
Automatic Reverse Engineering of Interactive Dynamic
Web Applications to Support Adaptation across Platforms

Federico Bellucci, Giuseppe Ghiani, Fabio Paternò, Claudio Porta
CNR-ISTI, HIIS

Via Moruzzi 1, 56124 Pisa, Italy
{federico.bellucci, giuseppe.ghiani, fabio.paterno, claudio.porta}@isti.cnr.it

ABSTRACT
The effort and time required to develop user interface
models has been one of the main limitations to the adoption
of model-based approaches, which enable intelligent
processing of user interface descriptions. In this paper, we
present a tool to perform reverse engineering of interactive
dynamic Web applications into a model-based framework
able to describe them at various abstraction levels. We
indicate how information in HTML, HTML 5, CSS, Ajax
and JavaScript is transformed into such logical framework,
which facilitates adaptation to other types of interactive
devices. We also discuss how this reverse engineering tool
has been exploited in an environment for run-time
adaptation or migration of interactive Web applications to
various devices in ubiquitous use cases.

Author Keywords
User interface reverse engineering, Web applications,
Model-based user interface descriptions.

ACM Classification Keywords
H.5 Information Interfaces and Presentation; H.5.2 User
Interfaces

General Terms
Design, Human Factors.

INTRODUCTION
Model-based approaches have been considered in order to
aid user interface design and development by providing
abstractions useful to manage the increasing complexity of
user interface implementations. They have been used for
many purposes (for example in [11] a model-based tool to
guide early interface design has been proposed), and are also
currently under consideration by the W3C for
standardization purposes [4]. One of their main applications
is for supporting design and development of multi-device
user interfaces, since each device has specific interaction
resources and implementation languages to execute such

user interfaces. The basic idea is to provide a universal small
conceptual vocabulary to support user interface design,
which can then be refined into a variety of implementation
languages with the support of automatic transformations,
without requiring developers to learn all the details of such
implementation languages. However, the effort and time
required to develop user interface models has been one of
the main limitations to the adoption of model-based
approaches.

In order to overcome such limitation, we propose a tool that
performs reverse engineering of interactive Web
applications into MARIA [9], a model-based framework for
describing interactive applications at two abstraction levels.
In particular, the MARIA framework is composed of one
abstract (platform-independent) language and various
concrete (platform-dependent) languages. We use the
platform concept to indicate groups of devices that share
similar interaction resources (desktop, smartphone, vocal,
…). The concrete languages add to the abstract language
refinements that depend on the class of devices to which
they correspond. Thus, they still provide descriptions that
are independent of the final implementation languages. The
advantage of transforming the implementation into a
concrete MARIA description is that in this way it is then
easier to adapt it to a different platform, since all the
platform-dependent descriptions share the same core set of
concepts that are derived from the abstract description. In
addition in this way the adaptation rules can be independent
of the implementation languages used for the interactive
applications.

The reverse engineering tool is able to create logical
descriptions of the whole implementation of Web pages into
the MARIA language, managing HTML as well as CSS and
most JavaScript, and thus preserving the aspect and
functionality of the original pages. A logical description of
the page is easier to manipulate than the original page itself:
the interactive application elements can be more easily
transformed according to predefined rules for specific target
devices before re-implementing the page starting with the
modified logical description. This will result in a more
compact user interface that better suits the limited screen of
a mobile device.

The Reverse engineering tool supports several steps, each of
which manages an aspect of the input page. It is able to
analyse the DOM of the current page, thus any effect of
dynamic changes can be immediately detected. The analysis
includes both the styles defined within the HTML document

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’12, February 14–17, 2012, Lisbon, Portugal.
Copyright 2012 ACM 978-1-4503-1048-2/12/02...$10.00.

Session: Smart Infrastructure IUI'12, February 14-17, 2012, Lisbon, Portugal

217

and the external CSS files. JavaScript code is also extracted
from the document and the referenced external files. The
events related to HTML elements (such as onclick, onload,
…) are mapped in the MARIA specification, which provides
the possibility to describe events and event handlers as well.

In the paper, after discussing some related work we provide
some background information on the MARIA framework in
order to allow readers unfamiliar with it to better
understand how our reverse tool works. Then, we move on
to describe the algorithm and the rules that allow the tool to
transform the implementation of Web applications into
MARIA specifications. We show an example application of
the approach proposed and report on some work to validate
it and show its generality. We discuss what results this
reverse engineering tool can enable by describing how it
has been integrated in a platform supporting interactive
application adaptation. Lastly, we provide some concluding
remarks and some indications for future work.

