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ABSTRACT

We describe a new approach to the detection and classi-
fication of scene breaks in video sequences. Our method
can detect and classify a variety of scene breaks, includ-
ing cuts, fades, dissolves and wipes, even in sequences
involving significant motion. We detect the appearance
of intensity edges that are distant from edges in the previ-
ous frame. A global motion computation is used to han-
dle camera or object motion. The algorithm we propose
withstands JPEG and MPEG artifacts, even at very high
compression rates. Experimental evidence demonstrates
that our method can detect and classify scene breaks that
are difficult to detect with previous approaches. An ini-
tial implementation runs at approximately 2 frames per
second on a Sun workstation.

KEYWORDS

Content-based indexing and retrieval; video processing

1 INTRODUCTION

The amount of digital video that is available has increased
dramatically in the last few years, but the tools available
for browsing video remain quite primitive. Computer vi-
sion techniques promise to allow content-based browsing
of image sequences. For example, we may be able to re-
place the “fast forward” button on current video browsers
with a button that searches for the next dissolve, or for
the next time a moving object enters the scene. This will
require algorithms to automatically detect these events.
This paper presents algorithms for detecting and classi-
fying scene breaks (including cuts, fades, dissolves and
wipes) in digital video sequences.

Scene breaks mark the transition from one sequence of
consecutive images (or scene) to another. A cut is an
instantaneous transition from one scene to the next. A
fade is a gradual transition between a scene and a con-
stant image (fade out) or between a constant image and
a scene (fade in). During a fade, images have their in-
tensities multiplied by some value a. During a fade in, a
increases from 0 to 1, while during a fade out « decreases
from 1 to 0. The speed with which « changes controls
the fade rate. A dissolve is a gradual transition from one
scene to another, in which the first scene fades out and
the second scene fades in. Typically, fade out and fade
in begin at the same time, and the fade rate is constant.
Another common scene break is a wipe, in which a line
moves across the screen, with the new scene appearing

behind the line.

The detection and classification of scene breaks is a first
step in the automatic annotation of digital video se-
quences. The problem is also important for other applica-
tions, including compression and automatic keyframing.
Motion-based compression algorithms like MPEG can ob-
tain higher compression rates without sacrificing quality
when the locations of scene breaks are known. Knowledge
about scene breaks can be used to look for higher-level
structures (such as a sequence of cuts between cameras),
or to ensure that keyframes come from different scenes.

We begin with a survey of related work on scene break
detection. These methods rely directly on intensity data,
and have difficulty with dissolves and with scenes in-
volving motion. We then present our feature-based ap-
proach to the problem, which detects the appearance of
new edges far from old ones. We show that our methods
have substantial tolerance for compression artifacts. We
present empirical evidence that our algorithm can out-
perform conventional approaches, especially on images
involving motion. Finally, we discuss some of the cur-
rent limitations of our algorithm and describe extensions
which we hope will overcome them.



1.1 Existing algorithms for detecting scene breaks

Existing work has focused on cut detection, which can
be done with reasonable accuracy by a variety of simple
schemes. There has been a small amount of work on
detecting dissolves — a much harder problem. All of
these approaches have relied directly on intensity data.
In section 4 we will present an empirical comparison of
these methods with the feature-based approach that we
propose. The evidence shows that our method can detect
scene breaks in a variety of sequences that are difficult to
handle with existing intensity-based approaches.’

Computational schemes for detecting scene breaks gener-
ally define a similarity measure between consecutive im-
ages. When two consecutive images are sufficiently dis-
similar, there may be a scene break. Typically the similar-
ity measure is smoothed and thresholded, using methods
such as those of [11]. This is done to reduce the effects
of noise and to prevent the detector from signaling too
many scene breaks in a short period of time.

Several researchers have proposed algorithms for detect-
ing cuts and dissolves. These methods have relied di-
rectly on intensity data, and have used such techniques
as image differencing (which subtracts two consecutive
images to determine changes in intensity) and intensity
histogramming. Most approaches are based on intensity
histograms, and concentrate on cuts.

Otsuji and Tonomura [11] discuss a variety of measures
based on image differencing and changes in the image’s
intensity histogram. Nagasaka and Tanaka [10] present
algorithms which use similar measures. Arman, Hsu
and Chiu [2] have addressed the issue of change detec-
tion while operating directly on JPEG or MPEG encoded
video; this approach is noteworthy for its efficiency.

