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Abstract: Inter-process communication and scheduling 
are notorious problem areas in the design of real-time 
systems. Using CASE tools, the system design phase will 
in general result in a system description in the form of 
parallel processes. Manual allocation of these processes to 
processors may result in error prone and/or slow 
communication code. Scheduling of the processes, 
necessary to meet timing constraints, is also a tedious task 
that takes many iterations. The described design tools 
result in code that is comparable in quality and 
performance with expert manual realization. Many 
network layers have been implemented to relieve the user 
from the low-level programming of communication 
software. However, the increase in user-friendliness is 
usually paid with performance degradation. The proposed 
approach combines user-friendliness with high 
performance by generating communication software that is 
tailor-made for the application. A similar approach is 
followed with the scheduling software. Schedulers in the 
form of a built-in a kernel are available all the time and 
cause overhead all the time. The proposed preprocessor 
tool generates scheduling software after analyzing the 
timing requirements of the particular application. This 
results in simple code for simple timing requirements and 
more complicated code for complex timing requirements. 
The tools have been implemented in Occam for use on a 
transputer. However, the results are valid for any 
distributed memory machine. 

1. Introduction 
Three real-time aspects exist in the design of real-time 
systems. First there is the sampling and actuation of the 
processes to be controlled. These tasks have to be 
performed at exact time intervals. Inaccuracies in these 
intervals invalidate the assumptions of the underlying 
control algorithm. As a result the system under control may 
become unstable. The second real-time aspect exists in the 
calculation processes which transform the measurements 
into control actions. These calculation processes require a 

guarantee that the results will be available at the next 
actuation time. Thirdly there are the background tasks 
which have to be performed whenever the processor is not 
busy performing the first two tasks. As a result three 
classes of tasks can be identified in real-time systems: 

• Time-bounded processes: processes which 
have to be guaranteed to start at a certain 

time instant, e.g. sample processes. 
• Time-limited processes: these processes may 

start at any time as long as they complete 

before a certain deadline, e.g. calculation 
processes. 

• Background processes: processes which do 
not have critical time requirements (data 
logging or statistical analysis) and may be 
executed as background processes. 

The sampling and actuation processes are time-bounded 
processes. Writing code for sampling and actuation 
systems is complex and error-prone. In the control 
laboratory a tool was developed to perform this task. The 
tool called Transputer Application generator for Sample 
processes in Control systems - TASC (Meijer, 1990) is 
based on formal specifications of both the sampling 
hardware and the sampling and actuation tasks in a 
language called TASC-L. Based on these specifications the 
tool generates optimal sampling code for every processor 
in the sampling and actuation system. This tool is not 
further discussed in this paper. 

Time-limited processes constitute a completely different 
set of problems i.e. the interconnection and scheduling of 
the different processes on different processors. In 
computer-controlled systems, the control loops can be 
represented as sampling-to-actuation chains (Bakkers 
1987), see Figure 1. The sample-to-actuation chain 
contains time-bounded and time-limited processes. This 
paper deals with the time-limited processes in two ways, 
i.e. the interconnection of these processes and the 
scheduling of them. 
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Figure 1: Samp l ing - to -ac tua t ion  cha in  

Interconnection of processes is usually solved by using 
some kind of network layer. The use of standard network 
layers may cause the following problems: 

• deadlock caused by the network layer 

• network layer overhead 

• restricted interface for  user processes 
As a result, not many network layers are generally 
accepted by experienced real-time system designers. The 
vast majority of network layers is implemented by packet 
switching networks using uniform routing processes to 
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forward the, usually fixed sized, packets across the 
network. There are two main reasons why these general 
purpose network layers are not optimal: 

• intermediate network processes 

• packetization 
This is illustrated in Figure 2, where a single message is 
handled by several network processes, converted to 
packets, sent across a processor network, reassembled and 
again handled by network processes before it is delivered 
to its final destination. 
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Figure 2: Layers wi th in ne twork  layers. 

Section 2 introduces the Virtual Channel Generator-VCG, 
a tool to automatically generate the inter-process 
communication. This is done by analyzing the 
communication requirements of the application processes 
that are allocated to each processor. In our research the 
process allocation is automated with the Post Game 
Analysis (PGA) tool (Sunter 1991, Yan 1989). Based on 
the channel protocols and their topology, an optimal 
allocation of links and network layer processes is 
determined. This approach combines design-time 
flexibility with run-time efficiency. Instead of always 
adding the same general purpose kernel for the provision 
of a transparent communication service, a dedicated kernel 
is generated for each processor. This is possible, because 
a-priori knowledge can be extracted at compile time from 

the application processes that are allocated to each 
processor. 
This knowledge consists of the communication sizes on the 
channels and of the topology of the application processes. 
The Virtual Channel Generator (VCG), the network 
generator, is sufficiently smart to recognize situations in 
which it is not necessary to add network processes. As a 
result, the network layer is optimally adapted to the 
requirements of the specific application. 

