
ACM SIGPLAN Workshop on Languages, Compilers and Tools for Real-Time Systems, La Jolla, California, June 1995.

The Cluster Compiler- A Tool for the Design of Time-Triggered
Real-Time Systems

.Hermann Kopetz, Roman Nossal

I n s t i t u t fiir T e c h n i s c h e I n f o r m a t i k , T e c h n i c a l U n i v e r s i t y of V i e n n a ,

T re i t l s t r . 3 / 1 8 2 / 1 , A-1040 V i e n n a , A u s t r i a

{ h k , no s s a l } @ v m a r s , t u w i e n , etc. a t

May 12, 1995

A b s t r a c t

An off-line planning tool that supports the programmer
in developing his real-time application is mandatory in
the design of time-triggered real-time systems. This pa-
per describes the architecture and the functions of such
a tool, the Cluster Compiler, that is in development at
our institute. We emphasize on the principle of a strict
separation of the local from the global parts of a dis-
tributed system and on the consequences for the struc-
ture of the design tool arising from this principle.

I n t r o d u c t i o n

At present, real-time systems are often designed unsys-
tematically. Conventional software modules are inte-
grated by "real-time specialists" who tune the system
parameters (e.g., task priorities, buffer sizes, etc.) dur-
ing an extensive trial and error period, consuming more
than 50% of a project 's resources. Why the system per-
forms its functions at the end is sometimes a miracle,
even to the "real-time specialists".

To change this deplorable situation we need a
proper real-time system architecture, a systematic de-
sign methodology, and a set of tools that support the
system designer. In the last ten years we have focused
our research efforts on the systematic design and devel-
opments of a particular class of real-time system archi-
tectures, the time-triggered real-time systems [Kop91].
Although we are aware that the time-triggered approach
is limited to systems of regular behavior, there is a grow-
ing number of applications, e.g., in the domain of au-
tomotive electronics, that fit very well to this design
paradigm.

In a time-triggered real-time system all computation
and communications actions are triggered by the pro-
gression of a global time. The recurring global clock
tick is the only event which may initiate an action in

such a system. As the occurrence of this event is known
a priori the system's actions can be planned off-line.

This off-line planning of communication and pro-
cessing actions requires extensive tool support. We
have realized this during the implementation of time-
triggered applications on our MARS architecture. The
most important tool support is required for finding the
static schedules for the message transmission in the
communication system and the task execution in the
nodes of the distributed system, and for automatically
generating the appropriate data structures for the con-
trol of the communication and the operating system in
each node. In this paper we present such a planning
tool that we call the Cluster Compiler.

The Cluster Compiler combines both aspects of
scheduling, i.e., it integrates task and message schedul-
ing into one off-line scheduling tool. As the schedul-
ing problem is known to be NP-hard it is impossible
to enumerate all solutions and to design good schedules
manually. In the past we have focused on the heuris-
tic search technique IDA* [Kor85] to find appropriate
schedules [Foh94]. The cluster compiler is a flexible
tool that will also implement other optimization tech-
niques, fike genetic algorithms [Ho175, Hou94, Sysgl],
simulated annealing [Kir83, Nan92, Che95] or tabu
search [Glo93, Moo93, Por93].

The Cluster Compiler is the central tool for system
design. It has to produce data structures that are con-
sistent within all parts of a time-triggered system imple-
mentation, i.e., the protocol software in the communica-
tion controllers and the operating system in the nodes.
As these data structures control the run-time system
functions, they determine the behavior at the interfaces
and thus put a number of requirements on the Cluster
Compiler.

This paper is organized as follows. After the intro-
duction we give an overview of the time-triggered sys-
tem architecture that is the target for our Cluster Com-
piler. In the third section the functions of the Cluster

108 ACM SIGPLAN Notices, Volume 30, No. 11 November 199

http://crossmark.crossref.org/dialog/?doi=10.1145%2F216633.216670&domain=pdf&date_stamp=1995-11-01

Compiler are explained. In section four we describe the
structure of the Cluster Compiler. The paper concludes
with section five.

A Time-Triggered Architecture

As an example for a time-triggered (TT) architecture
we give a short overview of the architecture of MARS
(MAintainable Real-time System) in this section. We
start by discussing the architectural levels that have
been introduced in MARS. We then continue with a de-
scription of the nodes and the communication system.

A r c h i t e c t u r a l L e v e l s

The architectural levels introduced in MARS are levels
of abstraction. At the top of the hierarchy is the com-
plete MARS system that includes the controlled object
and the computer system.

S y s t e m Leve l

A distributed real-time application can be decomposed
into a set of communicating subsystems, called clusters.
We distinguish between computat ional clusters and en-
vironmental clusters. In the example of Figure 1 the
controlled object or the human operator are environ-
mental clusters, whereas the distributed computer sys-
tem can be decomposed into one or more computat ional

(D

E
t ' -
o
>

,,=, _

clusters.

O(o

. . . .

