
WindView:
A Tool for Understanding

Real-time Embedded
Software Through System

Vizualization
Dav id Wi lne r

W i n d Rive r Sys t ems

Introduction

There is enormous pressure today on software
development teams creating real-time embed-
ded systems. The software content of embed-
ded systems is increasing, the applications are
becoming more complex, the time-to-market
pressure is increasing, and more often than not,
the success of the entire project or product
hinges on the software. Thus these software
developers find that their job is becoming more
difficult and more critical, but that they have
less time to do it.

Modern embedded software applications are
marvelously complex machines. Real-time
operating systems provide a rich set of facili-
ties for decomposing an application into multi-
ple concurrent tasks interacting through
mechanisms for synchronization, mutual
exclusion, communication, timing, interrupt
handling, exception and error handling, and so
on. Many applications use a sophisticated cli-
ent-server model of interaction. Many use
multiple processors, both loosely and tightly
coupled. A typical embedded application will
use hundreds or even thousands of system
objects including tasks, semaphores, message
queues, timers, I/O devices, network connec-
tions, and more.

The problem is that while advances in hard-
ware, operating systems, and application
frameworks have provided the facilities for
building such complex machines, the develop-
ment environments have not provided the tools

to manage such complexity during develop-
ment, testing, and debugging. The tool
described in this paper, WindView(g), is
designed to fill this need.

WindView's Goals

WindView is based on three principles that are
essential for the next generation of develop-
ment tools: system-level development, system
visualization, and system dynamics.

System-Level Development: Raising Develop-
ers' Sights
WindView's first goal is to raise the level at
which application developers are working
while keeping pace with the increasing pro-
ductivity demands - moving from source-level
debugging to system-level debugging.

With software applications becoming more
complex, development methodologies improv-
ing, and code reuse increasing, developers find
themselves spending less time writing and
debugging sequential lines of code in a single
source module, and more time working on sys-
tems integration, debugging interactions
between modules, tasks, and entire sub-
systems. Developers need tools that under-
stand system level constructs of tasks and
processes, interprocess synchronization and
communication, interrupts, timers, and excep-
tions, and their interactions. WindView allows
developers to monitor and control these inter-
actions directly, raising the developers' van-
tage point and thus their productivity.

System Visualization: A Picture is Worth a
Thousand Words

Considering that a complex software applica-
tion may consist of dozens of processes, tasks
and interrupts, and hundreds of system objects
such as semaphores, message queues, and tim-
ers, it is easy to understand why developing
such software is so difficult. How can infor-
mation about the system be presented in a way

WindView / Wind River Systems

1 17 ACM SIGPLAN Notices, Volume 30. No. 11 November 1995

http://crossmark.crossref.org/dialog/?doi=10.1145%2F216633.216674&domain=pdf&date_stamp=1995-11-01

that helps rather than overwhelms the devel-
oper? The answer is in pictures.

Graphical displays can make complex systems
understandable by presenting the mass of
information in a form that developers can more
easily digest. Today's graphical user interfaces
(GUIs) make it possible to create tools that do
this.

Unfortunately the first generation of GUI-
based tools has been little more than window
dressing on the old command line interfaces,
providing buttons or menus to access the same
old utilities. In contrast, the WindView is a
completely new GUI-based tool that displays
system information intuitively, shows relation-
ships between system components, and helps
the developer visualize the application's con-
struction and behavior.

System Dynamics: Seeing Software in Action

In the last few years tools for exploring the
static construction of software has become
commonplace, such as source browsers and
cross-referencers. But the difficult problems in
real-time embedded systems are dynamic
problems of interactions among system com-
ponents. Software diagnostic tools have been
limited to "snapshots" of the momentary state
of various system objects (e.g., tasks, sema-
phores, message queues) and profilers that
give broad system statistics such as average
CPU utilization by task or by subroutine.

Developers have remained in the dark about
the detailed inner-workings of their application
and operating system. They have had no way
to examine in detail the sequencing and timing
of software state transitions, synchronizations,
communications, context switches, interrupts,
and significant application events of all kinds.
Yet this is precisely the information that devel-
opers need to solve common software prob-
lems such as missed deadlines, inadequate
response times, performance bottlenecks, race

conditions, client-server deadlocks, and hard-
ware/software interaction errors.

