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Abstract

MapReduce workloads have evolved to include increasing
amounts of time-sensitive, interactive data analysis; we re-
fer to such workloads as MapReduce with Interactive Anal-
ysis (MIA). Such workloads run on large clusters, whose
size and cost make energy efficiency a critical concern. Prior
works on MapReduce energy efficiency have not yet con-
sidered this workload class. Increasing hardware utilization
helps improve efficiency, but is challenging to achieve for
MIA workloads. These concerns lead us to develop BEEMR
(Berkeley Energy Efficient MapReduce), an energy efficient
MapReduce workload manager motivated by empirical anal-
ysis of real-life MIA traces at Facebook. The key insight is
that although MIA clusters host huge data volumes, the in-
teractive jobs operate on a small fraction of the data, and
thus can be served by a small pool of dedicated machines;
the less time-sensitive jobs can run on the rest of the cluster
in a batch fashion. BEEMR achieves 40-50% energy savings
under tight design constraints, and represents a first step to-
wards improving energy efficiency for an increasingly im-
portant class of datacenter workloads.

Categories and Subject Descriptors D.4.7 [Organization
and Design]: Distributed systems; D.4.8 [Performance]:
Operational analysis

Keywords MapReduce, energy efficiency.

1. Introduction

Massive computing clusters are increasingly being used for
data analysis. The sheer scale and cost of these clusters make
it critical to improve their operating efficiency, including en-
ergy. Energy costs are a large fraction of the total cost of
ownership of datacenters [6, 24]. Consequently, there is a
concerted effort to improve energy efficiency for Internet
datacenters, encompassing government reports [52], stan-
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dardization efforts [50], and research projects in both indus-
try and academia [7, 16, 19, 27-29, 32, 33, 43, 48].

Approaches to increasing datacenter energy efficiency
depend on the workload in question. One option is to in-
crease machine utilization, i.e., increase the amount of work
done per unit energy. This approach is favored by large web
search companies such as Google, whose machines have per-
sistently low utilization and waste considerable energy [5].
Clusters implementing this approach would service a mix of
interactive and batch workloads [14, 35, 40], with the inter-
active services handling the external customer queries [32],
and batch processing building the data structures that sup-
port the interactive services [15]. This strategy relies on
predictable diurnal patterns in web query workloads, using
latency-insensitive batch processing drawn from an “infinite
queue of low-priority work” to smooth out diurnal varia-
tions, to keep machines at high utilization [5, 14, 40].

This paper focuses on an alternate use case—what we
call MapReduce with Interactive Analysis (MIA) work-
loads. MIA workloads contain interactive services, tradi-
tional batch processing, and large-scale, latency-sensitive
processing. The last component arises from human data
analysts interactively exploring large data sets via ad-hoc
queries, and subsequently issuing large-scale processing re-
quests once they find a good way to extract value from the
data [9, 26, 34, 54]. Such human-initiated requests have flex-
ible but not indefinite execution deadlines.

MIA workloads require a very different approach to
energy-efficiency, one that focuses on decreasing the amount
of energy used to service the workload. As we will show by
analyzing traces of a front-line MIA cluster at Facebook,
such workloads have arrival patterns beyond the system’s
control. This makes MIA workloads unpredictable: new data
sets, new types of processing, and new hardware are added
rapidly over time, as analysts collect new data and discover
new ways to analyze existing data [9, 26, 34, 54]. Thus,
increasing utilization is insufficient: First, the workload
is dominated by human-initiated jobs. Hence, the cluster
must be provisioned for peak load to maintain good SLOs,
and low-priority batch jobs only partially smooth out the
workload variation. Second, the workload has unpredictable
high spikes compared with regular diurnal patterns for web
queries, resulting in wasted work from batch jobs being pre-
empted upon sudden spikes in the workload.



MIA-style workloads have already appeared in several
organizations, including both web search and other busi-
nesses [9, 26, 34]. Several technology trends help increase
the popularity and generality of MIA workloads:

e Industries ranging from e-commerce, finance, and manu-
facturing are increasingly adopting MapReduce as a data
processing and archival system [23].

e It is increasingly easy to collect and store large amounts
of data about both virtual and physical systems [9, 17, 27].

e Data analysts are gaining expertise using MapReduce to
process big data sets interactively for real-time analytics,
event monitoring, and stream processing [9, 26, 34].

In short, MapReduce has evolved far beyond its original

use case of high-throughput batch processing in support of

web search-centric services, and it is critical that we develop
energy efficiency mechanisms for MIA workloads.

This paper presents BEEMR (Berkeley Energy Efficient
MapReduce), an energy efficient MapReduce system moti-
vated by an empirical analysis of a real-life MIA workload
at Facebook. This workload requires BEEMR to meet strin-
gent design requirements, including minimal impact on in-
teractive job latency, write bandwidth, write capacity, mem-
ory set size, and data locality, as well as compatibility with
distributed file system fault tolerance using error correction
codes rather than replication. BEEMR represents a new de-
sign point that combines batching [28], zoning [29], and
data placement [27] with new analysis-driven insights to cre-
ate an efficient MapReduce system that saves energy while
meeting these design requirements. The key insight is that
although MIA clusters host huge volumes of data, the inter-
active jobs operate on just a small fraction of the data, and
thus can be served by a small pool of dedicated machines;
whereas the less time-sensitive jobs can run in a batch fash-
ion on the rest of the cluster. These defining characteristics
of MIA workloads both motivate and enable the BEEMR de-
sign. BEEMR increases cluster utilization while batches are
actively run, and decreases energy waste between batches
because only the dedicated interactive machines need to be
kept at full power. The contributions of this paper are:

e An analysis of a Facebook cluster trace to quantify the
empirical behavior of a MIA workload.

o The BEEMR framework which combines novel ideas with
existing MapReduce energy efficiency mechanisms.

e An improved evaluation methodology to quantify energy
savings and account the complexity of MIA workloads.

e An identification of a set of general MapReduce design
issues that warrant more study.

We show energy savings of 40-50%. BEEMR highlights the
need to design for an important class of data center work-
loads, and represents an advance over existing MapReduce
energy efficiency proposals [27-29]. Systems like BEEMR
become more important as the need for energy efficiency
continues to increase, and more use cases approach the scale
and complexity of the Facebook MIA workload.
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Figure 1. CDFs of input/shuffle/output sizes and ratios for the en-
tire 45-day Facebook trace. Both span several orders of magnitudes.
Energy efficiency mechanisms must accommodate this range.

2. Motivation

Facebook is a social network company that allows users to
create profiles and connect with each other. The Facebook
workload provides a detailed case study of the growing class
of MIA workloads. This analysis motivates the BEEMR
design and highlights where previous solutions fall short.

