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Abstract
Applications that need to be updated but cannot be easily
restarted must be updated at run-time. We evaluate the re-
flective facilities of Smalltalk with respect to dynamic soft-
ware and the state-of-the-art in this field. We conclude that
while fine for debugging, the existing reflective facilities are
not appropriate for dynamically updating production sys-
tems under constant load. We propose to enable dynamic up-
dates by introducing first-class contexts as a mechanism to
allow multiple versions of objects to coexist. Object states
can be dynamically migrated from one context to another,
and can be kept in sync with the help of bidirectional trans-
formations. We demonstrate our approach with ActiveCon-
text, an extension of Smalltalk with first-class contexts. Ac-
tiveContext eliminates the need for a system to be quiescent
for it to be updated. ActiveContext is realized in Pinocchio,
an experimental Smalltalk implementation that fully reifies
the VM to enable radical extensions. We illustrate dynamic
updates in ActiveContext with a typical use case, present ini-
tial benchmarks, and discuss future performance improve-
ments.

1. Introduction
Software needs to be updated: Apart from the need to con-
tinuously evolve applications to support new and possibly
unanticipated features, there is also a need to fix existing
bugs.

Changing the system at run-time for debugging purposes
has long been a common practice in dynamic object-oriented
languages such as JavaScript, Ruby and Smalltalk. In the
case of Smalltalk, as it is fully reflective, there is actually
no other way to change the system than to adapt it at run-
time, and development in Smalltalk is conducted with this in
mind.
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In this paper we discuss the requirements for the dynamic
update of production systems, and evaluate the reflective
capabilities of Smalltalk according to these requirements.
We consider three main dimensions during this evaluation:
safety, the ability to ensure that dynamic updates will not
lead to abnormal executions, timeliness, the ability to install
the update quickly, and practicality, the fact that the dynamic
software update mechanism must not constrain developers.
The outcome of this analysis is that while the existing re-
flective mechanisms are fine for debugging, they are not ad-
equate to update production systems under constant load, no-
tably because of safety issues.

As a remedy to the problems we have identified, we
propose ActiveContext, an extension of Smalltalk with first-
class contexts. Contexts have two roles: they dynamically
scope software versions, and they mediate access to objects
that can be migrated back and forth between versions. As
a consequence, the single abstraction of a first-class context
enables not only the isolation of software versions, but also
the transition from one version to another.

Making contexts first-class empowers the developers
with more control over how dynamic updates should hap-
pen; it shifts part of the responsibility of the update from
the system to the application. This way, it becomes possible
to tailor the update scheme to the nature of the application,
e.g., rolling out new code on a per-thread basis for an FTP
server, or on a per-session basis for a web application.

Entities shared between several versions are mediated by
the system and code running entirely in one version is guar-
anteed to be always consistent. The abstraction of context is
intuitive and can be implemented with a reasonable over-
head. ActiveContext qualifies as a safe and practical ap-
proach to dynamic software update.

As a validation, we have implemented ActiveContext in
Pinocchio, an experimental Smalltalk platform that fully rei-
fies the runtime to enable invasive language extensions. We
demonstrate a typical use case with a Telnet server.

First we discuss the challenges of dynamic software up-
date and review existing literature in section 2. In section 3
we present our approach with the help of a running exam-
ple. In section 4 we present the model in more detail, and in
section 5 we present an implementation. We discuss future
work in section 6 before we conclude in section 7.



2. Why dynamic updates are challenging
The main challenge of dynamic updates is achieving an op-
timal compromise between safety, timeliness and practical-
ity. Safety means that dynamic updates are guaranteed to not
lead to abnormal executions ; timeliness means that updates
are installed immediately and instantly; practicality means
that the system does not impose additional constraints dur-
ing development or operation. We resort to common sense
for why these characteristics are desirable.

To understand why there are tensions between these prop-
erties, let’s consider an update that alters a method signature.
Once installed, subsequent invocations of the method will
use the updated method body that expects the newest list of
arguments. It is clear that installing the change immediately
is unsafe, as active methods on the stack might still presume
the old signature, which will lead to type errors [21]. To in-
crease safety, type errors can be prevented with the proper
timing of the update using automated checks, but the behav-
ior of the program might still be incorrect depending on the
change in the program’s logic [23]. Manual assistance to de-
fine safe update times is required [12, 22]. This affects neg-
atively both practicality and timeliness.