To meet this need, WindView captures a
detailed history of the actions and interactions
of application and system software compo-
nents over time and then interprets and dis-
plays this history in the ways most meaningful
to the software developer.

WindView: Taking Off the Blindfold
By capturing and graphically displaying the
precise sequence and timing of events in an
embedded application, WindView gives devel-
opers an unprecedented view of their software
in action.

In various modes WindView allows the devel-
oper to see periodic patterns in the application,
discern unused CPU bandwidth, help debug
race conditions and deadlocks, identify perfor-
mance bottlenecks, time segments of applica-
tion code, assist in post-mortem analysis of
failed systems, and debug client-server appli-
cations. Bugs that in the past have delayed
product completion by days, weeks or even
months can in many cases be located and
solved in minutes.

The basis of WindView's capabilities is a vari-
ety of instrumentation capabilities built into
the latest version of the VxWorks® real-time
operating system and several other commer-
cially available non-real-time operating sys-
tems. This instrumentation is what allows
WindView to capture information and monitor
the detailed activities of the system. For
instance, WindView logs all task state transi-
tions (i.e., the points at which tasks are started,
interrupted, blocked and unblocked, and com-
pleted). The instrumentation likewise tracks
changes in system objects such as the sending
and receiving of messages, or giving and tak-
ing of semaphores. As elaborated below, con-
siderable attention has been paid to keeping
the overhead of the WindView instrumentation

WindView / Wind River Systems

118

Host
f
Graphical Display

& Analysis

I i I
\ I

// ,jEvent Logging

Target

nstru mente
Run-time

Figure 1

minimal.

WindView components on the host system
analyze the event stream from the instru-
mented target and display them on an oscillo-
scope-like graph of system activity (see figure
2). The background is a trace of the thread of
execution as the operating system context
switches between various processes, tasks, and
interrupts. Overlaid on this trace are symbols
representing task state transitions and other
system events on semaphores and message
queues, interrupts, timer expirations, and so
on. The display can be scrolled forward and
backward in time and zoomed in and out to
different time scales. Detailed information on
each event is available by clicking on the cor-
responding symbol on the display. The precise
high-resolution timestamp (better than 1
microsecond resolution, in most configura-
tions) is available for each event, and the
elapsed time between any two events can be
displayed.

Using WindView
WindView is a rich tool that has many possible
uses in the development of software applica-

tions. Because it is a new kind of tool, devel-
opers are still finding unexpected ways to use
WindView.

With the display "zoomed out", developers can
see the overall contour of execution of the sys-
tem. In particular, cyclic and periodic patterns
are easily discernible. These patterns can pro-
vide a kind of signature for the system that
changes when the system changes modes. The
"duty cycle", including the amount of unused
processor bandwidth in a cyclic application,
can be easily measured on the display.

On the other hand, "zooming in" shows a
detailed event-by-event trace of the system.
For the first time, developers have the informa-
tion they need to find subtle problems such as
race conditions, missed deadlines, deadlocks,
and "performance bugs" (in which an applica-
tion is generating correct results but at signifi-
cantly slower speed than intended). For
example, a task failing to complete its process-
ing in time to handle a particular external inter-
rupt would be immediately visible in
WindView. Excessive competition for a par-
ticular mutual exclusion semaphore would be
visible as a series of rapid context switches

WindView / Wind River Systems

119

[~iddLuTn~ I
l { l ' t~T'ek I

I [nLE]

. i .

. i .

.

. E .
.=

, i , i , i , i , l , i , 1 , i , i , i , l , i , l , i , l , i , l , i , l , i , I , i , I

Figure 2

among the contending tasks. The cause of a
deadlock (where, for example, each of two
tasks blocked waiting for a resource owned by
the other) is easy to track down by scrolling
backwards to see the events leading up to the
deadlock.