Section 3 of this paper considers the scheduling of time- 
limited processes. The schedulers that are presently 
available in real-time kernels suffer from large overheads 
and/or restrictive process interfaces. Basically there are 
three types of scheduling algorithms: 
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• round robin scheduling 
• rate-monotonic scheduling 
• dynamic deadline scheduling 

Round-robin scheduling is often not taken very seriously 
among real-time programmers. Although this may be true 
in a multi-priority environment, whenever there is only one 
priority the sequence of execution of processes does not 
make any difference. Round-robin scheduling therefore is 
the proper solution within one priority level. 

Liu and Layland (1973) showed that there are two optimal 
priority assignment algorithms, i.e., one for fixed priority 
and one for dynamic priority scheduling. The optimal fixed 
priority assignment algorithm is called rate-monotonic 
scheduling. This algorithm requires as many priorities as 
there are sample-frequencies in a control system. The 
highest priority is assigned to the process with the highest 
sample-frequency. 

The optimal dynamic priority assignment algorithm is 
called deadline driven scheduling. Here, varying priorities 
are assigned to the processes at runtime. The highest 
priority is assigned to the process with the nearest 
deadline. A large range of priorities is required of which 
only a subset is used at any time. However, the list of 
process-priorities should be kept sorted at run-time. This 
causes overhead to the run-time kernel. This is the reason 
why this scheduler is hardly ever implemented. 

The difficulty in the realization of real-time kernels is the 
decision when priority scheduling should take place. 
Considering the fact that such a priority scheduling causes 
more overhead than the traditional round-robin 
scheduling, it should only be used when necessary. In our 
process model there are only two instances where priority 
scheduling should take place: 

• at the completion of the time-bounded 
processes 

• at the completion of each time-limitedprocess 
As a consequence round robin scheduling may be used in 
all other situations. The implementation of the priority 
scheduling is further discussed in Section 3. 

2. Inter-process communication 
This section deals with the automatic generation of inter- 
process communication code in real-time parallel 
transputer systems. The transputer is designed as a basic 
building block for parallel computers. However, in the T2, 
T4 and T8 family of transputers it is not trivial to map an 
arbitrary process structure to a given hardware 
configuration. The parallel programming language Occam 
has been extended with hardware specific configuration 
statements that allow for a low-level mapping of the 
software topology onto the hardware topology. However, 

the low-level nature of the configuration statements makes 
it necessary to specify this mapping in particular detail. 
Especially during the implementation process, when the 
mapping of processes changes often, this is a tedious task. 
The communication problem stems from the fact that 
transputers come equipped with four high-speed serial bi- 
directional communication links which can be used to 
connect to other transputers. This makes the transputer 
well suited as a building block for parallel computer 
systems. The use of the links is transparent to the user. 
This means that sending messages over links to other 
transputers is done in the same way as sending messages 
over channels between processes on the same transputer. 

$ 
a b 

Figure 3: Parallel programs running on 
one, two, and three transputers, 

For example in Figure 3(a) a parallel program consisting 
of four processes is allocated to a single transputer. Figure 
3(b) shows the same program allocated to two transputers, 
and in Figure 3(c) the program runs on three transputers. 
The process structure for the three implementations is the 
same, the same code can be used for the processes in the 
three allocations. 