RELATED WORK
In recent years, interest in user interface reverse engineering
has received strong impetus from the advent of mobile
technologies and the need to support multi-device
applications. To this end, a good deal of work has been
dedicated to user interfaces reverse engineering in order to
identify corresponding meaningful abstractions (see for
example [1, 2, 13]). Other studies have investigated how to
derive the task model of an interactive application starting
with the logs generated during user sessions [5]. However,
this last approach is limited to building descriptions of the
actual past use of the interface, which is described by the
logs, but is not able to provide a general description of the
tasks supported, which includes even those not considered in
the logs. A different approach [3] proposes re-engineering
Java graphical desktop applications to mobile devices with
limited resources, without considering logical descriptions
of the user interface. Hwang et al. [6] have introduced Web
transcoding techniques, based on heuristics, that take into
account the structure of the page, the main components and
their semantics. The page is then automatically rearranged in
order to be accessible from handheld devices.

Solutions for adaptation of Web interfaces to specific target
devices also directly involving end users have being
investigated as well. For example, a support for
crowdsourced adaptation is presented in [14]: the end user is
seen both as a consumer and as a contributor, and is
provided with a visual environment to easily adapt the
application to different contexts (e.g. mobile devices).

In the area of user interface reverse engineering, a model-
based architecture to reverse event handlers of applications
developed with RAD (Rapid Application Development)
environments is presented in [15]. The aim is to convert
existing legacy applications into Web-based ones by
exploiting platform-independent representations for the
original code, in particular for the event handlers. In
particular, the authors of this work have focused on the case

of Oracle Forms converted into Web applications with
Ajax.

Memon et al. [8] describe an application called GUI
Ripping, which consists in a dynamic process that
transverses a GUI by opening all its windows and extracting
all the widgets (GUI objects) and their information.
GUIsurfer [13] defines a framework for tools capable of
analysing the source code of applications written in
Java/Swing, and generating behavioural models of their user
interfaces, which can be useful for supporting formal
reasoning. Another tool, Swing2Script [12], supports
conversion of Java-Swing applications to Web applications
implemented in XUL.

One of the main areas of interest has been how to recover
semantic relations from Web pages. An approach based on
visual cues is presented in [16], in which semantic relations
usually apply to neighbouring rectangle blocks and define
larger logical rectangle blocks. However, previous work in
the reverse engineering of interactive Web applications
(such as ReversiXML [2] for UsiXML, ReverseAll [1] for
TERESA, …) has mainly addressed the possibility of
reversing HTML tags. Unfortunately, the way to write Web
applications has changed considerably in recent years and
the HTML part is only a small fraction of Web applications.
Usually a Web application is a set of resources (style
sheets, scripts, …), which can be dynamically loaded,
linked by the HTML core, and the corresponding DOM tree
can be modified at runtime within the browser. In general,
there is a lack of approaches able to address all such
resources at runtime and build the corresponding logical
descriptions, which can be exploited in multi-device and
multimodal environments. This also implies the ability to
analyse the JavaScript parts of Web applications. This is a
difficult task given the wide variety of ways in which
JavaScript can be used. An example JavaScript analysis
was done with Feedlack [7], a tool that explores Web
applications’ behaviours to identify missing feedback. This
processing is performed by enumerating control flow paths
originating from user input, identifying paths that lack
output-affecting code. FeedLack was applied to 330
applications; of the 129 that contained input handlers and
did not contain syntax errors, 115 were successfully
analysed (which is about one third of the original set of
applications considered, indicating how complex this type
of analysis is).

MARIA FRAMEWORK
As mentioned before, MARIA is composed of one abstract
language and various concrete languages that refine it. The
Abstract User Interface (AUI) level describes a UI only
through the semantics of the interaction, without referring to
a particular device capability, interaction modality or
implementation technology.

An AUI is composed of various Presentations that contain
model elements, which are presented to the user
simultaneously. There are two types of model elements:

Session: Smart Infrastructure IUI'12, February 14-17, 2012, Lisbon, Portugal

218

Interactor or InteractorComposition. The former represents
every type of user interaction object, the latter groups
together elements that are logically associated. According to
its semantics an interactor belongs to one of the following
subtypes:

 Selection. Allows the user to select one or more values
among the elements of a predefined list. It contains the
selected value and the information about the list
cardinality. According to the number of values that can be
selected, the interactor can be a Single Choice or a
Multiple Choice.

 Edit. Allows the user to manually edit the object
represented by the interactor, which can be text
(TextEdit), a number (NumericalEdit), a position
(PositionEdit) or a generic object (ObjectEdit).

 Control. Allows the user to switch between presentations
(Navigator) or to activate UI functionalities (Activator).

 Onlyoutput. Represents information that is submitted to
the user, not affected by user actions. It can be a text, a
Description that represents different types of media, an
Alarm, a Feedback or a generic Object.