The above methods have difficulty with “busy” scenes,
in which intensities change substantially from frame to
frame. This change often results from motion: if the cam-
era is moving, or if an object that occupies much of the
image is moving, then many pixels will change their values
from frame to frame. Motion can cause intensity-based
similarity measures to produce a low similarity score,
which can result in a false positive from the detector.

Dissolves are more difficult to detect than cuts, especially
if the scenes may involve motion. False positives resulting
from motion can be supressed by setting a high thresh-
old. Cuts usually result in a dramatic change in image
intensities, so they can still be detected much of the time.
However, a dissolve is a gradual change from one scene
to another, and thus cannot be easily distinguished from
motion. A dissolve can even occur between two scenes
which each contain motion; this case is particularly diffi-
cult to detect.

Hampapur, Jain and Weymouth [6] describe a method

11t is a slight misnomer to call existing approaches intensity-
based, since any algorithm must be based on intensities. We will
use the term in contrast with our feature-based approach.

they call chromatic scaling, which attempts to detect a
variety of scene breaks based on an explicit model of
the video production process. While their approach is
intensity-based, it does not involve histogramming. In-
stead, they compute a chromatic image from a pair of
consecutive images. Its value at each pixel is the change
in intensity between the two images divided by the in-
tensity in the later image. Ideally, the chromatic image
should be uniform and non-zero during a fade.

The difficulties caused by motion and by dissolves are
well-known. For example, Hampapur, Jain and Wey-
mouth note in their discussion of dissolves that their mea-
sure “is applicable if the change due to the editing domi-
nates the change due to motion” [6, page 11], and describe
both object and camera motion as causes of false positives
for their method. Another recent paper [17] describes mo-
tion as a major limitation of histogram-based methods.

A particularly interesting approach has been taken by
Zhang, Kankanhalli and Smoliar [17]. They have ex-
tended conventional histogram-based approaches to han-
dle dissolves and to deal with certain camera motions.
They use a dual threshold on the change in the intensity
histogram to detect dissolves. In addition, they have a
method for avoiding the false positives that result from
certain classes of camera motion, such as pans and zooms.
They propose to detect such camera motion and suppress
the output of their scene-break measure during camera
motion.

Their method does not handle false positives that arise
from object motion, or from more complex camera mo-
tions. Nor does their method handle false negatives,
which would occur in dissolves between scenes involv-
ing motion. In section 4 we will provide an empirical
comparison of our method with Zhang, Kankanhalli and
Smoliar’s algorithm, as well as Hampapur, Jain and Wey-
mouth’s chromatic scaling technique.

2 A FEATURE-BASED APPROACH

Our approach is based on a simple observation: during
a cut or a dissolve, new intensity edges appear far from
the locations of old edges. Similarly, old edges disappear
far from the location of new edges. We define an edge
pixel that appears far from an existing edge pixel as an
entering edge pixel, and an edge pixel that disappears far
from an existing edge pixel as an exiting edge pixel. By
counting the entering and exiting edge pixels, we can de-
tect and classify cuts, fades and dissolves. By analyzing
the spatial distribution of entering and exiting edge pix-
els, we can detect and classify wipes. A more detailed
description of the algorithm, with additional examples of
its performance, can be found in [15].

The algorithm we propose takes as input two consecutive
images I and I’. We first perform an edge detection step,
resulting in two binary images E and E’. Let p;, denote
the fraction of edge pixels in E’ which are more than
a fixed distance r from the closest edge pixel in E. p;,
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Figure 1: Results from the table tennis sequence

measures the proportion of entering edge pixels. It should
assume a high value during a fade in, or a cut, or at the
end of a dissolve.?

Similarly, let p,,¢ be the fraction of edge pixels in E which
are farther than r away from the closest edge pixel in E’.
Pout Measures the proportion of exiting edge pixels. It
should assume a high value during a fade out, or a cut,
or at the beginning of a dissolve.