Mapping the software structure on the hardware structure 
is done in a configuration language. This language is 
based on Occam, but augmented with configuration 
statements that address the hardware specific details of 
parallel programs. The configuration is used to specify two 
different topics. First, it describes the hardware structure 
by specifying the hardware topology and processor 
attributes such as processor type and memory sizes. 
Secondly, it specifies the mapping of Occam processes and 
channels to the available processors. When a channel 
connects processes on different transputers, the channel 
has to be placed on a specific hardware link. Only one 
channel can be placed on a link in a given direction. When 
there are more channels between transputers than links, the 
mapping process gets complicated. Multiplexers and 
demultiplexers need to be inserted into the process 
structure to combine several channels into one. This is not 
only error-prone and complex, but has to be redone every 
time the mapping of the processes or the hardware 
topology changes. 
Besides complexity, there is another problem with 
manually mapping the software structure on the hardware 
structure. Inserting multiplexers and demultiplexers 
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changes the software structure and may easily introduce 
cycles in the process graph. When all processes in such a 
cycle wait for communication with each other, deadlock 
occurs. When this happens the processes in the cycle will 
block. For example see the parallel program in Figure 
4(a). The program consists of a pipeline of four processes, 
clearly without cycles and therefore without deadlock. 
When this program is allocated to two transputers as 
shown in Figure 4(b), both the channel from process A to 
B and the channel from process C to D connect processes 
on different transputers. Since only a single connection is 
available between the two transputers, a multiplexer and 
demultiplexer pair needs to be inserted into the process 
structure. The resulting process structure is shown in 
Figure 4(b). Inspection of the process structure reveals a 
cycle in the process graph, connecting process B, C, m and 
d. This indicates the possibility of a deadlock, which did 
not exist in the original program. 

a b ¢ 

Figure 4: Insertion of multiplexers and 
demultiplexers. 

On a more abstract level, the use of a shared resource, i.e. 
the transputer links, causes extra synchronization between 
the processes A, B, C, and D. Since communication is 
synchronous in CSP based systems, it can be represented 
in the process graph in the same way as dependencies. The 
extra dependencies introduced make A also dependent of 
D, and C also dependent of B. This results in the 
dependency graph of Figure 4(c), which shows more 
clearly the cycle in the process graph. 
As stated before, a network layer may cause the following 
problems: 

• deadlock caused by the network layer 
• network layer overhead 
• network layer interface 

Deadlock 
Network layers may be proven to be deadlock-free under 
certain circumstances. However, in order to prevent 
network generated deadlocks, the usual assumption is that 
the user processes are always ready to receive packets. 
Therefore the network processes will never block 
delivering messages. However, this assumption places a 
heavy burden on the application processes. It is not 
convenient or easy to write processes that satisfy this 
assumption. 
The processes that are generated by the Virtual Channel 
Generator (VCG) ensure that no deadlock is introduced in 
the application. Even if the application processes block, 

the network processes will not be the cause of deadlock. 
VCG is actually an automated version of TRANSNET 
(Welch, 1989) with smart handling of buffer space and 
automatic routing of channels across multiple transputers. 

Overhead 
In typical control system software the required 
communication size may vary from a few bytes to several 
hundred Kbytes depending whether control bytes or certain 
data bytes are transmitted. This is the main cause of large 
amounts of overhead in packet switched network layers. 
For small messages, large packets cause lots of overhead. 
If this overhead is reduced by choosing small packets, the 
larger messages may take minutes to be transmitted. 
Besides the packet size, the choice of buffer type will also 
affect the overhead of the communication layer as reported 
in (Wijbrans 1990). VCG does not use packet switching. 
For each channel enough bufferspace is allocated to hold 
the largest message that may be send across it. 

Network layer interface 
The interface between user processes and standard network 
layers is usually quite restrictive. Usually only a single pair 
of channels is available to the user process for 
communication with the network layer. This means that 
messages from different sources arrive through the same 
channel. Therefore selection with Occam ALT-statements, 
is impossible. For example, even a process which has to 
read values from two source processes and has to send the 
sum to an output process is difficult to implement. After 
the first input is read there is no way to guarantee that the 
next communication will come from the second input. If 
another message from the first input arrives, it has to be 
buffered while waiting for the second input to arrive. 
Programs written as parallel Occam processes have to be 
rewritten extensively due to this restriction. Another 
problem is that only a single protocol is allowed. The 
processes have to send their messages contained in fixed 
length packets. If variable sized messages are to be send, 
the user has to take care of packetization and reassembly. 
Besides extra user process code this will also lead to more 
runtime overhead. The VCG allows any number of input 
and output channels to be connected to application 
processes, thus giving the user complete freedom over the 
topology of his application. It will also allow any protocol 
to be used on the channels as long as a maximum message 
size is known. 

2.1. Implementation 
Based on the above considerations, a system for the 
implementation of application specific network layers has 
been developed. The central part of this system is the 
Virtual Channel Generator, or VCG. In the following 
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sections, first the VCG program and its inputs and outputs 
is explained. 

