
Combining Deterministic and Genetic Approaches

for Sequential Circuit Test Generation �

Elizabeth M. Rudnick Janak H. Patel

Motorola, Incorporated Center for Reliable &

Austin, TX High-Performance Computing

University of Illinois, Urbana, IL

Abstract|A hybrid sequential circuit test generator

is described which combines deterministic algorithms

for fault excitation and propagation with genetic al-

gorithms for state justi�cation. Deterministic proce-

dures for state justi�cation are used if the genetic ap-

proach is unsuccessful, to allow for identi�cation of

untestable faults and to improve the fault coverage.

High fault coverages were obtained for the ISCAS89

benchmark circuits and several additional circuits, and

in many cases the results are better than those for

purely deterministic approaches.

I. INTRODUCTION

Sequential circuit test generation using deterministic algo-

rithms is highly complex and time consuming [1-7]. Each tar-

get fault must be excited and the fault e�ects propagated to a

primary output (PO); the required state must then be justi�ed,

and state justi�cation is typically done by reverse time process-

ing. Backtracing is a critical step and is used to determine the

component input values required to obtain a particular output

value. Handling components other than simple gates is espe-

cially di�cult because of the backtracing step. Simulation-

based test generation has been used to reduce the complexity

of test generation. In a simulation-based approach, process-

ing occurs in the forward direction only, and no backtracing

is required. Therefore, complex component types are handled

more easily. Candidate tests are generated, and a logic or fault

simulator is used to select the best test to apply in a given

time frame. Several faults are typically targeted simultane-

ously. Seshu and Freeman [8] �rst proposed simulation-based

test generation, and several simulation-based test generators

have since been developed using random [9], weighted ran-

dom [10-12], and mutation-based [13, 14] pattern generators.

Simulation-based test generators which use genetic algorithms

(GAs) to generate candidate tests have also been developed

[15-18]; very high fault coverages and fast execution times have

been reported for several circuits.

�This research was supported by the Semiconductor Research

Corporation under Contract SRC 94-DP-109.

A comparison of results for deterministic and GA-based

test generators shows that each approach has its own mer-

its. For some circuits, deterministic test generators provide

higher fault coverages, while for other circuits, GA-based test

generators provide higher fault coverages. The simulation-

based approach is particularly well suited for data-dominant

circuits, while deterministic test generators are more e�ective

for control-dominant circuits. Untestable faults can be identi-

�ed by using deterministic algorithms, but signi�cant speedups

can be obtained with the genetic approach. Hence, combining

the two approaches could be bene�cial. A straightforward so-

lution would be to start with the GA-based test generator and

then to use a deterministic test generator to improve the fault

coverage and to identify untestable faults. Saab's hybrid test

generator [19] switches from simulation-based to deterministic

test generation when a �xed number of test vectors are gen-

erated without improving the fault coverage; simulation-based

test generation resumes after a test sequence is obtained from

the deterministic procedure. We will explore a di�erent ap-

proach which uses deterministic algorithms for fault excitation

and propagation, and a GA for state justi�cation. Individual

faults in a circuit are targeted, as is normally done in deter-

ministic test generators.

Deterministic algorithms for combinational circuit test gen-

eration have proven to be more e�ective than genetic algo-

rithms [17]. Higher fault coverages are obtained, and the ex-

ecution time is signi�cantly smaller. A hybrid test generator

would then naturally include the deterministic algorithm for

fault excitation and propagation within a single time frame.

Since we have access to the HITEC [6] source code, we also

chose to use the deterministic algorithms for fault propagation

in successive time frames. State justi�cation using determinis-

tic algorithms is a much more di�cult problem, however, and

is prone to many backtracks, which can lead to high execution

times. In our hybrid test generator, we use a simulation-based

approach for state justi�cation in which candidate sequences

evolve over several generations, as controlled by a GA. When

a sequence which justi�es the desired state is found, execution

of the GA terminates. Deterministic procedures for state jus-

ti�cation are used only if the genetic approach is unsuccessful.

We begin with a brief description of GAs. An overview of

our hybrid approach to test generation is given next, followed

by a discussion of the application of GAs to state justi�ca-

tion. Results are then presented in Section V for the ISCAS89

sequential benchmark circuits [20] and several synthesized cir-

cuits.