2.1 The Facebook Workload

We analyze traces from the primary Facebook production
Hadoop cluster. The cluster has 3000 machines. Each ma-
chine has 12+ TB, 8-16 cores, 32 GB of RAM, and roughly
15 concurrent map/reduce tasks [8]. The traces cover 45 days
from Oct. 1 to Nov. 15, 2010, and contain over 1 million jobs
touching tens of PB of data. The traces record each job’s job
ID, input/shuffle/output sizes, arrival time, duration, map/re-
duce task durations (in task-seconds), number of map/reduce
tasks, and input file path.

Figure 1 shows the distribution of per-job data sizes and
data ratios for the entire workload. The data sizes span sev-
eral orders of magnitude, and most jobs have data sizes in
the KB to GB range. The data ratios also span several orders
of magnitude. 30% of the jobs are map-only, and thus have
0 shuffle data. Any effort to improve energy efficiency must
account for this range of data sizes and data ratios.

Figure 2 shows the workload variation over two weeks.
The number of jobs is diurnal, with peaks around midday
and troughs around midnight. All three time series have a
high peak-to-average ratio, especially map and reduce task
times. Since most hardware is not power proportional [5], a
cluster provisioned for peak load would see many periods of
below peak activity running at near-peak power.

To distinguish among different types of jobs in the work-
load, we can perform statistical data clustering analysis. This
analysis treats each job as a multi-dimensional vector, and
finds clusters of similar numerical vectors, i.e., similar jobs.
Our traces give us six numerical dimensions per job — input
size, shuffle size, output size, job duration, map time, and
reduce time. Table 1 shows the results using the k-means
algorithm, in which we labeled each cluster based on the nu-
merical value of the cluster center.

Most of the jobs are small and interactive. These jobs
arise out of ad-hoc queries initiated by internal human an-
alysts at Facebook [9, 51]. There are also jobs with long du-



# Jobs [ Input  Shuffle Output Duration Map time Reduce time [ Label
1145663 | 6.9 MB 600 B 60 KB 1 min 48 34 | Small jobs
7911 50 GB 0 61 GB 8 hrs 60,664 0 | Map only transform, 8 hrs
779 3.6 TB 0 44 TB 45 min 3,081,710 0 | Map only transform, 45 min
670 2.1 TB 0 27GB 1hr20min 9,457,592 0 | Map only aggregate
104 35 GB 0 35GB 3 days 198,436 0 | Map only transform, 3 days
11491 1.5TB 30GB 22GB 30min 1,112,765 387,191 | Aggregate
1876 | 711 GB 2.6 TB 860 GB 2 hrs 1,618,792 2,056,439 | Transform, 2 hrs
454 9.0TB 1.5TB 1.2 TB 1 hr 1,795,682 818,344 | Aggregate and transform
169 2.7TB 12TB  260GB  2hrs7min 2,862,726 3,091,678 | Expand and aggregate
67 | 630GB 1.2TB 140GB 18 hrs 1,545,220 18,144,174 | Transform, 18 hrs

Table 1. Job types in the workload as identified by k-means clustering, with cluster sizes, medians, and labels. Map and reduce time are in
task-seconds, i.e., a job with 2 map tasks of 10 seconds each has map time of 20 task-seconds. Notable job types include small, interactive
jobs (top row) and jobs with inherently low levels of parallelism that take a long time to complete (fifth row). We ran k-means with 100
random instantiations of cluster centers, which averages to over 1 bit of randomness in each of the 6 data dimensions. We determine k, the
number of clusters by incrementing k from 1 and stopping upon diminishing decreases in the intra-cluster “residual” variance.
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Figure 2. Hourly workload variation over two weeks. The work-
load has high peak-to-average ratios. A cluster provisioned for the
peak would be often underutilized and waste a great deal of energy.

rations but small task times (map only, GB-scale, many-day
jobs). These jobs have inherently low levels of parallelism,
and take a long time to complete, even if they have the entire
cluster at their disposal. Any energy efficient MapReduce
system must accommodate many job types, each with their
own unique characteristics.

Figures 3 and 4 show the data access patterns as indicated
by the per-job input paths. Unfortunately our traces do not
contain comparable information for output paths. Figure 3
shows that the input path accesses follow a Zipf distribution,
i.e., a few input paths account for a large fraction of all
accesses. Figure 4 shows that small data sets are accessed
frequently; input paths of less than 10s of GBs account for
over 80% of jobs, but only a tiny fraction of the total size of
all input paths. Prior work has also observed this behavior in
other contexts, such as web caches [10] and databases [21].
The implication is that a small fraction of the cluster is
sufficient to store the input data sets of most jobs.
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Figure 3. Log-log plot of workload input file path access fre-
quency. This displays a Zipf distribution, meaning that a few input
paths account for a large fraction of all job inputs.
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Figure 4. CDF of both (1) the input size per job and (2) the
size per input path. This graph indicates that small input paths are
accessed frequently, i.e., data sets of less than 10s of GBs account
for over 80% of jobs, and such data sets are a tiny fraction of the
total data stored on the cluster.

Other relevant design considerations are not evident
from the traces. First, some applications require high write
throughput and considerable application-level cache, such
as Memcached. This fact was reported by Facebook in [9]
and [51]. Second, the cluster is storage capacity constrained,
so Facebook’s HDFS achieves fault tolerance through er-
ror correcting codes instead of replication, which brings
the physical replication factor down from three to less than
two [45]. Further, any data hot spots or decreased data local-
ity would increase MapReduce job completion times [2].

Table 2 summarizes the design constraints. They repre-
sent a superset of the requirements considered by existing
energy efficient MapReduce proposals.

2.2 Prior Work

Prior work includes both energy-efficient MapReduce schemes
as well as strategies that apply to other workloads.



2.2.1 Energy Efficient MapReduce

Existing energy efficient MapReduce systems fail to meet all
the requirements in Table 2. We review them here.

The covering subset scheme [29] keeps one replica of ev-
ery block within a small subset of machines called the cov-
ering subset. This subset remains fully powered to preserve
data availability while the rest is powered down. Operat-
ing only a fraction of the cluster decreases write bandwidth,
write capacity, and the size of available memory. More crit-
ically, this scheme becomes unusable when error correction
codes are used instead of replication, since the covering sub-
set becomes the whole cluster.

The all-in strategy [28] powers down the entire cluster
during periods of inactivity, and runs at full capacity oth-
erwise. Figure 2 shows that the cluster is never completely
inactive. Thus, to power down at any point, the all-in strat-
egy must run incoming jobs in regular batches, an approach
we investigated in [13]. All jobs would experience some de-
lay, an inappropriate behavior for the small, interactive jobs
in the MIA workload (Table 1).