Virtual Channel Generator - VCG 
The VCG program was written to generate application 
specific network layers. Its input is a specification of the 
software configuration, which looks like a normal Occam 
process. Two more files are needed, see Figure 5. 

software 

mapping . . . . .  

output program 

hardware 

Figure 5: The inputs and outputs of the 
Virtual Channel Generator. 

First is a wirelist specifying the hardware topology of the 
processors. The other, a mapping file, specifies the 
allocation of processes. The mapping file is specified in 
the Process Description Language (PDL), which is also 
used in the post-game analysis system, referred to in 
Section 1. The code for the application processes is 
contained in a library that will be linked to the generated 
Occam program. The output of the generator program is an 
Occam program annotated with the necessary mapping 
statements and network processes to run the program on 
the specified transputer network. The three input files 
separate the issues formerly combined in the configuration 
language. 

Software 
The software configuration is specified in a format very 
much like Occam, and is completely hardware 
independent. This results in a clear specification, which 
can be developed considering the needs of the software 
problem at hand and not those of the available hardware. 
In the VCG system the programs are specified as if being 
Occam programs running on a single transputer. For an 
example of the software specification see Figure 6. 

This defines a pipeline of the processes s o u r c e ,  p i p e  
and d r a i n .  The specification starts with indicating the 
libraries in which the code of the user processes can be 
found, in this case 'pipe.lib'. The protocol statements 
indicate the type of the software channels. This is used to 
check the connections specified by the user. The types are 
also used to define the maximum message sizes. The 
interfaces of the user processes are then defined. In the 

#USE "pipe.lib" 
PROTOCOL cmd IS 13: 
PROTOCOL data IS i00: 

CHAN OF cmd cmd.chan: 
CHAN OF data a, b, c, d: 

... interface of source 
{{{ interface of pipe 
PROC pipe(CHAN OF data in, 

CHAN OF data out) 
SEQ 

in ? 
out ! 

}}} 
... interface of drain 
{{{ main 
PAR 

source(a, cmd.chan) 
pipe(a, b) 
pipe[l] (b, c) 
pipe[2] (c, d) 
drain(d, cmd.chan, fr.host, 

to.host) 
} } }  

Figure 6: Specification of a process pipeline. 

opened fold the specification of process pipe is shown. It 
states that the process has two channels connecting it to its 
environment, one of which is used for input and the other 
for output. This information is also used to ensure correct 
connection of user processes. For example, if two output 
channels of user processes are connected, the VCG reports 
an error. Finally, the process structure is declared by a 
PAR statement, as if it were a normal Occam process. The 
indices after the process names, are used to identify 
different instantiations of the same process. This is 
necessary when mapping the processes to the transputers. 
Note that an index '[0]' can be omitted, so that processes 
that are used only once do not have to be indexed. 

Hardware 
In the VCG environment the hardware configuration is not 
part of the specification of an application, but is an 
independent specification. These specifications can be 
developed even before it is known which applications will 
be executed on those configurations. This means that 
libraries can made of often used topologies such as rings, 
grids, pipelines and hypercubes. The hardware 
configuration is derived from a so-called wirelist. This 
format is also used to specify the hardware configuration 
for Computing Surfaces of the English company Meiko, 
Ltd. Originally wirelists specify only the link connections 
between transputers. They have been extended to specify 
processor type and memory sizes as well, while 
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maintaining compatibility with the original wirelists. An 
example of such a wirelist and its corresponding topology 
is shown in Figure 7. The specification contains two parts 
of which the first part specifies the link connections (the 
wires) between the processors. Each line specifies a link by 

specifying the processor and link numbers for both ends of 
the link. The second part contains the extensions used in 
the VCG. It specifies processor specific attributes such as 
processor types and memory size. 

5; wires part 
0 2 1 0; 
12 2 0; 
2230; 
3240; 
0141; 
5; processor part 
0 T8 2*M; 
1 T8 2*M; 
2 T4 128"K; 
3 T8 I'M; 
4 T2 64"K; ~nection with host 

Figure 7: A wirelist and the corresponding transputer topology. 

Mapping 
The mapping file refers to the transputer numbers of the 
hardware specification and the process names of the 
software specification, and therefore depends on both of 
them. In the VCG system the mapping file only states the 
allocation of the processes of the program, the allocation 
of channels is done automatically. Since the mapping file 
is specified in the Process Description Language (PDL) 
automatic allocation of user processes by the PGA system 
is possible when using the VCG. An example of a PDL file 
for the processes in Figure 6 is shown in Figure 8. 

proc source @ 0 
proc drain @ 0 
proc pipe[0] @ 2 
proc pipe[l] @ 4 
proc pipe[2] @ 3 

Figure 8: PDL file for the pipeline processes. 