, _:- [....@....@]i-
" ::

LO...O...O.] LO...O...O.i
Figure 1: Overview of MARS

In MARS it is assumed that all computat ional clus-
ters have access to a global timebase of known preci-
sion [KopOSb]. An intercluster gateway implements an
abstraction function between the two clusters, i.e., only
the information that is relevant for one cluster is passed
across the interface f rom/ to the other cluster.

C l u s t e r Leve l

A cluster can be decomposed into a set of fault-~olerartt
=rti~s (FTU) that communicate with each other by the
periodic exchange of T T messages (see Figure 2). The
main concern at the cluster level is thus the correct and

timely exchange of messages between the FTUs. There
are, however, additional functions that are assigned to
the cluster level: the synchronization of the clocks, and
the membership service, i.e., the determination which
FTUs are operational and which FTUs are faulty at a
particular point in time.

,: F~tJ" o :1 FTU 1 t

:: :: * * :::::::::::::::::::::::: :.: :.:.: : : : : : : , :::,

i J::.:. :-: . . : - :. :.:.:.:-:.:.:.:, t.:.:. :.: ... :. , r:.:. :.: .. : i t:-:. -: . . . :- :.:+:-:+:.::, ~ : : ~ : ~ , :~:~:~:~,~:~: , , i _ i : , ,_ | ~ : : : . . : , : . : . : . : : . .
[<< c.:<.>x<< c.b:.>x<.>:.:.>>:.J i

| :: ::: | , ::: ::: i
! :: ::: ! ::: ::: |

1 : : : : : : 2 : : ~ : : : : : : : : : : 1 ~::;::::::: ::::::: , ~::::::: ::::::::: ~ : : : : : : : : : : : : ¢1:::::::1: :::::::::: 6:::::::::: :::::::::: t:::;::::::: : : : : ; :

:::i::::::: I . C PU~ ! ::::::::::~ ,::::::::::: ::::::%1 :::::::::::: ::::::::::~ t::::::::::: ::%:::: d:::!:!:!: :i:i:i:i:i~ ~:i:i:i:i:: :: i:: i ::~ , : : : : : i : : ::::::::: ~::::::::i: :::::::::: .-: :::::::::::::::::::::::::::.~::::::::::::::::::::::::: ::::::::::::::::::::::::::~ .:::::::::::::::::::::::::::: ~::ii::i:~:~*~~:~:!:~~:::::::::::::::::::::::::._ ::::::::::::::::::::::::::~.,:~:~:~~:~:~*~:::i::i::~':
i:ii:i:ili:i i : i : : : : ============================== ::::::::::::::::::::::::::::: ============================== ::::::::::::::::::::::::::::

, . ' . ' r . ' . , . " ' . ' . - >>>>>>>> : >>>h~< '>> ">>>>>>>> i >>> :~ ' . ' . ' >> .< - ,
:.........~.......-.-...-.-.....~w...-..#....-...-...-,
, > > > . ' : ' ~ ' ~ , (, ~ , ; , 4 . - ; " " ; ' ; - ; . ; - ; , ; , ; , ; , ; , ; , ; , ~ < - : - : : ° I ° : ° : * N : ° . - > ~ ' ~ , ; , ; , ; - . ; . . ; - . ; - . ; . ; . ; , ; , ; , ; , ; , ; , ; 4 , 1 - : ° : ° : : ° : - : - N N I ~ ' > : ' > > > > > ' ,

i : : : : ~ - ~ : : : : : : . :kkkkk. . . : . : . : : : ::2:2222k~:-:~:~:.:: ::::::::::::::::::::::::::::::::::::
i ' ~ ' ~ ' > : " >>>>>>>> i ' >>~ ' ?~ '> / : ' i - : ' : ' : ' i ' : ' i ' : " : ' >~+ : ' >> : ' >>>>>>)
~ ' v . ' . ' . " . ' . ' . ' . ' . ' . ' . ' . ' . " . ' . ' . - P ' v . ' . - . " . . - . . - . - . ' . . ' . " . ' . ' . ' ! ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . 1

| ~:::::..::::::~ t : : : : . : : : :~ , , ~:::::..............................::::::~ ~:::::..... : : : :~
:::::::::::::::::::::::: :::::::::::::::::::::::: :::::::::::::::::::::::~::::::::::::::::~ | | t : : : : : : : : : : : : : : : : : : : : : : : : : l : : : : : : : : : : : : : : : : : : : : : : : 1

| 6::%::: :::::::::::* : | | /:::::::::: ::::::::::l 6 : : : : % : : : : 1
,6: : : : : : : : : ::::::::::'i 6:::::::::] C . I ~ U I : : : : : : : : : : : ~ , , 6::::::::: :::::::::::1 i:::::::::: :::::::::::~
, ~:::::::::: :::::::::::, /:::::::::: : : : : : : : : : :~, i:::::::::: :::::::::::~ : : : : : : : : : : : : : : :~

