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A b s t r a c t  

An off-line planning tool that supports the programmer 
in developing his real-time application is mandatory in 
the design of time-triggered real-time systems. This pa- 
per describes the architecture and the functions of such 
a tool, the Cluster Compiler, that is in development at 
our institute. We emphasize on the principle of a strict 
separation of the local from the global parts of a dis- 
tributed system and on the consequences for the struc- 
ture of the design tool arising from this principle. 

I n t r o d u c t i o n  

At present, real-time systems are often designed unsys- 
tematically. Conventional software modules are inte- 
grated by "real-time specialists" who tune the system 
parameters (e.g., task priorities, buffer sizes, etc.) dur- 
ing an extensive trial and error period, consuming more 
than 50% of a project 's resources. Why the system per- 
forms its functions at the end is sometimes a miracle, 
even to the "real-time specialists". 

To change this deplorable situation we need a 
proper real-time system architecture, a systematic de- 
sign methodology, and a set of tools that support the 
system designer. In the last ten years we have focused 
our research efforts on the systematic design and devel- 
opments of a particular class of real-time system archi- 
tectures, the time-triggered real-time systems [Kop91]. 
Although we are aware that  the time-triggered approach 
is limited to systems of regular behavior, there is a grow- 
ing number of applications, e.g., in the domain of au- 
tomotive electronics, that  fit very well to this design 
paradigm. 

In a time-triggered real-time system all computation 
and communications actions are triggered by the pro- 
gression of a global time. The recurring global clock 
tick is the only event which may initiate an action in 

such a system. As the occurrence of this event is known 
a priori the system's actions can be planned off-line. 

This off-line planning of communication and pro- 
cessing actions requires extensive tool support. We 
have realized this during the implementation of time- 
triggered applications on our MARS architecture. The 
most important  tool support is required for finding the 
static schedules for the message transmission in the 
communication system and the task execution in the 
nodes of the distributed system, and for automatically 
generating the appropriate data  structures for the con- 
trol of the communication and the operating system in 
each node. In this paper we present such a planning 
tool that  we call the Cluster Compiler. 

The Cluster Compiler combines both aspects of 
scheduling, i.e., it integrates task and message schedul- 
ing into one off-line scheduling tool. As the schedul- 
ing problem is known to be NP-hard it is impossible 
to enumerate all solutions and to design good schedules 
manually. In the past we have focused on the heuris- 
tic search technique IDA* [Kor85] to find appropriate 
schedules [Foh94]. The cluster compiler is a flexible 
tool that  will also implement other optimization tech- 
niques, fike genetic algorithms [Ho175, Hou94, Sysgl], 
simulated annealing [Kir83, Nan92, Che95] or tabu 
search [Glo93, Moo93, Por93]. 

The Cluster Compiler is the central tool for system 
design. It has to produce data structures that  are con- 
sistent within all parts of a time-triggered system imple- 
mentation, i.e., the protocol software in the communica- 
tion controllers and the operating system in the nodes. 
As these data  structures control the run-time system 
functions, they determine the behavior at the interfaces 
and thus put a number of requirements on the Cluster 
Compiler. 

This paper is organized as follows. After the intro- 
duction we give an overview of the time-triggered sys- 
tem architecture that  is the target for our Cluster Com- 
piler. In the third section the functions of the Cluster 
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Compiler are explained. In section four we describe the 
structure of the Cluster Compiler. The paper concludes 
with section five. 

A Time-Triggered Architecture 

As an example for a time-triggered (TT)  architecture 
we give a short overview of the architecture of MARS 
(MAintainable Real-time System) in this section. We 
start  by discussing the architectural levels that  have 
been introduced in MARS. We then continue with a de- 
scription of the nodes and the communication system. 

A r c h i t e c t u r a l  L e v e l s  

The architectural levels introduced in MARS are levels 
of abstraction. At the top of the hierarchy is the com- 
plete MARS system that  includes the controlled object 
and the computer system. 