The need 
necessary 
process is 

for the indices becomes clear here, since it is 
to identify which instantiation of the p i p e  

to be allocated to which transputer. 

Output program 
The VCG program generates Occam program files. These 
files use the configuration language of the INMOS 
compilers to specify the given hardware topology, the 
allocation of the user processes and whatever extra 
processes and channels are necessary to implement the 
program on the given hardware. The generated network 
layers are completely application specific, i.e. they can 
only provide communication services to a specific 
application on a specific hardware configuration. Since the 
networks layers are generated at compile time, the VCG 
program is integrated into the compilation phase. Just 

before compilation the generator is called to provide the 
actual Occam program that will subsequently be compiled, 
linked with the user and network processes and executed 
on the transputer network. 

2.2. Results with the VCG 
ECDIS is an Electronic Chart Display and Information 
System developed at the Dutch engineering company Van 
Rietschoten & Houwens in Rotterdam (Tuil, 1992). This 
system can display nautical maps stored in a standard 
electronic form (Iho, 1991) see Fig. 9. The maps are 
annotated with all sorts of symbols which are relevant in 
the marine world. The maps can be viewed in many 
different ways, they can be zoomed and layers of 
information can be turned on and off at will. With every 
change, the bitmap on the screen needs to be regenerated 
from the object database. To speedup this generation 
process, an implementation on transputers was developed. 
There are four different transputer implementations of 
ECDIS: 

• the original hand-optimized Occam 
implementation, without network layer (Tuil, 
1992) 

• one using a standard network layer 
(Hoogeveen, 1992) 

• one using VCR v2.0 (Based on Debbage 
1990) 

• one using VCG v.O.4h (Kiesewetter, 1993) 
The original implementation is fast, but not flexible in the 
sense that it takes programming effort to change its 
mapping to transputers. The second implementation was 
done using a standard network layer, formerly used in the 
PGA system (Hoogeveen, 1992). 
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Figure 9: Europort, Rotterdam, as displayed by ECDIS 
This implementation is much more flexible, but has bad 
performance due to the overhead caused by the network 
layer.The third implementation is done with the Virtual 
Channel Router from the University of Southampton 
(Debbage, 1990). This results in a flexible 
implementation with less overhead than the standard 
network layer. This implementation can be executed on 
different hardware topologies without changing the 
program, but still uses the original configuration language 
of Occam programs. The fourth implementation is done 
with the VCG program. This implementation is fast, since 
only minimal network overhead is introduced, and 
flexible, since the software and hardware structure of the 
program are completely separated. However, 
recompilation is necessary for different hardware 
configurations. 
Two different configurations of the ECDIS program were 
used. The first configuration, ECDIS-a, contains a single 
pipeline of processes. The second implementation, 
ECDIS-b, is a geometrically parallel version in which the 
horizontal image clipping is distributed over three 
pipelines. The results of four different implementations 
are illustrated in Figure 10. 

The hand-written Occam2 version was tested only on 
specifically designed hardware. The other 
implementations were tested on transputers in a Meiko 
Computing Surface. Therefore the performance of the 
original implementation can not be compared directly to 
the other implementations. However, the results are given 
here to allow a rough comparison with a hand-crafted and 
optimized program. The different hardware of the 

original implementation explains why the VCG 
implementation is slightly faster than the original in the 
ECDIS-a configuration. When the original version is 
executed on equivalent hardware, its execution time will 
be slightly less than the VCG implementation. 
The VCR implementation, which uses a general purpose 
network layer with dynamic code loading, is five times 
slower than the VCG implementation. This is the price 
paid for an relatively hardware independent 
implementation. However, even the VCR implementation 
is still much faster than the standard network layer. 
In the implementation using the original PGA network 
layer one can see that despite the parallel pipeline, the 
ECDIS-b configuration is not faster. This is mainly 
because of the small image size used in the test results. 
The old PGA network layer is the bottleneck here, since it 
left the least amount of memory to user processes. 
Configurations with image sizes such as 640 by 512 and 
1280 by 1024 pixels scale very well with this parallel 
pipeline. An explanation for the optimal performance of 
the VCG implementation can be found in the fact that in 
many allocations only few communication processes are 
generated. This results in a program that looks very much 
like the original implementation. The only difference is 
that all inter-process communication is done through 
channels. In the original implementation some data 
exchanges were still done through shared memory. 
Another measure to be considered is the time it took to 
implement the ECDIS program in the different 
networking environments. The first conversion, from the 
manual version to the former PGA network layer took 
four months to complete. 
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12 

8 

P 

ECDIS-a 

Figure 10: Measurements of different ECDIS implementations 

Extensive rewrites, protocol conversions and addition of 
buffers were responsible for most of the conversion time. 
The second version, from the manual version to the VCG 
version took one and half a weeks to complete. In this 
case most of the time was used to separate the ECDIS 
program into independent processes. 