, "!:i:!:i:!:!:!:i:i:i:i:i:i:i:i:i:i:i:!:i:!:i:~:i ~!:i:!:~:~:~:~:i:i:~:~:i:i::i:i:i:~:~:i:i:!:~:i:i ,, :: :
i ~:::::::: ::::::::::::::: ::::::::::::::::::::::: ~:::::::::::::::::: ::::::::::::: : : : ::: : : :9 ~ | ~ : : : ::: : ::: : : : : : : : : : : : : : : : : i ::
i :: ::: , :: ::1 i ~::::: ::: . : < ::.::::::::::::~ : ~i::~::~::~::~i~i~::~i , . : . :~. : . : . : . : . : .~ ". ii::~i~G~::~i~!~i~:,~i; ~:.ii~i::iii i i::ii i::l ",

" ' " " " " ' . : ¢ !:!:!:!:!:!:!:~:i:!:~:i:!:!:i:i:i:i:!:i:i:i:~ ! : ":~::J::2::2::2::,~::2::~:i~:~:~i;" "~:~:~:~:~:~:~:~:~i~' 1, - ~ w ~ ~ ~ ~ . ~ . ~ . . - ~ ' ~ ~ ~ ~ . ~ . ~ . -
i

e e ! e

, FTU 2 : . FTU 3 ,
• . . o~

Figure 2: A MARS Cluster

F a u l t - T o l e r a n t U n i t / N o d e Leve l

A Fault Tolerant Unit (FTU) is a set of replica deter-
minate fail-silent nodes that perform specified commu-
nication and computat ional functions within the given
time constraints. As long as at least one of the nodes
of an FTU is operational, the FTU as a whole is con-
sidered operational. The fact that an FTU can consist
of more than one node is only relevant from the point
of view of dependability. From the functional point of
view, an FTU acts just like a single node.

A node consists of two parts that communicate via
a node internal interface, the message base interface
(MBI) [Kop95a]. One part of the node, the commu-
nication controller, implements the cluster communica-
tion and is logically part of the cluster level. The other
part, the host CPU with the application software, im-
plements the specified node local application. The MBI
within a node is thus the dividing line between the clus-
ter wide communication system and the node local pro-
cessing of tasks. The MBI is a firewall that protects the
local processing functions within a node from failures
of the communication system and vice versa. The MBI
thus also hides the communication between nodes from
the application software.

A node is the smallest replaceable unit of this archi-
tecture. At any point in time, it is assumed that a node

109

is either operating correctly or it is silent. The imple-
mentation of a node must guarantee that the fail-silent
abstraction is realistic, i.e., the node must have a very
high error detection coverage.

T h e N o d e A r c h i t e c t u r e

H a r d w a r e Architecture

Figure 3 depicts the hardware structure of a MARS
node. In the lower part of Figure 3 we see the commu-
nication controller with its own memory and with one
or two bi-directional communication ports, connected
to the (possibly replicated) broadcast channel, i.e., the
cluster wide communication system. In the upper part
we see the host processor with the interfaces to the lo-
cal sensors and actuators. The host processor and the
communication controller communicate via the Message
Base Interface, which is implemented in the dual ported
RAM, shown in the middle of the picture.

A c t u a t o r s / S e n s o r s

\ I /
Host C P U

- I - A p ~ i c a ~ o n ,
= T a s k s o

R_OM___ I
I I C o d e / I I
/ :Statio : I
1 , D a t a , I

I I - osi- s- - , o
R A M _ _ _ I J
I Dyn. i I

DP AM , t :-D-a'a- : I

t
. I /

• • u n MBI p u • • • • = • • = = = ,]
l I " MI I rrr C o_~t,o,e_r_ _ -, [n ' Code/" I -~

: rrP ' I l:S'a"c:l ° n F i r m w a r e n n I Da ta u I
I /

I I

Figure 3: Hardware structure of a MARS node

The MBIs are the most important interfaces within
a cluster. They separate node local activities that take
place in the host processor from the cluster wide activ-
ities that take place in the communication controller.
This interface is a strict data sharing interface. There
is only one control signal, the periodic global clock tick,
crossing this interface in the direction from the commu-
nication controller to the host processor. No control sig-
nal is crossing the MBI interface in the other direction.

The communication controller derives its control sig-
nals, i.e. when to send the next message, autonomously
from the progression of the global time. It has access
to a local data structure, the message descriptor list
(MEDL), that contains the required information about

the messages, e.g., what message has to be received at
a particular point in time, where to locate the data in
the DPRAM, when to send the next message, etc.. The
Time-Triggered Protocol (TTP) that is implemented in
the communication system is described in a later sec-
tion of this paper.

Additionally, the hardware contains a number of
mechanisms to increase the self-checking coverage of the
nodes. The description of these mechanisms is beyond
the scope of this paper.

The Application-Software Architecture

The application software is executed on the host pro-
cessor of the node. The application software consists
of a set of sequential tasks that read their input data
(and their previous internal state), execute the speci-
fied data transformation and output the results (and the
new internal state). In a TT system the synchroniza-
tion requirements of the tasks (e.g. mutual exclusion or
precedence) are considered during the generation of the
static task schedules. It is therefore not necessary to
allow internal synchronization points (e.g. a wait state-
ment) within a task. The maximum execution time of
a task can thus be determined without considering the
other tasks in the node.

