
Interval Scheduling: Fine-Grained Code Scheduling

for Embedded Systems �

Pai Chou, Gaetano Borriello

Department of Computer Science and Engineering, Box 352350

University of Washington, Seattle, WA 98195-2350

Abstract { A central problem in embedded sys-

tem co-synthesis is the generation of software for low-

level I/O. Scheduling still remains a manual task be-

cause existing coarse-grained real-time scheduling al-

gorithms are not applicable: they assume �xed de-

lays even though the run times are often variable, and

they incur too much overhead. To solve this problem,

we present a new static ordering technique, called in-

terval scheduling, for meeting general timing constraints

on �ne-grained, variable-delay operations without us-

ing a run-time executive.

I Introduction

One of the main goals of hardware-software co-
synthesis is enabling the designer to quickly explore the
design space. A co-synthesis tool maps a design to dif-
ferent architectures while meeting design requirements.
One such requirement is timing. To meet timing con-
straints on a set of operations, we need to �rst estimate
the execution delays, and then compute a schedule for the
operations.

The execution times of the operations are often vari-
able, rather than exact values. This uncertainty comes
from pipelining, interrupts, and caching e�ects at the in-
struction level, as well as data dependency and control
ow at the program level. Although timing prediction
is an undecidable problem in general, it is still possi-
ble to compute execution time bounds in many practical
cases [1]. To obtain tighter time bounds, timing predic-
tion tools make use of user-annotated information such
as loop count or mutually exclusive paths.

Existing scheduling techniques consider only one de-
lay parameter, namely the worst-case delay, rather than

�This work was supported by ARPA N00014-J-91-4041.

--
A

A

B

B

C

C

-
- - -

�u

�l

run 1

run 2

�(A) �(B) �(C)

Fig. 1: Traditional model: if the execution delays of the
operations A, B, and C can vary, the schedule is com-
puted based on the worst-case delays. This relies on a
run-time executive to start the operations at the same
times in every run.

an interval. Variations in execution delays do not pose
a problem for coarse-grained scheduling algorithms, be-
cause they assume there is a run-time executive, which
gains control on regular clock interrupts and dispatches
operations at the appropriate times (Fig. 1). The execu-
tive is assumed to incur negligible overhead.

Unfortunately, these assumptions are not valid for �ne-
grained software operations, such as those that perform
low-level I/O. These operations range from basic blocks
to subroutines with hundreds of instructions. When the
granularity is this small, a run-time executive will incur
too much overhead and should be eliminated at this level.
Our solution is to compute an interval schedule, which
is a static ordering of the operations interleaved with
�xed amounts of spacing (Fig. 2). A run-time executive
may be present between di�erent runs to handle timing
constraints at a higher level, but it is assumed not to
have control during the execution of interval schedules.
An interval schedule is valid if for all combinations of
actual delay values, all timing constraints are satis�ed.
This may be classi�ed as self-timed scheduling according
to [2] in the sense that resource assignment and ordering
are statically determined, but the actual timing is not
known until run-time.

The contribution of this paper is two fold. First, we
present an exact algorithm for �nding a valid interval
schedule whenever one exists. We prove the algorithm's
correctness in the appendix. Second, we study the e�ec-

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

http://crossmark.crossref.org/dialog/?doi=10.1145%2F217474.217571&domain=pdf&date_stamp=1995-01-01

I(A)

I(B)I(A)

I(B)

A

A

B

B

C

C

run 1

run 2

Fig. 2: Our model: we order the operations and compute
the idle spacing I(A) and I(B) between them. The actual
execution delays of the operations can vary from run to
run, but I(A) and I(B) are �xed. This model does not
require a run time executive.

operation exec. delay
pi �l(pi) �u(pi)

A 1 2
B 1 2
C 2 4
D 2 3
E 1 1

from the to the constraint
start of start of min max

A B 2
A C 2
A D 2 5
B E 4 10
C E 3
D E 3
D C 5

Fig. 3: An example of a set of operations and constraints.

tiveness of several heuristics for �nding short schedules
while still keeping the algorithm exact. A related tech-
nique [3] handles only exact delays and does not attempt
to �nd short schedules. The scheduling method presented
here can handle a more realistic model with delay inter-
vals, and experimental results show that our techniques
are competitive and practical.

II Problem Formulation

A Problem Statement

The problem input consists of a set of operations to be
scheduled and a set of timing constraints to be satis�ed
by the schedule. An operation p is a sequence of instruc-
tions and has a range of execution delays [�l(p); �u(p)].
The delay values are non-negative and �nite. Each op-
eration may be a basic block or a subroutine containing
branches internally, as long as the entry point and the
exit point are unique. Any pair of operations can be
related by a min or a max timing constraint or both be-
tween their start times. An example of this is shown in
Fig. 3.