3. Multi-Priority Scheduler 
This section deals with the problems of scheduling 
processes in a real-time environment on transputers. Real- 
time scheduling becomes necessary when processes of 
different sample loops execute on the same processor. 
One way of avoiding these problems would be to one 
processor for each sample loop. Unfortunately, in general 
this solution is not economically feasible. Although 
scheduling theory is well established, problems arise 
when this theory is applied to practice. One major 
deficiency of current real-time scheduling theory is that 
scheduling is assumed to cause no overhead. In practice, 
the overhead of scheduling is sometimes prohibitively 
large. The hardware scheduler present on the transputer 
provides efficient round-robin scheduling. However, 
round-robin scheduling is only sufficient to guarantee 
deadlines of processes running at the same priority. 
Predictability is one of the key issues of real-time 
computing. It means that the behavior of the process 
scheduler has to be predictable in terms of response times 
and process execution times. Assigning priorities to 
processes leads to predictable execution traces, and 
therefore allows deadlines to be guaranteed. Based upon 
the way priorities are assigned to processes, priority 

schedulers can be divided into two categories. Some 
schedulers use fixed priority assignment, which means 
that the priority of the process does not change during 
execution, it is assigned before runtime. Schedulers using 
dynamic priority assignment can change the priority of 
processes during their execution, due to execution times, 
slack times, utilization, etc. Many different priority 
assignment algorithms have been proposed in the 
literature. The two most well-known algorithms are rate- 
monotonic and deadline driven priority assignment (Liu, 
1973). Both algorithms assume n independent periodic 
processes with execution time C i and period Ti, and use 

pre-emptive scheduling. Independent means that the 
processes do not interfere with each others' execution, i.e. 
the execution of one process is completely independent of 
the other processes in the set. Periodic means that the 
processes are repeatedly executed at a certain frequency. 
This implies that the schedule for the processes repeats 
itself after a certain period, which is the smallest common 
multiple of the periods of the processes. The processes 
have to be finished before the end of their period T/, the 

deadline of the processes. 
The rate-monotonic algorithm is a static priority 
assignment algorithm that assigns priorities based upon 
their execution frequencies ( l /T/ ) .  The process with the 

highest execution frequency is assigned the highest 
priority, the process with the second highest frequency 
the second highest priority, etc. This algorithm results in 
a scheduler which is able to meet the deadlines of 
processes with execution time C i and period T/, as long 
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as the total processor load U is below a certain 
maximum: 

U = 2 ( C i / T i ) < _ n × ( 2 1 / " - l )  ) U  < 0 . 6 9  (1) 
i=1 n - - - ~  

The rate-monotonic algorithm is an optimal priority 
assignment algorithm. This means that if there is an 
algorithm that is able to assign fixed priorities to a set of 
processes so that they meet their deadlines, than the rate- 
monotonic can do it as well. Furthermore, the maximum 
utilization bound can be as high as 1 if the periods T/are  

multiples of each other. Liu and Layland (1973) state: 
One of the simplest ways of making the utilization 
bound equal to 1 is to make the remainder division 
[Tn/Ti] = O for i = 1,2 ..... n-1. 

This is however the rule in real-time control systems, 
since sampling and actuation takes place at certain fixed 
points in time. Processes with lower frequencies do not 
sample at some arbitrary moments, but rather sample at 
every k th sample moment of the process with the highest 
frequency. This implies that the sample periods are 
always multiples of the smallest sample period. 

The deadline driven algorithm is a dynamic priority 
assignment algorithm. This means that the priorities of 
the processes change during execution. The deadline 
driven scheduling algorithm assigns the highest priority 
based on the deadlines of the processes. The process with 
the nearest deadline will be assigned the highest priority, 
the process with the farthest deadline the lowest. This 
algorithm allows a processor to be used at higher 
processor loads than the rate-monotonic algorithm. The 
deadline driven scheduling algorithm can schedule any 
process set that has an aggregate processor load lower 
then the processor capacity. Note however, that these 
scheduling bounds do not include scheduling overhead. 
Since the priorities of the deadline driven algorithm 
change during runtime, they have to be kept sorted in 
order to find the process(es) with the highest priority. In 
practical implementations this sorting is the main cause 
for the scheduling overhead. 
As an example consider the task set listed in Table 1. It 
consists of three processes at different sample frequencies 
and with different calculation times. 