The task execution is controlled by a node local TT
operating system. The control information for this op-
erating system, i.e., when to execute a particular task,
is contained in a static data structure, the task descrip-
tor list (TADL) that has to be generated by the Cluster
Compiler at compile time.

The Communication Protocol TTP

The exchange of messages within a cluster is controlled
by the time-triggered protocol (TTP) [Kop94] that pro-
vides all services needed for the implementation of fault-
tolerant hard real-time systems in an integrated man-
ner. TTP is executed by the cooperating set of commu-
nication controllers within a cluster.

T h e

T T P

Q

I

T T P S e r v i c e s

provides the following services:

Guaranteed real-time response for all messages

Fault tolerant clock synchronization

Distributed membership service as the basis for
atomic broadcast

Temporal encapsulation of the nodes to support a
constructive design and test methodology.

Rapid fault detection at the sender and receiver
and an end-to-end error detection mechanisms to
increase the selfchecking coverage of the nodes.

Ii0

Consistent mode change to realize a da ta depen-
dent change in the temporal task structure (e.g.,
a fast switch over to an emergency mode).

Transient blackout management to bring the pro-
tocol into a defined state in case the fault hypoth-
esis is violated.

Support for the implementat ion of fault-tolerant
systems consisting of duplex channel and repli-
cated nodes.

• Distributed redundancy management

These services are implemented without a central
master.

Principle of Operation

TTP controls the medium access by a synchronous time
division access method (TDMA) derived from a fault-
tolerant global time base that is established by the pro-
tocol itself. The protocol provides a temporal encapsu-
lation of the nodes, i.e.~ it is not possible that an in-
creased communication demand by one node affects the
temporal behavior of another node. This property of
the protocol makes it possible to constructively build
and test complex TTP systems.

The semantics of the messages transported by TTP
corresponds to the state message semantics, i.e., a new
version of a message overwrites the previous version and
a message is not consumed on reading. This message se-
mantics is well suited to handle the transport of state
variables in control applications. State message seman-
tics provides an implicit flow control and eliminates the
delicate problem of dynamic buffer management.

TTP supports different operational modes [Jah88,
Jah94], i.e., task and message sets, within the sys-
tem. Each of these modes reflects a certain state or
phase of the application. For example consider an air-
plane. A flight consists of three phases, starting, nor-
real flight and landing. For each flight phase different
activities and thus messages are necessary in the com-
puter system, therefore each of the phases is modeled
by one mode. TTP also provides a protocol service that
can switch between different operational modes dynam-
ically. For every mode up to seven (relative) successor
modes can be defined during design time. Whenever
the TDMA slot of a node has arrived, the node can re-
quest a mode switch to one of these successor modes by
setting the appropriate field in the message header. All
nodes will switch to this successor mode consistently af-
ter the receipt of this message. The latency time for a
mode switch is, at worst, a full TDMA cycle.

TTP contains mechanisms that support the rapid
and consistent detection of the loss of messages or the

failures of nodes. The most prominent of these mecha-
nisms is an integrated membership protocol. This mem-
bership protocol is based on the a priori known send
times of the TDMA protocol, the known points of ar-
rival of each message and the acknowledgment bits con-
tained in each message header. The membership proto-
col reports with a latency of one T D M A round which
node is active and which node is inactive. The member-
ship protocol is the core of many other T T P services:
the clock synchronization service, the consistent mode
change service, the redundancy management service,
the atomic broadcast service, and the blackout moni-
toring service.

The system level fault model of the architecture as-
sumes that nodes exhibit fail-silent failures only, i.e.,
they either produce correct messages or no messages
at all. To support the implementat ion of fail-silent
nodes T T P provides a "High Error Detection Coverage"
(HEDC) mode of operation. In the HEDC mode an ap-
phcation task can append an end-to-end signature to
each data field. This end-to-end CRC will be checked
by the T T P hardware controller and by the receiving
task. In the HEDC mode the complete pa th between
the sending task and the receiving task is protected by
a signature. Fault injection experiments [Kar95] have
shown that this is an effective mechanism to implement
a very high error detection coverage on standard off the
shelf hardware.

The high da ta efficiency of T T P is achieved by tak-
ing advantage of the regularity and a priori knowledge
contained in a TDMA protocol. Since it is known in
advance at what point in t ime a node will send a mes-
sage, there is no need to carry the message name or
the sender name in the message, since send and receive
times are common knowledge.

T T P Message Formats

It is crucial for the operation of TTP that sender and re-
ceiver never disagree about the protocol controller state
(the C-state) during the exchange of normal messages.
The C-state consists of the global time, the operational
mode and the current membership information. The
membership information is represented in a bit vector
with the length of the number of nodes. TTP enforces
C-state agreement by a special mechanism for the cal-
culation of the CRC field of normal messages as is ex-
plained below.

A TTP message consists of three fields, a one byte
header, a data field of up to 16 bytes and a one byte
CRC. In TTP two message types are distinguished by
the first bit of the header, normal messages and initial-
ization messages.

For normal messages the CRC is calculated over the
Header, the Data Field and the local C- state of the
sender, as shown in Figure 4.