Obviously, the layout of classes (the set of fields and
methods) can change as well, which means the program state
(object instances) must be adapted correspondingly during
the update. If the update is immediate, active methods might
presume the old type and lead to inconsistent accesses to
state. Automated checks to delay the update can prevent such
type errors, but are not enough. In the case of state, not only
should we consider when to migrate the state, but how : ex-
isting invariants in the program state must be preserved and
safe updates require manual assistance to provide adapters
that will migrate the old state to a new, valid, state. This im-
pacts practicality negatively.

A way to reconcile safety and timeliness is to restrict the
update to only certain changes, e.g., changes that do not alter
types, or changes that are behavior-preserving [19], but this
impedes practicality.

Note that transferring the state for large heaps has the
same tensions between safety, timeliness and practicality :
state transfer in a stop-the-world fashion is safe and practi-
cal but compromises timeliness, while lazy state transfer is
timely but either unsafe, or less practical [2] depending on
the design.

2.1 Assessment of Smalltalk
Now that we have explored the core reasons of these ten-
sions, let’s focus on Smalltalk and assess its reflective capa-
bilities according to safety, timeliness and practicality:

Safety. Smalltalk initializes new fields to nil and does
not allow to customize state transfer such that it maintains
existing invariants in the program state.

Run-time errors can occur after an update. When a field
is removed, all methods of the class are recompiled. Ac-

cesses to the suppressed field return nil instead, and assign-
ment to the suppressed field are ignored. Old versions of the
method existing on the stack might continue to run, which
can lead to severe errors such as the mutation of instance
variable at the wrong index, or even the crash of the en-
tire image. Method suppression does not suffer such severe
symptoms, as method resolution is dynamic, and at worst
raises a doesNotUnderstand error.

Smalltalk does not support the atomic installation of co-
related changes to multiple classes. An execution that uses a
mix of old and new versions of the classes might be incor-
rect.

Timeliness. Changes are installed immediately. Object in-
stances are migrated in a stop-the-world fashion. Changes on
classes that are higher in the class hierarchy might result in
the recompilation of many subclasses, as well as the migra-
tion of their object instances, which might take long.

Practicality. Arbitrary changes to method signature, method
body, class hierarchy or class shape are supported. There is
no overhead after the installation of the update.

As this analysis shows, the reflective capabilities of
Smalltalk are timely and practical, but not safe, which makes
them inadequate to update production systems on the fly. In
practice, developers rely on ad-hoc scripts and techniques to
update their Smalltalk image in production.

2.2 Other approaches
A large body of research has tackled the dynamic update of
applications, but no mechanism resolved all three tensions
previously presented. Existing approaches can be classified
into three categories:

1. Systems supporting immediate and global dynamic up-
date have been devised with various levels of safety and
practicality. Dynamic languages other than Smalltalk be-
long naturally to this category; they are very practical but
not safe. Dynamic AOP and meta-object protocols also fit
into this category. Systems for Java [5, 8, 11, 16, 24, 26]
of this kind have been devised. However, they are less
practical and impose restrictions on the kinds of changes
supported, due to Java’s type system [30]. For example,
only method bodies can be updated with HotSwap [8].
Other systems have tried to reconcile practicality and
static typing, at the expense of timeliness or safety. For
example, some updates will be rejected if they are not
provably type-safe [20] or might produce run-time er-
rors [33].

2. Several approaches have tackled the problem of safety by
relying on update points to define temporal point when
it is safe to globally update the application. Such sys-
tems have been devised for C [14, 22], and Java [28].
Update points might be hard to reach, especially in multi-



threaded applications [21], and this compromises the
timely installation of updates.

3. Some approaches do not carry out the update globally
and allow different versions of the entities to coexist
at run-time. Different variations of this scheme exist.
With dynamic C++ classes [15], the structure of existing
objects is not altered, and only new objects have the new
structure ; the code is however updated globally which
is unsafe. With Gemstone [10], class histories enable
different versions of classes to coexist, and objects can
be migrated on demand from one version to another ; this
is more flexible than an immediate migration but is still
unsafe. A strategy that is safe is to adapt the entities back
and forth when accessed from different versions of the
code using bi-directional transformations. To the best of
our knowledge, only two approaches have pursued the
latter one: a dynamic update system for C [6], and a type
system extended with the notion of run-time version tags
that enables hot swapping modules [9].

