
T
HIS HAS NOT BEEN an easy review to produce. Over the
years, I have watched J emerge and my reaction--as a
long-standing "pure" APL application developer--has

slowly changed from scepticism to curiosity. One of the intrigu-
ing aspects of J is the way in which it is perceived in a confronta-
tional manner; a sense in whichJ is sometimes viewed as "not
APL."

This is a controversy I want to avoid in this review. I have
long been eager to look atJ as a "product," or a tool for building
applications and the release of J2 for Windows has made this an
achievable goal.

The product reviewed is the "personal" version 2.o3 (the
personal edition is said to be identical to the professional version
except that it does not offer facilities for building runtime applica-
tions), there have been new releases subsequent to this one which
may address some of my observations, I believe the current
version number is 2.o5.

Installation

j is delivered as a set of four disks (one forJ itself, one for ODBC
and VBX setup, the other two containing ODBC drivers); there
are two manuals--the "Introduction and Dictionary" and a "User
Manual."

The Introduction and Dictionary is both dense and terse--
while the User Manual puts quite some emphasis on building
Windows applications withJ.

Installation was straightforward--there is even a J f o n t -
which came as something of a surprise.

I installedJ on two machines, one a 486-DX/33 with almost-
ample everything, the other a 386-SX portable which is becom-
ing almost marginal for doing real work on. Both machines run
Windows 3.z with Win32S; the main machine runs OS/2 for
some of the time.

Starting to useJ felt very like starting to use APL did--a great
need to explore how the language elements interacted; the sense
of "strangeness" is compounded by the way that some of J's
nouns resemble familiar APL functions but are subtly different.

Problems

Running the standard prof i le. j s script at start-up on the
portable always seemed to hang; when I interrupted the process
the ensuing interchange with DOSfWindows always told me that
POINTER. DLL had stopped responding to the system. I put
this down to a three-way conflict with fancy mouse software and
WIN32S. Shutting down P O I N T E R . D L L got me running
again.

My other major problem was that "<. "in a script operating
on a complex argument locked everything up solidly (this was on
the main machine) to the extent that Ctrl-Alt-Del needed a
reboot. I corrected the code and have not been able to reproduce
the problem outside the context of the wrongly-coded applica-
tion.

SEPTEMBER z995 - - VOLUME 26, NUMBER 1 49

http://crossmark.crossref.org/dialog/?doi=10.1145%2F216800.216809&domain=pdf&date_stamp=1995-09-01

cm=.50
im=.50
fm=.50
bm=.50 i005bv=.?i00052
res=.<'int add
res=.res,<'fp add
res=.res,<'int mult
res=.res,<'fp mult
res=.res,<'index
res=.res,<'char compress
res=.res,<'int compress
res=.res,<'int plus red
res=.res,<'int max red
NB. res=.res,<'boolean scan
res=.res,<'matrix rotate
res=. res
res=.res
res=.res
res=.res
res=.res
res=.res
res=.res
res=.res
res=.res
res=.>res
res 1!:2

i005cv=.(?i000511) {' ABCDEFGHIJ'
i005iv=.?i0005500
100$fv=.iv+0.01*iI.iv

<'char transpose
<'int transpose
<'vector of vectors
<'partition
<'shape each
<'vector compare
<'integer sort
<'boolean compare
<'iota

(2)

',":i000"(2)

, " : I000" (2)

, " : i000" (2)

,":i000"(2)
," : i000" (2)
, " : i000" (2)

":1000"(2)
":1000"(2)
":1000"(2)
":1000"(2)
":1000"(2)
":1000"(2)
":1000"(2)
" : I000" (2)

" :i000" 2)
" :i000" 2)
" :i000" 2)
":I000" 2)

" :i000" 2)
" :i000" 2)

