
Automatic generation of scheduling and communication code
in real-time parallel programs

Andr Bakkers, Johan Sunter and Evert Ploeg

Control Laboratory
University of Twente
7500 AE Enschede

The Netherlands
e-mail: bks@rt.el.utwente.nl

Abstract: Inter-process communication and scheduling
are notorious problem areas in the design of real-time
systems. Using CASE tools, the system design phase will
in general result in a system description in the form of
parallel processes. Manual allocation of these processes to
processors may result in error prone and/or slow
communication code. Scheduling of the processes,
necessary to meet timing constraints, is also a tedious task
that takes many iterations. The described design tools
result in code that is comparable in quality and
performance with expert manual realization. Many
network layers have been implemented to relieve the user
from the low-level programming of communication
software. However, the increase in user-friendliness is
usually paid with performance degradation. The proposed
approach combines user-friendliness with high
performance by generating communication software that is
tailor-made for the application. A similar approach is
followed with the scheduling software. Schedulers in the
form of a built-in a kernel are available all the time and
cause overhead all the time. The proposed preprocessor
tool generates scheduling software after analyzing the
timing requirements of the particular application. This
results in simple code for simple timing requirements and
more complicated code for complex timing requirements.
The tools have been implemented in Occam for use on a
transputer. However, the results are valid for any
distributed memory machine.

1. Introduction
Three real-time aspects exist in the design of real-time
systems. First there is the sampling and actuation of the
processes to be controlled. These tasks have to be
performed at exact time intervals. Inaccuracies in these
intervals invalidate the assumptions of the underlying
control algorithm. As a result the system under control may
become unstable. The second real-time aspect exists in the
calculation processes which transform the measurements
into control actions. These calculation processes require a

guarantee that the results will be available at the next
actuation time. Thirdly there are the background tasks
which have to be performed whenever the processor is not
busy performing the first two tasks. As a result three
classes of tasks can be identified in real-time systems:

• Time-bounded processes: processes which
have to be guaranteed to start at a certain

time instant, e.g. sample processes.
• Time-limited processes: these processes may

start at any time as long as they complete

before a certain deadline, e.g. calculation
processes.

• Background processes: processes which do
not have critical time requirements (data
logging or statistical analysis) and may be
executed as background processes.

The sampling and actuation processes are time-bounded
processes. Writing code for sampling and actuation
systems is complex and error-prone. In the control
laboratory a tool was developed to perform this task. The
tool called Transputer Application generator for Sample
processes in Control systems - TASC (Meijer, 1990) is
based on formal specifications of both the sampling
hardware and the sampling and actuation tasks in a
language called TASC-L. Based on these specifications the
tool generates optimal sampling code for every processor
in the sampling and actuation system. This tool is not
further discussed in this paper.

Time-limited processes constitute a completely different
set of problems i.e. the interconnection and scheduling of
the different processes on different processors. In
computer-controlled systems, the control loops can be
represented as sampling-to-actuation chains (Bakkers
1987), see Figure 1. The sample-to-actuation chain
contains time-bounded and time-limited processes. This
paper deals with the time-limited processes in two ways,
i.e. the interconnection of these processes and the
scheduling of them.

ACM SIGPLAN Notices, Volume 30, No. 11 November 19 c
134

http://crossmark.crossref.org/dialog/?doi=10.1145%2F216633.216679&domain=pdf&date_stamp=1995-11-01

Figure 1: Samp l ing - to -ac tua t ion cha in

Interconnection of processes is usually solved by using
some kind of network layer. The use of standard network
layers may cause the following problems:

• deadlock caused by the network layer

• network layer overhead

• restricted interface for user processes
As a result, not many network layers are generally
accepted by experienced real-time system designers. The
vast majority of network layers is implemented by packet
switching networks using uniform routing processes to

........ t

data.reg.out~

forward the, usually fixed sized, packets across the
network. There are two main reasons why these general
purpose network layers are not optimal:

• intermediate network processes

• packetization
This is illustrated in Figure 2, where a single message is
handled by several network processes, converted to
packets, sent across a processor network, reassembled and
again handled by network processes before it is delivered
to its final destination.

message
I 1

I I I I I I I I I
i '

| •

, =

user process

buffers

routers

multiplexers

rT~Trn ~

I I
I :i !

~iiiii: i i i i l l

message
[I

 4ke,,
i i

:i i

i
i ': }!~:~:~iiiiiiiiiiiiii~iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii:ii:iiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiii!!!!iiiiii~!i!ii::~.~i~.z. ~iiii:::~iiiiiii~iiiiiiiiiiiiiiiiiiiiiiiiii~i!iiiiiiiiiiiiiiiiiiii!iiiiiiiiiii!iiiiii!iii~i!~!iii!~i!ii!i!!~!i!!!ii!!i::kLi i i i i

i ' .< I ... I: .. <./i
t r a n s p u t e r inks ... transpute~:::::::::::::::: ::: - t ranspu te r

Figure 2: Layers wi th in ne twork layers.