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

http://crossmark.crossref.org/dialog/?doi=10.1145%2F217474.217527&domain=pdf&date_stamp=1995-01-01

II. GENETICALGORITHMS

The simple GA, as described by Goldberg [21], contains a

population of strings, or individuals. Each string is an en-

coding of a solution to the problem at hand. Each individ-

ual has an associated �tness, which gives an indication of

the quality of the corresponding solution and thus depends

on the application. The population is initialized with random

strings, and the evolutionary processes of selection, crossover,

and mutation are used to generate an entirely new population

from the existing population. This process is repeated for m

generations. To generate a new population from the existing

one, two individuals are selected, with selection biased toward

more highly �t individuals. The two individuals are crossed

to create two entirely new individuals, and each character in

a new string is mutated with some small mutation probability

p. The two new individuals are then placed in the new popu-

lation, and this process continues until the new generation is

entirely �lled. At this point, the previous generation can be

discarded. In our work, we use tournament selection without

replacement and uniform crossover. In tournament selection

without replacement, two individuals are randomly chosen and

removed from the population, and the best is selected; the two

individuals are not replaced into the original population un-

til all other individuals have also been removed. In uniform

crossover, characters from the two parents are swapped with

probability 1/2 at each string position in generating the two

o�spring. A crossover probability of 1 is used; i.e., the two par-

ents are always crossed in generating the two o�spring. Also,

a mutation probability of 1/64 is used. Because selection is

biased toward more highly �t individuals, the average �tness

is expected to increase from one generation to the next. How-

ever the best individual may appear in any generation, so we

save the best individual found.

III. OVERVIEW

Test generation using our hybrid approach is illustrated in

Fig. 1. An individual fault in the circuit is targeted. The fault

is excited, and required values are backtraced to the primary

inputs (PIs) and
ip-
ops. Next, the fault e�ects are propa-

gated to a PO, either in the current time frame or in successive

time frames. Again, required values are backtraced to the PIs

and to
ip-
ops in time frame zero, in which the fault was

excited. If any con
icts are found during fault excitation and

propagation, the test generator backtracks to a decision point

and makes an alternative choice. Finally the required state in

time frame zero is justi�ed by using GAs. Several candidate

sequences are simulated, starting from the last state reached

after any previous tests have been applied. If a sequence is

found which justi�es the state, then the sequence is added to

the test set, along with the vectors required for fault excitation

and propagation. If a sequence cannot be found to justify the

desired state, then backtracks are made in the fault propaga-

tion phase, and attempts are made to justify the new state.

One drawback to this approach is that untestable faults can-

not be identi�ed. Even if a sequence exists which justi�es a

given state, the GA is not guaranteed to �nd it. Therefore, de-

terministic algorithms for state justi�cation are still required in

a complete test generator. Hence, our overall approach to test

X

0
1

1

FF

PO

FF

PI
1
1
0
X
0
0
X
1

1

s-a-0 X
X
0
1
1

FF FF

POPI

1/0 1/0

0/1

1
0
X

X
0
X

X

X
X

X
1

0

FF

0
X

FF

POPI
0
0

1
1

1
X

X

1

FF

0

1

FF

POPI
1

0

0
1

0

1
X

1

1

State
Justification

Fault
Excitation

and
Propagation

time frame (0) time frame (1)

time frame (-2) time frame (-1)

Figure 1: Test generation using GA for state justi�cation.

generation includes both genetic and deterministic approaches

for state justi�cation, as indicated in Table I. The test gener-

ator makes several passes through the fault list, with di�erent

conditions and time limits imposed in each pass. Faults are

removed from the fault list once they are detected. After each

pass, the user is prompted as to whether to continue with an-

other pass, and execution terminates when the user responds

negatively.

In the �rst pass through the fault list, state justi�cation is

performed using a GA. A time limit of one second per fault is

imposed, which limits the number of backtracks in the deter-

ministic fault propagation phase. A small population size of

64 is used, and the number of generations is limited to four to

reduce the execution time. A sequence length of 1

2
x is used,

where x is supplied by the user. Many of the testable faults are

detected in this pass, but untestable faults are identi�ed only

if con
icts are found without doing state justi�cation. In the

second pass through the fault list, GAs are again used for state

justi�cation, but the search space is expanded. In particular,

the population size is increased to 128, the number of gener-

ations is increased to eight, and the sequence length is dou-

bled. Also, the time limit is increased to 10 seconds per fault

to enable more backtracking in the fault propagation phase.