6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2
6 ! : 2

(' aa=. im+im+im+im+im')
aa =. fm+fm+fm+fm+fm')
aa=. im* im* im* im* im')
aa=. fm*fm*fm* fm*fm')
aa=.bv#i. $bv')
aa=.bv#cv')
aa=.bv#iv')
aa=.+/iv')
aa=. >./iv')
aa=. (-.@=/\"i) i0 10{.bm')
aa=.>(i.50) l.&.><"l cm')
aa=. I :cm')
aa=. l:im')
aa=. (<"i) cm')
aa=.bv <;.i cv')
aa=. $&.>aa')

aa=.cv *./ .= cv')
aa=. iv/: iv')
aa=.bv+. 1 I -bv')
'aa=.iv i.<. fv')

Figure I : A conversion of Gregg Taylor's APL benchmark

Timing

A critical consideration for non-trivial applications, and a key
question is whether we should apply the same benchmarks toJ
as to long-established APL interpreters. It seemed most valuable
to do so, even though the issue is clearly raised whether the
language elements exercised are the most appropriate (one thing
that strikes home over and over again is thatJ offers a non-trivial
paradigm shift for the long-established APLer).

Conversion of the established Gregg Taylor benchmarks
gave the following results:

int add 165
fp add 55
int muh 140
f~ muh 80
index 30
char compress 0
int compress 0
int plus red 0
int max red 0
matrix rotate 165
char transpose 25
int transpose 30
vector of vectors 25
partition 305
shape each 410
vector compare 30
integer sort 25
Boolean compare 0
iota 30

My script for this is shown in Figure 1.

Comparing these with recent reviews ofDyalog APL/W and
A P L * P L U S III it is possible to make some observations:

The J results are signifieandy poorer than the same timing
tests on the APL products. J timings seem to be more variable
than the APL product timings. Boolean scan has been omitted
from the above as it proved dramatically worse withJ.

Bear in mind that these tests have had a long history with
"conventional APL" and that the code was converted intoJ by a
J novice. My sense is that they tell us that whileJ offers respect-
able performance, it does not offer a significant advance on these

benchmarks over long-established APL products. But, that's not
whatJ is exclusively about.

Session manager

While using J as a developer, most of your time is likely to be
spent with the session manager, and a screen shot is shown in
Figure 2.

If you compare this with corresponding views of
A P L * P L U S III or APL/W you will see thatJ's designers have
chosen to go for a dean and simple interface; and indeed this is
an observation which is borne out by the sense of interaction
between user andJ. Quite simply, J feels fast to use, much faster
than the benchmarks shown above.

50 .4PL Quote Quad

fp ad ~m=.50 I005bv=.?i00052
int m res=.<'int add
fp mu res=.res,<'fp add
index res=.res,<'int muir
char res=.res,<'fp mult
int c res=.res,<'index
int p res=.res,<'char compress

res=.res,<'int compress
~ zes=.res,<'int plus red

i!~ res 'int max red
NB. res=.res,<'boo]ean scan

i i iliiii~ii~i~ i res= .res, <'matrix rotate

integ
boole
iota ~7~!~i00Z (?1ooosn){' ~CD~;GHZa'

0[im=.50 I005iv=.?I0005500
int a fm=.50 100$fv=.iv*0.01*ll.iv

',":I000"(2) 61:2 ('aa=.im+i:
',":2000"(2) 6!:2 ('aa=.
',":I000*(2) 6[:2 ('aa=.
' ":1000"(2) 6[:2 (°aa=.
' ":I000"(2) 6[:2 ('aa=.
',":1000"(2) 6[:2 ('aa=.
',":1000"(2) @[:2 ('aa=.
' ":1000"(2) 6[:2 ('aa=.
' ":I000~(2) 6[:2 ('aa=.
',":1000"(2) 6[:2 ('aa=.
',":1000"(2) 6[:2 ('aa=.

Figure 2: The session manager

The important aspects of the J Session Manager are:

The user can open multiple execution windows, but they are
not independent of one another. Nouns defined in one
execution window are usable in any other execution window
you have open.

The user can also open multiple script windows; a typical
application would consist of a series of scripts which define
the nouns and verbs of the application. This is similar in
some ways to the "function file" approach to building APL
applications--but a great deal more lively.

You will also notice the two combo boxes at the top of the
shot--the one on the right is an input log and may be used to
recall sentences you have type in; the left-hand one is used
for searches, but I did not find it especially useful.