More generally, dynamic software updating relates to
techniques that promote late binding. Three main cate-
gories of such techniques can be listed: support for vir-
tual classes [18], isolation of software versions (Java class
loader [17], ChangeBox [7], and ObjectSpace [4]), and fine-
grained scoping of variations (selector namespaces, context-
oriented programming [29], classbox [1]). Finally, the mi-
gration of instances relates to the problem of schema evo-
lution [25] and techniques to convert between types (ex-
panders [32], translation polymorphism [13], implicit con-
version [27]). None of these techniques is in itself sufficient
to enable dynamic software update though.

3. Our approach — ActiveContext
We believe that dynamic software updates should be ad-
dressed explicitly (i.e., reflectively), so as to give develop-
ers control over when new code becomes active. Developers
should be able to implement an appropriate update scheme
for the application, such as roll out new code on a per-thread
basis for an FTP server, or on a per-session basis for a web
application.

Most approaches for dynamic software updates are either
non-reflective, or reflective but lack safety. One notable
exception is the work by Duggan [9], which is both reflective
and safe. However, it relies on static typing, and the update
of a module impacts all modules depending on it: they must
all be updated and use the new type, which is not practical.
It also fails to support the atomic change of multiple types at
once.

ActiveContext is an approach that aims to introduce an
ideal dynamic software update mechanism that is explicit
and satisfies all requirements established previously. It in-
troduces first-class contexts into the language in a way that
reifies software versions. Contexts can be loaded, instanti-
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Figure 1. An instance of a Page object has different states
in different contexts. There are transformation functions be-
tween the two contexts.

ated, and manipulated explicitly. A context defines a dy-
namic scope, within which code can be executed, which is
just as simple as aContext do: [ .... ] .

Contexts also encode bi-directional transformations for
objects whose representations differ between contexts, but
whose consistency is maintained by the system. Thanks to
the mediation of objects using bi-directional transforma-
tions, code running in different contexts can coexist at run-
time, yet safely operate on shared data. ActiveContext be-
longs to the third kind of approach described in subsec-
tion 2.2.

3.1 ActiveContext examplified
To illustrate our approach to dynamic software updates, let
us consider the evolution of a class in a Web Content Man-
agement System like Pier1. The main entity of the domain
model of such a system is the Page. It represents the source
code of an HTML document. The domain model is held in
memory, globally accessible, and shared amongst all threads
serving HTTP requests. Let us consider the evolution shown
in Figure 1. The Page class is refactored, and the data stored
originally in the html field is now stored in two individual
fields body and header.

Such an evolution cannot be easily achieved with the re-
flective facilities of Smalltalk: it would require an “interme-
diate” version of the class with all three fields html, body,
header in order to allow the state of the concerned object in-
stances to be migrated incrementally, for instance with Page

allInstances do: [...]. Only then could the html field be re-
moved. Such an update is not only complicated to install, but
is also not atomic, possibly leading to consistency issues.

Dynamic software update mechanisms that carry out im-
mediate updates (first category in subsection 2.2) face the
risk that some existing thread running old code may access
the html field which no longer exists. Those which use up-
date points (2nd category in subsection 2.2) would still have
to wait until all requests complete prior to a global update of
the system state.

The following steps describe how such an update can
be installed with ActiveContext while avoiding these issues.
First, the application must be adapted so that we can “push”

1 http://www.piercms.com



an update to the system and activate it. Here is how one
would typically adapt a Web Content Management System
or any server-side software serving requests.

0. Preparation. First, a global variable latestContext is
added to track the latest execution context to be used.
Second, an administrative page is added to the Web Con-
tent Management System where an administrator can
push updates to the system; the uploaded code will be
loaded dynamically. Third, the main loop that listens to
incoming requests is modified so that when a new thread
is spawned to handle the incoming request, the latest ex-
ecution context is used:

latestContext do: [

[ anIncomingRequest process ] fork.

]

After these preliminary modifications the system can be
started, and now supports dynamic updates. The lifecycle of
the system is now the following:

1. Bootstrap. After the system bootstraps, the application
runs in a default context named the Root context. The
global variable latestContext refers to the Root context.
At this stage only one context exists and the system is
similar to a non-contextual system.

2. Offline evolution. During development, the field html is
replaced with the two fields body and header. Figure 1
shows the impact on the state of a page.