Section 2 introduces the Virtual Channel Generator-VCG,
a tool to automatically generate the inter-process
communication. This is done by analyzing the
communication requirements of the application processes
that are allocated to each processor. In our research the
process allocation is automated with the Post Game
Analysis (PGA) tool (Sunter 1991, Yan 1989). Based on
the channel protocols and their topology, an optimal
allocation of links and network layer processes is
determined. This approach combines design-time
flexibility with run-time efficiency. Instead of always
adding the same general purpose kernel for the provision
of a transparent communication service, a dedicated kernel
is generated for each processor. This is possible, because
a-priori knowledge can be extracted at compile time from

the application processes that are allocated to each
processor.
This knowledge consists of the communication sizes on the
channels and of the topology of the application processes.
The Virtual Channel Generator (VCG), the network
generator, is sufficiently smart to recognize situations in
which it is not necessary to add network processes. As a
result, the network layer is optimally adapted to the
requirements of the specific application.

Section 3 of this paper considers the scheduling of time-
limited processes. The schedulers that are presently
available in real-time kernels suffer from large overheads
and/or restrictive process interfaces. Basically there are
three types of scheduling algorithms:

135

• round robin scheduling
• rate-monotonic scheduling
• dynamic deadline scheduling

Round-robin scheduling is often not taken very seriously
among real-time programmers. Although this may be true
in a multi-priority environment, whenever there is only one
priority the sequence of execution of processes does not
make any difference. Round-robin scheduling therefore is
the proper solution within one priority level.

Liu and Layland (1973) showed that there are two optimal
priority assignment algorithms, i.e., one for fixed priority
and one for dynamic priority scheduling. The optimal fixed
priority assignment algorithm is called rate-monotonic
scheduling. This algorithm requires as many priorities as
there are sample-frequencies in a control system. The
highest priority is assigned to the process with the highest
sample-frequency.

The optimal dynamic priority assignment algorithm is
called deadline driven scheduling. Here, varying priorities
are assigned to the processes at runtime. The highest
priority is assigned to the process with the nearest
deadline. A large range of priorities is required of which
only a subset is used at any time. However, the list of
process-priorities should be kept sorted at run-time. This
causes overhead to the run-time kernel. This is the reason
why this scheduler is hardly ever implemented.

The difficulty in the realization of real-time kernels is the
decision when priority scheduling should take place.
Considering the fact that such a priority scheduling causes
more overhead than the traditional round-robin
scheduling, it should only be used when necessary. In our
process model there are only two instances where priority
scheduling should take place:

• at the completion of the time-bounded
processes

• at the completion of each time-limitedprocess
As a consequence round robin scheduling may be used in
all other situations. The implementation of the priority
scheduling is further discussed in Section 3.

2. Inter-process communication
This section deals with the automatic generation of inter-
process communication code in real-time parallel
transputer systems. The transputer is designed as a basic
building block for parallel computers. However, in the T2,
T4 and T8 family of transputers it is not trivial to map an
arbitrary process structure to a given hardware
configuration. The parallel programming language Occam
has been extended with hardware specific configuration
statements that allow for a low-level mapping of the
software topology onto the hardware topology. However,

the low-level nature of the configuration statements makes
it necessary to specify this mapping in particular detail.
Especially during the implementation process, when the
mapping of processes changes often, this is a tedious task.
The communication problem stems from the fact that
transputers come equipped with four high-speed serial bi-
directional communication links which can be used to
connect to other transputers. This makes the transputer
well suited as a building block for parallel computer
systems. The use of the links is transparent to the user.
This means that sending messages over links to other
transputers is done in the same way as sending messages
over channels between processes on the same transputer.

$
a b

Figure 3: Parallel programs running on
one, two, and three transputers,

For example in Figure 3(a) a parallel program consisting
of four processes is allocated to a single transputer. Figure
3(b) shows the same program allocated to two transputers,
and in Figure 3(c) the program runs on three transputers.
The process structure for the three implementations is the
same, the same code can be used for the processes in the
three allocations.

Mapping the software structure on the hardware structure
is done in a configuration language. This language is
based on Occam, but augmented with configuration
statements that address the hardware specific details of
parallel programs. The configuration is used to specify two
different topics. First, it describes the hardware structure
by specifying the hardware topology and processor
attributes such as processor type and memory sizes.
Secondly, it specifies the mapping of Occam processes and
channels to the available processors. When a channel
connects processes on different transputers, the channel
has to be placed on a specific hardware link. Only one
channel can be placed on a link in a given direction. When
there are more channels between transputers than links, the
mapping process gets complicated. Multiplexers and
demultiplexers need to be inserted into the process
structure to combine several channels into one. This is not
only error-prone and complex, but has to be redone every
time the mapping of the processes or the hardware
topology changes.
Besides complexity, there is another problem with
manually mapping the software structure on the hardware
structure. Inserting multiplexers and demultiplexers

136

changes the software structure and may easily introduce
cycles in the process graph. When all processes in such a
cycle wait for communication with each other, deadlock
occurs. When this happens the processes in the cycle will
block. For example see the parallel program in Figure
4(a). The program consists of a pipeline of four processes,
clearly without cycles and therefore without deadlock.
When this program is allocated to two transputers as
shown in Figure 4(b), both the channel from process A to
B and the channel from process C to D connect processes
on different transputers. Since only a single connection is
available between the two transputers, a multiplexer and
demultiplexer pair needs to be inserted into the process
structure. The resulting process structure is shown in
Figure 4(b). Inspection of the process structure reveals a
cycle in the process graph, connecting process B, C, m and
d. This indicates the possibility of a deadlock, which did
not exist in the original program.

a b ¢

Figure 4: Insertion of multiplexers and
demultiplexers.

