passage through the loop, B A C K d [ j ]  ffi f (dJ(x) )  f o r j  = k + 1 and any other  j 
such tha t  k < j  _ y, and B A C K d [ j ]  ffi f (dY(c(x)) )  = f (cdJ(x ) )  for 0 _ j  _< k. Since 
k < d - d e p t h ( x ) , p ( x )  is false, so 

b ( A R G U M E N T [ i ] ,  BACKd[i] ,  B A C K d [  i + 1]) 

= b(dk(x) ,  f (cdk(x) ) ,  f(dk+l(x)))  

ffi b(dk(x) ,  f (c (dk(x) ) ) ,  f (d (dk (x ) ) ) )  

= f (dk(x) ) .  

Thus, after  the i -- k passage through the loop, B A C K d [ k ]  holds f (dk(x ) ) . )  
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The entire program looks like this: 

anytype procedure  f(x); 
value x; anytype  x; 
begin 

integer D; 
D := d-depth(x); 
begin 

anytype  a r ray  BACKd[O: D], ARGUMENT[O:D]; 
f2(x, D); 
f := BACKd[O]; 
procedure f2(x, y); 

value x, y; anytype  x; integer y; 
i fp  (x) 

then begin 
integer i; 
for i from 0 until  y do 

begin 
BACKd[i] := a(x); 
x := d(x) 

end 
end 

else begin 
integer i, z; 
z := d-depth(x); 
f2(c(x), z - 1); 
for i f rom 0 until max(y, z) do 

begin 
ARGUMENT[i] := x; 
x :ffi d(x) 

end; 
for i f rom z until  max(y, z) do 

BACKd[ i] := a(ARGUMENT[ i]); 
for i f rom z - 1 step -1  until  0 do 

BACKd[ i] := 
b(ARGUMENT[i], BACgd[i], BACgd[i + 1]) 

end 
end 

end 

5.4 Improving the Solution to Commutative Redundancy 

As before, this program can be improved in m a n y  cases: If  d is invertible, or itl 
di(x) can be computed in an amount  of time independent  of i (for example, when 
d(x) = x - 1, di(x) = x - i), then A R G U M E N T  can be eliminated. If  nei ther  
di(x) nor d-depth(x) can be computed  directly, then time would be saved by 
combining the initialization of A R G U M E N T  with the calculation of d-depth. 
However, this would be expensive in terms of space, since we would then have to 
make A R G U M E N T  local to f2 to save it across recursive calls. 

Of course, the roles of c and d can be interchanged if appropriate  changes are 
made throughout  the program. (For instance, b ( A R G U M E N T [ i ] ,  BACKd[i] ,  
BACKd[ i  + 1]) would become b ( A R G U M E N T [ i ] ,  BACKc[ i  + 1], BACKc[i])  
and d-depth would be replaced by c-depth.) Such changes would result  in a more  
space-efficient program if c-depth(x) were usually smaller than  d-depth(x).  

If  the value of a(x) is the same for all x in ~ ,  then B A C K d  can be initialized 
with every element equal to tha t  constant  value. T h e n  the two loops which set 
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elements  of B A C K d  to a ( x )  for some x can be el iminated.  (This can be done 
because the a r ray  e lements  which are set  by  these  loops are not  referenced by  
the p rogram before the loops are encountered.)  

5.5 Transformed Example 

This  last  i m p r o v e m e n t  is applicable in the b inomial  coefficient example,  since 
a ( x )  = 1 for all x. Since d ( ( n ,  k ) )  = (n  - 1, k )  a n d p ( ( n ,  k )) = (k = 0 o r  k = n), 
d - d e p t h ( ( n ,  k ) )  is the least  na tura l  n u m b e r  i such tha t  k = 0 or k = n - i, t h a t  
is, 0 if k -- 0 and n - k otherwise. In  contexts  where  (n, k ) is known not  to be  a 
base case, we m a y  assume tha t  d - d e p t h ( ( n ,  k )) = n - k.  This, together  with the  
fact  tha t  c((n,  k )) = (n - 1, k - 1), points  to fur ther  simplifications: 