The different types of interactor compositions are:

 Grouping: a generic group of interactor elements.

 Relation: a group where two or more elements are related
to each other.

 CompositeDescription: represents a group aimed to
present contents through a mixture of Description and
Navigator elements.

 Repeater: used to repeat the content according to data
retrieved from a generic data source

MARIA allows describing not only the presentation aspects
but also the interactive behaviour. For this purpose it has
various features:

 Data Model. The user interface definition contains
descriptions of the data types that are manipulated by the
user interface. The interactors can be bound with elements
of the data model, which means that, at runtime,
modifying the state of an interactor will also change the
value of the bound data element and vice-versa. This
mechanism allows the modelling of correlations between
UI elements, conditional layout, conditional connections
between presentations, input values format. The data
model is defined using the standard XML Schema
Definition constructs.

 Generic Back End. The interface definition contains a set
of ExternalFunctions declarations, which represents
functionalities exploited by the UI but implemented by a
generic application back-end support (e.g. web services,
code libraries, databases etc.). One declaration contains
the signature of the external function that specifies its
name and its input/output parameters.

 Event Model. Each interactor definition has a number of
associated events that allow the specification of UI
reaction triggered by the user interaction. Two different
classes of events have been identified: the Property
Change Events that specify the value change of a property
in the UI or in the data model (with an optional
precondition), and the Activation Events that can be raised
by activators and are intended to specify the execution of
some application functionalities (e.g. invoking an external
function).

 Dialog Model. The dialog model contains constructs for
specifying the dynamic behaviour of a presentation,
specifying what events can be triggered at a given time.
The dialog expressions are connected using CTT
operators in order to define their temporal relationships.

 Continuous update of fields. It is possible to specify that a
given field should be periodically updated by invoking an
external function.

 Dynamic Set of User Interface Elements. The language
contains constructs for specifying partial presentation
updates (dynamically changing the content of entire
groupings) and the possibility to specify conditional
navigation between presentations.

This set of new features provides, already at the abstract
level, a model of the user interface that is not tied to
implementation layout details, but it is sufficiently complete
for reasoning on how the UI supports both the user
interaction and the application back end.

A Concrete User Interface (CUI) in MARIA provides
platform-dependent but implementation language-
independent details of a UI. A platform is a set of software
and hardware interaction resources that characterize a given
set of devices. MARIA currently supports the following
platforms:

 Desktop CUIs model graphical interfaces for desktop
computers.

 Mobile CUIs model graphical interfaces for mobile
devices.

 Multimodal Desktop CUIs model interfaces that combine
the graphical and vocal modalities for desktop computers.

 Multimodal Mobile CUIs model interfaces that combine
the graphical and vocal modalities for mobile devices.

 Vocal CUIs interfaces with vocal message rendering and
speech recognition.

Each platform-dependent meta-model is a refinement of the
AUI specifying how a given abstract interactor can be
represented in the current platform. For instance, if we
consider the abstract Single Choice interactor, it can be
implemented (on a graphical desktop platform) with a radio
button, a drop down list or a list box, while on the vocal
platform it can be rendered with a list of vocal messages,
one for each option associated to a given keyword.

Session: Smart Infrastructure IUI'12, February 14-17, 2012, Lisbon, Portugal

219

The same applies to the interactor compositions: in a
desktop platform a grouping can be implemented using
background colours, borders, etc., while in a vocal platform
it is possible to use sounds at the beginning and the end of a
group of elements. The model definition can be exploited
for creating (or deriving with a code generator) final
implementations in different target languages. Indeed, it is
possible to exploit the same mobile concrete user interface
description for representing an App for the iPhone or an
Android device.

THE OVERALL ALGORITHM IN THE REVERSE
PROCESS
As already stated in the introduction, our reverse tool takes
an HTML page, and the associated files (with stylesheets
and scripts) as input and produces a CUI as output. The tool
is able to directly access the DOM (Document Object
Model) of the page to be reversed if it was previously
created (e.g., for preprocessing purposes). Otherwise, the
HTML file is passed to the Reverse tool, which exploits an
HTML parser, named Tidy1, to build the DOM. We have
extended the Tidy parser in order to also manage the new
tags introduced by HTML5. This parser also allows us to
manage Web pages that are not well-formed according to the
(X)HTML or HTML5 languages by correcting tags that are
missing, improperly positioned or misspelled.

The Reverse main procedure consists of translating the
HTML document, i.e. the actual page implementation, into a
MARIA concrete, implementation-independent
representation. The first check is to see whether JavaScript
nodes exist in the DOM, in this case all their content is
stored in an external file with extension “.js”. The next
check is whether there are CSS nodes in the DOM, in this
case their information is stored in a cache memory. Then,
the document is analysed through a deep first visit of the
DOM tree. Each node is analysed and its CSS properties are
managed by looking into the cache memory to see whether
there are any CSS selectors referring to the currently
analysed HTML node; in this case its content is used to
specify attributes of the corresponding MARIA elements.