On a more abstract level, the use of a shared resource, i.e.
the transputer links, causes extra synchronization between
the processes A, B, C, and D. Since communication is
synchronous in CSP based systems, it can be represented
in the process graph in the same way as dependencies. The
extra dependencies introduced make A also dependent of
D, and C also dependent of B. This results in the
dependency graph of Figure 4(c), which shows more
clearly the cycle in the process graph.
As stated before, a network layer may cause the following
problems:

• deadlock caused by the network layer
• network layer overhead
• network layer interface

Deadlock
Network layers may be proven to be deadlock-free under
certain circumstances. However, in order to prevent
network generated deadlocks, the usual assumption is that
the user processes are always ready to receive packets.
Therefore the network processes will never block
delivering messages. However, this assumption places a
heavy burden on the application processes. It is not
convenient or easy to write processes that satisfy this
assumption.
The processes that are generated by the Virtual Channel
Generator (VCG) ensure that no deadlock is introduced in
the application. Even if the application processes block,

the network processes will not be the cause of deadlock.
VCG is actually an automated version of TRANSNET
(Welch, 1989) with smart handling of buffer space and
automatic routing of channels across multiple transputers.

Overhead
In typical control system software the required
communication size may vary from a few bytes to several
hundred Kbytes depending whether control bytes or certain
data bytes are transmitted. This is the main cause of large
amounts of overhead in packet switched network layers.
For small messages, large packets cause lots of overhead.
If this overhead is reduced by choosing small packets, the
larger messages may take minutes to be transmitted.
Besides the packet size, the choice of buffer type will also
affect the overhead of the communication layer as reported
in (Wijbrans 1990). VCG does not use packet switching.
For each channel enough bufferspace is allocated to hold
the largest message that may be send across it.

Network layer interface
The interface between user processes and standard network
layers is usually quite restrictive. Usually only a single pair
of channels is available to the user process for
communication with the network layer. This means that
messages from different sources arrive through the same
channel. Therefore selection with Occam ALT-statements,
is impossible. For example, even a process which has to
read values from two source processes and has to send the
sum to an output process is difficult to implement. After
the first input is read there is no way to guarantee that the
next communication will come from the second input. If
another message from the first input arrives, it has to be
buffered while waiting for the second input to arrive.
Programs written as parallel Occam processes have to be
rewritten extensively due to this restriction. Another
problem is that only a single protocol is allowed. The
processes have to send their messages contained in fixed
length packets. If variable sized messages are to be send,
the user has to take care of packetization and reassembly.
Besides extra user process code this will also lead to more
runtime overhead. The VCG allows any number of input
and output channels to be connected to application
processes, thus giving the user complete freedom over the
topology of his application. It will also allow any protocol
to be used on the channels as long as a maximum message
size is known.

2.1. Implementation
Based on the above considerations, a system for the
implementation of application specific network layers has
been developed. The central part of this system is the
Virtual Channel Generator, or VCG. In the following

137

sections, first the VCG program and its inputs and outputs
is explained.

Virtual Channel Generator - VCG
The VCG program was written to generate application
specific network layers. Its input is a specification of the
software configuration, which looks like a normal Occam
process. Two more files are needed, see Figure 5.

software

mapping

output program

hardware

Figure 5: The inputs and outputs of the
Virtual Channel Generator.

First is a wirelist specifying the hardware topology of the
processors. The other, a mapping file, specifies the
allocation of processes. The mapping file is specified in
the Process Description Language (PDL), which is also
used in the post-game analysis system, referred to in
Section 1. The code for the application processes is
contained in a library that will be linked to the generated
Occam program. The output of the generator program is an
Occam program annotated with the necessary mapping
statements and network processes to run the program on
the specified transputer network. The three input files
separate the issues formerly combined in the configuration
language.

Software
The software configuration is specified in a format very
much like Occam, and is completely hardware
independent. This results in a clear specification, which
can be developed considering the needs of the software
problem at hand and not those of the available hardware.
In the VCG system the programs are specified as if being
Occam programs running on a single transputer. For an
example of the software specification see Figure 6.

This defines a pipeline of the processes s o u r c e , p i p e
and d r a i n . The specification starts with indicating the
libraries in which the code of the user processes can be
found, in this case 'pipe.lib'. The protocol statements
indicate the type of the software channels. This is used to
check the connections specified by the user. The types are
also used to define the maximum message sizes. The
interfaces of the user processes are then defined. In the

#USE "pipe.lib"
PROTOCOL cmd IS 13:
PROTOCOL data IS i00:

CHAN OF cmd cmd.chan:
CHAN OF data a, b, c, d:

... interface of source
{{{ interface of pipe
PROC pipe(CHAN OF data in,

CHAN OF data out)
SEQ

in ?
out !