Table I: TEST GENERATION APPROACH

State Justi�cation

Pass Approach Conditions

1 GA 1-second limit per fault

population size = 64

4 generations

sequence length = 1/2x

2 GA 10-second limit per fault

population size = 128

8 generations

sequence length = x

3 deterministic 100-second limit per fault

Finally, deterministic algorithms are used for state justi�ca-

tion for any additional passes through the fault list. Required

values at the
ip-
ops are backtraced to the PIs in previous

time frames through reverse time processing. An untestable

fault is identi�ed when all possible choices at decision points

prove unsuccessful in generating a test to detect the fault. The

time limit per fault is increased to 100 seconds in the third

pass and multiplied by ten in successive passes to expand the

search space. In this manner, tests are generated for many of

the testable faults by using the GA for state justi�cation. The

deterministic algorithms for state justi�cation are used to iden-

tify untestable faults and to generate tests for hard-to-detect

faults only.

IV. APPLICATIONOFGA'S TO STATE

JUSTIFICATION

In applying GAs to state justi�cation, we use each string in

the population to represent a candidate test sequence. A bi-

nary coding is used, and successive vectors in the sequence are

placed in adjacent positions along the string. Sequences are

evolved over several generations, with the �tness of each indi-

vidual being a measure of how closely the �nal state reached

matches the desired state. If any sequence is found which pro-

duces the desired state, the search is terminated, and the se-

quence is added to the test set, along with the fault excitation

and propagation vectors. Otherwise, the GA runs to comple-

tion for a limited number of generations. The test sequence

length used is typically a multiple of the sequential depth of

the circuit.

A. Fitness Function

Since the �tness of an individual sequence indicates how

closely the state it produces matches the desired state, sim-

ulation is required. The presence of a particular fault may

a�ect the state; thus, both good and faulty circuit simula-

tions are required for an accurate result. If tests have already

been added to the test set, then the current good circuit
ip-

op values may already be known. However, the state is not

known for the faulty circuit unless a faulty circuit simulation

is performed using all previously generated test vectors. In-

stead of simulating the faulty circuit, we initialize the faulty

circuit
ip-
ops to unknown values. Before the search is be-

gun for a sequence to justify a required state, the desired good

circuit state is compared to the current good circuit state, and

the desired faulty circuit state is compared to the all-unknown

state. (Note that separate values are maintained for the good

and faulty circuits during the fault excitation and propagation

phases.) If the states match, no justi�cation is required.

If the current state does not match the desired state, then

several candidate sequences are simulated for both the good

and faulty circuits. Fault injection is performed by modifying

the circuit description, as is done in PROOFS [22]; eg., an OR-

gate is inserted to simulate a stuck-at-one fault, and the second

input of the OR-gate is set to zero for the good circuit and one

for the faulty circuit. The bitwise parallelism of the computer

word is used, which allows 32 sequences to be simulated in

parallel. Two bits are required to represent the three possible

logic values: one, zero, and X (unknown). Thus, two computer

words are used at each node to simulate the good circuit, and

two computer words are used at each node to simulate the

faulty circuit. PI values are mapped from the sequences in the

GA to the respective bit positions at the PI nodes. Simulation

is done in an event-driven manner, with good and faulty circuit

simulations done together.

The test sequence length is set to a �xed value, but the

state is checked after each test vector is simulated to determine

whether it matches the desired state. If it does, the search is

terminated. Therefore, the length of the actual test sequence

used may be less than the given value. However, for the pur-

poses of the GA, the �tness function measures how closely the

�nal state matches the desired state:

fitness =
9

10
(# matching flip flops in good circuit)

+
1

10
(# matching flip flops in faulty circuit):

A
ip-
op is considered to match if it requires no particular

value or if the desired and actual values are equal. If the

states match in both the good and faulty circuits, then the

�tness will equal the number of
ip-
ops in the circuit. The

two terms in the �tness function correspond to the two goals

of the GA: �nding a state justi�cation sequence for the good

circuit and �nding a state justi�cation sequence for the faulty

circuit. Unequal weights are used in order that the GA can be

targeted to one goal at a time. When a GA has two or more

goals, the optimum �tness function does not necessarily weight

the goals equally. If equal weights are used, the GA jumps back

and forth among the goals, and none of the problems gets

solved quickly. A heavy weighting of one goal ensures that

the strings evolve steadily in one direction. Experiments on

several circuits con�rmed that the weights chosen work better

than equal weights of 1/2.