3. Update preparation. The developer creates a class, say
called UpdatedContext, that specifies the variations in the
program to be rolled out dynamically. This is done by im-
plementing a bidirectional transformation which converts
the program state between the Root context and the Up-
dated context. Objects will be transformed one at a time.

In our example, the field html is split into body and header

in one direction, and the fields body and header are joined
into html in the other direction. The class of an object is
considered to be part of the object’s state and the transfer
function also specifies that an updated version of the Page

class will be used in the Updated context.

Contexts may coexist at run-time for any length of time.
It is therefore necessary that the object representations
stay globally consistent with one another, which explains
the need for a bidirectional transformation: if the state of
an object is modified in one context, the effect propagates
to the representation in the other contexts as well. Only
fields that make sense need to be updated though; fields
that have been added or removed and have no counterpart
in another context can naturally be omitted from the
transformations.

4. Update push. Using the administrative web interface,
the developer uploads the updated Page class and the
UpdatedContext class. The application loads the code dy-

Root Updated Update'
ancestor

successor

ancestor

successor

transformFromAncestor

transformToAncestor

transformFromAncestor

transformToAncestor

Figure 2. Context instances form a list

namically. It detects that one class is a context and in-
stantiates it. This results in the generation of the new rep-
resentation of all pages in the system. Objects now have
two representations in memory. Last, the global variable
latestContext is updated and refers to the newly created
instance of the Updated context.

5. Update activation. When a new incoming request is ac-
cepted, the application spawns a new thread to serve
the request. The active context that was dynamically
changed in the listener thread (see point 0) propagates
to the spawned thread. The execution context will be the
context referenced in latestContext, which is now the
Updated context.

6. Stabilization. This update scheme changes the execu-
tion context per thread. Existing threads serving ongo-
ing requests will finish their execution in the Root con-
text, while new threads will use the Updated context.
Assuming that requests always terminate, the system
will eventually stabilize. A page can always be accessed
safely from one execution context or another as the pro-
gramming model maintains the consistency of various
representations using the bidirectional transformations.
This alleviates the need for global, temporally synchro-
nized update points which can be hard to reach in multi-
threaded systems.

Subsequent updates will be rolled out following the same
scheme. For each update a context class is created, and then
loaded and instantiated dynamically. Contexts are related
to each other with an ancestor/successor relationship. They
form a list, with the Root context as oldest ancestor, as shown
in Figure 2.

7. Garbage collection. When no code runs in the oldest
context any longer, the context can be removed from the
list and be garbage collected, just as the representation of
objects in it. (This step is not implemented yet)

4. The ActiveContext Model
We now present the ActiveContext model in more detail.
ActiveContext makes a clear distinction between the iden-
tity and the contextual state of an object. An object can have
several representations which remain consistent with one an-
other thanks to state transformations. Behavior can change



as well, since the class of an object is part of its state. Ac-
tiveContext is a programming model that supports dynamic
scoping of state and migration of state between contexts.

4.1 Identity, State and Contexts
An object identifier uniquely identifies an object in any given
context (where that object exists). The state of an object
may, however, vary from context to context. The contextual
state of an object consists of (i) a set of fields and their
corresponding values, and (ii) its class, which depends on
the context. Of course, the fields of the object must match
the fields declared in the (contextual) class description.

An object can have as many states as there are contexts.
A context can be seen as a mapping between the global
identities of all objects and their corresponding states in that
context. A thread can have one active context at a time.
However, the active context of a thread can be switched
any time. Contexts consequently constitute dynamic scopes:
aContext do: [...].

The interpreter or virtual machine has an intimate knowl-
edge of contexts like classes or other internal abstractions.
Contexts are however explicit in our model and reified as
first-class entities at the application level. Contexts can be
instantiated and manipulated dynamically like other objects.
When a new thread is created, it inherits the context of its
parent thread, which will be the active context for that thread
of execution as soon as it starts running.

The class of an object is part of its state. Behavioral
variations are therefore achieved by changing the class of
the object between contexts, and scoping behavioral changes
reduces to a special case of scoping state.

4.2 Transformations
As shown in Figure 2, contexts form a list at run-time. They
must have an ancestor, and they must implement two meth-
ods transformFromAncestor and transformToAncestor that re-
alize the bidirectional transformation.

The role of the bidirectional transformation is to maintain
consistency between several representations of an object in
various contexts. A change to an object in a context will
propagate to its ancestor and successor—which in turn will
propagate it further—so as to keep the representations of an
object consistent in all contexts.