Green HDFS [27] partitions HDFS into disjoint hot and
cold zones. The frequently accessed data is placed in the
hot zone, which is always powered. To preserve write ca-
pacity, Green HDFS fills the cold zone using one powered-
on machine at a time. This scheme is problematic because
the output of every job would be located on a small number
of machines, creating a severe data hotspot for future ac-
cesses. Furthermore, running the cluster at partial capacity
decreases the available write bandwidth and memory.

The prior studies in Table 2 also suffer from several
methodological weaknesses. Some studies quantified energy
efficiency improvements by running stand-alone jobs, sim-
ilar to [43]. This is the correct initial approach, but it is
not clear that improvements from stand-alone jobs translate
to workloads with complex interference between concur-
rent jobs. More critically, for workloads with high peak-to-
average load (Figure 2), per-job improvements fail to elimi-
nate energy waste during low activity periods.

Other studies quantified energy improvements using
trace-driven simulations. Such simulations are essential for
evaluating energy efficient MapReduce at large scale. How-
ever, the simulators used there were not empirically veri-
fied, i.e., there were no experiments comparing simulated
versus real behavior, nor simulated versus real energy sav-
ings. Section 5.8 demonstrates that an empirical validation
reveals many subtle assumptions about simulators, and put
into doubt the results derived from unverified simulators.

These shortcomings necessitate a new approach in de-
signing and evaluating energy efficient MapReduce systems.

2.2.2 Energy Efficient Web Search-Centric Workloads

MIA workloads require a different approach to energy effi-
ciency than previously considered workloads.

In web search-centric workloads, the interactive services
achieves low latency by using data structures in-memory, re-
quiring the entire memory set to be always available [32].
Given hardware limits in power proportionality, it becomes
a priority to increase utilization of machines during diurnal
troughs [5]. One way to do this is to admit batch process-
ing to consume any available resource. This policy makes
the combined workload closed-loop, i.e., the system con-
trols the amount of admitted work. Further, the combined
workload becomes more predictable, since the interactive
services display regular diurnal patterns, and with batch pro-
cessing smoothing out most diurnal variations [5, 19, 32].

These characteristics enable energy efficiency improve-
ments to focus on maximizing the amount of work done sub-
ject to the given power budget, i.e., maximizing the amount
of batch processing done by the system. Idleness is viewed
as waste. Opportunities to save energy occur at short time
scales, and requires advances in hardware energy efficiency
and power proportionality [5, 7, 16, 19, 32, 33, 48].

These techniques remain helpful for MIA workloads.
However, the open-loop and unpredictable nature of MIA
workloads necessitates additional approaches. Human ini-
tiated jobs have both throughput and latency constraints.
Thus, the cluster needs to be provisioned for peak, and idle-
ness is inherent to the workload. Machine-initiated batch
jobs can only partially smooth out transient activity peaks.
Improving hardware power proportionality helps, but re-
mains a partial solution since state-of-the-art hardware is
still far from perfectly power proportional. Thus, absent poli-
cies to constrain the human analysts, improving energy ef-
ficiency for MIA workloads requires minimizing the energy
needed to service the given amount of work.

More generally, energy concerns complicate capacity
provisioning, a challenging topic with investigations dat-
ing back to the time-sharing era [3, 4, 46]. This paper offers
a new perspective informed by MIA workloads.

3. BEEMR Architecture

BEEMR is an energy efficient MapReduce workload man-
ager. The key insight is that the interactive jobs can be served
by a small pool of dedicated machines with their associ-
ated storage, while the less time-sensitive jobs can run in a
batch fashion on the rest of the cluster using full computation
bandwidth and storage capacity. This setup leads to energy
savings and meet all the requirements listed in Table 2.

3.1 Design

The BEEMR cluster architecture is shown in Figure 5. It is
similar to a typical Hadoop MapReduce cluster, with impor-
tant differences in how resources are allocated to jobs.

The cluster is split into disjoint interactive and batch
zones. The interactive zone makes up a small, fixed percent-
age of cluster resources — task slots, memory, disk capacity,
network bandwidth, similar to the design in [4]. The interac-



Desirable Property Covering subset [29]  All-In [28] Hot & Cold Zones [27] BEEMR
Does not delay interactive jobs v v v
No impact on write bandwidth 4 v
No impact on write capacity 4 4 4
No impact on available memory 4 4
Does not introduce data hot spots nor impact data locality v v v
Improvement preserved when using ECC instead of replication 4 v v
Addresses long running jobs with low parallelism Partially
Energy savings 9-50%1! 0-50%> 24%3 40-50%

Table 2. Required properties for energy-saving techniques for Facebook’s MIA workload. Prior proposals are insufficient. Notes: * The
reported energy savings used an energy model based on linearly extrapolating CPU utilization while running the GridMix throughput bench-
mark [22] on a 36-node cluster. > Reported only relative energy savings compared with the covering subset technique, and for only two
artificial jobs (Terasort and Grep) on a 24-node experimental cluster. We recomputed absolute energy savings using the graphs in the paper.
3 Reported simulation based energy cost savings, assumed an electricity cost of $0.063/KWh and 80% capacity utilization.
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Figure 5. The BEEMR workload manager (i.e., job tracker) clas-
sifies each job into one of three classes which determines which
cluster zone will service the job. Interactive jobs are serviced in the
interactive zone, while batchable and interruptible jobs are serviced
in the batch zone. Energy savings come from aggregating jobs in
the batch zone to achieve high utilization, executing them in regu-
lar batches, and then transitioning machines in the batch zone to a
low-power state when the batch completes.

tive zone is always fully powered. The batch zone makes up
the rest of the cluster, and is put into a very low power state
between batches [25].

As jobs arrive, BEEMR classifies them as one of three
job types. Classification is based on empirical parameters
derived from the analysis in Section 2. If the job input data
size is less than some threshold interactive, itis classified
as an interactive job. BEEMR seeks to service these jobs
with low latency. If a job has tasks with task duration longer
than some threshold interruptible, it is classified as an
interruptible job. Latency is not a concern for these jobs,
because their long-running tasks can be check-pointed and
resumed over multiple batches. All other jobs are classified
as batch jobs. Latency is also not a concern for these jobs, but
BEEMR makes best effort to run them by regular deadlines.
Such a setup is equivalent to deadline-based policies where
the deadlines are the same length as the batch intervals.

The interactive zone is always in a full-power ready state.
It runs all of the interactive jobs and holds all of their asso-
ciated input, shuffle, and output data (both local and HDFS

storage). Figures 3 and 4 indicate that choosing an appropri-
ate value for interactive can allow most jobs to be classi-
fied as interactive and executed without any delay introduced
by BEEMR. This interactive threshold should be period-
ically adjusted as workloads evolve.