S y s t e m  Leve l  

A distributed real-time application can be decomposed 
into a set of communicating subsystems, called clusters. 
We distinguish between computat ional  clusters and en- 
vironmental clusters. In the example of Figure 1 the 
controlled object or the human operator are environ- 
mental  clusters, whereas the distributed computer sys- 
tem can be decomposed into one or more computat ional  
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Figure 1: Overview of MARS 

In MARS it is assumed that  all computat ional  clus- 
ters have access to a global timebase of known preci- 
sion [KopOSb]. An intercluster gateway implements an 
abstraction function between the two clusters, i.e., only 
the information that  is relevant for one cluster is passed 
across the interface f rom/ to  the other cluster. 

C l u s t e r  Leve l  

A cluster can be decomposed into a set of fault-~olerartt 
=rti~s (FTU) that  communicate with each other by the 
periodic exchange of T T  messages (see Figure 2). The 
main concern at the cluster level is thus the correct and 

timely exchange of messages between the FTUs. There 
are, however, additional functions that  are assigned to 
the cluster level: the synchronization of the clocks, and 
the membership service, i.e., the determination which 
FTUs are operational and which FTUs are faulty at a 
particular point in time. 
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Figure 2: A MARS Cluster 

F a u l t - T o l e r a n t  U n i t  / N o d e  Leve l  

A Fault Tolerant Unit (FTU) is a set of replica deter- 
minate fail-silent nodes that  perform specified commu- 
nication and computat ional  functions within the given 
time constraints. As long as at least one of the nodes 
of an FTU is operational, the FTU as a whole is con- 
sidered operational. The fact that  an FTU can consist 
of more than one node is only relevant from the point 
of view of dependability. From the functional point of 
view, an FTU acts just  like a single node. 

A node consists of two parts  that  communicate via 
a node internal interface, the message base interface 
(MBI) [Kop95a]. One part  of the node, the commu- 
nication controller, implements the cluster communica- 
tion and is logically part  of the cluster level. The other 
part,  the host CPU with the application software, im- 
plements the specified node local application. The MBI 
within a node is thus the dividing line between the clus- 
ter wide communication system and the node local pro- 
cessing of tasks. The MBI is a firewall that  protects the 
local processing functions within a node from failures 
of the communication system and vice versa. The MBI 
thus also hides the communication between nodes from 
the application software. 

A node is the smallest replaceable unit of this archi- 
tecture. At any point in time, it is assumed that  a node 
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is either operating correctly or it is silent. The imple- 
mentation of a node must guarantee that  the fail-silent 
abstraction is realistic, i.e., the node must have a very 
high error detection coverage. 

T h e  N o d e  A r c h i t e c t u r e  

H a r d w a r e  Architecture 

Figure 3 depicts the hardware structure of a MARS 
node. In the lower part  of Figure 3 we see the commu- 
nication controller with its own memory  and with one 
or two bi-directional communication ports,  connected 
to the (possibly replicated) broadcast channel, i.e., the 
cluster wide communication system. In the upper part  
we see the host processor with the interfaces to the lo- 
cal sensors and actuators.  The host processor and the 
communication controller communicate via the Message 
Base Interface, which is implemented in the dual ported 
RAM, shown in the middle of the picture. 
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Figure 3: Hardware structure of a MARS node 

The MBIs are the most important interfaces within 
a cluster. They separate node local activities that take 
place in the host processor from the cluster wide activ- 
ities that take place in the communication controller. 
This interface is a strict data sharing interface. There 
is only one control signal, the periodic global clock tick, 
crossing this interface in the direction from the commu- 
nication controller to the host processor. No control sig- 
nal is crossing the MBI interface in the other direction. 