As mentioned before, CSS properties are reversed for all the
elements present in the page and stored within their
respective CUI representations. So some CSS rules may be
lost in this process if there are no elements referring to those
rules in the version of the page considered when the reverse
is performed. This can be a problem when reversing
dynamic Web pages that can add new elements at runtime or
simply change the style properties of existing elements. To
deal with this issue we make a static analysis of the
JavaScript code to spot assignments to class attributes,
which are largely responsible for the changes in style
elements in dynamic pages. Then, the CSS content is
analysed to see whether there are attributes referring to the
classes identified. If they exist their content is included in
the CUI.

1 http://tidy.sourceforge.net/

In a next step, the algorithm checks whether there are
events associated with the current DOM node. There are
two possibilities: one is that an event is indicated (e.g.
onclick, onmouseover, onfocus, onload, …) along with the
corresponding function call; in the other case, instead of a
function call there is some code including functions
definitions, declarations, variable instantiations. In the
former case we add an event handler in the MARIA
specification to indicate the JavaScript function that should
be called. In the latter case, a function is created and is
associated with the code contained in the event handler.
Such code is included in the list of external functions and it
is called by the corresponding event handler. Indeed, in
MARIA a user interface can be associated with a list of
external functions.

REVERSING HTML CODE
This phase of the Reverse process considers each single
occurrence of HTML tags within the document and converts
them into CUI elements, according to the specifications of
the MARIA language. An excerpt from the conversion rules
used for this purpose is shown in Table 1.

The document analysis starts from the body element, and the
CUI is built while the visit proceeds in depth down to the
leaves of the HTML tree.

For example, the table shows that the HTML INPUT tag is
mapped onto various concrete MARIA elements depending
on its type attribute, which substantially determines it
semantics.

The Reverse primary output is an XML file containing the
logical description of the input Web page in the MARIA
language and a file containing the associated JavaScripts
that can thus be reused in case of generation of an adapted
version for another platform.

The Reverse is able to manage HTML 5 tags as well. Some
conversion rules are listed in Table 2. In the case of TIME
and METER tags the Reverse creates a MARIA element
and in addition a corresponding data type in the data model.
Various HTML 5 tags mainly provide an indication of the
type of content associated with some presentation
techniques (e.g. ARTICLE, HEADER, NAV,
FIGCAPTION). This distinction is mainly captured through
the role attribute in the MARIA specification.

REVERSING CSS
Two modules are involved in the CSS reverse phase: CSS
Handler and CSS Cache. The CSS Handler is in charge of
parsing the CSS information of the input page, extracting it
and storing it in the CSS Cache. It is worth noting that any
style information is considered in the CSS processing phase,
including:

 External CSS files referred by link tags

 Internally defined style tags containing CSS code

 Content of style attributes within HTML tags

Session: Smart Infrastructure IUI'12, February 14-17, 2012, Lisbon, Portugal

220

X(HTML) element

Tag name Attribute(s)
MARIA CUI element (desktop)

- Navigator

A any event
attribute

Activator

P -
CompositeDescription
(description | navigator | activator)

DIV - Grouping

IMG - Image

FORM - Relation

type = null | text
| password

TexEdit

type = checkbox
MultipleChoiceType(Checkbox,
Choiceelements++)

type = radio
SingleChoiceType(RadioButton,
ChoiceElements++)

type = hidden Object

type = reset |
submit

ActivatorButton

INPUT

type = submit SubmitButton

type = reset |
submit

Activator(Button)

BUTTON type != reset,

type != submit
Navigator(Button)

TEXTAREA - TextEdit

multiple = null
SingleChoice(DropDownList,
ChoiceElements++)

SELECT
multiple != null

SingleChoice(ListBox,
ChoiceElements++)

OL, UL, LI - Grouping

IFRAME - Grouping

COMMAND - Grouping

Table 1. HTML to MARIA conversion rules.

The first two cases are managed by a CSS parser
(CSSOMparser) that builds an object Java structure, which
facilitates its processing. The third case does not require any
parser and is managed directly within the HTML analysis
phase (because the content of a style attribute is already in
HTML).

The CSS Cache is a data structure implemented as a Hash
Table, with CSS selectors as keys and CSS properties as
values. The data structure hosts in memory any CSS
information until CUI elements creation begins. Thus, the
CSS information is not immediately used because it defines
properties that depend on the document structure. Indeed,
the binding between attributes and elements is done
according to the CSS selectors.