The interactive zone acts like a data cache. When an in-
teractive job accesses data that is not in the interactive zone
(i.e., a cache miss), BEEMR migrates the relevant data from
the batch zone to the interactive zone, either immediately or
upon the next batch. Since most jobs use small data sets that
are reaccessed frequently, cache misses occur infrequently.
Also, BEEMR requires storing the ECC parity or replicated
blocks within the respective zones, e.g., for data in the inter-
active zone, their parity or replication blocks would be stored
in the interactive zone also.

Upon submission of batched and interruptible jobs, all
tasks associated with the job are put in a wait queue. At regu-
lar intervals, the workload manager initiates a batch, powers
on all machines in the batch zone, and run all tasks on the
wait queue using the whole cluster. The machines in the in-
teractive zone are also available for batch and interruptible
jobs, but interactive jobs retain priority there. After a batch
begins, any batch and interruptible jobs that arrive would
wait for the next batch. Once all batch jobs complete, the job
tracker assigns no further tasks. Active tasks from interrupt-
ible jobs are suspended, and enqueued to be resumed in the
next batch. Machines in the batch zone return to a low-power
state. If a batch does not complete by start of the next batch
interval, the cluster would remain fully powered for consec-
utive batch periods. The high peak-to-average load in Fig-
ure 2 indicates that on average, the batch zone would spend
considerable periods in a low-power state.

BEEMR improves over prior batching and zoning schemes
by combining both, and uses empirical observations to set
the values of policy parameters, which we describe next.

3.1.1 Parameter Space

BEEMR involves several design parameters whose values
need to be optimized. These parameters are:



Parameter Units or Type Values
totalsize thousand slots 32,48, 60, 72
mapreduceratio | map:reduceslots | 1:1,

27 : 14, (= 2.0),

13:5 (= 2.6)
izonesize % total slots 10
interactive GB 10
interruptible hours 6,12,24
batchlen hours 1,2,6,12,24
taskcalc algorithm default, actual,

latency-bound

Table 3. Design space explored. The values for izonesize and
interactive are derived from the analysis in Section 2.1. We scan
at least three values for each of the other parameters.

e totalsize: the size of the cluster in total (map and re-
duce) task slots.

e mapreduceratio: the ratio of map slots to reduce slots
in the cluster.

e izonesize: the percentage of the cluster assigned to the
interactive zone.

e interactive: the input size threshold for classifying
jobs as interactive.

e interruptible: task duration threshold for classifying
jobs as interruptible.

e batchlen: the batch interval length.

e taskcalc: the algorithm for determining the number of
map and reduce tasks to assign to a job.

Table 3 shows the parameter values we will optimize for

the Facebook workload. For other workloads, the same tun-

ing process can extract a different set of values. Note that

totalsize indicates the size of the cluster in units of task

slots, which differs from the number machines. One machine

can run many task slots, and the appropriate assignment of

task slots per machine depends on hardware capabilities.
Another parameter worth further explanation is taskcalc,

the algorithm for determining the number of map and reduce

tasks to assign to a job. An algorithm that provides appropri-

ate task granularity ensures that completion of a given batch

is not held up by long-running tasks from some jobs.
BEEMR considers three algorithms: Default assigns 1

map per 128 MB of input and 1 reduce per 1 GB of input;

this is the default setting in Hadoop. Actual assigns the same

number of map and reduce tasks as given in the trace and

corresponds to settings at Facebook. Latency-bound assigns

a number of tasks such that no task will run for more than

1 hour. This policy is possible provided that task execution

times can be predicted with high accuracy [20, 36].

3.1.2 Requirements Check

We verify that BEEMR meets the requirements in Table 2.

1. Write bandwidth is not diminished because the entire
cluster is fully powered when batches execute. Table 1
indicates that only batch and interruptible jobs require
large write bandwidth. When these jobs are running, they
have access to all of the disks in the cluster.

. Similarly, write capacity is not diminished because the

entire cluster is fully powered on during batches. Be-
tween batches, the small output size of interactive jobs
(Table 1) means that an appropriate value of izonesize
allows those job outputs to fit in the interactive zone.

. The size of available memory also remains intact. The

memory of the entire cluster is accessible to batch and
interruptible jobs, which potentially have large working
sets. For interactive jobs, the default or actual (Facebook)
taskcalc algorithms will assign few tasks per job, re-
sulting in small in-memory working sets.

. Interactive jobs are not delayed. The interactive zone

is always fully powered, and designated specifically to
service interactive jobs without delay.

. BEEMR spreads data evenly within both zones, and

makes no changes that impact data locality. Nonetheless,
Figure 3 suggests that there will be some hotspots inher-
ent to the Facebook workload, independent of BEEMR.

6. BEEMR improves energy efficiency via batching. There

is no dependence on ECC or replication, thus preserving
energy savings regardless of fault tolerance mechanism.

. Long jobs with low levels of parallelism remain a chal-

lenge, even under BEEMR. These jobs are classified as
interruptible jobs if their task durations are large, and
batch jobs otherwise. If such jobs are classified as batch
jobs, they could potentially prevent batches from com-
pleting. Their inherent low levels of parallelism cause the
batch zone to be poorly utilized when running only these
long jobs, resulting in wasted energy. One solution is for
experts to label such jobs a priori so that BEEMR can
ensure that these jobs are classified as interruptible.

3.2 Implementation

BEEMR involves several extensions to Apache Hadoop.

The job tracker is extended with a wait queue manage-

ment module. This module holds all incoming batch jobs,
moves jobs from the wait queue to the standard scheduler
upon each batch start, and places any remaining tasks of in-
terruptible jobs back on the wait queue when batches end.
Also, the scheduler’s task placement mechanism is modified
such that interactive jobs are placed in the interactive zone,
and always have first priority to any available slots.

The namenode is modified such that the output of inter-

active jobs is assigned to the interactive zone, and the output

of batch and interruptible jobs is assigned to the batch zone.
If either zone approaches storage capacity, it must adjust the
fraction of machines in each zone, or expand the cluster.
The Hadoop master is augmented with a mechanism to
transfer all slaves in the batch zone in and out of a low-
power state, e.g., sending a “hibernate” command via ssh
and using Wake-on-LAN or related technologies [30]. If
batch intervals are on the order of hours, it is acceptable for
this transition to complete over seconds or even minutes.



Accommodating interruptible jobs requires a mecha-
nism that can suspend and resume active tasks. The current
Hadoop architecture makes it difficult to implement such a
mechanism. However, suspend and resume is a key compo-
nent of fault recovery under Next Generation Hadoop [38].
We can re-purpose for BEEMR those mechanisms.

These extensions will create additional computation and
IO at the Hadoop master node. The current Hadoop master
has been identified as a scalability bottleneck [47]. Thus, it
is important to monitor BEEMR overhead at the Hadoop
master to ensure that we do not affect cluster scalability.
This overhead would become more acceptable under Next
Generation Hadoop, where the Hadoop master functionality
would be spread across several machines [38].