For clarity, the amount of information on the
WindView display can be reduced by specify-
ing filters such that only selected types of
events are displayed and/or only events caused
by selected tasks. For example, client-server
based architectures are easy to examine by
restricting WindView to display only events on
the relevant message queues.

One of the most powerful capabilities of
WindView is the ability to do post-mortem
analysis, historically one of the most vexing of
debugging jobs. With traditional tools, when a
program under development crashes, no record
is kept of what the system was doing when the

failure occurred. The engineer typically has to
figure out the cause by trial and error, running
various pieces of code until the failure is dupli-
cated and then tracking down the flaw. Wind-
View, by contrast, keeps an event log that
remains intact after program failures, making
it possible to examine the sequence of events
leading up to the failure.

C u s t o m i z i n g W i n d V i e w

WindView is not limited to displaying only
operating system events: application develop-
ers can instrument their applications as well.
Application code can make calls directly to the
event logging facilities. These application
events can then be displayed on the WindView
display with their own user-defined icons
along with the built-in events. This allows
developers to obtain precise timing informa-
tion about application internals. For example,
the time spent in successive layers of a net-

WindView / Wind River Systems

120

work protocol stack can be easily determined
by inserting logging calls at the entrance to
each layer. Then each layer transition will be
displayed on the WindView display and the
elapsed time between each can be measured
precisely.

More dynamically, developers can instrument
their application interactively via the source
debugger. By setting an "eventpoint" on a
given line of source code, an event will be
logged whenever that line of code is exe-
cuted. These eventpoints will also be dis-
played on the timeline. Clicking on an
eventpoint symbol on the timeline will bring
up the corresponding source line in the source
display window. Conversely, it is possible to
have the event stream searched for the occur-
rence of a particular eventpoint and the Wind-
View display positioned at that event.

WindView allows developers to time applica-
tion algorithms with unprecedented ease and
precision. Traditional methods of timing a
piece of code often relied on invoking the code
repeatedly until the elapsed time could be mea-
sured by a low-resolution clock. However,
this gives only a statistical average of the exe-
cution time and can be very inaccurate if mem-
ory caches are involved. By installing
eventpoints before and after the code to be
measured, a very precise and accurate timing
of a single invocation of the code is easily
obtained.

WindView is also fully programmable. Using
the popular TCL (Tool Control Language)
users can create scripts to do anything that it is
possible to do from the graphical user inter-
face. TCL scripts can also be used to custom-
ize the display of user defined application
events.

Finally, WindView has several layers of open
APIs that allow users to access the underlying
primitives. APIs are provided for timestamp-
ing, logging of events, inserting eventpoints,

and manipulating log buffers. This has
allowed WindView to be connected to a wide
variety of environments including traditional
desktop systems, embedded hardware/soft-
ware systems, and simulators.

More About the WindView Instru-
mentation

A key issue in a dynamic monitoring and anal-
ysis tool like WindView is the overhead that it
places on the target system and how that over-
head might perturb the functioning of the sys-
tem under test. Considerable attention has
been paid to keeping the overhead of the
WindView instrumentation minimal, so that
even with all the instrumentation enabled on a
very complex application, the total overhead is
typically a fraction of a percent of the total
available CPU cycles. Most developers find
that the few extra microseconds incurred on
certain system functions is far outweighed by
the months of development time that can be
saved with WindView.

WindView addresses the intrusion issue in sev-
eral ways. First the timestamping and logging
itself is highly optimized so that making a log
entry takes only few microseconds in a typical
configuration.

Secondly, the amount of logging is kept to an
absolute minimum by a technique called
"incremental annotation". The traditional
brute-force approach to logging is to capture a
complete description of the relevant system
state and event parameters at each event.
WindView's "incremental annotation" tech-
nique puts the event logging at carefully
selected points in the kernel's internal state
transitions, capturing only the minimum incre-
mental information necessary to reconstruct
the sequence of events in the application. This
requires a much more sophisticated analysis
tool to parse and recreate the system state tran-
sitions as they originally occurred. Thus Wind-
View trades off higher post processing for

WindView / Wind River Systems

121

much reduced logging during program execu-
tion, thereby eliminating up to 50% of the
instrumentation overhead at run-time.