The communication controller derives its control sig- 
nals, i.e. when to send the next message, autonomously 
from the progression of the global time. It has access 
to a local data structure, the message descriptor list 
(MEDL), that contains the required information about 

the messages, e.g., what message has to be received at 
a particular point in time, where to locate the data in 
the DPRAM, when to send the next message, etc.. The 
Time-Triggered Protocol (TTP) that is implemented in 
the communication system is described in a later sec- 
tion of this paper. 

Additionally, the hardware contains a number of 
mechanisms to increase the self-checking coverage of the 
nodes. The description of these mechanisms is beyond 
the scope of this paper. 

The Application-Software Architecture 

The application software is executed on the host pro- 
cessor of the node. The application software consists 
of a set of sequential tasks that read their input data 
(and their previous internal state), execute the speci- 
fied data transformation and output the results (and the 
new internal state). In a TT system the synchroniza- 
tion requirements of the tasks (e.g. mutual exclusion or 
precedence) are considered during the generation of the 
static task schedules. It is therefore not necessary to 
allow internal synchronization points (e.g. a wait state- 
ment) within a task. The maximum execution time of 
a task can thus be determined without considering the 
other tasks in the node. 

The task execution is controlled by a node local TT 
operating system. The control information for this op- 
erating system, i.e., when to execute a particular task, 
is contained in a static data structure, the task descrip- 
tor list (TADL) that has to be generated by the Cluster 
Compiler at compile time. 

The Communication Protocol TTP 

The exchange of messages within a cluster is controlled 
by the time-triggered protocol (TTP) [Kop94] that pro- 
vides all services needed for the implementation of fault- 
tolerant hard real-time systems in an integrated man- 
ner. TTP is executed by the cooperating set of commu- 
nication controllers within a cluster. 

T h e  

T T P  

Q 

I 

T T P  S e r v i c e s  

provides the following services: 

Guaranteed real-time response for all messages 

Fault tolerant clock synchronization 

Distributed membership service as the basis for 
atomic broadcast 

Temporal encapsulation of the nodes to support a 
constructive design and test methodology. 

Rapid fault detection at the sender and receiver 
and an end-to-end error detection mechanisms to 
increase the selfchecking coverage of the nodes. 
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Consistent mode change to realize a da ta  depen- 
dent change in the temporal  task structure (e.g., 
a fast switch over to an emergency mode). 

Transient blackout management  to bring the pro- 
tocol into a defined state in case the fault hypoth-  
esis is violated. 

Support  for the implementat ion of fault-tolerant 
systems consisting of duplex channel and repli- 
cated nodes. 

• Distributed redundancy management  

These services are implemented without a central 
master. 

Principle of Operation 

TTP controls the medium access by a synchronous time 
division access method (TDMA) derived from a fault- 
tolerant global time base that is established by the pro- 
tocol itself. The protocol provides a temporal encapsu- 
lation of the nodes, i.e.~ it is not possible that an in- 
creased communication demand by one node affects the 
temporal behavior of another node. This property of 
the protocol makes it possible to constructively build 
and test complex TTP systems. 

The semantics of the messages transported by TTP 
corresponds to the state message semantics, i.e., a new 
version of a message overwrites the previous version and 
a message is not consumed on reading. This message se- 
mantics is well suited to handle the transport of state 
variables in control applications. State message seman- 
tics provides an implicit flow control and eliminates the 
delicate problem of dynamic buffer management. 

TTP supports different operational modes [Jah88, 
Jah94], i.e., task and message sets, within the sys- 
tem. Each of these modes reflects a certain state or 
phase of the application. For example consider an air- 
plane. A flight consists of three phases, starting, nor- 
real flight and landing. For each flight phase different 
activities and thus messages are necessary in the com- 
puter system, therefore each of the phases is modeled 
by one mode. TTP also provides a protocol service that 
can switch between different operational modes dynam- 
ically. For every mode up to seven (relative) successor 
modes can be defined during design time. Whenever 
the TDMA slot of a node has arrived, the node can re- 
quest a mode switch to one of these successor modes by 
setting the appropriate field in the message header. All 
nodes will switch to this successor mode consistently af- 
ter the receipt of this message. The latency time for a 
mode switch is, at worst, a full TDMA cycle. 