Squaring of the �tness function has been used previously to

amplify the di�erences between individuals [21]. Such a mea-

sure should be considered if a proportionate selection scheme

is used, but since tournament selection is being used in our

GA, this operation would have no e�ect on the result.

B. GA Parameters

Since 32 sequences can be evaluated in parallel, the popu-

lation size should be a multiple of 32. Initially, we use a small

population size of 64 to limit the execution time. We increase

it to 128 in the second pass through the fault list, expanding

the search space. The number of generations is initially lim-

ited to four, again to reduce the execution time. We increase

the number of generations to eight in the second pass, when

expanding the search space. Tournament selection and uni-

form crossover are used, since these schemes worked well in

simulation-based test generation [18]. Crossover and mutation

probabilities of one and 1/64, respectively, are used. Nonover-

lapping generations are used, since exploration of the search

space is paramount.

V. RESULTS

A hybrid test generator, GA-HITEC, was implemented us-

ing the existing HITEC [6] source code and 2700 additional

lines of C++ code. Tests were generated for several of the IS-

CAS89 sequential benchmark circuits [20] on a SUN SPARC-

station 20 with 64 MB memory. Test generation results are

shown in Table II. Results for HITEC are shown for compar-

ison. The three lines of results for each circuit correspond to

three passes through the fault list with time limits and parame-

ter settings as shown in Table I for GA-HITEC. One exception

is that a population size of 32 was used for passes one and two

for circuit s35932 to speed up the execution. Test sequence

lengths of four and eight times the sequential depth were used

in passes one and two, respectively, for all circuits except s5378

and s35932. Test sequence lengths were one-quarter and one-

half the sequential depth for these circuits. Higher fault cover-

ages might be obtained with longer test sequences, but the

execution time would increase. HITEC also makes several

passes through the fault list. The time and backtrack limits

are initially set to one second and 10,000 backtracks, respec-

tively, and they are multiplied by ten in each successive pass.

Further improvements in fault coverage and untestable fault

identi�cation are possible for both GA-HITEC and HITEC if

a fourth pass is made through the fault list using a time limit

of 1000 seconds per fault; however, execution times would in-

crease. The number of faults detected (Det), the number of

test vectors generated (Vec), the total execution time, and the

number of untestable faults identi�ed (Unt) at the end of each

pass are shown for both GA-HITEC and HITEC.

For many circuits, more faults are detected by GA-HITEC

than HITEC at the end of each of the �rst two passes. In

most cases, the GA-HITEC fault coverage at the end of the

third pass is greater than or equal to that of HITEC. These

results show that the GA is e�ective in searching for state jus-

ti�cation sequences, especially when it is combined with the

deterministic approach. In the �rst two passes, GA-HITEC

is able to make use of the current good circuit state, i.e., the

state reached after all previous sequences in the test set have

been applied. In contrast, HITEC always backtraces to a time

frame in which all
ip-
ops are set to unknown (don't care)

values. However, GA-HITEC is not a superset of HITEC. Al-

though GA-HITEC uses the same algorithms as HITEC after

the second pass, the HITEC fault coverage is sometimes higher

after the third pass. For example, HITEC detects 34,898 faults

in circuit s35932 after the third pass, while GA-HITEC detects

only 34,862 faults. This discrepancy occurs because the algo-

rithms used in HITEC are partially nondeterministic. Many

of the faults are incidentally detected by the test sequences

generated; these faults are identi�ed by the fault simulator,

and they are never targeted by the test generator. The fault

coverage thus depends on the fault list ordering and the time

limit imposed on each fault.