HTML5 element MARIA CUI

Tag name
Distinctive

element
Element Attribute

TIME -
Description(text) +
DataType
containing the data

METER -

Description(text) +
DataType
containing the
values max, min, val

If only
output
children or
links

Composite
description (
description|navigato
r|activator)

role =
article

ARTICLE
 not only

output or
link
children

Grouping

only output
children or
link

Composite
description (
description|navigato
r|activator)

role = figure

FIGURE
 not only

output or
link
children

Grouping

COMMAND - Activator(button)

MARK -

Composite
description (
description|navigato
r|activator)

ASIDE - Grouping role = aside

FOOTER - Grouping role = footer

HEADER - Grouping
role =
header

HGROUP - Grouping
role =
hgroup

NAV - Grouping role = nav

SECTION - Grouping
role =
section

MENU - Grouping role = menu

DETAILS - textType
role =
details

FIGCAPTION - textType
role =
figcaption

OUTPUT - text
role =
output

Table 2. HTML 5 to MARIA conversion rules.

INTEGRATION OF JAVASCRIPT IN MARIA
Scripting languages are becoming more and more common,
not only within Web pages, but also in servers (e.g. the
NodeJS JavaScript library) and in standalone applications
(e.g. ActionScript-AIR applications). When the MARIA
language was designed it was provided with some basic

Session: Smart Infrastructure IUI'12, February 14-17, 2012, Lisbon, Portugal

221

constructs to represent generic programming statements
such as assignments, conditions, loops, etc. When we
started to extend the Reverse module to support reverse
engineering of dynamic Web applications we realized that it
was not worth reimplementing a new abstract programming
language within MARIA. So we decided to add the
possibility to include scripts in MARIA using JavaScript
itself. This type of solution mainly works for Web
languages, but within them it could work with different
interaction modalities (graphical, vocal, multimodal, …).

To make the original JavaScript compliant with the CUI
generated by the reverse process, the JavaScript code is
parsed and modified. For instance, since the MARIA
language does not implement a name attribute for its
elements, the Reverse concatenates the name to the
identifier (eventually generated), and modifies every related
identifier in the JavaScript. The modifications are applied to
the Abstract Syntax Tree (AST), which is created by a
specific procedure starting from the JavaScript code. The
modified AST is then stored in XML format along with the
CUI.

In the case of an adaptation of the HTML page to a mobile
platform, the XML representation of the JavaScript can be
used to regenerate the original JavaScript, along with an
adapted version of the original HTML, disabling or
modifying any undesired part of the JavaScript code. An
even more challenging scenario is the adaptation towards a
vocal platform, such as a VoiceXML voice browser, which
usually integrates a limited JavaScript interpreter that
cannot access the DOM of the VoiceXML document. An
example of a tool supporting desktop-to-vocal adaptation is
reported in [9], which produces a simplified VoiceXML
adaptation of the original Web page. In order to improve it,
the JavaScript XML representation produced by the
Reverse module can be translated into native VoiceXML
constructs (such as VAR, ASSIGN, IF) and integrated into
the VoiceXML adapted version of the Web application.
Thereby, it reproduces part of the dynamic behavior of the
source Web application in the generated vocal application.

VALIDATION
The Reverse tool has been successfully applied to various
existing Web sites. An excerpt from a validation exercise is
shown in Table 3.

The input was a set of pages belonging to the 100 most
highly ranked well-known international Web sites
(according to http://www.alexa.com).

Before triggering the Reverse, each page was downloaded
and annotated through our proxy server. The annotation
consisted of two steps:

 converting every URL on the page into an absolute
address including the proxy server, in order to enable the
Reverse to find every resource referred to by the page
(e.g., external CSS and JavaScript)

 insertion of the scripts for automatically forwarding the
currently visited document to the Reverse Web service.

The URL conversion is needed because the Reverse
procedure runs locally and is not able to resolve relative
addresses; thus, any reference within the original HTML
page has to be extended as an absolute URL.

The input pages were classified by HTML depth and size, as
well as the size of externally referred CSS. Each input page
was also validated through the W3C Markup Validator
Service (http://validator.w3.org/) in order to detect the
number of errors and/or warnings. The validation was
carried out on the (X)HTML version of the page, which was
automatically detected by the W3C validator.

All the trials were successful (i.e. there were no failures in
building the corresponding CUI), and the output obtained
from the Reverse was classified by size and number of lines
of the generated CUI file, and by the time taken to perform
the Reverse.