}}}
... interface of drain
{{{ main
PAR

source(a, cmd.chan)
pipe(a, b)
pipe[l] (b, c)
pipe[2] (c, d)
drain(d, cmd.chan, fr.host,

to.host)
} } }

Figure 6: Specification of a process pipeline.

opened fold the specification of process pipe is shown. It
states that the process has two channels connecting it to its
environment, one of which is used for input and the other
for output. This information is also used to ensure correct
connection of user processes. For example, if two output
channels of user processes are connected, the VCG reports
an error. Finally, the process structure is declared by a
PAR statement, as if it were a normal Occam process. The
indices after the process names, are used to identify
different instantiations of the same process. This is
necessary when mapping the processes to the transputers.
Note that an index '[0]' can be omitted, so that processes
that are used only once do not have to be indexed.

Hardware
In the VCG environment the hardware configuration is not
part of the specification of an application, but is an
independent specification. These specifications can be
developed even before it is known which applications will
be executed on those configurations. This means that
libraries can made of often used topologies such as rings,
grids, pipelines and hypercubes. The hardware
configuration is derived from a so-called wirelist. This
format is also used to specify the hardware configuration
for Computing Surfaces of the English company Meiko,
Ltd. Originally wirelists specify only the link connections
between transputers. They have been extended to specify
processor type and memory sizes as well, while

138

maintaining compatibility with the original wirelists. An
example of such a wirelist and its corresponding topology
is shown in Figure 7. The specification contains two parts
of which the first part specifies the link connections (the
wires) between the processors. Each line specifies a link by

specifying the processor and link numbers for both ends of
the link. The second part contains the extensions used in
the VCG. It specifies processor specific attributes such as
processor types and memory size.

5; wires part
0 2 1 0;
12 2 0;
2230;
3240;
0141;
5; processor part
0 T8 2*M;
1 T8 2*M;
2 T4 128"K;
3 T8 I'M;
4 T2 64"K; ~nection with host

Figure 7: A wirelist and the corresponding transputer topology.

Mapping
The mapping file refers to the transputer numbers of the
hardware specification and the process names of the
software specification, and therefore depends on both of
them. In the VCG system the mapping file only states the
allocation of the processes of the program, the allocation
of channels is done automatically. Since the mapping file
is specified in the Process Description Language (PDL)
automatic allocation of user processes by the PGA system
is possible when using the VCG. An example of a PDL file
for the processes in Figure 6 is shown in Figure 8.

proc source @ 0
proc drain @ 0
proc pipe[0] @ 2
proc pipe[l] @ 4
proc pipe[2] @ 3

Figure 8: PDL file for the pipeline processes.

The need
necessary
process is

for the indices becomes clear here, since it is
to identify which instantiation of the p i p e

to be allocated to which transputer.

Output program
The VCG program generates Occam program files. These
files use the configuration language of the INMOS
compilers to specify the given hardware topology, the
allocation of the user processes and whatever extra
processes and channels are necessary to implement the
program on the given hardware. The generated network
layers are completely application specific, i.e. they can
only provide communication services to a specific
application on a specific hardware configuration. Since the
networks layers are generated at compile time, the VCG
program is integrated into the compilation phase. Just

before compilation the generator is called to provide the
actual Occam program that will subsequently be compiled,
linked with the user and network processes and executed
on the transputer network.

2.2. Results with the VCG
ECDIS is an Electronic Chart Display and Information
System developed at the Dutch engineering company Van
Rietschoten & Houwens in Rotterdam (Tuil, 1992). This
system can display nautical maps stored in a standard
electronic form (Iho, 1991) see Fig. 9. The maps are
annotated with all sorts of symbols which are relevant in
the marine world. The maps can be viewed in many
different ways, they can be zoomed and layers of
information can be turned on and off at will. With every
change, the bitmap on the screen needs to be regenerated
from the object database. To speedup this generation
process, an implementation on transputers was developed.
There are four different transputer implementations of
ECDIS:

• the original hand-optimized Occam
implementation, without network layer (Tuil,
1992)

• one using a standard network layer
(Hoogeveen, 1992)

• one using VCR v2.0 (Based on Debbage
1990)

• one using VCG v.O.4h (Kiesewetter, 1993)
The original implementation is fast, but not flexible in the
sense that it takes programming effort to change its
mapping to transputers. The second implementation was
done using a standard network layer, formerly used in the
PGA system (Hoogeveen, 1992).