The output is an interval schedule, a complete or-
dering of the operations and the spacing between ev-
ery adjacent pair. An interval schedule has the form
S = (p1; IS(p1); p2; IS(p2); : : : ; pm), where pi denotes the
i-th operation and IS(pi) denotes the amount of idle spac-
ing separating pi and pi+1. While the execution delay of
the operations may vary, this idle spacing is �xed.

A run r is an assignment of actual delay values �r(pi) to
operations pi. We de�ne �S;r to be a function that yields
the start time of an operation pi for a run r according to

Ea run B

ECDB

EA B D C

A

0 2 4 6 8 10 12 14

A D C

min-run

max-run

Fig. 4: Example runs of the schedule (A, 1, B, 0, D,
0, C, 1, E). The �rst row is the min-run. The second
row is the max-run. The third row is another run with
execution delays randomly chosen from the ranges. The
idle spacing is the same in all runs.

a schedule S. Formally,

�S;r(pk) =

8<
:

�S;r(pk�1) +�r (pk�1)
+IS (pk�1) if k > 1

0 if k = 1
(1)

In other words, the start time of an operation is the com-
pletion time of its predecessor's idle period. We are inter-
ested in only consistent assignments of execution delays,
i.e., between the predicted upper and lower bounds. We
say that a run r is consistent if �l(pi) � �r(pi) � �u(pi)
for all operations pi. We say that �S;r is valid if it does
not violate any min or max timing constraints, denoted
by minsep(pi; pj) and maxsep(pi; pj). For all speci�ed
min and max constraints on (pi; pj),

�S;r(pi) + minsep(pi; pj) � �S;r(pj)

�S;r(pi) + maxsep(pi; pj) � �S;r(pj) (2)

We say that a schedule S is r-valid if and only if r is
consistent and �S;r is valid. Finally, we say that S is
valid if and only if for all consistent r, S is r-valid. In
other words, for a valid interval schedule, any execution
will satisfy all timing constraints, as long as the execution
delays are within their upper and lower bounds.
As an example, a valid schedule for the constraints in

Fig. 3 is (A, 1, B, 0, D, 0, C, 1, E). Fig. 4 shows three dif-
ferent runs of the same schedule. A min-run is one where
all operations take their lower-bound execution delays;
i.e., it assigns �l(pi) to pi. Similarly, a max-run assigns
�u(pi) to pi for all i. By de�nition, both the min-run and
max-run are consistent. We write �S;l and �S;u to denote
the start time functions of the min-run and max-run, re-
spectively.

B Graph Formulation

We formulate the problem in terms of a directed graph
G = (V;E; L;w; �;O), as an extension to the constraint
graph in [4, 5]. The vertices, V , represent the opera-
tions, and the edges, E, represent constraints. The ver-
tices and the edges are weighted. The vertex weights �
represent the execution delay of the operations, and the

�
�
�	

4

1

2

�
�
�
�

A

[0]

�
�
�
�[1:2]

B

�
�
�
�[2:4]

C

�
�
�
�

D

[2:3]

E

[1]

�
�
�
�

?
�
�	

@
@
@R
@
@@I

?
@
@
@R
@

@@I
-

2

3
�10

3

�5

�5

Fig. 5: Graph representation of the operations and con-
straints.

edge weights w represents the magnitude of the timing
constraints. L and O are computed by the algorithm on
successful return: L is an array that maps each operation
to its start time in the min-run, and O is an ordered list
of operations and represents their order in the schedule.
L and O are used to construct the schedule S.
In the original formulation [5], the vertex weights are

exact values; in this formulation, we generalize them to
intervals. We call a constraint graph simple or extended
based on whether it has simple or interval vertex weights.
In our extended graph, each vertex p has an interval
weight [�l(p); �u(p)] for the lower and upper bounds on
its execution delay.
Each edge e = (p; q) in either an extended or a simple

graph has a weight w(e). For every edge (p; q) and all
valid �S;r , we require that �S;r(p) + w(p; q) � �S;r(q). If
w(p; q) is non-negative, it is called a forward edge, and
its weight represents a min constraint from the start of p
to that of q. Otherwise, it is called a backward edge, and
�w(p; q) is a max constraint from q to p. Fig. 5 shows
the graph representation of the operations and the con-
straints given in Fig. 3. Note that a forward edge (p; q)
is a precedence relation and requires that p be ordered
before q. A backward edge (e.g., (C, D)), however, is not
a precedence relation. Since each operation is executed
without interruption, we assume that w(p; q) � �l(p) on
all forward edges.
In this formulation, a positive cycle in the graph means

certain constraints can never be satis�ed and is called ill-
posed. A well-posed graph is one that contains no positive
cycles, and whose subgraph consisting of all its forward
edges is acyclic and connected. We also assume there is
an anchor vertex a from which all other vertices in the
graph can be reached along the forward edges. A feasible

graph is one for which a valid schedule exists. Note that
all ill-posed graphs are infeasible, but not all well-posed
graphs are feasible.