4. Evaluation Methodology

The evaluation of our proposed algorithm involves running
the Facebook MIA workload both in simulation and on clus-
ters of hundreds of machines on Amazon EC2 [1].

The Facebook workload provides a level of validation not
obtainable through stand-alone programs or artificial bench-
marks. It is logistically impossible to replay this workload
on large clusters at full duration and scale. The high peak to
average nature of the workload means that at time scales of
less than weeks, there is no way to know whether the results
capture transient or average behavior. Enumerating a multi-
dimensional design space would also take prohibitively long.
Any gradient ascent algorithms are not possible, simply be-
cause there is no guarantee that the performance behavior is
convex. Combined, these concerns compel us to use experi-
mentally validated simulations.

The simulator is optimized for simulation scale and speed
by omitting certain details: job startup and completion over-
head, overlapping map and reduce phases, speculative ex-
ecution and stragglers, data locality, and interference be-
tween jobs. This differs from existing MapReduce simula-
tors [37, 53], whose focus on details make it logistically
infeasible to simulate large scale, long duration workloads.
The simulator assumes a simple, fluid-flow model of job ex-
ecution, first developed for network simulations as an alter-
native to packet-level models [31, 42]. There, the motiva-
tion was also to gain simulation scale and speed. Section 5.8
demonstrates that the impact on accuracy is acceptable.

Simulated job execution is a function of job submit time
(given in the trace), task assignment time (depends on a com-
bination of parameters, including batch length, and number
of map and reduce slots), map and reduce execution times
(given in the trace), and the number of mappers and reduc-
ers chosen by BEEMR (a parameter). Figure 6 shows how
the simulator works at a high level.

We empirically validate the simulator by replaying sev-
eral day-long workloads on a real-life cluster (Section 5.8).
This builds confidence that simulation results translate to
real clusters. The validation employs previously developed
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Figure 6. A high-level view of the simulation algorithm. For
each simulated second, the following executes: 1. The simulator
dequeues newly arrived jobs (arrival pattern given in the trace),
classifies the job as interactive, batch, or interruptible, and applies
the task granularity policy. 2. The simulator checks for available
map or reduce slots, checks the batch policy to see which jobs can
be run at the present time, and assigns slots to jobs in round robin,
fair scheduler fashion. 3. The simulator removes completed tasks
and returns the corresponding slot back to the free slot pool. For
each active job, it checks to see if the job has more tasks to run (go
back to step 2) or is complete (go to step 4). 4. The job is marked
complete and the job duration recorded.

methods to “replay” MapReduce workloads independent of
hardware [12]. The techniques there replays the workload
using synthetic data sets, and reproduces job submission se-
quences and intensities, as well as the data ratios between
each job’s input, shuffle, and output stages.

We model the machines as having “full” power when ac-
tive, and negligible power when in a low power state. Despite
recent advances in power proportionality [5], such models
remain valid for Hadoop. In [11], we used wall plug power
meters to show that machines with power ranges of 150W-
250W draw 205W-225W when running Hadoop. The chat-
tiness of the Hadoop/HDFS stack means that machines are
active at the hardware level even when they are idle at the
Hadoop workload level. The simple power model allow us
to scale the experiments in size and in time.

Several performance metrics are relevant to energy ef-
ficient MapReduce: (1) Energy savings: Under our power
model, this would be the duration for which the cluster is
fully idle; (2) Job latency (analogous to “turn around time” in
multiprogramming literature [18]): We measure separately
the job latency for each job class, and quantify any trade-
off against energy savings; (3) System throughput: Under
the MIA open-loop workload model, the historical system
throughput would be the smaller of totalsize and the his-
torical workload arrival rate. We examine several values of
totalsize and quantify the interplay between latency, en-
ergy savings, and other policy parameters.

Table 3 shows the parameter values used to explore the
BEEMR design space.

5. Results

The evaluation spans the multi-dimensional design space
in Table 3. Each dimension illustrates subtle interactions
between BEEMR and the Facebook workload.



5.1 Cluster Size

Cluster size is controlled by totalsize. Underprovision-
ing a cluster results in long queues and high latency during
workload peaks; overprovisioning leads to arbitrarily high
baseline energy consumption and waste. Over the 45-days
trace, the Facebook workload has an average load of 21029
map tasks and 7745 reduce tasks. Since the workload has a
high peak-to-average ratio, we must provision significantly
above the average. Figure 7 shows the detailed cluster behav-
ior for several cluster sizes without any of the BEEMR im-
provements. We pick a one-to-one map-to-reduce-slot ratio
because that is the default in Apache Hadoop, and thus forms
a good baseline. A cluster with only 32000 total slots cannot
service the historical rate, being pegged at maximum slot
occupancy; larger sizes still see transient periods of maxi-
mum slot occupancy. A cluster with at least 36000 map slots
(72000 total slots) is needed to avoid persistent long queues,
so we use this as a baseline.

5.2 Batch Interval Length

Energy savings are enabled by batching jobs and transition-
ing the batch zone to a low-power state between batches.
The ability to batch depends on the predominance of inter-
active analysis in MIA workloads (Section 2.1). We consider
here several static batch interval lengths. A natural extension
would be to have dynamically adjusted batch intervals to en-
able various deadline driven policies.

We vary batchlen, the batching interval, while hold-
ing the other parameters fixed. Figure 8 shows that energy
savings, expressed as a fraction of the baseline energy con-
sumption, become non-negligible only for batch lengths of
12 hours or more. Figure 9 shows that map tasks execute in
near-ideal batch fashion, with maximum task slot occupancy
for a fraction of the batch interval and no further tasks in the
remainder of the interval. However, reduce slot occupancy
rarely reaches full capacity, while “dangling” reduce tasks
often run for a long time at very low cluster utilization. There
are more reduce tasks slots available, but the algorithm for
choosing the number of task slots limits the amount of par-
allelism. During the fifth and sixth days, such dangling tasks
cause the batch zone to remain at full power for the entire
batch interval. Fixing this requires improving both the algo-
rithm for calculating the number of tasks for each job and
the ratio of map-to-reduce slots.