There were two aspects of the Session Manager which I did not
like:

There seemed to be no way of interrupting execution;
something that you might need to do if your application goes
into a loop, for example.

To re-execute a line it is necessary to locate it and hit
Enter-- you can then type over the line and modify it.
Unfortunately you can also type over the line before hitting
Enter. If you do this you end up with two copies of the
line--one at the bottom of the session ready for execution,
and a modified version in its original location. The result of
this is that the execution window does not contain a true
record of your session--this is highly misleading. I believe
that the J Session Manager should be changed so that it

SEPTEMBER 1995 - - VOLUME 26, NUMBER 1

behaves in the same way as (for example) APL2's session
log--the user can type over any line, the modified line is
executed (command and response at the end of the log) and
the original line redisplayed.

J notation

I believe thatJ's notation is the big divide for us all, and I can't
avoid talking about it any longer. The objective of avoiding the
problems which come from APL's character set on the hardware
of the midq98o's is a laudable one, although I think a little
misplaced in time.

I'm sorry--I can't avoid saying it--I think the cure is worse
than the problem. There are just too few characters trying to do
too many jobs, and I think the end result is plain ugly.

The unwary APLer is likely to find a few surprises as they
come to terms with J, but these are all learnable problems. I
would like to seeJ's advocates publish a lot more material which
contrasts how APL andJ can solve the same problems. We can
all benefit from some of the ideas which are inJ but not (yet?) in
the APL products.

Once we're away from the core language of J we meet the
"foreign conjunction." This reminds me of earlier days, using
languages like Coral 66, where topics such as I/O were not part
of the language proper but were handled by external libraries (I
hear this is still the case with some other languages). The foreign
conjunction inJ is x ! : y where the same x defines a family of
verbs and y defines precisely what is to be done--for example
1 : : 1 reads from a file, 1 ! : 2 writes to the file, and 6 : : 0 tells
you the time. See what I mean about overloading the character
set? To be fair, J is quite well packaged to hide this from the
programmer and comes provided with a wide range of script files
which supply appropriately-named verbs to cover pretty well all
of these. The verbs certainly get the novice out of a lot of
trouble--for example I was more than happy with d b r 1, but
leave you to contemplate

d b r

13! :0 1
I r a n k e r r o r
] 13::0 1

13::0 (i)
(13! :0) 1

The third notation of J comes with the "window driver"-- which
we might run from 11 1 : O, hut are steered into using the verb
wd instead.

51

Window driver

As you know by now, there are two main approaches to offering
GUI access in programming languages. The first school is
typified by APL2/2 and the original A P L * P L U S II Windows
product--make the programmer learn the native API. Which is
not easy because the vast majority of programmer documentation
is in C (or, even worse, C++). But it does offer the industrious
programmer total control, and there is no reason why a well-
informed APL programmer should not be able to produce
applications indistinguishable from those written in any other
language.

The other approach is to define a GUI for the language,
which is what Dyadic Systems did with APL/W, and what ISI
(Iverson Software, Inc.) has done forJ. The advantages of this
approach are that the APL application programmer can remain
productive (all the hard work was done once, by someone who
had to know C to write the interpreter), and that the GUI can be
portable across platforms (which Dyadic Systems are doing with
Motif, and ISI are hoping to do with OS/2). The limitation of
this approach is that unless the defined GUI is comprehensive
the resulting applications are likely to be feature-challenged.

So, how did ISI do?

Pretty well, I think.

If you useJ to develop applications in a Windows environ-
ment you get a wide range of intrinsic controls, DDE, OLE, VBX
and ODBC. The only thing I failed to get working was the Word
macro example described in the User Guide--there was a conflict
between whatJ wanted to use " for and what Word wanted; I
could probably have got around this anywhere else but on Crewe
railway station at 9"3o on a wet Monday morning--there a some
environments which are just plain not conducive to creative
thinking.