As contexts are loaded dynamically in an unanticipated
fashion, the transformation is encoded in the newest context
and expressed in terms of its ancestor, never in terms of its
successor. We have one method to transform from the ances-
tor to the newest context, and another method to transform
from the newest context to its ancestor. The Root context is
the only context that does not encode any transformation.

A sample one-way transformation is shown in Figure 3. It
corresponds to the transformation from the Root context to
the Updated context of Figure 1. self refers to the Updated
context, and ancestor to the Root context. Line 5 reads the
html of the Page in the Root context. Lines 7–8 split the html

1. transformFromAncestor: id

2. | cls html body header |

3. cls := ancestor readClassFor: id.

4. ( cls = Page ) ifTrue: [

5. html := ancestor readField: ’html’ for: id.

6. html isNil ifFalse: [

7. body:= html regex: ’<body>(.*)</body>’.

8. header:= html regex: ’<header>(.*)</header>’.

9. ].

10. self writeClassFor: id value: Page2.

11. self writeField: ’body’ for: id value: body.

12. self writeField: ’header’ for: id value: header.

13. ]

14. ( cls = AnotherClass ) ifTrue: [

15. ...

16. ]

17. ...

Figure 3. State transfer—one-to-one mapping between two
versions of a class.

into body and header, and the representation of the Page in the
Updated context is updated accordingly in lines 11–12.

4.3 Meta levels
Contexts are meta-objects that are causally connected with
the runtime: field writes and object instantiations will be
evaluated differently depending on the set of contexts and
their corresponding transformations.

Before a context can be used, it must first be registered via
aContext register. This establishes the causal connection
between a context and the runtime. The registration will also
create the new representation of all contextual objects in the
newly registered context. After this step, the context can be
used and only of objects that are created or modified will
need to be synchronized later on. This way, all contextual
objects have a valid representation in all existing contexts
anytime.

Transformations are never called directly by the applica-
tion, but by the run-time itself because of the causal connec-
tion. This corresponds to two distinct meta-levels, that we
refer to as the application level and the interpreter level:
user-written code runs at the application level, except for
transformations that run at the interpreter level.

4.4 Primitive
Contexts are connected with the run-time, and their state
is accessed by the interpreter or virtual machine itself (not
only other application objects), which means contexts can’t
be contextual. If they were, then the code of the interpreter
would also be contextual, and it would need to be inter-
preted by another interpreter. To avoid the infinitive meta-
regression, code running at the interpreter level runs outside
of any context. As a consequence, some objects in the sys-
tem must be primitive: they have a unique state in the system
and are not subject to contextual variations. Context objects
are an example.



1. transformFromAncestor: id

2. | cls holder email body header |

3. cls := ancestor readClassFor: id.

4. ( cls = Contact ) ifTrue: [

5. email := ancestor readField: ’email’ for: id.

6. email isNil ifFalse: [

7. alias := email regex: ’(.*)@’.

8. host := email regex: ’@(.*)’.

9. self interpret: [

10. holder := Email new.

11. holder alias: alias.

12. holder host: host.

13. holder contact: id.

13. ].

14. ].

15. self writeClassFor: id value: Contact2.

16. self writeField: ’email’ for: id value: holder.

17. ]

18. ( cls = AnotherClass ) ifTrue: [

19. ...

20. ]

21. ...

Figure 4. State transfer—refactoring and usage of the
interpret keyword to switch between levels.

4.5 Mirror
The fact that transformations run at the interpreter level,
outside of any context, implies that one can send messages
only to primitive objects in the transformations. Contex-
tual objects must be manipulated reflectively via a context
with readClassFor:, writeClassFor:value:, readField:for:

and writeField:for:value: as shown in Figure 3. With these
language constructs, a context acts as a mirror [3] that reifies
the state of an object in this particular context. This way,
the state of an object (class or fields) in an arbitrary context
can be updated without subsequent transformations being
triggered, and independently of the active context.

4.6 Interpretation
In complex transformations, it can be necessary to evaluate a
whole block in a given context to manipulate contextual ob-
jects. This can be achieved with aContext interpret: [...],
which will evaluate the block in the given context as if it was
executed at the application level.

Unlike with mirrors, subsequent transformations will be
triggered in this case when contextual objects are modified.
This is necessary in particular to instantiate a new contextual
object from within a transformation. If subsequent transfor-
mations were not triggered, the new object would be missing
representations in other contexts.