5.3 Task Slots Per Job

The evaluation thus far considered only the default algorithm
for computing the number of tasks per job, as specified by
taskcalc. Recall that we consider two other algorithms:
Actual assigns the same number of map and reduce tasks as
given in the trace and corresponds to settings at Facebook.
Latency-bound assigns a number of tasks such that no task
will run for more than 1 hour. Figure 10 compares the de-
fault versus actual and latency-bound algorithms. The actual
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Figure 7. The number of concurrently active tasks for clusters of
different sizes (in terms of total task slots, totalsize).
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Figure 8. Energy savings for different batch interval lengths
as given by batchlen. Energy savings are non-negligible for
large batch intervals only. Note that taskcalc is set to default,
mapreduceratio is set to 1:1, totalsize is set to 72000 slots,
and interruptible is set to 24 hours.
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Figure 9. Active slots for a batchlen of 24 hours. Showing
slot occupancy in the interactive zone (top) and in the batch zone
(bottom). Showing one week’s behavior. Note that taskcalc is
set to default, mapreduceratio is set to 1:1, totalsize is set to
72000 slots, and interruptible is set to 24 hours.

policy does the worst, unsurprising because the task assign-
ment algorithm at Facebook is not yet optimized for energy
efficiency. The latency-bound policy does the best; this indi-
cates that good task execution time prediction can improve
task assignment and achieve greater energy savings.
Observing task slot occupancy over time provides in-
sight into the effects of taskcalc. Using the actual algo-
rithm (Figure 11(a)), slots in the interactive zone reach ca-
pacity more frequently, suggesting that the Facebook algo-
rithm seeks to increase parallelism to decrease the amount
of computation per task and lower the completion latency
of interactive jobs. In contrast, tasks in the batch zone be-
have similarly under the default and Facebook algorithm for



5 06

s

8 04 default

® 0

= = actual

¢ 02

w m |atency-bound
0

1hr 2hrs 6hrs 12hrs 1day
Batch interval length

Figure 10. Energy savings for different taskcalc algorithms.
Note that mapreduceratio is set to 1:1, and interruptible is
set to 24 hours. The actual (Facebook) algorithm does worst and
the latency-bound algorithm does best.
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Figure 12. Energy savings for different values of

mapreduceratio. Increasing the number of map slots in-
creases energy savings for all taskcalc algorithms, with the
improvement for latency-bound being the greatest. Note that
totalsize is set to 72000 slots, batchlen is set to 24 hours, and
interruptible is set to 24 hours.

the week shown in Figure 11(a). Aggregated over the entire
trace, the actual policy turns out to have more dangling tasks
overall, diminishing energy savings.

In contrast, task slot occupancy over time for the latency-
bound policy eliminates all dangling tasks of long durations
(Figure 11(b)). This results in high cluster utilization during
batches, as well as clean batch completion, allowing the
cluster to be transitioned into a low-power state at the end of
a batch. There is still room for improvement in Figure 11(b):
the active reduce slots are still far from reaching maximum
task slot capacity. This suggests that even if we keep the total
number of task slots constant, we can harness more energy
savings by changing some reduce slots to map slots.

5.4 Map to Reduce Slot Ratio

The evaluation thus far illustrates that reduce slots are uti-
lized less than map slots. Changing mapreduceratio (i.e.,
increasing the number of map slots and decreasing the num-
ber of reduce slots while keeping cluster size constant)
should allow map tasks in each batch to complete faster
without affecting reduce tasks completion rates. Figure 12
shows that doing so leads to energy efficiency improve-
ments, especially for the latency-bound algorithm.

Viewing the task slot occupancy over time reveals that
this intuition about the map-to-reduce-slot ratio is correct.
Figure 13(a) compares batch zone slot occupancy for two
different ratios using the default algorithm. With a larger
number of map slots, the periods of maximum map slot
occupancy are shorter, but there are still dangling reduce
tasks. The same ratio using the latency-bound algorithm
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Figure 14. Energy savings per day for the latency-bound policy
comparison in Figure 13(b). Daily energy savings range from O to
80%. Neither static policy achieves best energy savings for all days.
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Figure 15. Energy savings for different values of
interruptible. Lowering the threshold leads to increased
energy savings for actual and default algorithms. Note that
mapreduceratio is set to 13:5 and batchlen is set to 24
hours. Note that for actual and default algorithms, having a low
interruptible causes the queue for waiting interrupted jobs to
grow without limit; the latency-bound policy is preferred despite
seemingly lower energy savings (Section 5.5).

avoids these dangling reduce tasks, as shown in Figure 13(b),
achieving higher energy savings.

Nevertheless, the latency-bound algorithm still has room
for improvement. During the fifth and sixth days in Fig-
ure 13(b), the batches are in fact limited by available reduce
slots. Figure 14 shows that neither static policy for map ver-
sus task ratios achieve the best savings for all days. A dy-
namically adjustable ratio of map and reduce slots is best. A
dynamic ratio can ensure that every batch is optimally exe-
cuted, bottlenecked on neither map slots nor reduce slots.

5.5 Interruptible Threshold

The last dimension to evaluate is interruptible, the task
duration threshold that determines when a job is classified as
interruptible. In the evaluation so far, interruptible has
been set to 24 hours. Decreasing this threshold should cause
more jobs to be classified as interruptible, and fewer jobs
as batch. A lower interruptible threshold allows faster batch
completions and potentially more capacity for the interactive
zone, at the cost of higher average job latency, as more jobs
are spread over multiple batches.

Figure 15 shows the energy saving improvements from
lowering interruptible. (The latency-bound algorithm,
by design, does not result in any interruptible jobs, unless
the interruptible is set to less than an hour, so the energy
savings for the latency-bound algorithm are unaffected.) Ac-
tual and default algorithms show considerable energy sav-
ings improvements, at the cost of longer latency for some
jobs. It would be interesting to see how many cluster users
and administrators are willing to make such trades.
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Figure 11. Slot occupancy over time in the interactive zone (top graph) and batch zone (bottom graph). Showing one week’s behavior.
Note that batchlen is set to 24 hours, mapreduceratio is setto 1:1, and interruptible is set to 24 hours.
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Figure 13. Batch zone slot occupancy over time using a mapreduceratio of 1:1 for the top graph, and a mapreduceratio of 13:5 for
the bottom graph. Showing one week’s behavior. Note that batchlen is set to 24 hours and interruptible is set to 24 hours.

Lowering interruptible too much would cause the
queue of waiting interruptible jobs to build without bound.
Consider the ideal-case upper bound on possible energy
savings. The Facebook workload has a historical average
of 21029 active map tasks and 7745 active reduce tasks.
A cluster of 72000 task slots can service 72000 concur-
rent tasks at maximum. Thus, the best case energy sav-
ings is 1 — (21029 + 7745)/72000 = 0.60. As we lower
interruptible, any energy “savings” above this ideal ac-
tually represents the wait queue building up.

The best policy combination we examined achieves en-
ergy savings of 0.55 fraction of the baseline, as shown Fig-
ure 15, with taskcalc set to default and interruptible
set to 6 hours. This corresponds to 92% of this ideal case.