Our basic measure of dissimilarity is

(1)

This represents the fraction of changed edges; this frac-
tion of the edges have entered or exited. Scene breaks can
be detected by looking for peaks in p, which we term the
edge change fraction.

p= maX(Pim pout)-

An example of the edge change fraction is shown in fig-
ure 1. The sequence we have chosen is the widely-known
“table tennis” sequence which was used to benchmark
MPEG implementations. The original sequence contains
a fair amount of motion (including zooms) plus a few cuts.
To demonstrate our algorithm, we have spliced together
several parts of the sequence and inserted a few scene
breaks. The modified table tennis sequence contains a cut
(taken from the original sequence) between frames #9—
#10. We have added a dissolve in frames #25-#35, and
then a fade out starting at frame #55. On this sequence,
p shows clear peaks at the scene breaks, and the detection
and the classification algorithm described in section 3.1
performed correctly.

2.1 Motion compensation

Our method can be easily extended in order to handle
motion. We can use any registration technique [3] to com-
pute a global motion between frames. We can then apply

2Due to the quantization of intensities, new edges will generally
not show up until the end of the dissolve.

this global motion to align the frames before detecting
entering or exiting edge pixels. For example, assume that
the camera is moving to the left, and so image I’ is shifted
to the right with respect to image I. A registration al-
gorithm will compute the translation that best aligns I
with I’ (which in this example is a shift to the right). We
can apply this translation to I before computing the edge
change fraction as shown above.

There are a wide variety of registration algorithms re-
ported in the literature. The ones we have used involve
global similarity measures between images, and are based
on correlation. We begin with some function f for com-
paring two images on a pixel-by-pixel basis. We search
for the integer values of dz and dy that maximize the
quantity

> fle+ 62,y + 6y}, I'lz,y))

I?y

(2)

where the sum is taken over all pixels. We maximize over
some range of possible motions

6] + [loy] < A. (3)
Note that we only search for a translational motion be-
tween the two images. While it is possible to handle affine
or projective motions, they incur significant additional
overhead, and do not necessarily result in better perfor-
mance. We can then warp I by the overall motion before
computing p;, and poy¢-

We need a registration algorithm that is efficient, that
can withstand compression artifacts, and that is robust
in the presence of multiple motions. The last property is
particularly important, since we will often be faced with
an image with multiple motions, and our registration al-
gorithm must compute the predominant motion.

We have explored two algorithms, both of which have
given satisfactory results. We have experimented with
using census transform correlation, a non-parametric ap-
proach developed in [16]. This algorithm operates by
transforming the image in an outlier-tolerant manner and
then using correlation. We have also used the Hausdorff
distance [8], an outlier-tolerant method described in sec-
tion 3.2 that operates on edge-detected images.

It is tempting to exploit the motion vectors contained
in MPEG-compressed video in order to determine object
or camera motion. Indeed, a number of researchers [17]
have attempted to do this. There are a number of reasons
that we have not taken this approach. MPEG encoders
optimize for compression, and do not necessarily produce
accurate motion vectors. MPEG-compressed streams do
not contain motion vectors for all images; in fact, if the
encoder chooses to create only I-frames, there will be no
motion vectors at all.?

3This is not as unusual a situation as one might imagine. About
one quarter of the MPEG sequences we have come across on the
World-Wide Web are compressed with only I-frames.
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3 COMPUTING THE EDGE CHANGE FRACTION

Computing the values of p for a sequence of images is
straightforward. Let dz and dy be the translations nec-
essary to align the images I and I’, as calculated by one
of the global motion compensation methods discussed in
section 2.1. The first step in our algorithm is edge detec-
tion.

In our experiments, we have used an edge detector based
on Canny’s algorithm [5]. We first smooth the image by
convolving it with a Gaussian of width 0. We next com-
pute the gradient magnitude, which indicates how fast the
local intensities are changing. The gradient magnitude is
thresholded at a value of 7 to detect edges, Canny-style
non-maximum suppression is performed. For additional
efficiency we implement Gaussian smoothing by using a
small number of box filters, as described in [14].

Next, copies of E and E’ are created with each edge pixel
dilated by a radius r. Let us call these dilated images
E and E'. Thus image E is a copy of E in which each
edge pixel of E is replaced by a diamond whose height
and width are 2r + 1 pixels in length.* Similarly, image
E' is a dilated copy of E'.