TTP contains mechanisms that support the rapid 
and consistent detection of the loss of messages or the 

failures of nodes. The most prominent of these mecha- 
nisms is an integrated membership protocol. This mem- 
bership protocol is based on the a priori known send 
times of the TDMA protocol, the known points of ar- 
rival of each message and the acknowledgment bits con- 
tained in each message header. The membership proto- 
col reports with a latency of one T D M A  round which 
node is active and which node is inactive. The member-  
ship protocol is the core of many  other T T P  services: 
the clock synchronization service, the consistent mode 
change service, the redundancy management  service, 
the atomic broadcast service, and the blackout moni- 
toring service. 

The system level fault model of the architecture as- 
sumes that  nodes exhibit fail-silent failures only, i.e., 
they either produce correct messages or no messages 
at all. To support  the implementat ion of fail-silent 
nodes T T P  provides a "High Error Detection Coverage" 
(HEDC) mode of operation. In the HEDC mode an ap- 
phcation task can append an end-to-end signature to 
each data  field. This end-to-end CRC will be checked 
by the T T P  hardware controller and by the receiving 
task. In the HEDC mode the complete pa th  between 
the sending task and the receiving task is protected by 
a signature. Fault injection experiments [Kar95] have 
shown that  this is an effective mechanism to implement 
a very high error detection coverage on standard off the 
shelf hardware. 

The high da ta  efficiency of T T P  is achieved by tak- 
ing advantage of the regularity and a priori knowledge 
contained in a TDMA protocol. Since it is known in 
advance at what point in t ime a node will send a mes- 
sage, there is no need to carry the message name or 
the sender name in the message, since send and receive 
times are common knowledge. 

T T P  Message Formats 

It is crucial for the operation of TTP that sender and re- 
ceiver never disagree about the protocol controller state 
(the C-state) during the exchange of normal messages. 
The C-state consists of the global time, the operational 
mode and the current membership information. The 
membership information is represented in a bit vector 
with the length of the number of nodes. TTP enforces 
C-state agreement by a special mechanism for the cal- 
culation of the CRC field of normal messages as is ex- 
plained below. 

A TTP message consists of three fields, a one byte 
header, a data field of up to 16 bytes and a one byte 
CRC. In TTP two message types are distinguished by 
the first bit of the header, normal messages and initial- 
ization messages. 

For normal messages the CRC is calculated over the 
Header, the Data Field and the local C- state of the 
sender, as shown in Figure 4. 
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CRC coverage of a normal message 
4 

I Header I Data Field I C-State 

q D 
CRC coverage of an initialization message 

Figure 4: CRC Calculation 

I 

The receiver compares the CRC that  is calculated 
locally over the received header, datafield, and its local 
C-state with the CRC contained in the last byte of the 
received message. If these two CRCs are different, then 
either the message has been mutilated during the trans- 
mission or the sender has a different C-state of that  of 
the receiver. In both  cases the message is discarded and 
- provided there is no correct redundant message avail- 
able - the sender is eliminated from the list of active 
members.  

An initialization message (I-message) contains in its 
da ta  field the C-state of the sender and has a "normal"  
CRC calculated over the message contents only. Initial- 
ization messages are needed at system s tar tup and to 
reintegrate repaired nodes into an ensemble. It  is good 
practice to have at least two different nodes that  send 
I-messages periodically (possibly with a long period). 

Function of the Cluster Compiler 

The Cluster Compiler is the off-line part  of a MARS 
system. The application programmer  provides his/her 
application specific knowledge to the compiler either 
directly or by using a higher level design tool. The 
compiler then creates the control information which is 
needed for protocol and task execution. A guiding prin- 
ciple during the development of the Cluster Compiler is 
that  the programmer  should be able to develop an ap- 
plication with minimal concern about  the communica- 
tion pattern.  As long as a temporally accurate version 
of the da ta  is available at the MBI, the application will 
perform as intended. 