The results do not reveal any correlation between the
Reverse performance and a particular aspect of the page. For
example, the three pages that took the longest time, which
are #2, #4 and #10 in Table 3) are among the ones with the
greatest amount of HTML and CSS. Nevertheless, #9 also
has quite a large amount of HTML and CSS but took less
than 2 seconds to be reversed. However, it is worth noting
that, while #2, #4 and #8 contain more than 100 validation
errors, #7 was totally correct. Thus, a combination of
parameters, such as page size and errors, seems to affect the
Reverse time.

The more elements the page has, the more time is needed by
the Reverse to translate the page into the MARIA language,
because every element has to be analyzed before being
converted. Unfortunately, most of the Web pages are
affected by validation errors (see the column
“Errors/Warnings” on Table 3). Validation errors also
impact negatively on the Reverse time, because every
inconsistency, missing attribute or invalid character may
raise an exception on the parsing procedure, which is
performed according to W3C HTML specifications. All
such issues have to be fixed in some way by the parser, thus
having a negative impact on the overall Reverse time.

A quality indicator for the pages back-generated starting
with the MARIA concrete description obtained by the
reverse tool is reported in Table 3. The values listed in the
“Generation” column refer to the level of consistency with
the layout and the functionalities of the original page. The
generation of the new pages was obtained from MARIA
concrete descriptions adapted to a mobile device (i.e., to a
device with limited screen size). We have defined the
following three quality levels:

 A: The layout of the page as well as the functionalities are
maintained.

 B: The layout is mostly maintained, while a few
functionalities are not fully accessible, but can be easily
corrected.

Session: Smart Infrastructure IUI'12, February 14-17, 2012, Lisbon, Portugal

222

 C: The layout is mostly maintained and it would enable
the user to interact with the page, but the regenerated
JavaScript does not support all of the original
functionalities.

Most of the generated Web pages received the intermediate
score “B” because of some layout inconsistencies and/or
some small lack in the original functionalities. In the “B”
level, lacking functionalities are typically caused by issues
in the dynamic query formulation, when the actual URL of
the page is different from the one expected by the
JavaScript. This type of issue can be solved by a minimal
manual intervention.

The “C” score was given to those pages that, even while
maintaining an acceptable layout to potentially preserve the
interaction, had some underlying functional inconsistencies.
For instance, in pages with dynamic JQuery management of
the event handlers, the environment was unable to correctly
restore to the adapted implementation the event handlers
previously associated to the interactive elements.

APPLICATION TO ADAPTATION AND MIGRATION
We have integrated our tool for reverse engineering in an
environment for adaptation or migration of interactive
applications. This adaptation environment is server-based
(see Figure 1). The adaptation server includes a proxy so
that when users navigate Web pages, the links therein are
modified to force them to pass through the server. The
accessed Web pages are downloaded in the server,
including the external resources that they refer to
(JavaScripts, CSS files, …). These are passed to the reverse
engineering tool, which performs the processing described
in the previous sections. The resulting MARIA
specifications can be passed to one of the possible

adaptation engines. The choice of which adaptation
transformation to apply depends on the device currently
used by the user. So far, we have considered the possibility
to adapt to mobile devices, characterised by smaller screens
and lower processing capabilities, and to vocal devices, in
which case there is a complete change of interaction
modality. These adaptation tools are complex and their
description is beyond the scope of this paper, whose focus
is on the reverse engineering tool that enables such
adaptation possibilities. However, it is worth pointing out
that they are based on the features of the MARIA language,
since they exploit concrete languages for the target
platforms (vocal devices, mobile devices). Since such
languages share the same core structure (the abstract
MARIA language) it is easier to define and implement the
adaptation rules. Indeed, when such transformations find a
graphical element (e.g. a radio button), then they look at the
corresponding abstract semantic effect (in this case a single
selection), and lastly inspect how they are supported in the
target concrete language (for example in the vocal concrete
language there is a vocal choice).

In addition to adaptation, another feature that we have
found useful in ubiquitous environments is migration. It
allows mobile users to dynamically change the interaction
device and migrate the interactive application from the
source to the target device while preserving its state. In a
Web application this means that users can find on the target
device the interactive application at the point in which it
was left off and also still find the input they entered in the
forms, the JavaScript in a consistent state, the same cookies
and session variables. This allows users to freely move
about, change device and still be able to continue their
activities in a seamless manner.