While fewer untestable faults are generally identi�ed in the

�rst two passes with GA-HITEC, approximately the same

number are identi�ed at the end of the third pass. Note that in

some cases, such as circuit s832, HITEC declares some testable

faults to be untestable. Comparison of execution times shows

that GA-HITEC is faster for some circuits, while HITEC is

faster for other circuits. GA-HITEC wastes time targeting

untestable faults in the �rst two passes, a result especially

apparent for circuit s386. If these untestable faults can be

�ltered out in advance, signi�cant speedups can be obtained.

The higher HITEC execution time for some circuits is due to

the fact that HITEC has lower fault coverage for these circuits

and is repeatedly targeting the same testable faults unsuccess-

fully.

Results of running GA-HITEC on several circuits synthe-

sized from high-level descriptions are shown in Table III. The

Am2910 circuit is a 12-bit microprogram sequencer similar

to the one described in [23]; div is a 16-bit divider which

uses repeated subtraction to perform division; mult is a 16-

bit two's complement multiplier which uses a shift-and-add

algorithm; and pcont2 is an 8-bit parallel controller used in

DSP applications. Test sequence lengths of 24 and 48 were

used in the �rst two passes through the fault lists. For larger

circuits, smaller test sequence lengths could be used and the

GA parameters could be adjusted to speed up the execution,

but lower fault coverages might then be obtained. Results

for HITEC are shown for comparison. The two or three lines

of results for each circuit correspond to the individual passes

through the fault list. GA-HITEC yielded higher fault cov-

erages than HITEC for all four circuits, and the GA-HITEC

execution times were also smallest.

VI. CONCLUSIONS

Deterministic algorithms for fault excitation and propaga-

tion have been combined with a genetic algorithm for state

justi�cation in a new hybrid sequential circuit test genera-

tor, GA-HITEC. GA-HITEC makes several passes through the

fault list, targeting individual faults, with time limits increas-

ing in successive passes. GAs are used for state justi�cation

in the �rst two passes, while a deterministic algorithm is used

in any additional passes. Results for the ISCAS89 benchmark

circuits demonstrate the e�ectiveness of GAs for state justi-

�cation. Higher fault coverages are obtained for GA-HITEC

as compared to HITEC for many circuits. Approximately the

same number of untestable faults are identi�ed for the two test

generators, and GA-HITEC executes more quickly for many

of the circuits. Signi�cant speedups can be obtained for GA-

HITEC by identifying untestable faults in a preprocessing step.

While the hybrid test generation approach is e�ective for

benchmark circuits, it may be even more useful for real cir-

cuits from industry. Real circuits may impose constraints on

the test generator which are di�cult to satisfy with determin-

istic approaches. Backtracing is used during the fault excita-

tion and propagation phases in the hybrid test generator, but

processing is restricted to the forward direction during state

justi�cation. Thus, constraints are more easily imposed on the

test sequences generated.

Finally, this research can be extended to justi�cation of

module output values in architectural-level test generation.

Backtracing required values through high-level modules is a

di�cult problem, but a genetic approach could be used in place

of traditional approaches to simplify the test generator.

ACKNOWLEDGMENT

The authors would like to thank Prof. David Goldberg for

providing several useful suggestions.