139

Figure 9: Europort, Rotterdam, as displayed by ECDIS
This implementation is much more flexible, but has bad
performance due to the overhead caused by the network
layer.The third implementation is done with the Virtual
Channel Router from the University of Southampton
(Debbage, 1990). This results in a flexible
implementation with less overhead than the standard
network layer. This implementation can be executed on
different hardware topologies without changing the
program, but still uses the original configuration language
of Occam programs. The fourth implementation is done
with the VCG program. This implementation is fast, since
only minimal network overhead is introduced, and
flexible, since the software and hardware structure of the
program are completely separated. However,
recompilation is necessary for different hardware
configurations.
Two different configurations of the ECDIS program were
used. The first configuration, ECDIS-a, contains a single
pipeline of processes. The second implementation,
ECDIS-b, is a geometrically parallel version in which the
horizontal image clipping is distributed over three
pipelines. The results of four different implementations
are illustrated in Figure 10.

The hand-written Occam2 version was tested only on
specifically designed hardware. The other
implementations were tested on transputers in a Meiko
Computing Surface. Therefore the performance of the
original implementation can not be compared directly to
the other implementations. However, the results are given
here to allow a rough comparison with a hand-crafted and
optimized program. The different hardware of the

original implementation explains why the VCG
implementation is slightly faster than the original in the
ECDIS-a configuration. When the original version is
executed on equivalent hardware, its execution time will
be slightly less than the VCG implementation.
The VCR implementation, which uses a general purpose
network layer with dynamic code loading, is five times
slower than the VCG implementation. This is the price
paid for an relatively hardware independent
implementation. However, even the VCR implementation
is still much faster than the standard network layer.
In the implementation using the original PGA network
layer one can see that despite the parallel pipeline, the
ECDIS-b configuration is not faster. This is mainly
because of the small image size used in the test results.
The old PGA network layer is the bottleneck here, since it
left the least amount of memory to user processes.
Configurations with image sizes such as 640 by 512 and
1280 by 1024 pixels scale very well with this parallel
pipeline. An explanation for the optimal performance of
the VCG implementation can be found in the fact that in
many allocations only few communication processes are
generated. This results in a program that looks very much
like the original implementation. The only difference is
that all inter-process communication is done through
channels. In the original implementation some data
exchanges were still done through shared memory.
Another measure to be considered is the time it took to
implement the ECDIS program in the different
networking environments. The first conversion, from the
manual version to the former PGA network layer took
four months to complete.

140

execution times (s)

12

8

P

ECDIS-a

Figure 10: Measurements of different ECDIS implementations

Extensive rewrites, protocol conversions and addition of
buffers were responsible for most of the conversion time.
The second version, from the manual version to the VCG
version took one and half a weeks to complete. In this
case most of the time was used to separate the ECDIS
program into independent processes.

3. Multi-Priority Scheduler
This section deals with the problems of scheduling
processes in a real-time environment on transputers. Real-
time scheduling becomes necessary when processes of
different sample loops execute on the same processor.
One way of avoiding these problems would be to one
processor for each sample loop. Unfortunately, in general
this solution is not economically feasible. Although
scheduling theory is well established, problems arise
when this theory is applied to practice. One major
deficiency of current real-time scheduling theory is that
scheduling is assumed to cause no overhead. In practice,
the overhead of scheduling is sometimes prohibitively
large. The hardware scheduler present on the transputer
provides efficient round-robin scheduling. However,
round-robin scheduling is only sufficient to guarantee
deadlines of processes running at the same priority.
Predictability is one of the key issues of real-time
computing. It means that the behavior of the process
scheduler has to be predictable in terms of response times
and process execution times. Assigning priorities to
processes leads to predictable execution traces, and
therefore allows deadlines to be guaranteed. Based upon
the way priorities are assigned to processes, priority

schedulers can be divided into two categories. Some
schedulers use fixed priority assignment, which means
that the priority of the process does not change during
execution, it is assigned before runtime. Schedulers using
dynamic priority assignment can change the priority of
processes during their execution, due to execution times,
slack times, utilization, etc. Many different priority
assignment algorithms have been proposed in the
literature. The two most well-known algorithms are rate-
monotonic and deadline driven priority assignment (Liu,
1973). Both algorithms assume n independent periodic
processes with execution time C i and period Ti, and use

pre-emptive scheduling. Independent means that the
processes do not interfere with each others' execution, i.e.
the execution of one process is completely independent of
the other processes in the set. Periodic means that the
processes are repeatedly executed at a certain frequency.
This implies that the schedule for the processes repeats
itself after a certain period, which is the smallest common
multiple of the periods of the processes. The processes
have to be finished before the end of their period T/, the

deadline of the processes.
The rate-monotonic algorithm is a static priority
assignment algorithm that assigns priorities based upon
their execution frequencies (l /T/) . The process with the

highest execution frequency is assigned the highest
priority, the process with the second highest frequency
the second highest priority, etc. This algorithm results in
a scheduler which is able to meet the deadlines of
processes with execution time C i and period T/, as long

141

as the total processor load U is below a certain
maximum:

U = 2 (C i / T i) < _ n × (2 1 / " - l)) U < 0 . 6 9 (1)
i=1 n - - - ~

The rate-monotonic algorithm is an optimal priority
assignment algorithm. This means that if there is an
algorithm that is able to assign fixed priorities to a set of
processes so that they meet their deadlines, than the rate-
monotonic can do it as well. Furthermore, the maximum
utilization bound can be as high as 1 if the periods T/are

multiples of each other. Liu and Layland (1973) state:
One of the simplest ways of making the utilization
bound equal to 1 is to make the remainder division
[Tn/Ti] = O for i = 1,2 n-1.