Consider p,y¢, the fraction of edge pixels in E which are
farther than r away from an edge pixel in E’. A black
pixel E[z,y] is an exiting pixel when E’[z, y] is not a black
pixel (since the black pixels in E’ are exactly those pixels
within distance 7 of an edge pixel in E’). The equation
for poyt is

ey Elz 4 62,y + 6y|E'[z, y]
> ey Bl

which is the fraction of edge pixels which are exiting. p;,
is calculated similarly

(4)

Pout = 1 -

Zz’y E[z + §z,y + 0y|E'[x, ]

1 —

Pin

similarly. The edge change fraction p shown in equation 1
is the maximum of these two values.

The major steps of the computation of the edge change
fraction are shown in figure 2. The example shows a cut
between the two frames. While p is being calculated the
locations of the exiting and entering pixels can be saved
and their spatial distribution analyzed when looking for
wipes and other spatial edits.

3.1 Peak detection and classification

We propose to detect scene breaks by looking for peaks
in the edge change fraction p. We have designed a simple
thresholding scheme for peak detection. We use an event
threshold and an event horizon. A frame where p exceeds
the event threshold may be a scene break. To localize

4To use the Manhattan distance between edges, we dilate by a
diamond. If we were to use the Euclidean distance between edges,
we would dilate by a circle.
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Figure 3: Values of p;, (shown as “x”) and pyy: (shown

as “0”) in the table tennis sequence

scene breaks that occur over multiple frames, we restrict
scene breaks to occur only when p is a local maximum
within a fixed window of consecutive frames. The width
of this window is the event horizon.

3.1.1 Classification

Once a peak has been detected, the next problem is to
classify it as a cut, dissolve, fade or wipe. Cuts are easy
to distinguish from other scene breaks, because a cut is
the only scene break that occurs entirely between two
consecutive frames. As a consequence, a cut will lead to
a single isolated high value of p, while the other scene
breaks will lead to an interval where p’s value is elevated.
This allows us to classify cuts.

Fades and dissolves can be distinguished from each other
by looking at the relative values of p;,, and pyy¢ in a local
region. During a fade in, p;, will be much higher than
Pout, since there will be many entering edge pixels and
few exiting edge pixels. Similarly, at a fade out, pou:
will be higher than p;,, since there will be many exiting
edge pixels, but few entering edge pixels. A dissolve, on
the other hand, consists of an overlapping fade in and
fade out. During the first half of the dissolve, p;, will be
greater, but during the second half p,,; will be greater.

Figure 3 shows the values of both p;, and p,y; during the
table tennis sequence. During the fade out, p,y; is much
higher than p;,. During the dissolve, there is an initial
peak in p;, followed by a peak in pyy;.

3.1.2 Wipes

Wipes are distinguished from dissolves and fades by look-
ing at the spatial distribution of entering and exiting edge
pixels. During a wipe, each frame will have a portion of
the old scene and a portion of the new scene. Between
adjacent frames, a single strip of the image will change
from the old scene to the new scene. For a horizontal
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Figure 4: Results from an image sequence with two wipes
and a dissolve

wipe there is a vertical strip that passes either left-right
or right-left, depending on the direction of the wipe. Since
the between-scene transition occurs in this strip, the num-
ber of edge pixels that either enter or exit should be higher
inside the strip and lower in the other areas of the image.
We will call an edge pixel that is either entering or exiting
a changing pixel.

When computing the edge change fraction, the location
of the changing edge pixels can be recorded and their
spatial distribution analyzed. There are many ways to
analyze the spatial distribution of changing pixels, but we
have identified a simple scheme which has yielded good
results. We calculate the percentage of such pixels in the
top half and the left half of the images, and use this to
classify vertical and horizontal wipes. For a left-to-right
horizontal wipe, the majority of changing pixels will occur
in the left half of the images during the first half of the
wipe, then in the right half of the images during the rest
of the wipe. Likewise, for a top-to-bottom vertical wipe,
the majority of changing pixels will concentrate in the top
half, and then in the bottom half. The other two cases
(right-to-left and bottom-to-top wipes) can be handled
similarly.

Our wipe detection method is aided by the ability of
our motion computation follow the predominant motion.
This is particularly important during a wipe, since there
can be two rather different motions on the image at the
same time. Another aid in discriminating wipes from
other scene breaks is that there is no pattern in the val-
ues of p;, and pyys as there was with dissolves and fades.
Also the relative differences between p;,, and pyy: Wwill be
small, since the changing pixels only occurs a limited strip
in the image.