The evaluation of do: and interpret: are similar. The
difference between do: and interpret: is that do: expects to
switch from a current context to another and must be called
from the application level, while interpret: must be called
from the interpreter level, and expects that there is no current
context.

Transformations can be more complex than one-to-one
mappings and Figure 4 shows the usage of interpret: in
the case of the refactoring of an email string of the form

Keyword and description
// Creates the causal connection between a context and the runtime
aCtx register

// Evaluate the block in the given context (used from the interpreter level)
aCtx interpret: [ ... ]

// Evaluate the block in the given context (used from the application level)
aCtx do: [ ... ]

// Read a value from a field reflectively
aCtx readField: aFieldName for: aCtxObj

// Write a value to a field reflectively
aCtx writeField: aFieldName for: aCtxObj value: aValue

// Read the class reflectively
aCtx readClassFor: aCtxObj

// Write the class reflectively
aCtx writeClassFor: aCtxObj value: aClass

Table 1. Keywords to manipulate contexts and contextual
objects.

“alias@host” into a dedicated Email holder object with field
alias and host (inspired by a case found in practice [28]).
Code between lines 10–13 runs at the application level in
the context referred by self, and line 10 instantiates a new
contextual object.

4.7 The big picture
Table 1 recapitulates the syntax to deal with contexts and
contextual objects, and Figure 5 visually summarizes the
abstractions presented earlier.

5. Implementation
We report on the implementation of ActiveContext in Pinoc-
chio [31]2, an experimental Smalltalk system designed to
enable invasive changes to the runtime system. Interpreters
are first-class in Pinocchio. The default meta-circular in-
terpreter of Pinocchio can be subclassed to create custom
interpreters and experiment with programming language
variations. Pinocchio is otherwise similar to conventional
Smalltalk systems. It supports in particular the object model
and reflective architecture of Smalltalk 80.

5.1 Implementation Details
Pinocchio represents code as abstract syntax trees, or ASTs.
Code is evaluated by an interpreter that visits nodes of the
AST. The state of a Pinocchio object is stored in slots (first-
class fields), which are represented as AST nodes.

Table 2 shows the relevant visitor methods of the inter-
preter, and indicates which ones were overridden to imple-
ment ActiveContext. The ActiveContext interpreter changes
the way state and memory is managed, in particular the treat-
ment of slots and message sends, whose corresponding visit
methods have been overridden accordingly. Only contextual
objects are treated specially. Primitive objects delegate to
the native memory management of Pinocchio to avoid any
performance overhead. A similar decision was taken for the

2 http://scg.unibe.ch/pinocchio



value="erwann.wernli@iam.unibe.ch"

:String

value="erwann.wernli"

:String

value="iam.unibe.ch"

:String

Root:Context

transformFromAncestor(oid)

transformToAncestor(oid)

Updated:UpdatedContext

aContact:Contact

email

alias

host

alias

host

ancestor

ancestor

Primitive

Updated Root

email

Figure 5. Conceptual overview of the system at run-time. It shows a system with the Root context, the Updated context, three
primitive String objects, and one contextual Contact object. The memory is conceptually divided into three segments, one for
primitive objects, one for the objects’ representation in the Root context, and one for objects’ representation in the Updated
context.

Visitor method Overriden
visitConstant: aConstant ·
visitClassReference: aClassReference ·
visitVariable: aVariable ·
visitSlot: aSlot �
assignVariable: aVariable to: value ·
assignSlot: aSlot to: value �
visitAssign: anAssign ·
visitSelf: aSelf ·
visitSend: aSend �
visitSuper: aSuper �

Table 2. The visitor methods of the interpreter.

Root context, which also delegates to the native memory
management even for contextual objects.

Internally, the interpreter uses several Dictionary in-
stances to implement the memory model for contextual ob-
jects: one dictionary per registered context is created and
maps {object identity, field} to the corresponding value.
A special field class is used for the class of the object. This
implies one level of indirection to access the state of a con-
textual object.

The active context is referenced in a field of the inter-
preter and each thread has a dedicated instance of the in-
terpreter. To distinguish between primitive or contextual ob-
jects, we maintain two pools of references represented in-
ternally with two Sets (this is admittedly a naive approach:
tagging the pointer would be faster).