The main limitation ofJ 's GUI feature set is that (as you
might expect) it is more austere than the wilder fantasies coming
from downtown Redmond--your users had better be able to read
the legends on buttons, because you can't put a picture on them.

nouns, verbs, forks, gerunds and trains. The User Guide had
patiently led me through a series of Windows Driver examples.
But I hadn't got the foggiest idea of how to put them together.

The application I chose was a quite simple one out of
electrical engineering--I knew it had to be simple because I had
learnt the lesson of trying to do too much the first time with other
languages. I also had some Basic source code for it--I would
have preferred the raw formulae, but this never was a perfect
world.

Stage One was to build a script that did the raw maths; the
main struggle here was to make sure that ! got the same results
fromJ as I did from Basic (and I never have worked out what the
evaluation rules are for Basic). What fooled me for a little while
is that the default forJ is to run without suspension; the Dictio-
nary confirms that this is so, but does not tell you why you might
choose the option--the User Guide has nothing to say on the
topic (or if it does, I can't find where). I would guess that the
main mistake I made at this point was of putting all of the code
into a single script--it would probably have been better to break
the lower-level utilities out into a script of their own; I would
certainly do this in the future.

One very handy aspect of j 2 for masochists determined to
recode Basic is that it contains a selection of control words such
as " i f. " and " w h i i e. ".

With the calculation script able to build me a set of useful
nouns I could move on to creating a user interface with wd.

This went into a separate script and is a perfect example of
the old adage that it is a lot easier to make something the second
time. Chris Burke's User Guide is, on the whole, a model of
clarity--except when I needed to use it in earnest. I knew I ought
to use wdral , but it took several minutes head-scratching to
decode the explanation. Now that I have a working application,
it's obvious

There are (so far as I can tell) no visual tools to help build
the interface; the windows must be defined directly with wd
commands.

For public ridicule, I offer the code shown in Figure 3 as my
solution to handling the user interface (this is pretty much a re-
elaboration of what is on pages lO5-1o 7 of the User Guide). The
application is shown in action in Figure 4.

Building an application

Reading the manual is all very well, and so is experimenting with
the Dictionary--but everything has a purpose and I wanted to
make a useful application withJ.

Where to begin, and how?
At this point I began to feel a little like the bully-boy spaniel

who just met a Rottweiler for the first time. The Dictionary, and
most of the other literature that I had read, had me clued up on

52 APL Quote Quad

closewin=: wd bind 'psel tfmrwin;pclose;'
tfmrcalc=: 3 : 0
wd 'csel busy; cn "busy";'
top=: '' 'e0' wdg wd 'qd;'
volts=:".'el' wdg wd 'qd;'
curr=:" 'e2' wdg wd 'qd;'
xyz =: tfmr top,volts,curr
wd 'csel r0;cn ', (":0{xyz),';'
NB. Repetitive stuff omitted
wd 'csel e0;cfocus;'
wd 'csel busy;cn "";'
)
tfmrwin =: tfmrcalc'closewin'tfmrcalc casetable(((<'*id'),.'ok';'quit'),WDENTER)
tfwin=: 3 :0
wd 'pc tfmrwin;'
wd 'xywh 5 i0 120 14; cc cO static; cn "Topology";'
wd 'xywh 150 i0 20 8;cc e0 edit;'
NB. More boring repetitive stuff
wd 'xywh i0 170 20 10;cc ok button;'
wd 'xywh 40 170 20 10;cc quit button;'
wd 'xywh 70 170 20 10;cc busy static;cn "";'
wd 'pas 5 5;csel e0;cfocus;pcenter;pcloseok;pshow;'
wdml 1
)

Figure 3: Code to handle the user interface

As you see--it is quite simple with the user entering values into
the upper three edit boxes and seeing the results after pressing
either "Enter" or the "OK" button. Something which I had to
add was a "busy" sign because the calculations take a second or
two and I could find no way to change to the hourglass cursor
with wd.

Making the application run directly from Program manager
was the final step, achieved through another script which uses
the foreign conjunction to load the necessary utility and applica-
tionscripts, executethe t f w i n noun and (2 ! : 55) 0 tolog
off at the end. Establish a program item in an appropriate
Program Manager group and the application runs--presumably
with the professional version the J Session Manager window
would itself remain invisible.