5.6 Overhead

The energy savings come at the cost of increased job la-
tency. Figure 16 quantifies the latency increase by look-
ing at normalized job durations for each job type. BEEMR
achieves minimal latency overhead for interactive jobs, and
some overhead for other job types. This delayed execution
overhead buys us energy savings for non-interactive jobs.
For interactive jobs, more than 60% of jobs have ratio of
1.0, approximately 40% of jobs have ratio less than 1.0, and a
few outliers have ratio slightly above 1.0. This indicates that
a dedicated interactive zone can lead to either unaffected job
latency, or even improved job latency from having dedicated

resources. The small number of jobs with ratio above 1.0
is caused by peaks in interactive job arrivals. This suggests
that it would be desirable to increase the capacity of the
interactive zone during workload peaks.

For batched jobs, the overhead spans a large range. This
is caused by the long batch interval, and is acceptable as a
matter of policy. A job that arrives just after the beginning
of one batch would have delay of at least one batch interval,
leading to large latency. Conversely, a job that arrives just
before a batch starts will have almost no delay. This is the
same delayed execution behavior as policies in which users
specify, say, a daily deadline.

For interruptible jobs, the overhead is also small for most
jobs. This is surprising because interruptible jobs can po-
tentially execute over multiple batches. The result indicates
that interruptible jobs are truly long running jobs. Executing
them over multiple batches imposes a modest overhead.

5.7 Sensitivity

The evaluation thus far has set a totalsize of 72000 task
slots and discovered the best parameter values based on this
setting. A cluster size of 72000 forms a conservative baseline
for energy consumption. Using BEEMR on larger clusters
yields more energy savings, as shown in Figure 17.
BEEMR extracts most, but not all, of the ideal energy
savings. The discrepancy arises from long tasks that hold up
batch completion (Section 5.2) and transient imbalance be-
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Figure 17. Ideal and observed energy savings for different cluster
sizes. Both increase as cluster size increases. Note that batchlen
is set to 24 hours, taskcalc is set to default, mapreduceratio is
set to 13:5, and interruptible is set to 6 hours.

tween map and reduce slots (Section 5.4). If the fraction of
time that each batch runs at maximum slot occupancy is al-
ready small, then the effects of long tasks and map/reduce
slot imbalance are amplified. Thus, as cluster size increases,
the gap between BEEMR energy savings and the ideal also
increases. One way to narrow the gap would be to extend the
batch interval length, thus amortizing the overhead of long
tasks holding up batch completion and transient map/reduce
slot imbalance. In the extreme case, BEEMR can achieve
arbitrarily close to ideal energy savings by running the his-
torical workload in one single batch.

5.8 Validation

Empirical validation of the simulator provides guidance
on how simulation results translate to real clusters. The
BEEMR simulator explicitly trades simulation scale and
speed for accuracy, making it even more important to quan-
tify the simulation error.

We validate the BEEMR simulator using an Amazon EC2
cluster of 200 “m1.large” instances [1]. We ran three exper-
iments: (1) a series of stand-alone sort jobs, (2) replay sev-
eral day-long Facebook workloads using the methodology
in [12], which reproduces arrival patterns and data sizes us-
ing synthetic MapReduce jobs running on synthetic data, (3)
replay the same workloads in day-long batches. For Experi-
ments 1 and 2, we compare the job durations from these ex-
periments to those obtained by a simulator configured with
the same number of task slots and the same policies regard-
ing task granularity. For Experiment 3, we compare the en-
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Figure 18. Simulator validation for stand-alone jobs. Showing
the ratio between simulated job duration and average job duration
from 20 repeated measurements on a real cluster. The ratio is
bounded for both large and small jobs and is very close to 1.0 for
sort jobs of size 100s of MB to 10s of GB.

ergy savings predicted by the simulator to that from the EC2
cluster. These experiments represent an essential validation
step before deployment on the actual front-line Facebook
cluster running live data and production code.

Figure 18 shows the results from stand-alone sort jobs.
This ratio is bounded on both ends and is very close to
1.0 for sort jobs of size 100s of MB to 10s of GB. The
simulator underestimates the run time (the ratio is less than
1.0) for small sort sizes. There, the overhead of starting and
terminating a job dominates; this overhead is ignored by
the simulator. The simulator overestimates the run time (the
ratio is greater than 1.0) for large sort sizes. For those jobs,
there is non-negligible overlap between map and reduce
tasks; this overlap is not simulated. The simulation error is
bounded for both very large and very small jobs.

Also, there is low variance between different runs of
the same job, with 95% confidence intervals from 20 re-
peated measurements being barely visible in Figure 18.
Thus, pathologically long caused by task failures or spec-
ulative/abandoned executions are infrequent; not simulating
these events causes little error.

Figure 19 shows the results of replaying one day’s worth
of jobs, using three different day-long workloads. The ratio
is again bounded, and close to 0.75 for the majority of jobs.
This is because most jobs in the workload have data sizes
in the MB to GB range (Figure 1). As explained previously,
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Figure 19. Simulator validation for three day-long workloads,
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Figure 20. Simulator validation for three different day-long
workloads, with batchlen set to 24 hours. Showing the predicted
versus actual energy savings (top graph, average 22% simulation
error), and the predicted versus actual energy savings after adjust-
ing for the slot occupancy capacity on the real-life cluster (bottom
graph, average 13% simulation error).

job startup and termination overhead lead to the simulator to
underestimate the duration of these jobs.

Figure 20 shows the validation results from batching
the three day-long workloads. The simulation error varies
greatly between three different days. The average error is
22% of the simulated energy savings (top graph in Fig-
ure 20). We identify two additional sources of simulator
error: (1) The BEEMR simulator assumes that all avail-
able task slots are occupied during the batches. However,
on the EC2 cluster, the task slot occupancy averages from
50% to 75% of capacity, a discrepancy again due to task
start and termination overhead — the scheduler simply can-
not keep all task slots occupied. Adjusting the simulator by
using a lower cluster size than the real cluster yields the
bottom graph in Figure 20, with the error decreased to 13%
of the simulated energy savings. (2) The BEEMR simula-
tor assumes that task times remain the same regardless of
whether the workload is executed as jobs arrive, or executed
in batch. Observations from the EC2 cluster reveals that
during batches, the higher real-life cluster utilization leads
to complex interference between jobs, with contention for
disk, network, and other resources. This leads to longer task
times when a workload executes in batch, and forms another
kind of simulation error that is very hard to model.

Opverall, these validation results mean that the simulated
energy savings of 50-60% (Section 5.5) would likely trans-
late to 40-50% on a real cluster.

6. Discussion

The results in Section 5 raise many interesting questions.
Some additional issues await further discussion below.

6.1 Power Cycles versus Reliability

Transitioning machines to low-power states is one way to
achieve power proportionality for MIA workloads while
more power proportional hardware is being developed.
Large scale adoption of this technique has been limited by
worries that power cycling increases failure rates.

There have been few published, large-scale studies that
attribute increased failure rates to power cycling. The au-
thors in [41] observed a correlation between the two, but
point out that correlation could come simply from failed sys-
tems needing more reboots to restore. To identify a causal re-
lationship would require a more rigorous methodology, com-
paring mirror systems servicing the same workload, with the
only difference being the frequency of power cycles.