Iii

CRC coverage of a normal message
4

I Header I Data Field I C-State

q D
CRC coverage of an initialization message

Figure 4: CRC Calculation

I

The receiver compares the CRC that is calculated
locally over the received header, datafield, and its local
C-state with the CRC contained in the last byte of the
received message. If these two CRCs are different, then
either the message has been mutilated during the trans-
mission or the sender has a different C-state of that of
the receiver. In both cases the message is discarded and
- provided there is no correct redundant message avail-
able - the sender is eliminated from the list of active
members.

An initialization message (I-message) contains in its
da ta field the C-state of the sender and has a "normal"
CRC calculated over the message contents only. Initial-
ization messages are needed at system s tar tup and to
reintegrate repaired nodes into an ensemble. It is good
practice to have at least two different nodes that send
I-messages periodically (possibly with a long period).

Function of the Cluster Compiler

The Cluster Compiler is the off-line part of a MARS
system. The application programmer provides his/her
application specific knowledge to the compiler either
directly or by using a higher level design tool. The
compiler then creates the control information which is
needed for protocol and task execution. A guiding prin-
ciple during the development of the Cluster Compiler is
that the programmer should be able to develop an ap-
plication with minimal concern about the communica-
tion pattern. As long as a temporally accurate version
of the da ta is available at the MBI, the application will
perform as intended.

The function of the Cluster Compiler as the central
tool in system design is determined by the other parts
of a MARS system, i.e., the protocol, the communica-
tion controller, the operating system and the applica-
tion. Each of these parts assumes that certain problems
are solved by the Cluster Compiler off-line, so that all
mechanisms that would be needed for an on-line prob-
lem solution can be eliminated.

The Cluster Compiler also reflects the main design
principle of a T T system, the separation of local and
global concerns. These two main concerns are on the
one hand communication planning, which is a global
subject, and on the other hand task scheduling, which
is primarily of local interest to the application in a node.

In addition to these two main tasks a number of more
specific, smaller tasks are performed.

C o m m u n i c a t i o n Planning
Communication planning is a global issue that has to
be performed simultaneously for all nodes of a cluster.
It consists of two steps that are coupled tightly to each
other, data element allocation and message scheduling.
T T P messages correspond to the common notion of a
message. They are global da ta structures tha t are ex-
changed via the communication medium. The contents
of T T P messages are sets of da ta elements.

Da ta elements are the inpu t /ou tpu t da ta items con-
sumed and produced by an application task within a
node. They only exist in the local part of a node. Dur-
ing the development of an application the programmer
just specifies the da ta elements, he never deals with
T T P messages. Every da ta element has a specified va-
lidity t ime that depends on the dynamics of the real-
t ime state-variable in the environment this da ta element
is representing. If the validity t ime of a da ta element is
longer than the longest time interval between the point
of observation of the real-time state-variable and the
point of use of the corresponding da ta element, we call
a da ta element phase insensitive. An application task
receiving a phase insensitive da ta element can always as-
sume that there is a temporally accurate version of the
da ta available at the MBI. If the above cited condition
is not satisfied, then the da ta element is phase sensi-
tive. Tasks receiving da ta elements of this type must be
synchronized with the sending task and thus with the
message schedule and /or a state estimation task must
be executed at the receiver.

The da ta elements produced by the various applica-
tion tasks are combined to T T P messages during da ta
element allocation, considering the temporal validity of
the da ta elements. In the following step these messages
are scheduled, i.e., for each mode a period called the
cluster cycle is designed. A cluster cycle consists of at
least one TDMA cycle. In each T D M A cycle exactly
one sending slot is assigned to each FTU.

This planning step is performed under a number of
constraints:

• The same sequence of sending FTUs must be used
in every T D M A cycle of a cluster cycle.

• The bandwidth of the communication medium
must not be exceeded.

• Each da ta element must be scheduled observing
its max imum latency as it is specified by the pro-
grammer in the application definition.

Apar t from these apparent limitations other require-
ments have to be fulfilled:

112

In each cluster cycle there must be at least two nodes
that send an I-frame containing their C- state periodi-
cally. The periodical diffusion of this state, that must
be identical for all nodes of a cluster, is needed for rein-
tegration of failed nodes.

When planning the mode changes the Cluster Com-
piler has to ensure that the order of nodes of the old
mode is maintained for at least two slots. This is im-
portant because otherwise the acknowledgment scheme
for received messages could fail.

There are many more requirements and limitations
that reduce the degree of freedom during communica-
tion planning. The above list is by no means complete
but is intended to merely give the reader an idea of some
of the issues that have to be observed and why it is very
difficult to do the planning by hand.

Task Scheduling

Task scheduling is required in every real-time system.
There are two approaches to task scheduling: the dy-
namic approach where the schedules are calculated on-
line on the basis of the actual resource requirements and
the static approach where the schedules are determined
off-line on the basis of the maximum resource require-
ments of a task [Foh94].