The function of the Cluster Compiler as the central 
tool in system design is determined by the other parts 
of a MARS system, i.e., the protocol, the communica- 
tion controller, the operating system and the applica- 
tion. Each of these parts  assumes that  certain problems 
are solved by the Cluster Compiler off-line, so that  all 
mechanisms that  would be needed for an on-line prob- 
lem solution can be eliminated. 

The Cluster Compiler also reflects the main design 
principle of a T T  system, the separation of local and 
global concerns. These two main concerns are on the 
one hand communication planning, which is a global 
subject, and on the other hand task scheduling, which 
is primarily of local interest to the application in a node. 

In addition to these two main tasks a number of more 
specific, smaller tasks are performed. 

C o m m u n i c a t i o n  Planning 
Communication planning is a global issue that  has to 
be performed simultaneously for all nodes of a cluster. 
It  consists of two steps that  are coupled tightly to each 
other, data element allocation and message scheduling. 
T T P  messages correspond to the common notion of a 
message. They are global da ta  structures tha t  are ex- 
changed via the communication medium. The contents 
of T T P  messages are sets of da ta  elements. 

Da ta  elements are the inpu t /ou tpu t  da ta  items con- 
sumed and produced by an application task within a 
node. They only exist in the local part  of a node. Dur- 
ing the development of an application the programmer  
just  specifies the da ta  elements, he never deals with 
T T P  messages. Every da ta  element has a specified va- 
lidity t ime that  depends on the dynamics of the real- 
t ime state-variable in the environment this da ta  element 
is representing. If  the validity t ime of a da ta  element is 
longer than the longest time interval between the point 
of observation of the real-time state-variable and the 
point of use of the corresponding da ta  element, we call 
a da ta  element phase insensitive. An application task 
receiving a phase insensitive da ta  element can always as- 
sume that  there is a temporally accurate version of the 
da ta  available at the MBI. If  the above cited condition 
is not satisfied, then the da ta  element is phase sensi- 
tive. Tasks receiving da ta  elements of this type must  be 
synchronized with the sending task and thus with the 
message schedule and /or  a state estimation task must 
be executed at the receiver. 

The da ta  elements produced by the various applica- 
tion tasks are combined to T T P  messages during da ta  
element allocation, considering the temporal  validity of 
the da ta  elements. In the following step these messages 
are scheduled, i.e., for each mode a period called the 
cluster cycle is designed. A cluster cycle consists of at 
least one TDMA cycle. In each T D M A  cycle exactly 
one sending slot is assigned to each FTU. 

This planning step is performed under a number of 
constraints: 

• The same sequence of sending FTUs must  be used 
in every T D M A  cycle of a cluster cycle. 

• The bandwidth of the communication medium 
must not be exceeded. 

• Each da ta  element must be scheduled observing 
its max imum latency as it is specified by the pro- 
grammer  in the application definition. 

Apar t  from these apparent  limitations other require- 
ments have to be fulfilled: 
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In each cluster cycle there must be at least two nodes 
that  send an I-frame containing their C- state periodi- 
cally. The periodical diffusion of this state, that  must 
be identical for all nodes of a cluster, is needed for rein- 
tegration of failed nodes. 

When planning the mode changes the Cluster Com- 
piler has to ensure that  the order of nodes of the old 
mode is maintained for at least two slots. This is im- 
portant because otherwise the acknowledgment scheme 
for received messages could fail. 

There are many more requirements and limitations 
that reduce the degree of freedom during communica- 
tion planning. The above list is by no means complete 
but is intended to merely give the reader an idea of some 
of the issues that  have to be observed and why it is very 
difficult to do the planning by hand. 