One such comparison experiment ran for 18 months on
100s of machines, and found that power cycling has no effect
on failure rates [39]. Larger scale comparisons have been
stymied by the small amount of predicted energy savings,
and uncertainty about how those energy savings translate
to real systems. BEEMR gives empirically validated energy
savings of 40-50%. This represents more rigorous data to
justify further exploring the thus far unverified relationship
between power cycles and failure rates.

6.2 MIA Generality Beyond Facebook

MIA workloads beyond Facebook lend themselves to a
BEEMR-like approach. We analyzed four additional Hadoop
workloads from e-commerce, telecommunications, media,
and retail companies. These traces come from production
clusters of up to 700 machines, and cover 4 cluster-months
of behavior. The following gives a glimpse of the data. We
are seeking approval to release these additional workloads.

One observation that motivated BEEMR is that most jobs
access small files that make up a small fraction of stored
bytes (Figure 4). This access pattern allows a small interac-
tive zone to service its many jobs. Figure 21shows that such
access patterns exist for all workloads. For FB-2010, input
paths of < 10GB account for 88% of jobs and 1% of stored
bytes. For workloads A and D, the same threshold respec-
tively accounts for 87% and 87% of jobs, and 4% and 2% of
stored bytes. For workloads B and C, input paths of < 1TB
accounts for 86% and 91% of jobs, as well as 12% and 17%
of stored bytes.

Another source of energy savings comes from the high
peak-to-average ratio in workload arrival patterns (Figure 2).
The cluster has to be provisioned for the peak, which makes
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Figure 21. Access patterns vs. input path size. Showing cum-
mulative fraction of jobs with input paths of a certain size (top)
and cummulative fraction of all stored bytes from input paths of
a certain size (bottom). Contains data from Figure 4 for the FB-
2010 workload, and four additional workloads from e-commerce,
telecommunications, media, and retail companies.

it important to achieve energy proportionality either in hard-
ware or by workload managers such as BEEMR. For the
five workloads (Facebook and workloads A through D), the
peak-to-average ratios are: 8.9, 30.5, 23.9, 14.5, and 5.9.
BEEMR potentially extracts higher energy savings from
workloads with higher peak-to-average arrival ratios, though
the exact energy savings and the tradeoff between policy pa-
rameters is workload specific. These additional workloads
give us confidence that the BEEMR architecture can gener-
alize beyond the Facebook workload.

6.3 Methodology Reflections

Evaluating the energy efficiency of large scale distributed
systems presents significant methodological challenges.
This paper strikes a balance between scale and accuracy.
Future work could improve on our techniques.

Simulation vs. replay. The inherent difference between MIA
and other workloads suggest that the best energy efficiency
mechanisms would be highly workload dependent. Even for
MIA workloads, the behavior varies between use cases and
over time (Figures 14 and 21). Thus, only evaluation over
long durations can reveal the true historical savings (Fig-
ure 14). Days or even weeks-long experiments are unreal-
istic, especially to explore multiple design options at large
scale. Hence, we are compelled to use simulations.

Choice of simulator. We considered using Mumak [37] and
MRPerf [53]. Mumak requires logs generated by the Ru-
men tracing tool [44], which is not yet in universal use and
not used at Facebook. MRPerf generates a simulation event
per control message and per packet, which limits simulation
scale and speed. Neither simulator has been verified at the
multi-job workload level. Thus, we developed the BEEMR
simulator, which intentionally trades simulation detail and
accuracy to gain scale and speed. We also verify the simula-
tor at the workload level (Section 5.8).

Choice of power model. One accurate way to measure sys-
tem power is by a power meter attached at the machine wall
socket [11]. This method does not scale to clusters of 1000s

of machines. The alternative is to use empirically verified
power models, which are yet to be satisfactorily developed
for MapReduce. The translation between SPECpower [49]
measurements and MapReduce remains unknown, as it is
between MapReduce workload semantics and detailed CPU,
memory, disk, and network activity. We chose an on-off
power model, i.e., machines have “max” power when on
and “zero” power when off. This simple model allow us to
scale the experiments in size and in time.

Towards improved methodology. The deliberate tradeoffs we
had to make reflect the nascent performance understanding
and modeling of large scale systems such as MapReduce.
We encourage the research community to seek to overcome
the methodology limitations of this study.

6.4 Future Work for MapReduce in General

Designing and evaluating BEEMR has revealed several op-
portunities for future improvements to MapReduce.

1. The BEEMR policy space is large. It would be desirable
to automatically detect good values for the policy param-
eters in Table 3.

2. The ability to interrupt and resume jobs is desirable. This
feature is proposed under Next Generation Hadoop for
fast resume from failures [38]. Energy efficiency would
be another motivation for this feature.

3. A well-tuned taskcalc algorithm can significantly af-
fect various performance metrics (Section 5.3). However,
choosing the correct number of tasks to assign to a job re-
mains an unexplored area. Given recent advances in pre-
dicting MapReduce execution time [20, 36], we expect a
dedicated effort would discover many improvements.

4. The chatty HDFS/Hadoop messaging protocols limits the
dynamic power of machines to a narrow range. There is
an opportunity to re-think such protocols for distributed
systems to improve power proportionality.

5. The disjoint interactive and batch zones can be further
segregated into disjoint interactive and batch clusters.
Segregated versus combined cluster operations need to
balance a variety of policy, logistical, economic, and en-
gineering concerns. More systematic understanding of
energy costs helps inform the discussion.

6. The gap between ideal and BEEMR energy savings in-
creases with cluster size (Section 5.7). It is worth ex-
ploring whether more fine-grained power management
schemes would close the gap and allow operators to pro-
vision for peak while conserving energy costs.

7. Closing Thoughts

BEEMR is able to cut the energy consumption of a clus-
ter almost in half (after adjusting for empirically quanti-
fied simulation error) without harming the response time
of latency-sensitive jobs or relying on storage replication,
while allowing jobs to retain the full storage capacity and
compute bandwidth of the cluster. BEEMR achieves such



results because its design was guided by a thorough analysis
of a real-world, large-scale instance of the targeted work-
load. We dubbed this widespread yet under-studied work-
load MIA. The key insight from our analysis of MIA work-
loads is that although MIA clusters host huge volumes of
data, the interactive jobs operate on just a small fraction of
the data, and thus can be served by a small pool of ded-
icated machines; the less time-sensitive jobs can run in a
batch fashion on the rest of the cluster. We are making avail-
able the sanitized Facebook MIA workload traces (https:
//github.com/SWIMProjectUCB/SWIM/wiki) to ensure
that ongoing efforts to design large scale MapReduce sys-
tems can build on the insights derived in this paper.
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