Input
Output

MARIA CUI

Size (B)
Domain Page

HTML CSS

DOM
Depth

Version
Errors /

Warnings
Size (B) Lines

Reverse
Time (s)

Generation

1 www.ebay.com Home 211.015 69.120 18
HTML 4.01
transitional

359 / 16 569.045 9.307 3,736 A

2 motors.shop.ebay.com
25 items search
result

456.398 123.767 30
HTML 4.01
transitional

175 / 1 978.707 18.144 12,703 C

3 www.google.com Home 91.595 13.045 22 HTML 5 35 / 2 55.460 940 4,390 B

4 www.yahoo.com Home 391.897 209.311 18 HTML 5 130 / 8 281.694 3.517 12,172 A

5 www.youtube.com Home 374.195 232.526 18 HTML 5 130 / 2 357.385 4.801 10,892 B

6 www.youtube.com
24 videos
search result

268.423 232.518 16 HTML 5 97 / 3 544.135 7.189 10,453 B

7 www.msn.com Home 226.549 177.212 19
XHTML 1.0
strict

0 / 0 220.129 5.532 1,797 B

8 www.linkedin.com User Home 388.518 192.542 20 HTML 5 117 / 118 1.007.023 15.828 11,920 C

9 www.bbc.co.uk Business News 198.135 327.400 20
XHTML +
RDFa

0 / 0 543.858 9.016 6,484 B

10 en.wikipedia.org Technology 246.725 98.459 15
XHTML 1.0
transitional

2 / 0 541.514 10.731 4,188 B

11 www.amazon.com Kindle eBooks 462.143 104.257 31
XHTML 4.01
transitional

433 / 157 463.086 8.147 8,875 C

12 wordpress.org Forum 52.514 66.871 18
XHTML 1.0
transitional

1 / 0 180.140 3.524 2,563 A

13 www.bing.com
10 items search
result

119.816 4.310 20
XTHML 1.0
transitional

6 / 0 147.909 2.511 1,297 B

Table 3. Validation test results.

Session: Smart Infrastructure IUI'12, February 14-17, 2012, Lisbon, Portugal

223

The output of the adaptation components are MARIA
specifications in the concrete language of the target
platform. Then, there are generators for various
corresponding implementation languages. For example,
for vocal interfaces we have generators into VoiceXML,
for Web applications we have generators in
HTL+CSS+JavaScripts or JSP, if Web service access is
required.

Figure 1. Adaptation Platform Exploiting our Reverse
Engineering Tool.

EXAMPLE
To provide an example of what our Reverse produces
when applied to a dynamic Web page, and how the
generated elements relate to the original HTML, we can
consider the reverse home page of altavista.com. The input
page is shown in Figure 2, highlighting some of the
components of the original page. An example of dynamic
feature is the possibility to show suggestions of possible
terms depending on what characters the user types. The
management of such events is not specified in the HTML
code but is dynamically added through JavaScrips that
modify the DOM. With respect to Figure 2, the component
of the page circled in yellow (5) is converted (see Figure
2) into a Grouping; the one circled with blue dots (3)
becomes an Activator; the one highlighted with red
lines/dots (2) turns into a Text Edit; the components circled
with green dashed lines (1, 4) turn into Navigators.

Figure 2. An example of input page highlighting some

components.

For the sake of clarity, only some components are
considered in this example because the actual Reverse
deals with an input HTML page of about 24 kB. Figure 3
shows the sections of the output CUI related to the
highlighted parts of Figure 2. Note that most of the CUI
MARIA specification has been cut or collapsed, in order
to make it more legible. Such CUI can be adapted for
mobile access, and then from the adapted CUI it is
possible to generate the corresponding implementation.

Figure 3. An excerpt of the CUI produced by the Reverser.

In Figure 4 the Web page version resulting from the
adaptation to a smartphone is shown. The adaptation
support receives as input the MARIA CUI of the page and
a set of constraints (device height/width, interactors
transformation rules, tolerance to scrolling, ...). The
output of the adaptation support is an adapted MARIA
CUI, which describes a new version of the page optimized
for the destination device (smartphone): the components
have been rearranged in order to better exploit the screen
space of the mobile device, and the page width has been
reduced so that the need for horizontal scrolling is
minimized. The actual implementation of the page is
produced by a MARIA-to-HTML + JavaScript generator.

The Web page implementation generated from the CUI
adapted for smartphones devices (Figure 4), with a
slightly different layout, maintains the initial interactive
functionalities. Indeed, the generated search form has the
original attributes values (action, name and id of the input

Session: Smart Infrastructure IUI'12, February 14-17, 2012, Lisbon, Portugal

224

elements), and the page generated for mobile access is
able to perform a Web search through the submit button.

It is worth noting that almost all the page elements have
maintained the original id, and that the JavaScript support
is still able to access those elements. Thus, thanks to the
ability to reverse and restore the JavaScript functions, the
generated page for smartphones also provides the real-
time dynamic suggestion of the terms while the user is
typing in the text field as in the original version of the
page.

Figure 4. The resulting UI adapted to the smartphone.

CONCLUSIONS AND FUTURE WORK
In this paper we have presented a reverse engineering tool
for interactive dynamic Web applications able to transform
them into model-based specifications. Such model-based
descriptions can be used for various purposes (adaptation
tools for multi-device environments, documentation,
support to usability evaluation, …). In particular, we have
discussed how the Reverse tool has been integrated into a
run-time platform where it allows the dynamic adaptation
of the pages that users can access through various devices.