Task Scheduling 

Task scheduling is required in every real-time system. 
There are two approaches to task scheduling: the dy- 
namic approach where the schedules are calculated on- 
line on the basis of the actual resource requirements and 
the static approach where the schedules are determined 
off-line on the basis of the maximum resource require- 
ments of a task [Foh94]. 

In our static approach that  maintains the strict sep- 
aration of global and local concerns task scheduling be- 
longs to the local side. For this reason the task schedule 
for every node has to fit the global framework given by 
communication planning. Apart from the given commu- 
nication framework the application specification is the 
basis for task scheduling. This specification must con- 
tain details on the data  elements (maximum latency, 
etc.), details on the tasks (deadline, period etc.), and 
the required relationship between the tasks, the task 
precedence graph of the application. 

The following constraints have to be observed during 
task scheduling: 

• All tasks must be scheduled so that they meet 
their deadlines. 

The schedule created by the Cluster Compiler has 
to be consistent with the specified task precedence 
graph. 

Data access to the DPRAM must be synchronized 
with the communication controller. It has to be 
assured that  neither read/write nor write/write 
conflicts between the host CPU and the T T P  con- 
troller may arise. 

The Cluster Compiler has to decide which type 
of mode change is supported (immediate mode 
change, completion of all activities or completion 

of some of the current activities). For more de- 
tails on the semantics of mode changes the reader 
is referred to [Jah88]. 

Multicluster Systems 

In multicluster systems two additional tasks have to be 
supported by the cluster compiler, system configuration 
and gateway design. 

System configuration is concerned with the design of 
the communication in a multicluster system. The plan- 
ning tool is provided with the number of nodes and the 
data  elements that have to be passed between them. 
Based on this information the tool chooses the appro- 
priate number of busses, assigns the nodes to them and 
designs their connection via gateways. The main issue 
of system configuration is on the one hand the mini- 
mization of hardware cost determined by the number 
and length of the necessary cables and by the number 
of gateway nodes. On the other hand the tool must 
minimize the transmission delay of data elements sent 
from one cluster to another. 

In a multicluster system messages passed between 
clusters have to be scheduled such that the overall la- 
tency of the information transfer is minimized, i.e., the 
Cluster Compiler must create systemwide communica- 
tion schedules. In systems with unsynchronized clusters 
only a maximum delay can be guaranteed whereas in 
systems where clusters are synchronized and the com- 
munication is controlled by time-triggered protocols, a 
latency guarantee for each message can be given. 

S t r u c t u r e  of t he  C l u s t e r  C o m p i l e r  

This section describes the structure of the Cluster Com- 
piler and explains its parts and the techniques that will 
be used. 

Heuristic Optimization 

The scheduling problem that  has been described in the 
previous section is known to be NP-complete. It is 
therefore impossible to enumerate all solutions in order 
to find the best. To solve a problem of this type one has 
to rely on heuristic techniques. For the scheduling tool 
for former versions of the MARS system we have used 
the heuristic search strategy IDA* [Fob94, Kor85]. The 
tool for the current version, the Cluster Compiler, will 
be based on heuristic optimization strategies as well. 
Besides IDA* we intend to evaluate genetic algorithms, 
simulated annealing and tabu search. 

For each of the five steps of the Cluster Compiler, 
shown in Figure 5, the main goals of the optimization 
procedure are given in this section. These goals are 
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included into the objective function of the respective 
procedure° 

~ Bus System Config 

Application 
Definition 

Cluster Compiler 

Task Allocation 
. . . .  