This is however the rule in real-time control systems,
since sampling and actuation takes place at certain fixed
points in time. Processes with lower frequencies do not
sample at some arbitrary moments, but rather sample at
every k th sample moment of the process with the highest
frequency. This implies that the sample periods are
always multiples of the smallest sample period.

The deadline driven algorithm is a dynamic priority
assignment algorithm. This means that the priorities of
the processes change during execution. The deadline
driven scheduling algorithm assigns the highest priority
based on the deadlines of the processes. The process with
the nearest deadline will be assigned the highest priority,
the process with the farthest deadline the lowest. This
algorithm allows a processor to be used at higher
processor loads than the rate-monotonic algorithm. The
deadline driven scheduling algorithm can schedule any
process set that has an aggregate processor load lower
then the processor capacity. Note however, that these
scheduling bounds do not include scheduling overhead.
Since the priorities of the deadline driven algorithm
change during runtime, they have to be kept sorted in
order to find the process(es) with the highest priority. In
practical implementations this sorting is the main cause
for the scheduling overhead.
As an example consider the task set listed in Table 1. It
consists of three processes at different sample frequencies
and with different calculation times.

1

2

3

Table

Ti(s)
9

18

27

: Example task set.

Ci(s)

The total load of this sample process set is:
3

C i 4 5 6
U = - + - - + - - = 0 . 9 4

i=l T/ 9 18 27
(2)

This load is larger than the bound for rate-monotonic
scheduling, which is approximately 0 . 7 8 for n = 3.
This does not mean that the process set is not feasible
using rate-monotonic scheduling, but it means that the
deadlines of the process set cannot be guaranteed. Since
the process load is smaller than 1, the deadline driven
scheduling algorithm is able to guarantee the deadlines.
Figure 11 shows the schedules of both rate-monotonic
and deadline driven schedulers. The rate-monotonic
schedule causes Process 3 to miss its deadline at time
t = 27. The deadline driven schedule prevents this by
assigning Process 3 a higher priority than Process 2 at
time t = 22. This is done because the deadline of
Process 3, at time t = 27, is earlier than the deadline of
Process 2, at time t = 36. The schedule for the deadline
driven scheduler repeats itself after time t = 54, since
this is the smallest common multiplier of the periods of
the process set.
The rate-monotonic schedule does not satisfy the zero
remainder division rule because although {T3/T1}=0,
{T3/T2}=0.5. The sampling interval of process 3 will
have to be increased to 36 to satisfy this rule, resulting in
a utilization bound of 1. This alternate schedule is
indicated in Figure 11 as well resulting in a total load of
this sample process set of:

_ ~ ' , C 4 5 6
U - ; = 12~T~ - 9 +]-'8 + 3"-6 = 0 " 8 9 (3)

This results in an idle time of 4 (s) in each period of 36
seconds. The execution time of process 3 may therefore
be increased till 10 seconds, with: U = 1.00
From this we conclude that the rate-monotonic scheduling
algorithm is the only algorithm that needs to be
considered in the scheduling of processes in embedded
control systems! It can also be concluded that if the
deadlines are identical as is the case at t = 27 for process
1 and 3, the choice is arbitrary. From this it may be
concluded that round-robin scheduling is satisfactory
within one priority class.
One more remaining question is when should scheduling
be performed. From the sampling to actuation chain
illustrated in Figure 1, it may be reasoned that scheduling
is only required after completion of the sampling and
after completion of the calculation process. The
scheduling instants may therefore be limited to the
sample and the control buffer processes.

142

deadlines

processes

K ,,,fl, ~,,~ ~,,fl,,~ revised period for T3 = 36

deadlines ~
I

3
I

2

0 9

I

54

54

processes

: o,, rno,e
I ~ : : J I ~ ~ s c h p d u l e

|
,

0 9 18 27 36 45
t ime - -~

18 27 36 45
t ime - -~

rate-monotonic

deadline driven

Figure 11: Schedules using rate-monotonic and deadline driven scheduling

After stating the requirements the architecture of the
scheduler can be designed. The decision to start a priority
class must be made in the buffer where the samples arrive.
In the following this buffer will be called the schedule
buffer. The structure of the schedule buffer is shown in
Figure 12.

S j $S %% %%
• • • %

S

processes are time-bounded and therefore run at high
priority. This causes the schedule and calculation buffers
to be suitable places to decide which priority must be
assigned to the proces because the currently running (low
priority) process is immediately interrupted when a value
is written in one of the buffers.
This approach leads to the concept of dedicated
distributed scheduling. In this approach, a dedicated kernel
is generated for each transputer application that only
contains the specific code that is needed there. This
concept has the following advantages:

Figure 12: Structure of the schedule buffer

The incoming samples are buffered by the sample.buffer
sub-process. This process decides which priority class has
to be started or continued. The run.prio.class sub-process
starts the priority class and supplies the sample-values to
the first calculation process. The schedule buffer is split
into two sub-processes because there may be some time
between the arrival of a sample and the start of the priority
class. Calculation processes have one or more input-
channels that supply the sample-values.
After the calculations have been done, one or more output-
channels send the calculated values to the appropriate
calculation buffers. The calculation buffers also contain a
piece of the scheduling code. These buffers store the state
of the interrupted priority class in a datastructure and
evaluate which waiting or interrupted priority class must
be (re)started. The schedule and calculation buffer

• The scheduler has minimal overhead because
it is possible to use a-priori information. The
scheduling code is not necessary for every
buffer. On some transputers only processes
with the same priority may be allocated. In
that case no preemption is required and the
hardware scheduler o f the transputer suffices.
Therefore the scheduler is tailored to the
application.