The other aspect that I am conscious of is that all my definitions
have been explicit ones; there is much talk in theJ literature of
tacit definitions and I would like to see more explanations of why
we might choose to use one or the other.

Ground not covered

I recognise that I have certainly not explored J's locales in this
review--my sense is that they are in many ways analogous to
APL/W namespaces in terms of allowing the programmer greater
leeway in making nouns and verbs selectively visible. Since last
writing about APL/W I have converted an application to use
namespaees and been very happy with the result; my sense is that
J's locales would be equally helpful.

Figure 4: What the application looks like

SEPTEMBER 1995 - - VOLUME 26, NUMBER 1 5 3

Summary

I was able to build a small application using J for the first time
without a great deal of difficulty; it certainly helped me to have
spent some considerable time beforehand as an APL application
developer. I think that there is quite a gap between theJ Dictio-
nary and what a developer will need to know in order to build
significant application--the User Guide and the accompanying
script files will help to get people started but there is a need for
much more tutorial material.

My guess is that it would take a reasonably proficient APL
programmer two to three months to reach an acceptable level of
proficiency with J.

As an APL programmer I feel that I have gained from the
experience of looking at J - i t has had an effect which will
continue to ripple through into my APL work.

IfI had not been an APL programmer before I doubt that I
would have foundJ a particularly appealing experience; it is very
austere.

At this moment I am not sure whether I will useJ further; if
I did not have access to the other APL products I am sure that I
would, but apart from OLE it does not appear to offer any
particular advantages.

I would be very happy to see ISI deliver their OS/2 version
of J; assuming that they produce a compatible wcl it should be
possible to take yourJ GUI applications and run them immedi-
ately as native applications. This is a very appealing prospect
indeed.

Conclusions

There is one topic on which ! have been silent so far, and it is
dear to my heart.

Price.

J is an enormous bargain.

The personal edition is priced at 5 ° US Dollars; the profes-
sional edition (which you would need to purchase if you were
making products for sale) costs 5oo US Dollars. All but the most
impecunious can afford to purchase a copy and begin writing
Windows applications risking only their learning time. •

Dick Bowman is a frequent reviewer and a regular contributor to
Quote Quad. He can be reached at "bowman@apl.demon.co.uk".

A Reply to the]2 Review
--by Chris Burke and Roger Hui

W
E WOULD LIKE TO THANK DICK for his detailed and
careful review of the product, and the editors of
Quote-Quad for an opportunity to comment.

The version reviewed was 2.03 . The current version is 2.05
and version 2.o6 will be released in time for APL95. These
releases include several improvements in performance and
functionality.

j for Windows is now distributed in Professional, Personal
and FreeWare editions. The US prices are $495 for the
Professional edition, $1oo for a bundled Personal edition
which includes both manuals, or $4o for the disks alone.
The freeware edition is available by anonymous FTP from
various servers.

J2.o5 has a new forms editor plus improved Windows
message handling--overall, it is much easier to build a GUI
application than withJ2.o 3.

The review mentions a problem a mouse driver which is
attributed to a conflict with Win32s, bu t J does not in fact
use Win32s.

• Dick describes two problems with the Session Manager:

- he could not interrupt execution. In fact, Ctrl-Break
will interrupt execution.

he did not like the fact that the execution window
does not contain a true record of the session, unlike
APL2. In this respect, J is like other windows prod-
ucts, in that the session log can be edited to get rid of
typing mistakes, false starts, and the like.

• The Word macro example included withJ requires Word 6,
and will not work with Word 2.

The hourglass can not be changed with theJ window driver,
but it will be displayed automatically in any application that
is taking time.

The timings in the review were obtained usingJ2.o3. There
have been significant speed improvements inJ 2.o4, 'o5, and
'o6. The following table compares A P L ~ P L U S III Version
1.2 andJ times obtained under Windows on a 8o486/5o, in
milli-seconds averaged over looo trials.

54 APL Quote Quad