Figure 4 shows the edge change fraction in operation on
an image sequence containing a left-to-right wipe, a right-
to-left wipe, and a dissolve. Figure 5 shows the proportion
of the change pixels that occupy the left half of the image

T T T
wipe wipe dissolve
1r *K HHRK B
*

=
0.8 q
=
K]
£
w
[}
X
20.6- i
2 *
k=)
3 *
[ *
5 0.4r * 4
c
2 *
3]
g

0.2 b

*
*
0 . EwY . ES . X
0 10 20 30 40 50 60 70
frame #

Figure 5: Spatial distribution of change pixels in an image
sequence with two wipes and a dissolve (shown only where
p > .05)

(for clarity, this data is only shown when p > .05). Note
that during the left-to-right dissolve, this fraction drop
rapidly from 1 to 0, while during the right-to-left dissolve
it rises rapidly from 0 to 1. In addition, the pattern during
the dissolve is essentially random, as would be expected.

3.2 The Hausdorff distance

The edge change fraction is related to the Hausdorff dis-
tance, which has been used to search for the best match
for a model in an image. This distance which has been
used for such tasks as recognition and tracking [8]. The
Hausdorff distance, which originates in point set topology,
is a metric for comparing point sets.

The Hausdorff distance from the point set A to the point
set B is defined as

hAB) = (6)

max min ||a — b||.
acA beEB

Now consider the Hausdorff distance between the edge
detected images E and E’. If h(E',E) < r then every
edge pixel in E’ is within r of the closest edge pixel in
FE, there are no entering edge pixels, and so p;, = 0.
Similarly, if h(E,E’) < r then there are no exiting edge
pixels and pyyue = 0.

Most applications of the Hausdorff distance use a gener-
alization called the partial Hausdorff distance, which is

hx (A, B) = K (7)

i s mina - b].

This selects the K** ranked distance from a point in A
to its closest point in B. If we select the largest such
distance, we have the original Hausdorff distance defined
in equation 6.

Applications which use the partial Hausdorff distance for
matching [7] can provide a fixed fraction K/|A|, which is
equal to 1 — p. This specifies what fraction of the points



in A should be close to their nearest neighbor in B at the
best match. Alternatively, a fixed distance can be sup-
plied, and the fraction of points in A within this distance
of their nearest neighbor in B can be minimized. We
are using a similar measure as the basis for algorithms to
detect scene breaks, which is a very different task than
matching.

3.3 Algorithm parameters

Our algorithm has several parameters that control its per-
formance. These parameters include:

e the edge detector’s smoothing width o and threshold
T7

e the expansion distance r,

We have gotten good performance from a single set of pa-
rameters across all the image sequences we have tested.
These parameters are 0 = 1.2 and 7 = 24, for the edge
detector, and 7 = 6. Except where otherwise noted, these
were the parameters used to generate the data shown in
this paper. We have found that our algorithm’s perfor-
mance does not depend critically upon the precise values
of these parameters (see [15] for evidence of this).

3.4 Compression tolerance

Most video will undergo some form of compression during
its existence, and most compression methods are lossy. It
is therefore important that our algorithm degrade grace-
fully in the presence of compression-induced artifacts.
While edge detection is affected by lossy compression, es-
pecially at high compression ratios, we do not rely on
the precise location of edge pixels. We only wish to
know if another edge pixel is with r of an edge. As a
consequence, the precise location of edge pixels can be
changed by image compression without seriously degrad-
ing our algorithm’s performance. The experimental evi-
dence we present in the next section comes from images
that were highly compressed with the lossy MPEG com-
pression scheme.

To demonstrate the compression tolerance of our ap-
proach, we have taken an uncompressed image sequence,
added a few scene breaks, and compressed it with a vari-
ety of different compression ratios. We have used JPEG
compression to benchmark the compression tolerance of
our algorithm because it introduces similar artifacts to
MPEG, but is more standardized. (Note that this is only
for the data shown in figure 6 — the data shown in sec-
tion 4 came from MPEG compressed images.)