(1) T h e  value of d - d e p t h ( x )  remains  cons tant  for all invocat ions of  f2 except  
the base-case invocation. Therefore ,  all references  to d - d e p t h ( x )  in f2  can be 
replaced by  references to D (which is set  to d - d e p t h ( x )  by f before f2 is called); 
we can el iminate the second a rgumen t  to f2, replacing occurrences  of  z and  

m a x  (y,  z) by  D. 
(2) I f  n ~ k initially, t hen  n ~ k for all invocations of  f2. T h u s  we can handle  

the case where  n = k separa te ly  wi thout  calling f2  and assume tha t  n ~ k 
th roughout  f2. In  part icular,  the  tes t  "k  -- 0 o r  k = n "  can be simplified to " k  = 
0." T h e n  n is never  referenced within f2, so we m a y  replace the  p a r a m e t e r  (n, k ) 
byk. 
These  simplifications result  in the following program: 

integer procedure f(n, k); 
value n, k; integer n, k; 
begin 

integer D; 
D : = n - k ;  
begin  

integer array BA CKd [ O : D ] ; 
f f n = k  

then  f : - -  1 
else begin  

integer i; 
for i from 0 until  D do BACKd[ i]  :ffi 1; 
f2(k); 
f : =  BACKd[O] 

end; 
procedure f2 (k); 

value k; integer k; 
begin  

integer i; 
i f k  ~ 0  

then begin 
f2(k - 1); 
for i f rom D - 1 s tep - 1  until  0 do 

BACKd[ i]  := BACKd[i]  + BACKd[ i  + 1] 
end 

end 
end 

end 

In  this p rogram k is s imply  acting as a counter:  T h e  ent i re  effect of the  call 
f2(k) is to execute the f o r  loop in f2 k times. T h e  act ion of the  p rog ram is easily 
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Fig. 13. The relationship of the transformed binomial coeffi- 
cient program to Pascal's triangle. Initially, BACKd holds all 
ones. In ascending from the recursion the program computes 
values in successive parallel "slices" of the triangle. Ultimately, 
the binomial coefficient o fn  and k, which is the (k + 1)th value 
in the (n + 1)th row of the triangle, is left in BACKd[O]. 

understood in terms of Pascal's triangle: B A C K d  initially holds the first n - k 
values along one of the edges of Pascal's triangle--all of which are 1. Each 
execution of the for  loop computes the first n - k values in the next diagonal 
parallel to this edge, using the additive rule for generating elements of Pascal's 
triangle. See Figure 13. 

This program uses 8 ( k ( n - k ) )  time and 8 ( n - k )  space. Because f (n ,  k )  ffi 
f (n ,  n - k )  (a fact not obvious from the discussion above), space can be saved by 
replacing k with n - k when k < n /2 .  

6. CONCLUSIONS 

We have presented a recursion schema ~ defining a function f, together with 
various sets of assumptions under which the definition of f calls for redundant 
computation. For each set of assumptions we investigated the nature of the 
redundancy and presented a recursive program that  computes f without redun- 
dant recursive calls. Weaker assumptions required more intricate computations 
and greater amounts of storage. 

The use of nonlocal variables is only one of a number of implementations that  
could have been used. An obvious alternative would be to rewrite f2 to re tu rn  a 
tuple consisting of those results that  will be needed later, instead of leaving those 
values in nonlocal arrays. The nonlocal variables could also have been replaced 
by own  (i.e., static) variables local to f2. 

6.1 Automated Transformation Systems 

The transformations presented here can be applied to actual programs. More 
important, they can be incorporated in automatic program-improvement systems. 
One such system is that  of BurstaU and Darlington [4]. That  system uses heuristic 
methods to apply a series of simple but powerful transformations to recursively 
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defined functions. One of the most effective transformations is the d e f i n i t i o n  of 
new functions in terms of old ones. Among the examples of definition presented 
by BurstaU and Darlington is the definition of a function that  returns a tuple 
consisting of the n th  and (n - 1)th elements of the Fibonacci series by calling 
itself recursively to obtain the values of the (n - 1)th and (n - 2)th elements of 
the series. This is exactly the program that would result from applying our 
transformation for common-generator redundancy to the usual recursive Fibo- 
nacci program, provided that  we returned tuples instead of setting nonlocal 
arrays. This transformation originally required human intervention to provide 
the new function definition, but the formulation of the definition has since been 
automated [8] for programs exhibiting common-generator redundancy and having 
the common generator itself as one of the descent functions. The methods of this 
paper may be useful in generalizing this facility, providing both a way to recognize 
situations in which definition would be useful and a way to formulate the 
definition itself. 

Effective procedures exist to find true descent conditions, given "blocks" of 
straight-line code that  compute descent functions. Let ul . . . . .  Uq a n d  v l , . . . ,  vr 

be blocks; let b~ b2 represent the block obtained by executing block bl and then 
using its output values as input values to block be; and let b" = bb n-~ for n > 1, 
with b 1 = b. Lewis [12] proves that  it is possible to compute those values i~ . . . . .  
iq and j~ . . . . .  jr  for which 

computes the same function as 

, i '  . . . ,  

The proof is by reduction to Presburger arithmetic. The development of practical 
algorithmic or heuristic procedures for finding true descent conditions requires 
further research. 