• Calculation processes do not have to
'cooperate' with the scheduler and can be
connected to each other arbitrarily, with any
number o f channels.

• The total amount o f code in the system and the
code complexity are reduced to the absolute
minimum required for that application,
leading to a less error-prone implementation.

• The scheduler only runs when it is really
needed. It does not impose a run-time
overhead unless some action is required.

143

The distributed scheduler has been implemented according
to the above design principles and it consists of a number
of schedule buffers and calculation buffers (depending on
the number of priorities). In addition a floating point save
and restore process have been added.

3.1. Results
To assess the performance of distributed scheduling, the
maximum cpu utilization as a function of the sampling
frequency has been measured.
Figure 13 shows how the maximum load, with which
deadlines can be guaranteed, varies with the highest
sampling frequency F~ of the task set. The measurements

were obtained with a task set of four processes. Worst-case
measurements have been obtained by ensuring that all
tasks are interrupted by higher priority tasks. This ensures
a maximum number of preemptions, which results in the
highest amount of overhead. The best-case measurements
have been obtained by starting the processes in such an
order that the highest priority process arrives first. This
ensures a minimum number of preemptions, and therefore
a minimal amount of overhead.

100

4 0

30 w s t - c a s e

\ 10

0

Fs (kHz)

Figure 13: Maximum load versus sample
frequency, for 4 processes.

4. Conclusion
In this paper the performance of a generator system for
network layers has been discussed. It has been reported to
be superior to that of other existing network layers. This is
because the current approach is compiler based instead of
OS based. This means that the resulting network layers are
application and allocation specific. For each new
allocation or change in application they need to be
generated again. The advantage is that the knowledge
available at compile time is used to optimize the network
layer, something that is not possible with OS based
network layers.

The functionality of the VCG has a lot in common with
that of the Virtual Channel Router (VCR) (Debbage,
1991), it relieves the programmer from hardware concerns
when writing Occam programs. The programs that are
implemented using the VCG can be written without
concern for placement of links, processes, etc. The main
difference between this approach and the VCR is that it
causes only a minimal amount of communication overhead
and that it is very efficient in the use of buffer space. It is
not a complete emulation of the behavior of the virtual
channels of a T9000, but it allows the user to disregard the
hardware consequences of the transputer network. The
VCR provides a lot more functionality such as mapping of
the logically defined transputer onto the physical available
ones, but also causes more overhead.
The VCG separates the hardware and software
specifications of parallel program in much the same way as
TASC (Meijer, 1990) does this for sampling systems. This
allows programs to be written in a truly hardware
independent way and code to be reused more easily.
Combined with libraries of standard hardware
configurations this results in programs that are portable
between different parallel machines.

Dedicated distributed scheduling, a novel concept for
multi-priority schedulers, has been implemented on
transputers. It has several important advantages over
conventional approaches using kernels written in assembly
language: the scheduler operates with minimum overhead
because it is an application specific approach that uses a-
priori knowledge matched to the requirements of the
application; the overhead is so low that it is acceptable for
use in control systems; and the amount of code and the
complexity of the system are kept to the absolute minimum
for the application. The current implementation does not
restrict the user of the transputer: it is able to interrupt and
resume processes that contain floating point instructions,
two-dimensional blockmoves etc. and therefore does not
restrict the user processes in the type of machine
instructions they may use.
At the moment of writing this paper, the scheduler consists
of a number of processes which have to be inserted
manually into the user program. However, the processes
can easily automatically be inserted into an application as
soon as the relative priorities of the processes are known.
This insertion of scheduler code will be integrated into the
Virtual Channel Generator, which will make the use of the
scheduler transparent to the user. Then this tailor made
scheduler will combine the ease of a general purpose real-
time scheduler with the efficiency of an ad-hoc assembly
language approach within a full communication
environment.

144

References
Amerongen, J., A.W.P. Bakkers, J.F. Broenink and K.C.J.

Wijbrans (1993), "The Twente Approach to System
Level Embedded Controller Design", Proceedings of
the 5 th Transputer/Occam International Conference,
June 1993, Osaka, Japan, pp. 22-35.

Bakkers, A.W.P., R. van Rooij, L. James (1987), "Design
of a Real-time Operating System (RTOS) for Robot
Control", Proceedings of 7 th Technical Meeting of the
OUG, September 1987, Grenoble, France, pp. 318-327.