Figure 6 shows the results from the table tennis sequence
when JPEG-compressed to .18 bits per pixel (with a qual-
ity factor of 3). Our algorithm performed correctly even
though the compression artifacts were so enormous as
to make the sequence almost unviewable. Figure 6 also
shows frame #20 at this compression rate.
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cut | dissolve fade
N — —
0.8 B
c
8
3]
g
2061
(=2
c
]
=
o
(3]
(=]
B804 B
0.2 B
0 * ¥ . : e L
0 10 20 30 40 50 60

frame #

Figure 7: Table tennis sequence with 4:1 subsampling



3.4.1 Subsampling

Our algorithm also performs well when the input images
are subsampled to reduced resolution. Figure 7 shows
our algorithm’s performance on the table tennis sequence
when subjected to 4:1 horizontal and vertical subsam-
pling. Note that the output shown in figure 7 is only
a little worse than the output that results without sub-
sampling. However the size of the images is reduced by a
factor of 16. Depending on how the registration algorithm
is implemented, the speedup can be even greater.

4 EXPERIMENTAL RESULTS

We have tested our algorithm on a number of image
sequences, containing various scene breaks. To pro-
vide a comparison, we have also implemented two other
intensity-based measures used to detect scene breaks.
The first measure is the intensity histogram difference,
which is used with slight variations in most work on scene
breaks [10, 11, 17]. The second measure is the chromatic
scaling method of Hampapur, Jain and Weymouth [6], a
recent method for classifying scene breaks.

There are a number of ways to use intensity histograms.
Let N denote the number of histogram buckets (which
is typically a power of 2 no greater than 256), and let
H; denote the intensity histogram of the t’th frame. The
sum of the histogram differences

3 Hfi) - Hopali] (®)

is one frequently used measure. Another common mea-
sure [10] is the x? value

N-1

D

=0

(Hy[i] = Hipa[i])?
Hy i '

9)

We implemented a variant of equation 8 used by Zhang,
Kankanhalli and Smoliar. For each of the 3 color channels
we used the 2 most significant bits, for a total of N = 64
bins in the histogram.

4.1 Sources of data

The image sequences used for testing are MPEG movies.
We obtained a number of MPEG encoded movies from
http:://www.acm.uiuc.edu/rml/Mpeg/ which include
segments from a number of different sources including
music videos, television advertisements, documentaries,
and NASA recordings. We selected a number of MPEG
movies which contained scene breaks.

In addition, we created some additional MPEG movies.
Because the MPEG movies we obtained from the net-
work did not contain enough scene breaks to generate
significant data, we spliced together scenes from exist-
ing MPEG movies and inserted a variety of scene breaks.
These spliced movies have several advantages: they show
many different scene breaks at known locations, but the
video itself was shot and compressed by third parties.

Finally, we created one movie, called andy, from video
which we shot. We inserted several scene breaks dur-
ing the editing process, and then compressed it using the
Berkeley MPEG encoder.

The data we used is highly compressed. The following
table summarizes the compression parameters of several
of the image sequences we used.

Sequence Bits per pixel | Dimensions
clapton 0.91 160 x 120
spacewalk 0.82 160 x 120
andy 0.35 160 x 112

All these sequences are color, so the compression ratios
(from 24-bit color images) range from 26:1 to 69:1. These
high compression ratios probably result from using videos
available on the World-Wide Web, which places a pre-
mium on compression to minimize bandwidth and storage
costs. However, this makes our data set representative of
the kind of video that is widely available today.

All of the test sequences shown use the parameter values
mentioned above. The chromatic scaling method and the
histogram difference, which we show for comparison, in-
volve no parameters. All of these methods are intended
to produce distinctive peaks at cuts and dissolves.

4.2 Some comparative results on difficult sequences

The image sequences we have collected fall into three
classes. Several image sequences had easy scene breaks,
which could be detected by all the methods we tried. For
example, there may only be cuts, or there may be min-
imal motion. Another class of image sequences caused
errors for conventional intensity-based methods, but were
handled correctly by our feature-based method. Exam-
ples include sequences with motion, and especially ones
with both motion and dissolves. Finally, certain im-
age sequences yielded incorrect answers, no matter what
method we used. Examples include commercials with
very rapid changes in lighting and with fast-moving ob-
jects passing right in front of the camera.

In our discussion we will concentrate on sequences where
some algorithm had difficulty detecting the scene breaks.
On the 50 MPEG movies we examined, we did not find
an example where our method failed but where intensity-
based methods worked.