The desktop version of the tool is available for download
at http://giove.isti.cnr.it/tools/ReverseMARIA/download

Future work will be dedicated to further improving the
reverse engineering tool in order to address some cases
that are not yet addressed related to JQuery and dynamic
modifications, such as when JQuery scripts dynamically
add event handlers to the DOM. Another possible
extension is to provide the possibility to derive higher-
level abstraction descriptions from the MARIA
specification, such as task models that describe the
activities performed by users to reach their goals, and that
allow reasoning about their performance in intelligent
environments.

ACKNOLEDGEMENTS
This work has been partly supported by the EU
SERENOA STREP project (EU ICT FP7-ICT N.258030).

REFERENCES
1. Bandelloni, R, Paternò, F., Santoro, C. Reverse

Engineering Cross-Modal User Interfaces for
Ubiquitous Environments, Proceedings EIS’07,
Salamanca, LNCS 4940, 285-302, Springer Verlag,
March 2007.

2. Bouillon, L., Limbourg, Q., Vanderdonckt, J., and
Michotte, B. Reverse engineering of web pages based
on derivations and transformations. In In: Proceedings
of third Latin American web congress LA-Web'05.
IEEE Computer Society Press, 2005.

3. Canfora, G., Di Santo, G., Zimeo, E. Toward
Seamless Migration of Java AWT-Based Applications
to Personal Wireless Devices, Proceedings WCRE’04,
1-9.

4. Fonseca, J.M.C. (ed.), W3C Model-Based UI XG
Final Report, May 2010, available at
http://www.w3.org/2005/Incubator/model-based-
ui/XGR-mbui-20100504/.

5. Hudson, S., John, B., Knudsen, K., Byrne, M. A Tool
for Creating Predictive Performance Models from
User Interface Demonstrations. Proceedings UIST’99,
93-102, ACM Press, 1999.

6. Hwang, Y., Kim, J., and Seo, E. Structure-Aware Web
Transcoding for Mobile Devices. Proc. IEEE Internet
Computing, pp. 14-21.

7. Ko, A. J., Zhang, X. Feedlack detects missing
feedback in web applications. Proceedings CHI 2011,
2177-2186, ACM Press, Vancouver, 2011.

8. Memon, A., Banerjee, I., and Nagarajan, A.. Gui
ripping: Reverse engineering of graphical user
interfaces for testing. In WCRE '03: Proceedings of
the 10th Working Conference on Reverse Engineering,
page 260, Washington, DC, USA, 2003. IEEE
Computer Society.

9. Paternò, F., Santoro, C., Spano, L.D. MARIA: A
Universal Language for Service-Oriented Applications
in Ubiquitous Environment. ACM Transactions on
Computer-Human Interaction, Vol.16, N.4, November
2009, 19:1-19:30, ACM Press.

10. Paternò, F., Sisti, C. Model-Based Customizable
Adaptation of Web Applications for Vocal Browsing,
ACM SIGDOC, pp.83-90, ACM Press, Pisa, October
2011.

11. Puerta, A. R., Micheletti, M., Mak, A. The UI pilot: a
model-based tool to guide early interface design. IUI
2005, 215-222.

Session: Smart Infrastructure IUI'12, February 14-17, 2012, Lisbon, Portugal

225

12. Samir, H., Stroulia, E., Kamel, A. Swing2Script:
Migration of Java-Swing Applications to Ajax Web
Applications. WCRE 2007, 179-188.

13. Silva, J. C., Silva, C. E., Gonçalo, R- D., Saraiva, J.,
Campos, J. C.. The GUISurfer tool: towards a
language independent approach to reverse engineering
GUI code. EICS 2010, 181-186, ACM Press.

14. Nebeling, M., and C. Norrie, M. Tools and
architectural support for crowdsourced adaptation of
web interfaces. In Proceedings of the 11th
international conference on Web engineering

(ICWE'11). Springer-Verlag, Berlin, Heidelberg, 243-
257.

15. Sánchez Ramón, O., Sánchez Cuadrado, J., García
Molina, J. Reverse Engineering of Event Handlers of
RAD-Based Applications. Proc. Of WCRE 2011.
IEEE, 293-302.

16. Xiang, P., Shi, Y. Recovering semantic relations from
web pages based on visual cues, Proceedings of the
11th international conference on Intelligent user
interfaces, January 29-February 01, 2006, Sydney,
Australia, 342-344.

Session: Smart Infrastructure IUI'12, February 14-17, 2012, Lisbon, Portugal

226