Table II: GA-HITEC TEST GENERATION RESULTS

Seq Total GA-HITEC HITEC

Circuit Depth Faults Det Vec Time Unt Det Vec Time Unt

s298 8 308 255 216 49.5s 0 261 142 41.8s 21

264 391 5.96m 0 265 281 3.86m 26

265 415 34.7m 26 265 281 32.3m 26

s344 6 342 327 163 16.6s 0 317 103 20.4s 9

327 163 2.35m 0 320 119 2.89m 9

328 169 8.47m 11 324 139 17.6m 11

s349 6 350 334 182 18.6s 2 323 77 21.2s 11

334 182 2.19m 2 325 85 2.82m 11

335 188 6.67m 13 334 111 11.5m 13

s382 11 399 73 55 6.89m 0 76 59 6.03m 1

310 403 22.2m 0 296 1352 25.0m 3

328 716 2.39h 10 301 1665 3.05h 10

s386 5 384 291 223 1.06m 0 314 275 11.2s 70

297 295 6.58m 0 314 275 11.2s 70

314 359 6.70m 70 314 275 11.2s 70

s400 11 426 78 73 6.78m 6 80 98 6.21m 7

345 566 20.1m 6 337 1356 21.3m 9

346 704 2.22h 16 342 1669 2.31h 17

s444 11 474 63 77 7.96m 14 85 107 7.24m 16

370 547 32.7m 14 320 1159 33.1m 17

381 880 2.62h 25 378 2060 2.84h 25

s526 11 555 67 103 11.4m 1 51 34 10.8m 7

367 629 44.9m 3 51 34 1.63h 17

376 873 5.38h 21 346 680 10.7h 22

s641 6 467 404 292 28.5s 41 404 184 6.44s 63

404 292 3.08m 41 404 184 6.44s 63

404 292 3.12m 63 404 184 6.44s 63

s713 6 581 476 294 36.5s 82 476 190 9.95s 105

476 294 3.90m 82 476 190 9.95s 105

476 294 3.98m 105 476 190 9.95s 105

s820 4 850 460 283 6.80m 0 773 804 2.39m 19

474 420 51.5m 0 814 1113 4.76m 34

814 1108 54.2m 36 814 1113 6.01m 36

s832 4 870 446 321 7.05m 14 673 550 4.56m 35

549 467 48.9m 14 816 1169 7.33m 51

818 1064 52.5m 52 817 1181 8.72m 53

s1196 4 1242 1238 375 11.1s 3 1239 460 6.34s 3

1239 377 17.7s 3 1239 460 6.34s 3

s1238 4 1355 1283 409 14.5s 72 1283 469 9.97s 72

s1423 10 1515 787 359 24.4m 9 570 95 19.7m 9

879 448 2.94h 10 570 95 2.96h 11

928 477 19.6h 14 776 177 27.5h 14

s1488 5 1486 1132 357 8.52m 0 763 76 14.7m 7

1235 633 52.2m 0 1438 1085 24.6m 32

1444 1369 1.03h 41 1444 1138 31.0m 41

s1494 5 1506 1154 384 7.89m 12 1149 336 6.96m 20

1220 548 54.1m 12 1445 1123 13.2m 45

1453 1224 1.05h 52 1453 1178 18.3m 52

s5378 36 4603 2993 384 35.8m 74 3238 941 24.6m 128

3088 497 6.61h 78 3238 941 3.84h 171

3238 683 39.6h 224 3238 941 36.3h 225

s35932 35 39094 33,427 219 4.01h 3856 34,798 364 1.39h 3856

33,694 315 12.6h 3984 34,898 439 2.10h 3984

34,862 425 19.5h 3984 34,898 439 8.07h 3984

Det: # of faults detected Vec: # of test vectors generated Unt: # of untestable faults identi�ed

Table III: GA-HITEC TEST GENERATION RESULTS: SYNTHESIZED CIRCUITS

Total GA-HITEC HITEC

Circuit Faults Det Vec Time Unt Det Vec Time Unt

Am2910 2391 2172 890 3.23m 158 1886 334 8.32m 164

2181 1119 13.0m 159 2132 624 27.1m 170

2190 1214 1.11h 173 2166 1286 2.16h 173

div 2147 1717 239 23.8m 136 1677 208 6.93m 136

1740 356 1.79h 136 1677 208 1.04h 136

1741 359 9.18h 136 1679 212 10.2h 136

mult 1708 1601 179 4.08m 3 1148 80 13.1m 8

1633 421 22.8m 3 1351 101 1.21h 14

1633 421 1.93h 23 1551 122 5.04h 24

pcont2 11300 6757 208 1.33h 2639 3354 7 3.52h 2646

6757 208 8.51h 2770 3354 7 18.3h 2773

Am2910: 12-bit microprogram sequencer Det: number of faults detected

div: 16-bit divider Vec: number of test vectors generated

mult: 16-bit two's complement multiplier Unt: number of untestable faults identi�ed

pcont2: 8-bit parallel controller for DSP applications

References

[1] R. Marlett, \An e�ective test generation system for sequential

circuits," Proc. Design Automation Conf., pp. 250-256, 1986.

[2] W. -T. Cheng, \The BACK algorithm for sequential test gen-

eration," Proc. Int. Conf. Computer Design, pp. 66-69, 1988.

[3] H. -K. T. Ma, S. Devadas, A. R. Newton, and A. Sangiovanni-

Vincentelli, \Test generation for sequential circuits," IEEE

Trans. Computer-Aided Design, vol. 7, no. 10, pp. 1081-1093,

October 1988.