~ Data Element Alloc. 
Message Scheduling 

Task Scheduling 

1 
~S ask 

chedules~ 

~Message 
chedule (s)~ 

Figure 5: The structure of the Cluster Compiler 

I n t e r f a c e s  

A database forms both, the internal interfaces as well as 
the external interfaces of the Cluster Compiler, i.e., the 
interfaces between its parts and the interfaces to the ap- 
plication programmer and the hardware. For the latter 
a translation tool that  transforms the output  into the 
form needed by the hardware will be developed. The 
advantages of this approach are twofold. The Cluster 
Compiler is not concerned with creating a certain out- 
put format and it is easier to adapt the output  for dif- 
ferent purposes, e.g., minimal memory demand, and for 
different target systems. 

F u n c t i o n a l  U n i t s  

Task  A l l o c a t i o n  The first part  of the Cluster Com- 
piler performs the task allocation, i.e., it assigns the 
tasks of the application to the nodes of the system. The 
objective function of this step is aimed at equal load dis- 
tribution among the nodes and minimization of inter- 
node communication. 

In many applications this assignment is restricted by 
an at least partially fixed allocation. A task reading and 
evaluating sensor data, for example, will mostly reside 
on the node the sensor is connected to. 

The input for this step and thus for the whole Clus- 
ter Compiler is the applica~io~ defir~itior~. It consists of 

the list of data  elements, the task definitions and the 
relations between the tasks. For each task its period 
and its maximum execution time are specified. In the 
list of data  elements the size, the temporal validity, the 
sending and the receiving tasks of each data  element 
are defined. Concerning task relations we distinguish 
three types, mutual exclusion, simple precedence and 
data  element transmission, i.e., precedence combined 
with data  transfer. These relations are specified in the 
task precedence graph. 

C o n f i g u r a t i o n  Based on the previously fixed task al- 
location the configuration part  chooses the appropriate 
number of busses, assigns the nodes to them, and con- 
nects the busses via gateways. The optimization proce- 
dure of this step is dedicated to the minimization of the 
overall message transmission delay and the number of 
busses and gateways. Moreover it takes into consider- 
ation so called locality constraints, which can be speci- 
fied by the application programmer. For instance these 
constraints force that  a set of nodes has to be assigned 
to a certain bus or that  a fixed number of busses and 
gateways has to be used. 

D a t a  E l e m e n t  A l l o c a t i o n  Within the third step, 
data  element allocation, data  elements produced by the 
various tasks are combined to T T P  messages and their 
size and period is calculated. The constraints that  apply 
to this step have been mentioned in the previous section. 

M e s s a g e  S c h e d u l i n g  Message scheduling is coupled 
tightly to the previous part, in fact the separation into 
two logical steps is for reasons of clearness only. This 
scheduler assembles single T T P  messages to cluster cy- 
cles and creates the control information that  is needed 
for protocol execution. 

The objective function for the steps data  element 
allocation and message scheduling considers the con- 
straints associated to data  elements, especially the max- 
imum latency, as penalty terms. If a constraint is not 
met by a solution, the "cost" of this solution is increased 
by the corresponding penalty term, thus making it un- 
likely that  the solution is taken into consideration any 
further. The main goal implemented by the objective 
function is on the one hand the minimization of the re- 
quired bandwidth on the communication medium and 
on the other hand the optimal utilization of this band- 
width requirement. 

This step finishes global planning. The following 
step creates only local control information for each node. 

Task  S c h e d u l i n g  During the last step the Cluster 
Compiler performs task scheduling and creates the con- 
trol information representing the task schedule for the 
host processor's operating system at each node. It is 
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based on the knowledge of the communication system, 
which has been defined in the previous steps. The mes- 
sage schedule establishes the boundary conditions for 
task scheduling, in the sense that  the earliest release 
time of a task must be later than the latest arrival time 
of a message received by the task and that  its deadline 
must be prior to the earliest sending time of a message 
sent by this task. In the section on task scheduling we 
have mentioned communication planning being a global 
issue as a reason for doing this planning step first. Yet 
there is a second reason: As our communication pro- 
tocol is based on a strict TDMA scheme the degree of 
freedom is much higher in task scheduling than in mes- 
sage scheduling. Doing the task scheduling first would 
further reduce the solution space for message schedul- 
ing. 