The set of primitive objects was adapted to match the re-
ality of a fully reflective system. Object, Behaviour, Class,
Metaclass and other special classes needed during bootstrap-
ping cannot be contextual, as they need to exist in order for
the BaseContext class to be defined, so for them to be con-
textual would lead to a chicken-and-egg problem. The same
also holds true for basic, immutable objects like nil, true and
false, as well as numbers, characters, strings and symbols.

The keywords in Table 1 have been implemented with
regular message sends that the interpreter handles in a spe-
cial way.

5.2 Demonstration
To validate our approach, we have implemented a canoni-
cal server-side application that illustrates our approach and
follows the use case of section 3. The application we im-



new send read write

Primitive
Metacircular 191 215 137 137
Root 393 297 215 219
Updated 492 294 217 283

Contextual
Metacircular 192 146 137 200
Root 347 229 292 294
Updated 935 341 259 598

Table 3. Benchmark—Milliseconds for 500 executions of
specific instructions for contextual and primitive objects us-
ing the meta-circular interpreter and the ActiveContext in-
terpreter with one context (Root) and two contexts (Root and
Updated).

plemented is a Telnet server. A client can connect to the
server and run a few simple commands to update a list of
contacts stored in memory. While simpler than a web-based
Content Management system, such a system exhibits com-
parable characteristics in term of design and difficulties with
respect to dynamic updates.

The telnet server was adapted according to step Prepara-
tion in section 3. First, a global variable latestContext was
introduced. Second, the main loop that listens for incoming
TCP connections was modified so that when a new connec-
tion is accepted, the corresponding thread that is spawned to
handle the connection is executed in the latest context. Third,
a client connects to the server and usees special commands
to upload code and “push” an update.

The system can then be bootstrapped and runs initially
in the Root context. An administrator can connect to the
server and use a special command to upload an update. The
classes implementing the logic to process commands can
in particular be changed to change the logic of an existing
command, or to add new ones. All commands executed as
well as their versions are logged in a file. A thread handling
a specific client connection keeps running as long as the
connection is established. Already connected clients that
use the original version are not impacted by the update and
multiple clients connected to the server might see different
versions of the command-line interface.

When a client disconnects, its server-side thread termi-
nates. The system stabilizes eventually when all clients have
disconnected. The log shows the various commands exe-
cuted over the time and the migration of the server from one
version to another.

We benchmarked object creation, message send, field
read and field write for primitive and contextual objects un-
der the three configurations of the system that are described
in Table 3.

The meta-circular interpreter serves as the baseline for
comparison. When running the benchmark with this inter-
preter, contextual and primitive objects are treated in the
same way and results are then similar. When running the
benchmark with the ActiveContext interpreter with solely

the Root context, our implementation delegates to the na-
tive memory for primitive and contextual object. Results for
both kinds of object are in the same range, but slower than
on the meta-circular interpreter due to the overhead of our
interpreter. When running the benchmark with the Active-
Context interpreter and two contexts (Root and Updated),
we perceive a small performance drop for primitive objects,
but a significative performance drop for contextual objects,
notably for operations new and write (in bold in the table).
This can be explained easily: (1) send and read operations
for contextual objects need to look up data in internal dic-
tionaries, and (2) in addition to the lookup in dictionaries,
operations new and write need to trigger transformations to
synchronize the data in the Root context.

Looking at these results, the worst performance drop is
in the range of a factor 5 for contextual object creation (935
ms vs. 191 ms). These results will vary depending on the
structure of the objects, the number of objects created and
maintained in the pool of references, and the number of reg-
istered contexts that need to be synchronized, as well as the
complexity of the transformations. This suffices however to
estimate the maximum performance degradation to one or-
der of magnitude. We believe this performance degradation
can be reduced by a smarter implementation. We consider
this to be a validation of the conceptual contribution and a
positive feasibility study.

5.3 Assessment of ActiveContext
Let us assess ActiveContext according to the safety, time-
liness, and practicality, as we did for vanilla Smalltalk in
section 2:

Safety. Custom state transfer can be specified to transition
from one version to the other. Code running in a given ver-
sion will not produce run-time type errors due to dynamic
updates. Contexts also help address safety that is beyond typ-
ing errors: it provides version consistency. Contexts enable
the atomic installation of co-related changes to class, and
ensure that code running in a context always corresponds to
one precise version of the software.