1 

2 

3 

Table 

Ti(s) 
9 

18 

27 

: Example task set. 

Ci(s) 

The total load of this sample process set is: 
3 

C i 4 5 6 
U = - + - - + - - = 0 . 9 4  

i=l T/ 9 18 27 
(2) 

This load is larger than the bound for rate-monotonic 
scheduling, which is approximately 0 . 7 8  for n = 3. 
This does not mean that the process set is not feasible 
using rate-monotonic scheduling, but it means that the 
deadlines of the process set cannot be guaranteed. Since 
the process load is smaller than 1, the deadline driven 
scheduling algorithm is able to guarantee the deadlines. 
Figure 11 shows the schedules of both rate-monotonic 
and deadline driven schedulers. The rate-monotonic 
schedule causes Process 3 to miss its deadline at time 
t = 27.  The deadline driven schedule prevents this by 
assigning Process 3 a higher priority than Process 2 at 
time t = 22.  This is done because the deadline of 
Process 3, at time t = 27,  is earlier than the deadline of 
Process 2, at time t = 36.  The schedule for the deadline 
driven scheduler repeats itself after time t = 54,  since 
this is the smallest common multiplier of the periods of 
the process set. 
The rate-monotonic schedule does not satisfy the zero 
remainder division rule because although {T3/T1}=0, 
{T3/T2}=0.5. The sampling interval of process 3 will 
have to be increased to 36 to satisfy this rule, resulting in 
a utilization bound of 1. This alternate schedule is 
indicated in Figure 11 as well resulting in a total load of 
this sample process set of: 

_ ~ ' , C  4 5 6 
U - ; =  12~T~ - 9 + ]-'8 + 3"-6 = 0 " 8 9  (3) 

This results in an idle time of 4 (s) in each period of 36 
seconds. The execution time of process 3 may therefore 
be increased till 10 seconds, with: U = 1.00 
From this we conclude that the rate-monotonic scheduling 
algorithm is the only algorithm that needs to be 
considered in the scheduling of processes in embedded 
control systems! It can also be concluded that if the 
deadlines are identical as is the case at t = 27 for process 
1 and 3, the choice is arbitrary. From this it may be 
concluded that round-robin scheduling is satisfactory 
within one priority class. 
One more remaining question is when should scheduling 
be performed. From the sampling to actuation chain 
illustrated in Figure 1, it may be reasoned that scheduling 
is only required after completion of the sampling and 
after completion of the calculation process. The 
scheduling instants may therefore be limited to the 
sample and the control buffer processes. 
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Figure 11: Schedules using rate-monotonic and deadline driven scheduling 

After stating the requirements the architecture of the 
scheduler can be designed. The decision to start a priority 
class must be made in the buffer where the samples arrive. 
In the following this buffer will be called the schedule 
buffer. The structure of the schedule buffer is shown in 
Figure 12. 

S j $S %% %% 
• • • % 

S 

processes are time-bounded and therefore run at high 
priority. This causes the schedule and calculation buffers 
to be suitable places to decide which priority must be 
assigned to the proces because the currently running (low 
priority) process is immediately interrupted when a value 
is written in one of the buffers. 
This approach leads to the concept of dedicated 
distributed scheduling. In this approach, a dedicated kernel 
is generated for each transputer application that only 
contains the specific code that is needed there. This 
concept has the following advantages: 

Figure 12: Structure of the schedule buffer 

The incoming samples are buffered by the sample.buffer 
sub-process. This process decides which priority class has 
to be started or continued. The run.prio.class sub-process 
starts the priority class and supplies the sample-values to 
the first calculation process. The schedule buffer is split 
into two sub-processes because there may be some time 
between the arrival of a sample and the start of the priority 
class. Calculation processes have one or more input- 
channels that supply the sample-values. 
After the calculations have been done, one or more output- 
channels send the calculated values to the appropriate 
calculation buffers. The calculation buffers also contain a 
piece of the scheduling code. These buffers store the state 
of the interrupted priority class in a datastructure and 
evaluate which waiting or interrupted priority class must 
be (re)started. The schedule and calculation buffer 

• The scheduler has minimal overhead because 
it is possible to use a-priori information. The 
scheduling code is not necessary for  every 
buffer. On some transputers only processes 
with the same priority may be allocated. In 
that case no preemption is required and the 
hardware scheduler o f  the transputer suffices. 
Therefore the scheduler is tailored to the 
application. 