6.2 Other Forms of Redundancy 

Each form of redundancy we have discussed involves descent functions that  
commute. Redundant calls arise because arguments are just repeated applications 
of the same descent functions, in differing but irrelevant orders. (In fact, each 
minimal compressed descent DAG we have discussed is a compression of the 
minimal compressed descent DAG for commutative redundancy.) However, 
descent functions need not commute in order for an interpretation of 50, to define 
a redundant program. 

Periodic redundancy, in which we assume the existence of integers i a n d j  such 
that c i ffi d j on ~ but do not assume that  c and d commute, is explored in [6, sec. 
IV.F]. It  is shown that  each value in the descent tree of f (x)  can be expressed in 
a unique way in the form e k s ( x ) ,  where e = c i = d i and s is a string of descent 
function names that does not contain i consecutive c's o r j  consecutive d's. The  
shape of the minimal compressed descent DAG can be deduced from this fact, 
but we have ,not been able to formulate a transformation that  eliminates the 
redundancy. 

An interesting special case of periodic redundancy for which a transformation 
exists is a recursive program that  returns the solution to the Tower of Hanoi 
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problem as a string. The  program is as follows: 

s tr ing procedure  HANOI(n ,  from, to, using); 
value n, from, to, using; in teger  n; s t r ing from, to, using; 
i f n  = 0 

then  H A N O I  := ' ' 
else H A N O I :  = H A N O I ( n  - 1, from, using, to) 

]] move(from, to) 
]l H A N O I ( n  - 1, using, to, from} 

(Recall tha t  "]]" represents  string concatenation.)  This  is an instance of ~, with 

x = (n, f rom,  to, u s ing ) ,  

p ( x )  = (xl = 0), 

a(x )  = ' '  

b(x,  y,  z) = y ][ move(x2 ,  x3) ]] z, 

c ( x )  = ( x l  - 1, x2,  x , ,  x s  ), 

and 

d(x )  = <xl - 1, x4, x3, x2).  

(Since c2(x) = d2(x) = (x l  - 2, x2, xs ,  x4 ) but  c and d do not  commute,  H A N O I  
exhibits periodic redundancy  but  not  commuta t ive  periodic redundancy.)  T h e  
value of n is fixed at  each level of the descent  tree,  and there  exist only six 
possible permuta t ions  of f rom,  to, and  using,  so there  can be no more  than  six 
distinct values at  each level of the descent  tree. In fact, there  are at  most  three  
distinct values at  each level of the tree, since three  of the permuta t ions  can only 
result  f rom an odd number  of applications of c and d and the o ther  three  only 
from an even number.  The  descent  t ree  and minimal compressed descent  DAG 
for a typical computat ion of H A N O I  are shown in Figure 14. 

Clearly, our taxonomy of redundancy  is far f rom complete.  In fact, r edundancy  
exists whenever  the number  of distinct values obtainable by  k or fewer applica- 
tions of the descent  functions of ~ is less than  the  number  of nodes in a full 
n-ary tree of depth  k, namely,  (n k+l - 1) / (n  - 1). T h e  character izat ion of o ther  
forms of redundancy,  and the formulat ion of program transformat ions applicable 
to those forms, are topics for fur ther  research. (See, for instance, [2].) T h e  
approach we have used here  will, no doubt,  be applicable in this research.  

T h a t  approach consists of two steps. T h e  first step is de terminat ion  of the 
shape of the minimal compressed descent  DAG. Given a descent  condit ion 
consisting of a set of assertions of the form "a(x)  = f l (x)  for all x in ~ , "  where a 
and fl are strings of descent  function symbols, it is generally undecidable whe ther  
two given nodes of the descent  t ree are equivalent.  Thus,  it is not  always possible 
to construct  the minimal compressed descent  DAG. Th e re  is, however,  a large 
class of descent  conditions for which the DAG is constructible.  This  class consists 
precisely of those descent  conditions for which there  is an effective mapping f rom 
a string of descent  function names to a c a n o n i c a l  s tr ing,  such tha t  all strings 
corresponding to equivalent  values are mapped  to the same string. We made  use 
of canonical strings of the form c i for explicit redundancy,  gi  for common- 
generator  redundancy,  ekcUd v {with u and v in the appropria te  range) for com- 
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mutative periodic redundancy, c'd J for commutative redundancy, and eks, where 
there is a bound on the number of times each descent function name can occur 
consecutively in s, for periodic redundancy. 