In our static approach that maintains the strict sep-
aration of global and local concerns task scheduling be-
longs to the local side. For this reason the task schedule
for every node has to fit the global framework given by
communication planning. Apart from the given commu-
nication framework the application specification is the
basis for task scheduling. This specification must con-
tain details on the data elements (maximum latency,
etc.), details on the tasks (deadline, period etc.), and
the required relationship between the tasks, the task
precedence graph of the application.

The following constraints have to be observed during
task scheduling:

• All tasks must be scheduled so that they meet
their deadlines.

The schedule created by the Cluster Compiler has
to be consistent with the specified task precedence
graph.

Data access to the DPRAM must be synchronized
with the communication controller. It has to be
assured that neither read/write nor write/write
conflicts between the host CPU and the T T P con-
troller may arise.

The Cluster Compiler has to decide which type
of mode change is supported (immediate mode
change, completion of all activities or completion

of some of the current activities). For more de-
tails on the semantics of mode changes the reader
is referred to [Jah88].

Multicluster Systems

In multicluster systems two additional tasks have to be
supported by the cluster compiler, system configuration
and gateway design.

System configuration is concerned with the design of
the communication in a multicluster system. The plan-
ning tool is provided with the number of nodes and the
data elements that have to be passed between them.
Based on this information the tool chooses the appro-
priate number of busses, assigns the nodes to them and
designs their connection via gateways. The main issue
of system configuration is on the one hand the mini-
mization of hardware cost determined by the number
and length of the necessary cables and by the number
of gateway nodes. On the other hand the tool must
minimize the transmission delay of data elements sent
from one cluster to another.

In a multicluster system messages passed between
clusters have to be scheduled such that the overall la-
tency of the information transfer is minimized, i.e., the
Cluster Compiler must create systemwide communica-
tion schedules. In systems with unsynchronized clusters
only a maximum delay can be guaranteed whereas in
systems where clusters are synchronized and the com-
munication is controlled by time-triggered protocols, a
latency guarantee for each message can be given.

S t r u c t u r e of t he C l u s t e r C o m p i l e r

This section describes the structure of the Cluster Com-
piler and explains its parts and the techniques that will
be used.

Heuristic Optimization

The scheduling problem that has been described in the
previous section is known to be NP-complete. It is
therefore impossible to enumerate all solutions in order
to find the best. To solve a problem of this type one has
to rely on heuristic techniques. For the scheduling tool
for former versions of the MARS system we have used
the heuristic search strategy IDA* [Fob94, Kor85]. The
tool for the current version, the Cluster Compiler, will
be based on heuristic optimization strategies as well.
Besides IDA* we intend to evaluate genetic algorithms,
simulated annealing and tabu search.

For each of the five steps of the Cluster Compiler,
shown in Figure 5, the main goals of the optimization
procedure are given in this section. These goals are

113

included into the objective function of the respective
procedure°

~ Bus System Config

Application
Definition

Cluster Compiler

Task Allocation
. . . .

~ Data Element Alloc.
Message Scheduling

Task Scheduling

1
~S ask

chedules~

~Message
chedule (s)~

Figure 5: The structure of the Cluster Compiler

I n t e r f a c e s

A database forms both, the internal interfaces as well as
the external interfaces of the Cluster Compiler, i.e., the
interfaces between its parts and the interfaces to the ap-
plication programmer and the hardware. For the latter
a translation tool that transforms the output into the
form needed by the hardware will be developed. The
advantages of this approach are twofold. The Cluster
Compiler is not concerned with creating a certain out-
put format and it is easier to adapt the output for dif-
ferent purposes, e.g., minimal memory demand, and for
different target systems.

F u n c t i o n a l U n i t s

Task A l l o c a t i o n The first part of the Cluster Com-
piler performs the task allocation, i.e., it assigns the
tasks of the application to the nodes of the system. The
objective function of this step is aimed at equal load dis-
tribution among the nodes and minimization of inter-
node communication.

In many applications this assignment is restricted by
an at least partially fixed allocation. A task reading and
evaluating sensor data, for example, will mostly reside
on the node the sensor is connected to.

The input for this step and thus for the whole Clus-
ter Compiler is the applica~io~ defir~itior~. It consists of

the list of data elements, the task definitions and the
relations between the tasks. For each task its period
and its maximum execution time are specified. In the
list of data elements the size, the temporal validity, the
sending and the receiving tasks of each data element
are defined. Concerning task relations we distinguish
three types, mutual exclusion, simple precedence and
data element transmission, i.e., precedence combined
with data transfer. These relations are specified in the
task precedence graph.

C o n f i g u r a t i o n Based on the previously fixed task al-
location the configuration part chooses the appropriate
number of busses, assigns the nodes to them, and con-
nects the busses via gateways. The optimization proce-
dure of this step is dedicated to the minimization of the
overall message transmission delay and the number of
busses and gateways. Moreover it takes into consider-
ation so called locality constraints, which can be speci-
fied by the application programmer. For instance these
constraints force that a set of nodes has to be assigned
to a certain bus or that a fixed number of busses and
gateways has to be used.