The restrictions to task scheduling mentioned above 
apply only to tasks that process phase sensitive data. 
Tasks acting on phase insensitive data  solely can 
be scheduled without synchronization to the message 
schedule. The state message concept ensures that  there 
is always valid data available at the MBI. Thus task ex- 
ecution for phase insensitive data is completely decou- 
pied from the timing of any communication action. 

The objective function of task scheduling forces only 
the fulfilling of the constraints put upon a task, i.e., its 
period, its relations and for tasks processing phase sen- 
sitive data the boundary conditions determined by the 
message schedule, by introducing penalty terms again. 
There is no parameter that  has to be optimized explic- 
itly, not even the overall schedule length, as this length 
is predetermined by the length of the cluster cycle that 
is designed during communication planning. Optimiz- 
ing the overall schedule length or maximizing the pro- 
cessor idle time within the predetermined cluster cycle 
length makes sense only if spare capacities for sporadic 
tasks have to be saved. This approach will be used in a 
later version of the new MARS system. 

S u p p o r t  o f  D i f f e r e n t  P l a n n i n g  I s s u e s  

The Cluster Compiler must support two different types 
of planning, overall planning on the one hand and par- 
tial (re)planning on the other. In overall planning the 
system and its control structures are designed through- 
out all the steps starting from the application defini- 
tion. Partial (re)planning means doing only some steps 
of the planning process, i.e., starting somewhere in the 
middle, skipping the earlier steps. 

To cope with these two demands two versions of the 
Cluster Compiler will be implemented, one integrated 
tool for overall planning and a single-step tool with clear 
interfaces between the steps for partial (re)planning. 

S i n g l e - S t e p  Too l  

This version of the Cluster Compiler consists of clearly 
separated parts that  communicate with each other via 
database interfaces. Each step writes its output  to a 
database that serves as input for the succeeding step. 
Thus it is possible to start the planning at any step. 

The single-step Cluster Compiler will be used mainly 
to perform local changes without influencing the global 
parts of the system. If for instance a task on one node 
changes there is no need to redesign the bus system lay- 
out and the message schedules. Only the task schedule 
on this node has to be recalculated. 

I n t e g r a t e d  Tool  

One main goal of our research is a comprehensive inte- 
gration of the main steps described above. As a "local" 
optimization within each function results in a subopti- 
mal global solution an integrated optimization for all 
design steps must be achieved. 

If planning is done in an integrated manner, it is no 
longer possible to distinguish the parts of the Cluster 
Compiler. To be able to redesign parts of the system us- 
ing the single-step tool the internal interface databases 
have to be filled. This is done by a special tool that  cre- 
ates the database entries out of the Cluster Compiler's 
final output.  

Conc lus ion  

We have presented an architecture for a distributed 
time-triggered real-time system and have given an in- 
troduction to the communication protocol T T P  that  is 
used by the communication system of our architecture. 
This protocol provides all services needed for the imple- 
mentation of fault-tolerant hard real-time systems. 

We have focused on our main design guideline, the 
strict separation of local and global issues. This prin- 
ciple is realized in the hardware of each node and sup- 
ported by the design system, the Cluster Compiler. We 
have shown the issues and concepts for this off-line de- 
sign tool, especially how our main principle will be im- 
plemented in the tool. 

The functions of the Cluster Compiler, i.e., message 
and task scheduling, and the requirements put upon 
these functions by the other parts of the system have 
been described. Based on this we have introduced a 
clear design structure. 

The next steps in our research will be the evaluation 
of heuristic optimization algorithms and the definition 
of the interfaces between the Cluster Compiler and the 
remaining MARS system. As argued these interfaces 
determine the function of the Cluster Compiler, because 
they specify its input data  and its required outputs. 
For this reason they are the basis for all future work 
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concerning the Cluster Compiler and the other parts of 
the system. 
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