• Calculation processes do not have to 
'cooperate' with the scheduler and can be 
connected to each other arbitrarily, with any 
number o f  channels. 

• The total amount o f  code in the system and the 
code complexity are reduced to the absolute 
minimum required for  that application, 
leading to a less error-prone implementation. 

• The scheduler only runs when it is really 
needed. It does not impose a run-time 
overhead unless some action is required. 
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The distributed scheduler has been implemented according 
to the above design principles and it consists of a number 
of schedule buffers and calculation buffers (depending on 
the number of priorities). In addition a floating point save 
and restore process have been added. 

3.1. Results 
To assess the performance of distributed scheduling, the 
maximum cpu utilization as a function of the sampling 
frequency has been measured. 
Figure 13 shows how the maximum load, with which 
deadlines can be guaranteed, varies with the highest 
sampling frequency F~ of the task set. The measurements 

were obtained with a task set of four processes. Worst-case 
measurements have been obtained by ensuring that all 
tasks are interrupted by higher priority tasks. This ensures 
a maximum number of preemptions, which results in the 
highest amount of overhead. The best-case measurements 
have been obtained by starting the processes in such an 
order that the highest priority process arrives first. This 
ensures a minimum number of preemptions, and therefore 
a minimal amount of overhead. 

100  

4 0  

30 w s t - c a s e  

\ 10 

0 

Fs (kHz) 

Figure 13: Maximum load versus sample 
frequency, for 4 processes. 

4. Conclusion 
In this paper the performance of a generator system for 
network layers has been discussed. It has been reported to 
be superior to that of other existing network layers. This is 
because the current approach is compiler based instead of 
OS based. This means that the resulting network layers are 
application and allocation specific. For each new 
allocation or change in application they need to be 
generated again. The advantage is that the knowledge 
available at compile time is used to optimize the network 
layer, something that is not possible with OS based 
network layers. 

The functionality of the VCG has a lot in common with 
that of the Virtual Channel Router (VCR) (Debbage, 
1991), it relieves the programmer from hardware concerns 
when writing Occam programs. The programs that are 
implemented using the VCG can be written without 
concern for placement of links, processes, etc. The main 
difference between this approach and the VCR is that it 
causes only a minimal amount of communication overhead 
and that it is very efficient in the use of buffer space. It is 
not a complete emulation of the behavior of the virtual 
channels of a T9000, but it allows the user to disregard the 
hardware consequences of the transputer network. The 
VCR provides a lot more functionality such as mapping of 
the logically defined transputer onto the physical available 
ones, but also causes more overhead. 
The VCG separates the hardware and software 
specifications of parallel program in much the same way as 
TASC (Meijer, 1990) does this for sampling systems. This 
allows programs to be written in a truly hardware 
independent way and code to be reused more easily. 
Combined with libraries of standard hardware 
configurations this results in programs that are portable 
between different parallel machines. 

Dedicated distributed scheduling, a novel concept for 
multi-priority schedulers, has been implemented on 
transputers. It has several important advantages over 
conventional approaches using kernels written in assembly 
language: the scheduler operates with minimum overhead 
because it is an application specific approach that uses a- 
priori knowledge matched to the requirements of the 
application; the overhead is so low that it is acceptable for 
use in control systems; and the amount of code and the 
complexity of the system are kept to the absolute minimum 
for the application. The current implementation does not 
restrict the user of the transputer: it is able to interrupt and 
resume processes that contain floating point instructions, 
two-dimensional blockmoves etc. and therefore does not 
restrict the user processes in the type of machine 
instructions they may use. 
At the moment of writing this paper, the scheduler consists 
of a number of processes which have to be inserted 
manually into the user program. However, the processes 
can easily automatically be inserted into an application as 
soon as the relative priorities of the processes are known. 
This insertion of scheduler code will be integrated into the 
Virtual Channel Generator, which will make the use of the 
scheduler transparent to the user. Then this tailor made 
scheduler will combine the ease of a general purpose real- 
time scheduler with the efficiency of an ad-hoc assembly 
language approach within a full communication 
environment. 
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