D a t a E l e m e n t A l l o c a t i o n Within the third step,
data element allocation, data elements produced by the
various tasks are combined to T T P messages and their
size and period is calculated. The constraints that apply
to this step have been mentioned in the previous section.

M e s s a g e S c h e d u l i n g Message scheduling is coupled
tightly to the previous part, in fact the separation into
two logical steps is for reasons of clearness only. This
scheduler assembles single T T P messages to cluster cy-
cles and creates the control information that is needed
for protocol execution.

The objective function for the steps data element
allocation and message scheduling considers the con-
straints associated to data elements, especially the max-
imum latency, as penalty terms. If a constraint is not
met by a solution, the "cost" of this solution is increased
by the corresponding penalty term, thus making it un-
likely that the solution is taken into consideration any
further. The main goal implemented by the objective
function is on the one hand the minimization of the re-
quired bandwidth on the communication medium and
on the other hand the optimal utilization of this band-
width requirement.

This step finishes global planning. The following
step creates only local control information for each node.

Task S c h e d u l i n g During the last step the Cluster
Compiler performs task scheduling and creates the con-
trol information representing the task schedule for the
host processor's operating system at each node. It is

114

based on the knowledge of the communication system,
which has been defined in the previous steps. The mes-
sage schedule establishes the boundary conditions for
task scheduling, in the sense that the earliest release
time of a task must be later than the latest arrival time
of a message received by the task and that its deadline
must be prior to the earliest sending time of a message
sent by this task. In the section on task scheduling we
have mentioned communication planning being a global
issue as a reason for doing this planning step first. Yet
there is a second reason: As our communication pro-
tocol is based on a strict TDMA scheme the degree of
freedom is much higher in task scheduling than in mes-
sage scheduling. Doing the task scheduling first would
further reduce the solution space for message schedul-
ing.

The restrictions to task scheduling mentioned above
apply only to tasks that process phase sensitive data.
Tasks acting on phase insensitive data solely can
be scheduled without synchronization to the message
schedule. The state message concept ensures that there
is always valid data available at the MBI. Thus task ex-
ecution for phase insensitive data is completely decou-
pied from the timing of any communication action.

The objective function of task scheduling forces only
the fulfilling of the constraints put upon a task, i.e., its
period, its relations and for tasks processing phase sen-
sitive data the boundary conditions determined by the
message schedule, by introducing penalty terms again.
There is no parameter that has to be optimized explic-
itly, not even the overall schedule length, as this length
is predetermined by the length of the cluster cycle that
is designed during communication planning. Optimiz-
ing the overall schedule length or maximizing the pro-
cessor idle time within the predetermined cluster cycle
length makes sense only if spare capacities for sporadic
tasks have to be saved. This approach will be used in a
later version of the new MARS system.

S u p p o r t o f D i f f e r e n t P l a n n i n g I s s u e s

The Cluster Compiler must support two different types
of planning, overall planning on the one hand and par-
tial (re)planning on the other. In overall planning the
system and its control structures are designed through-
out all the steps starting from the application defini-
tion. Partial (re)planning means doing only some steps
of the planning process, i.e., starting somewhere in the
middle, skipping the earlier steps.

To cope with these two demands two versions of the
Cluster Compiler will be implemented, one integrated
tool for overall planning and a single-step tool with clear
interfaces between the steps for partial (re)planning.

S i n g l e - S t e p Too l

This version of the Cluster Compiler consists of clearly
separated parts that communicate with each other via
database interfaces. Each step writes its output to a
database that serves as input for the succeeding step.
Thus it is possible to start the planning at any step.

The single-step Cluster Compiler will be used mainly
to perform local changes without influencing the global
parts of the system. If for instance a task on one node
changes there is no need to redesign the bus system lay-
out and the message schedules. Only the task schedule
on this node has to be recalculated.

I n t e g r a t e d Tool

One main goal of our research is a comprehensive inte-
gration of the main steps described above. As a "local"
optimization within each function results in a subopti-
mal global solution an integrated optimization for all
design steps must be achieved.

If planning is done in an integrated manner, it is no
longer possible to distinguish the parts of the Cluster
Compiler. To be able to redesign parts of the system us-
ing the single-step tool the internal interface databases
have to be filled. This is done by a special tool that cre-
ates the database entries out of the Cluster Compiler's
final output.

Conc lus ion

We have presented an architecture for a distributed
time-triggered real-time system and have given an in-
troduction to the communication protocol T T P that is
used by the communication system of our architecture.
This protocol provides all services needed for the imple-
mentation of fault-tolerant hard real-time systems.

We have focused on our main design guideline, the
strict separation of local and global issues. This prin-
ciple is realized in the hardware of each node and sup-
ported by the design system, the Cluster Compiler. We
have shown the issues and concepts for this off-line de-
sign tool, especially how our main principle will be im-
plemented in the tool.

The functions of the Cluster Compiler, i.e., message
and task scheduling, and the requirements put upon
these functions by the other parts of the system have
been described. Based on this we have introduced a
clear design structure.