Bakkers, A.W.P, and J. van Amerongen, "Transputer
based control of mechatronic sytems", Proceedings of
the 11 th IFAC World Congress, August 1990, Tallinn,
Estonia, USSR, Vol. 7, pp. 128-133.

Bakkers, A.W.P., H.W. Roebbers, J.P.E. Sunter and K.C.J.
Wijbrans (1991), "Design Analysis of a Priority Driven
Scheduler for Transputers", Proceedings of
Transputing '91, April 1991, Sunnyvale, USA, pp.
725-736.

Bartels, R.H.M. (1993), "Design and Implementation of a
Shidecs to Occam Code Generator", M.Sc. Thesis,
rep.nr. 93r190, Control Laboratory, Electrical
Engineering dept., University of Twente, The
Netherlands.

Debbage, M., M. Hill and D. Nicole (1990), "Towards a
Distributed Implementation of Occam", Proceedings of
the 13 th Technical Meeting of the OUG, September
1990, York, UK, pp. 158-167.

Debbage, M., M. Hill and D. Nicole (1991), "A General-
Purpose Parallel Programming Environment",
Proceedings of the 14 th Technical Meeting of the
OUG, September 1991, Loughborough, UK, pp. 123-
132.

Hatley, D.J. and I.A. Pirbhai (1988), "Strategies for Real-
Time System Specification", Dorset House, New York,
USA, ISBN 0-932633-11-0.

Hoare, C.A.R. (1978), "Communicating Sequential
Processes", Communications of the ACM, 21(8), pp.
666-677.

Hoogeveen, R.M. (1992), "Implementatie en Optimalisatie
van Zeekaartsoftware m.b.v. Post-Game Analysis", 250
hrs. assignment, rep.nr. 92r140, Control Laboratory,
Electrical Engineering dept., University of Twente, The
Netherlands.

International Hydrographic Organization (1991), "IHA
Transfer Standard for Digital Hydrographic Data",
International Hydrographic Bureau, Monaco, 1991.

Kiesewetter, T. (1993), "Implementation of ECDIS using
the Virtual Channel Generator", 250 hrs. assignment,
rep.nr. 93r098, Control Laboratory, Electrical
Engineering dept., University of Twente, The
Netherlands.

Liu, C.L. and J.W. Layland (1973), "Scheduling
Algorithms for Multiprogramming in a Hard Real-Time
Environment", Journal of the A CM, 1(1), pp. 46-61.

Meijer, J. (1990), "The design and implementation of a
real-time language for the I/0 of transputer-based
control systems", M.Sc. Thesis, rep.nr. 90r048, Control
Laboratory, Electrical Engineering dept., University of
Twente, The Netherlands.

Ploeg, E. (1993), "Dedicated Multi-Priority Scheduling",
M.Sc. Thesis, rep.nr. 93r011, Control Laboratory,
Electrical Engineering dept., University of Twente, The
Netherlands.

Sunter, J.P.E., E.C. Koenders and A.W.P. Bakkers
(1991b), "Post-Game Analysis on Transputers",
Proceedings of Transputing '91, April 1991,
Sunnyvale, USA, pp. 725-736.

Sunter, J.P.E. and A.W.P. Bakkers (1991), "Performance
of Post-Game Analysis", proceedings of the 14th
technical meeting of the WoTUG, Loughborough,
Sept. 1991.

Sunter, J.P.E., K.C.J. Wijbrans and A.W.P. Bakkers
(1993), "Virtual Channel Generator - VCG",
Proceedings of the 1993 Worm Transputer
Conference, September 1993, Aachen, Germany, pp.
336-348.

Sunter, J.P.E., (1994), "Allocation, Scheduling &
Interfacing in Real-Time Parallel Control Systems",
PhD Thesis, University of Twente, ISBN 90-9007161-
X

Tuil, O.M. (1992), "A parallel realization of ECDIS using
transputers", M.Sc. Thesis, rep.nr. 92m140, Control
Laboratory, University of Twente, The Netherlands.

Welch, P.H. (1989), "Transnet - A Transputer-Based
Communication Service", Proceedings of the 10 th
Technical Meeting of the OUG, April 1989, Enschede,
The Netherlands, pp. 198-212.

Wijbrans, K.C.J, H.G. Tillema, A.W.P. Bakkers and A.L.
Schoute (1990), "An Operating Environment for
Control Systems", Proceedings of the 13 th Technical
Meeting of the OUG, September 1990, York, UK, pp.
83-94.

Wijbrans, K.C.J. (1993), "Twente Hierarchical Embedded
Systems Implementation by Simulation", Ph.D. Thesis,
University of Twente, The Netherlands, ISBN 90-
9005933-4.

Wijck, A.T.G. van (1992), "Code Generation for the
TASC system", M.Sc. Thesis, rep.nr 92r082, Control
Laboratory, Electrical Engineering dept., University of
Twente, The Netherlands.

Yan, J.C. (1988), "Post-Game Analysis - A Heuristic
Resource Management Framework for Concurrent
Systems", Ph.D. Thesis, Computer Systems Laboratory,
Stanford University, USA.

145