The second step is the search for a way of evaluating the expression represented 
by the compressed descent DAG without redundancy, using as little storage as 
possible. This is a "pebbling" problem. There is a considerable body of literature 
concerning the time-space trade-offs that may be achieved for the pebble game 
with various families of DAGs [15]. Since our goal is to compute results without 
redundancy, we want to pebble each node of a minimal compressed descent DAG 
only once. Thus, we are interested in achieving the lowest space bounds possible 
in an amount of time proportional to the number of nodes in the DAG. 

ACKNOWLEDGMENTS 
The author is grateful to Christos Papadimitriou, Thomas Cheatham, and espe- 
cially Harry Lewis for their careful reading of the manuscript and many helpful 
suggestions. John Darlington, Peter Downey, and David Wise provided helpful 
references. 

REFERENCES 
1. AHO, A.V., HOPCROFT, J.E., AND ULLMAN, J.D. The Design and Analysis of Computer Algo- 

rithms. Addison-Wesley, Reading, Mass., 1974. 
2. BIRD, R.S. Tabulation techniques for recursive programs. ACM Comput. Surv. 12, 4 (Dec. 1980), 

403-417. 
3. BIRD, R.S. Improving programs by the introduction of recursion. Commun. ACM 20, 11 (Nov. 

1977), 856-863. 
4. BURSTALL, R.M., AND DARLINGTON, J. A transformation system for developing recursive pro- 

grams. J. ACM24, 1 (Jan. 1977), 44-67. 
5. CHANDRA, A.K. Efficient compilation of linear recursive programs. In Conference Record, IEEE 

14th Annual Symposium on Switching and Automata Theory (Iowa City, Iowa, Oct. 1973), pp. 
16-25. 

6. COHEN, N.H. Source-to-Source Improvement of Recursive Programs. Ph.D. dissertation, Divi- 
sion of Applied Sciences, Harvard Univ., Cambridge, Mass., May 1980. 

7. COHEN, N.H. Characterization and elimination of redundancy in recursive programs. In Confer- 
ence Record of the 6th Annual ACM Symposium on Principles of Programming Languages (San 
Antonio, Tex., Jan. 29-31, 1979), pp. 143-157. 

8. DARLINGTON, d. Program transformation and synthesis: Present capabilities. Res. Rep. 77/43, 
Dept. of Computing and Control, Imperial College of Science and Technology, London, Sept. 
1977. 

9. DARLINGTON, J., AND BURSTALL, R.M. A system which automatically improves programs. Acta 
Inf. 6, 1 (Mar. 1976), 41-60. 

10. FRIEDMAN, D.P., WISE, D.S., AND WAND, M. Reeursive programming through table look-up. In 
SYMSAC '76; proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation 
(Yorktown Heights, N.Y., Aug. 10-12, 1976), R.D. Jenks (Ed.), pp. 85-89. 

11. HILDEN, J. Elimination of recursive calls using a small table of "randomly" selected function 
values. BIT 16, 1 (1976), 60-73. 

12. LEWIS, H.R. A n e w  d e c i d a b l e  problem, with applications. In Proceedings, IEEE 18th Annual 
Symposium on Foundations of Computer Science (Providence, R.I., Oct.-Nov. 1977), pp. 62-73. 

13. MICHIE, D. "Memo" functions and machine learning. Nat. 218, 5136 (Apr. 6, 1968), 19-22. 
14. PATERSON, M.S., AND HEWITT, C.E. Comparative schematology. In Record of the Project MAC 

Conference on Concurrent Systems and Parallel Computation (Woods Hole, Mass., June  2-5, 
1970), pp. 119-127. 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983. 



Eliminating Redundant Recursive Calls 299 

15. PIPPENGER, N. Pebbling. Res. Rep. RC 8258, IBM Thomas J. Watson Research Center, 
Yorktown Heights, N.Y., May 1980. 

16. STRONG, H.R. Translating recursion equations into flowcharts. J. Comput. Syst. Sci. 5, 3 (June 
1971), 254-285. 

17. SWAMY, S., AND SAVAGE, J.E. Space-time tradeoffs for linear recursion. In Conference Record 
of the 6th Annual ACM Symposium on Principles of Programming Languages (San Antonio, Tex., 
Jan. 29-31, 1979), pp. 135-142. 

18. VUILLEMIN, J. Correct and optimal implementations of recursion in a simple programming 
language. J. Comput. Syst. Sci. 9, 3 (Dec. 1974), 332-354. 

Received May 1979; revised January and September 1982; accepted Sepember 1982 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983. 