The next steps in our research will be the evaluation
of heuristic optimization algorithms and the definition
of the interfaces between the Cluster Compiler and the
remaining MARS system. As argued these interfaces
determine the function of the Cluster Compiler, because
they specify its input data and its required outputs.
For this reason they are the basis for all future work

115

concerning the Cluster Compiler and the other parts of
the system.

A c k n o w l e d g e m e n t

This work has been supported in part by the ESPRIT
BRA PDCS 2o

R e f e r e n c e s

[Che95]

[Foh94]

[Glo93]

[Ho175]

[Hou94]

[Jah88]

[Jah94]

[Kar95]

[Kir83]

Sheng-Tzong Cheng and Ashok K. Agrawala.
Allocation and Scheduling of Real-Time Peri-
odic Tasks with Relative Timing Constraints.
Technical Report CS-TR-3402, University of
Maryland Institute for Advanced Computer
Studies, Dept. of Computer Science, Univ.
of Maryland, College Park, MD 20?42, USA,
January 1995.

G. Fohler. Flezibility in Statically Scheduled
Real-Time Systems. PhD Thesis, Technisch-
Naturwissenschaftliche Fa.kult~t, Technische
Universit~it Wien, Wien, Osterreich, 1994.

F. Glover, E. Talllard, and D. de Werra.
User's Guide to Tabu Search. Annals of Op-
erations Research, 41, 1993.

J.H. Holland. Adaptation in Natural and
Artificial Systems. MIT Press, Cambridge,
Mass., USA, 1975.

E.S.H. Hou, N. Ansari, and H. Ren. A Ge-
netic Algorithm for Multiprocessor Schedul-
ing. IEEE Transactions on Parallel and Dis-
tributed Systems, 5(2), February 1994.

F. Jahanian, R. Lee, and A. Mok. Semantics
of Modechart in Real Time Logic. In Proe. of
the 21st Hawaii International Conference on
Systems Sciences, pages 479-489, Jan. 1988.

F. 3ahanian and A.K. Mok. Modechart: A
Specification Language for Real-Time Sys-
tems. IEEE Transactions on Software Engi-
neering, 20(12):933-947, Dec. 1994.

J. Karlsson, P. Folkesson, Jean Arlat, Yves
Crouzet, and Giinther Leber. Integration and
Comparison of Three Physical Fault Injection
Techniques. In Predictably Dependable Com-
puting Systems, chapter V: Fault Injection,
pages 309 - 329. Springer Verlag, 1995.

S. Kirkpatrick, C. Gelatt, and M. Veechi. Op-
timization by Simulated Annealing. Science,
220:671-680, May 1983.

[Kop91]

[Kop94]

[Kop95a]

[Kop95b]

[Kor85]

[Moo93]

[Nan92]

[Por93]

[Sys91]

H. Kopetz. Event-Triggered versus Time-
Triggered Real-Time Systems. In A. Karsh-
mer and J. Nehmer, Editors, Proe. Int. Work-
shop on Operating Systems of the 90s and
Beyond, Lecture Notes in Computer Science,
Volume 563, pages 87-101, Berlin, Germany,
1991. Springer-Verlag.

H. Kopetz and G. Grfinsteidl. TTP - - A Pro-
tocol for Fault-Tolerant Real-Time Systems.
IEEE Computer, pages 14-23, January 1994.

H. Kopetz, M. Braun, C. Ebner, A. Kriiger,
D. Millinger, R. Nossal, and A. Schedl. The
Design of Large Real-Time Systems: The
Time-Triggered Approach. Research Report
14/95, Institut fiir Technische Informatik,
Technische Universit~t Wien, Vienna, Aus-
tria, May 1995.

H. Kopetz, A. Kriiger, D. Millinger, and
A. Schedl. A Synchronization Strategy for a
Time-Triggered Multicluster Real-Time Sys-
tem. Research Report 4/95, Institut fiir
Technische Informatik, Technische Univer-
sit,it Wien, Vienna, Austria, Feb. 1995. Ac-
cepted for publication at the 14th Syrup. on
Reliable Distributed Systems.

R. Korf. Depth-First Iterative-Deepening:
An Optimal Admissable Tree Search. Arti-
ficial Intelligence, 27(3):97-109, 1985.

E.L. Mooney and R.L. Rardin. Tabu Search
for a Class of Scheduling Problems. Annals
of Operations Research, 41, 1993.

A.K. Nanda, D. DeGroot, and D.L. Stenger.
Scheduling Directed Task Graphs on Mul-
tiprocessors using Simulated Annealing. In
Proc. of the 12th Int. Conference on Dis-
tributed Computing Systems, 1992.

S.C.S. Porto and C.S. Ribeiro. A Tabu
Search Approach to Task Scheduling on
Heterogeneous Processors under Precedence
Constraints. Technical Report PUCRioInf-
MCC03/93, Department of Computer Sci-
ences, Catholic University of Rio de Janeiro,
Rio de Janeiro, Brazil, 1993.

G. Syswerda. Schedule Optimization using
Genetic Algorithms. In L. Davis, Editor,
Handbook of Genetic Algorithms, New York,
USA, 1991. Van Nostrand Reinhold.

116