Timeliness. If the synchronization is performed lazily, the
creation of a new software version entails no overhead, and
it can be used immediately after creation.

Practicality. Contexts are simple abstractions that are easy
to use. They extend the language and do not impose restric-
tions. Writing the transformations manually is extra work,
but it is acceptable if updates are not too frequent, e.g., dur-
ing maintenance phase. The overhead for synchronizing ob-
jects is significant, but it can be dramatically improved by
(1) synchronizing only objects that are actually shared, and
(2) synchronizing lazily.

ActiveContext extends the reflective architecture with
features that enable the update of production system safely.



6. Future work
This paper presents a conceptual model for systems to sup-
port dynamic software updates, as well as a prototype to
demonstrate the soundness of the approach. Several further
points would need to be considered in a full implementation:

Lazy transformation and garbage collection The model
that we have presented and implemented uses eager transfor-
mations: the state of objects is synchronized after each write.
This entails significant overhead for objects whose lifetime
is short, and are never accessed from another context than
the one in which they were created. This also entails high
memory consumption as we keep as many representations
for an object as we have contexts. All context instances are
connected to each other in a list which prevents them from
being garbage collected. With eager transformations, long-
lived objects consume more and more memory and become
slower and slower to synchronize.

More appealing are lazy transformations: instead of syn-
chronizing their state eagerly on write, it is synchronized
lazily on read, in a way similar to how caches work. Not only
would this reduce the performance overhead, but also reduce
memory consumption as only the most up-to-date represen-
tation would be kept in memory. There should be a signifi-
cant overhead only for objects whose structure has changed
and has been accessed from several contexts.

Keeping only the most up-to-date representation assumes
that the transformation is lossless, that is, one representation
can be computed out of another one without loss of data.
This is not always the case, e.g., in case of field addition or
removal with no counterpart in the other context. Such trans-
formations are said to be lossy. One idea would be to track
which transformations are lossy or not, and only keep multi-
ple versions of objects impacted by lossy transformations.

We plan to implement lazy transformations, to distinguish
between lossy and lossless transformations for further opti-
mizations, and to enable garbage collection of unused con-
texts using weak references in our implementation.

Interdependent class evolution The object graph can be
navigated during the transformation, which makes our ap-
proach very flexible to support arbitrary forms of evolu-
tion and interdependent class evolution, as was shown in the
refactoring of Figure 4. Other approaches with similar fa-
cilities to navigate the object graph proved to support most
scenarios of evolution in practice [2, 20, 28]. Keeping sev-
eral versions of objects in memory is necessary until an up-
date has been installed completely [2]. This puts memory
pressure on the system, regardless of whether the transfor-
mations happen lazily or eagerly. One promising aspect of
our approach with bi-directional transformations is that the
old representation can in principle be recovered at any time;
we could avoid keeping multiple representations (at least for
objects subject to lossless transformations) and thus relieve
the memory pressure.

Versioning of class hierarchies In our current implemen-
tation, classes are not contextual objects and this implies
that two versions of a class have distinct names across con-
texts (see line 10 in Figure 3). In a more elaborate imple-
mentation, the same class name could be used and would
resolve to a different representation of the class. The con-
textual class state would include methodDict and super. This
would enable the fine-grained evolution of class hierarchies:
the superclass of a class could differ in two contexts (with-
out the subclass being modified), and conversely, two ver-
sions of a subclass could have different superclasses in two
contexts. Metaclasses could possibly also be contextual but
some classes would need to be primitive and would not be
resolved contextually, for the same reasons that we distin-
guish between primitive objects and contextual objects (see
subsection 4.3).

7. Conclusion
We have presented a novel approach to dynamically update
software systems written in dynamic languages. ActiveCon-
text is a programming model that extends the reflective ca-
pabilities of a dynamic language with first-class contexts to
support the coexistence and synchronization of alternative
representations of objects in memory. With ActiveContext,
existing threads run to termination in the old context while
new threads run in a new context. Program state will even-
tually migrate from the old to the new context, and during
the transition period the state will be synchronized between
contexts with the help of bi-directional transformations. We
showed that ActiveContext is safe, practical, and timely. It
empowers the developer with more control over dynamic up-
dates, and does not require that the system be quiescent to be
updated. We have demonstrated how to build a dynamically
updatable system with a typical use case. The next step is
to introduce lazy transformation and enable garbage collec-
tion, which should improve performance and further reduce
memory consumption.
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