Finally, WindView instrumentation is very
flexibly run-time selectable. The instrumenta-
tion can be turned on to one of three instru-
mentation levels, giving successively more
information about the behavior of the system
at the expense of more logging overhead. The
lowest level is the context switch events. With
this level WindView can display the sequence
of execution of all tasks and interrupts. The
next level is task state transition events, such
as a task becoming unblocked or a delay timer
expiring. With this level, WindView can dis-
play the state of each task at all times. The

highest level is the system object events, such
as giving or taking a semaphore, or send or
receiving a message. With this level Wind-
View can display the actions that caused the
context switches and state transitions. These
levels of instrumentation can be selected inter-
actively, at run-time.

Developers can also select classes of objects to
be instrumented or not instrumented and even
turn on and off instrumentation on a per object
basis. For example, the developer can turn on
instrumentation for semaphores but turn of the
instrumentation of message queues. At a finer
level of granularity the developer can select
certain semaphores of interest to be instru-
mented while leaving all other semaphores

urknmn t~k~aFe ~-l~e

u~crI~+'J nod ~mFLum%

~:~-~kSpav n ~ -',,rag Lye

udr~nc~l p~=

N V
vdE>~lr~

r~e~F~cedve

~H

ql
zi~Iimll~nd(i L)

N
sl~na[

~i~u~d

V

V lrdPr'll:~lta-3 L~OEe" ~ll!

b~kE~epklan

' l ip

~klJn La.~ t~i~k~ undn t.= a S
i I i

, ,

tb~akPl" LOt' Lt..IJ~t:. :~nlrd~Cr'~at.~
u~r~te

u~c L,~r..c
® ® ®
• nr l ' lD",~at , ,a t~k ,q~Ne .dgb~-b

k~It

%

~ l~nded

do l led

l a m , - I - d

r~d~

runnJng

lo=ked

lmm-rupr~d

ir/~m-i+.Ed
".SIIZI, J l , . ~ ' t t t t l . g i i i t t t l l t l l h

rl~d

unkr..n

Figure 3

WindView / Wind River Systems

122

uninstrumented. Again, this selection of instru-
mentation options is done at run-time with no
recompilation or rebuilding of the application.

More About the WindView Display
and Analysis Tools

WindView's user interface is extremely sophis-
ticated and yet is so simple and intuitive to use
that developers can get started without reading
the manual. The WindView display starts with
traditional "zoom", "pan", and "scroll". The
analysis tools include "filters", "searches", and
"triggers" which allow the user to select and
find the events of interest in a complex appli-
cation by combinations of criteria. A "delta
time" field displays the elapsed time between
two user controlled cursors, allowing the time
between events to be measured to the micro-
second. "Bookmarks" allow the developer to
mark and return to those locations with a sin-
gle click. With WindView, the developer can
bring up multiple display windows that can be
scrolled and panned separately to allow com-
parison of different execution sequences.

The graphical user interface uses a consistent
time-saving drag and drop paradigm. For
example, to get the detailed information per-
taining to a particular event, the user drags the
event icon into an "Event Inspectors" window.

Finally, WindView contains an extensive on-
line hypertext help system.

WindView is a versatile tool that has many
possible uses in the development of an embed-
ded system--from verifying high-level design
to debugging common real-time problems to
assisting quality assurance efforts in regression
testing. Developers with imagination are find-
ing many more uses for a tool of WindView's
power.

About the author...
David Wilner, Vice President of Engineering
for Wind River Systems, co-founded the com-
pany in 1981 and is a recognized expert in the
field of real-time software engineering. Prior
to Wind River, Wilner spent several years as a
Senior Staff Scientist at the Lawrence Berke-
ley Laboratory, where he was chiefly responsi-
ble for the implementation of real-time control
systems for several nuclear accelerators and
high-speed computer networks. Wilner has a
B.S. in computer science from the University
of California, Berkeley. He is a member of
several national standards committees, includ-
ing the POSIX standards committee.

WindView / Wind River Systems

123