4.2.1 The Clapton sequence

One MPEG video that we obtained is part of an Eric
Clapton music video. It is an interesting sequence be-
cause it contains two dissolves, as well as a moving object
(the singer). It has been used to benchmark other algo-
rithms (e.g., [6]). Figure 8 shows the performance of sev-
eral measures on this sequence. Our edge change fraction
detects and classifies both dissolves correctly. The image
from each dissolve with the highest value of p is shown
in figure 11 (these are the images that are at the center
of the two dissolves according to our detection method
described in section 3.1).



The intensity histogram difference, shown in figure 8(b),
is a noisier measure on this sequence. It does show a rise
during the first dissolve, and it is possible that the dual
threshold scheme of [17] would detect this (depending on
the exact thresholds used). However, the second dissolve
appears to be indistinguishable from the noise. Their
method for handling motion would not help here, since
the problem is a false negative rather than a false positive.

The chromatic scaling feature of [6] is shown in figure 8(c).
As the authors state, their method has difficulty with
dissolves involving motion.

4.2.2 The Andy sequence

Another sequence that caused some difficulty is the andy
MPEG. The sequence involves camera and object mo-
tion, as well as zooms. It was the most highly compressed
MPEG movie that we examined and consists of five scenes
separated by three cuts and one dissolve. Frames #1—#50
consist of a stationary scene with the camera panning
from right to left. The sequence then cuts to a scene in
frames #51-#99 during which the camera zooms in on a
stationary background. There is another cut to a scene
in frames #100-#133 consisting of a zoom out from a
stationary background. The camera stops zooming and
continues on the same stationary background for frames
#133-#170 and camera remains still on the stationary
background. Following the third cut, the sequence con-
tains a scene with a moving person walking from left
to right with the camera panning to the right to follow
the individual during frames #171-#230. Frames #231—
#240 consist of a dissolve between this scene and another
in which the camera pans to the right with a stationary
background.

Figure 9 presents the results of our method and the in-
tensity histogram difference. The image from the dissolve
with the highest value of p (frame #235) is shown in fig-
ure 10. While we have run the chromatic scaling method
on andy, it does not produce good results because the
sequence includes so much motion.

From these results it is not clear whether the histogram-
ming method would find the first dissolve. Depending
on how the data is thresholded, either the second cut
would be missed or a false cut would be detected at frames
#137-#138. These two frames are shown in figure 12.

4.3 Results on our data set

Our algorithm has been tested on an initial dataset of
50 MPEGs obtained from the website mentioned in sec-
tion 4.1. These MPEGS were decoded and stored as a
sequences of gray-level frames. There are 7788 frames
with a total of 118 cuts, 8 dissolves, and 3 fades. Our
current classification algorithm correctly identifies 115 of
118 cuts, all dissolves and all fades. The algorithm cur-
rently identifies 17 false positives, including 14 cuts and
3 fades. The falsely detected fades are all cases where the
video becomes very dim and no edges are generated us-
ing a constant threshold. Since our current collection of
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Figure 10: Image from andy sequence detected as dissolve
by our method

MPEGs does not include any wipes, we are currently de-
veloping a test set featuring special effects that we insert
ourselves.

4.4 Performance

Our initial implementation of our algorithm is optimized
for simplicity rather than for speed. However, its per-
formance is still reasonable. Most of the processing time
comes from the global motion computation. We have im-
plemented our algorithm on a Sparc workstation with a
single 50-MHz processor, and with 4 50-MHz processors.
Because it is so easy to perform the motion compensation
in parallel, we have obtained near linear speedups.

The table below shows our implementation’s performance
with motion compensation disabled, when running on the
table tennis sequence.

Image dimensions

1 processor

4 processors

88 x 60
176 x 120
352 x 240

11.03 Hz
2.91 Hz
.62 Hz

44.13 Hz
11.63 Hz
2.48 Hz

The next table shows the performance when using a
simple Hausdorff-distance based motion compensation
scheme. The running time is linear in the number of
disparities considered. Data is shown for a range of dis-
parities which has been adequate for images of these sizes.

Image dimensions

1 processor

4 processors

88 x 60
176 x 120
352 x 240

9.14 Hz
1.49 Hz
.15 Hz

36.57 Hz
5.95 Hz
.6 Hz

The performance on our corpus of MPEG movies was typ-
ically around 2 frames per second on a single processor.