[4] M. H. Schulz and E. Auth, \Essential: An e�cient self-learning

test pattern generation algorithm for sequential circuits,"Proc.

Int. Test Conf., pp. 28-37, 1989.

[5] A. Ghosh, S. Devadas, and A. R. Newton, \Test generation for

highly sequential circuits," Proc. Int. Conf. Computer-Aided

Design, pp. 362-365, 1989.

[6] T. M. Niermann and J. H. Patel, \HITEC: A test generation

package for sequential circuits," Proc. European Conf. Design

Automation, pp. 214-218, 1991.

[7] D. H. Lee and S. M. Reddy, \A new test generation method for

sequential circuits," Proc. Int. Conf. Computer-Aided Design,

pp. 446-449, 1991.

[8] S. Seshu and D. N. Freeman, \The diagnosis of asynchronous

sequential switching systems," IRE Trans. Electronic Comput-

ing, vol. 11, pp. 459-465, August 1962.

[9] M. A. Breuer, \A random and an algorithmic technique for

fault detection test generation for sequential circuits," IEEE

Trans. Computers, vol. 20, no. 11, pp. 1364-1370, November

1971.

[10] H. D. Schnurmann, E. Lindbloom, and R. G. Carpenter, \The

weighted random test-pattern generator," IEEE Trans. Com-

puters, vol. 24, no. 7, pp. 695-700, July 1975.

[11] R. Lisanke, F. Brglez, A. J. Degeus, and D. Gregory,

\Testability-driven random test-pattern generation," IEEE

Trans. Computer-Aided Design, vol. 6, no. 6, pp. 1082-1087,

November 1987.

[12] H.-J. Wunderlich, \Multiple distributions for biased random

test patterns," IEEE Trans. Computer-Aided Design, vol. 9,

no. 6, pp. 584-593, June 1990.

[13] T. J. Snethen, \Simulator-oriented fault test generator," Proc.

Design Automation Conf., pp. 88-93, 1977.

[14] V. D. Agrawal, K. T. Cheng, and P. Agrawal, \A directed

search method for test generation using a concurrent simu-

lator," IEEE Trans. Computer-Aided Design, vol. 8, no. 2,

pp. 131-138, February 1989.

[15] D. G. Saab, Y. G. Saab, and J. A. Abraham, \CRIS: A test

cultivation program for sequential VLSI circuits," Proc. Int.

Conf. Computer-Aided Design, pp. 216-219, 1992.

[16] M. Srinivas and L. M. Patnaik, \A simulation-based test gener-

ation scheme using genetic algorithms," Proc. Int. Conf. VLSI

Design, pp. 132-135, 1993.

[17] E. M. Rudnick, J. G. Holm, D. G. Saab, and J. H. Patel, \Ap-

plication of simple genetic algorithms to sequential circuit test

generation,"Proc. European Design and Test Conf., pp. 40-45,

1994.

[18] E. M. Rudnick, J. H. Patel, G. S. Greenstein, and T.

M. Niermann, \Sequential circuit test generation in a ge-

netic algorithm framework," Proc. Design Automation Conf.,

pp. 698-704, 1994.

[19] D. G. Saab, Y. G. Saab, and J. A. Abraham, \Itera-

tive [simulation-based genetics + deterministic techniques] =

complete ATPG," Proc. Int. Conf. Computer-Aided Design,

pp. 40-43, 1994.

[20] F. Brglez, D. Bryan, and K. Kozminski, \Combinational pro-

�les of sequential benchmark circuits," Int. Symposium on Cir-

cuits and Systems, pp. 1929-1934, 1989.

[21] D. E. Goldberg, Genetic Algorithms in Search, Optimization,

and Machine Learning, Reading, MA: Addison-Wesley, 1989.

[22] T. M. Niermann, W. -T. Cheng, and J. H. Patel, \PROOFS: A

fast, memory-e�cient sequential circuit fault simulator," IEEE

Trans. Computer-Aided Design, pp. 198-207, February 1992.

[23] Advanced Micro Devices, \The AM2910, a complete 12-bit

microprogram sequence controller," in AMD Data Book, AMD

Inc., Sunnyvale, CA, 1978.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