A number of methods can be used to reduce the running
time on large images, including performing a coarse-to-
fine search. A number of methods for improving the per-
formance of the Hausdorff-distance search are described
in [13], and have given impressive speedups in practice.

Since the methods we use are fundamentally non-linear, it
seems unlikely that we will be able to operate directly on
compressed data streams without decompressing. How-
ever, our scheme is reasonably fast, and can be optimized
further. Our method also appears to give good results
on reduced resolution imagery, as shown in figure 7. Fi-
nally, much of the overhead of MPEG decompression is
due to dithering (for example [12] states that dithering
consumed 60% to 80% of the time in their MPEG de-
coder). Since our approach only uses intensity informa-
tion, this phase of MPEG decompression can be bypassed.

4.5 Availability

Code for running the algorithm is available via FTP
from the host ftp.cs.cornell.edu in the direc-
tory /pub/dissolve. In addition, an HTML ver-
sion of this document can be found from the URL



Figure 11: Images from clapton sequence detected as
dissolves by our method

http://www.cs.cornell.edu/Info/Projects/csrvl/
dissolve.html along with the code and the image se-
quences we used.

5 LIMITATIONS AND EXTENSIONS

Our algorithm’s failures involve false negatives, and re-
sult from two limitations in our current method. First,
the edge detection method does not handle rapid changes
in overall scene brightness, or scenes which are very dark
or very bright. Second, our motion compensation tech-
nique does not handle multiple rapidly moving objects
particularly well.

The edge detection used in our algorithm has a few limi-
tations at present. For example, rapid changes in overall
scene brightness can cause a false positive. Since a thresh-
olded gradient-based edge detector is dependent on the
relative contrast of regions in the image, large-scale scal-
ings in image brightness will disturb the edge density of
the scene. This effect sometimes occurs in scenes due to
camera auto gain.

Scene break detectors based on intensity histogramming
will also generate false positives when the overall scene
brightness changes dramatically. Although the intensities
change dramatically, the underlying edge structure of the
image does not change. A more robust edge detection
scheme may enable us to handle these events.

In addition, because we use a single global edge thresh-
old 7, some scenes might have no edges, or too many
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Figure 12: Consecutive images from andy sequence with
large intensity histogram difference

edges. This has not been an issue in most of the videos
we have examined, but we are working on ways to ad-
dress it. One approach is to use an edge detector based
on zero-crossings of the Laplacian, rather than on the
intensity gradient. We have experimented with a Marr-
Hildreth style edge detector [9], but have not yet obtained

stable edges on MPEG compressed sequences.

It is also possible to eliminate the edge-detection thresh-
old 7 by dynamically thresholding the intensity gradient
magnitude. In dynamic thresholding, a constant num-
ber of image pixels are labeled as edges. This method is
appealing in theory, but has not proved successful in prac-
tice. Dynamic thresholding tends to reduce the number
of entering and exiting edge pixels. This results in lower
values from our similarity measure.

Another improvement, also discussed in [17], involves
handling multiple moving objects. The clapton sequence
contains some motion, while the andy sequence contains
significant motion (both camera and object motion). As
the above data shows, our algorithm handles these se-
quences well. However, the algorithm’s handling of mul-
tiple moving objects could probably be improved by com-
pensating for multiple motions.

A number of algorithms have been proposed for this prob-
lem, including [1, 4]. When there are two distinct motions
in the scene, our motion compensation will track one of
them. Edges that undergo the other motion will show up
as entering or exiting pixels, assuming that the two mo-



tions are sufficiently distinct. We may be able to use these
changing pixels to identify objects undergoing a different
motion. A solution to this problem would allow users
to search a video for the next entrance of an additional
moving object.

Another interesting extension involves combining our
feature-based algorithm with an intensity-based ap-
proach. For example, a conservative intensity-based
scheme might be designed which can reliably determine
that there are no scene breaks in some portion of a video.
Our algorithm might be invoked when the intensity-based
scheme indicates a potential scene break. Such a hy-
brid scheme could be much faster than our method, espe-
cially if the intensity-based component operated directly
on compressed data.

Conclusions

We have described a new approach to detecting and clas-
sifying scene breaks. Our methods robustly tolerate mo-
tion, as well as compression artifacts. We are incorporat-
ing our algorithm into a browser for MPEG videos which
allows the user to search for scene breaks. In the future,
we hope to be able to add higher level search capabilities
to this browser.
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