III Algorithm

The basic idea of the algorithm is as follows. It per-
forms a topological traversal on the subgraph consisting

Boolean
ScheduleInterval(extended graph G, anchor a, current vertex c)
f

form Gl = (V [G]; E[G]; L[G]; w[G]);
if (not SingleSourceLongestPath(Gl; a))
or not VerifyUpper(G; a)) return false;

C := Candidates(c);
if (C = �) return true;
G0 := G;
while (C 6= �) f
p := SelectCandidate(C);
foreach q 2 C; p 6= q f

E[G0] := E[G0] [(p; q) with weight �l(p)
g
append p to O[G0];
if (ScheduleInterval(G0 ; a; p)) return true;
G := G0; // undo

g
return false;

g

Boolean
VerifyUpper(extended graph G, anchor a)
f

foreach edge (p; q) 2 E[G] f
if ((p; q) are adjacent in O[G])

W (p; q) := L[G](q) � L[G](p) + �u(p) � �l(p);
else W (p; q) := w(p; q);

g
form Gu := (V [G]; E[G]; L0;W);
return SingleSourceLongestPath(Gu; a);

g

Fig. 6: The Interval Scheduling Algorithm

of forward edges and selects one vertex at a time for se-
rialization. It must ensure that appending the chosen
vertex to the current partial schedule results in a valid
schedule. The key idea is that if both the min-run and the
max-run are valid, then all consistent runs (and therefore
the schedule) are valid. See Theorem 1 in the Appendix
section for the proof. If adding the selected vertex re-
sults in constraint violations, then algorithm backtracks
to try another vertex, until all vertices are scheduled or
exhausted. The algorithm is shown in Fig. 6.

The algorithm is called with the constraint graph G,
the anchor a, and the current vertex c. The anchor vertex
a is the unique entry point to the graph. The algorithm
builds a partial schedule at each recursive step, starting
with the anchor a. The current vertex c is the last in this
partial schedule and is initially set to a. Initially O = (a)
and L(a) = 0, L(v 6= a) = �1.
The �rst step of the algorithm is to check if the min-

run for the current partial schedule is valid. This is
done by calling the single-source longest path routine
with Gl = (V [G]; E[G]; L[G];w[G]) 1. The function
SingleSourceLongestPath(Gl; a) computes the longest
path lengths from the anchor a to all other vertices in
the simple graph Gl, and returns true if there are no
positive cycles. Recall that having positive cycles in the

1
The SingleSourceLongestPath() routine does not use vertex

weights � or the array O; therefore we omit them from the sim-

ple graph.

graph implies that some constraints can never be sat-
is�ed. The longest path lengths are returned in L[Gl],
which are the earliest possible start times for the opera-
tions in the min-run.
If the min-run for the current partial schedule is valid,

the second step checks if the the max-run is valid by call-
ing the subroutine VerifyUpper(). We induce the con-
straint graph Gu for the max-run by computing the edge
weights W as follows:

W (p; q) :=

8<
:

L(q) � L(p) + �u(p) � �l(p)
if p immediately precedes q in O

w(p; q) otherwise
(3)

If the max-run for the current partial schedule is valid,
then the third step selects a new vertex and appends it
to O. A vertex is a candidate if all of its predecessors
as de�ned by forward edges in G have been scheduled
(i.e. in O). If a candidate p is selected, it becomes a
predecessor to all other candidates q, and we must either
add a forward edge (p; q), or convert an existing backward
edge (p; q) into a forward edge. The weight on this edge
is assigned to be �l(p), because no computations may
overlap. The scheduling routine is called recursively to
schedule the rest of the graph, with p being the new
\current vertex." If the choice of p results in an invalid
schedule, then the algorithm undoes the edge addition
and tries a di�erent candidate.
When all vertices have been scheduled, the algorithm

returns successfully with the complete ordering O for the
vertices and the start times L, which then can be used to
construct the schedule S. The array L is now exactly the
same as the start time function �S;l. The idle function is
computed as follows:

IS (pi) = L(pi+1)� L(pi)� �l(pi); i = 1 : : :m� 1: (4)

The worst case complexity of this problem is NP-Hard,
as are many scheduling problems. This algorithm solves
\Sequencing with Release Times and Deadlines,", which
is NP-complete in the strong sense [6].

IV Scheduling Heuristics

The algorithm always �nds a valid schedule whenever
one exists. However, when several valid schedules exist, it
returns the �rst one it �nds; it does not attempt to meet
any other objective, such as minimizing schedule length.
We would like to include schedule length as an additional
objective, because a shorter schedule means potentially
better processor utilization and smaller code size. Since
the worst case complexity of �nding a minimum-length
valid schedule is exponential, we satisfy the length objec-
tive heuristically.
A Heuristic Functions

We have experimented with heuristics based on
slop, min-separation, in-degree, some combinations, and

Heuristic Ordering Function

slop(q) min �u(q) � �l(q)
minsep(p; q) min w(p; q) for forward edges (p; q)
indegree(q) max# of incoming edges to q

Combined Heuristic Ordering
slop/minsep least slop; minsep as the tie-breaker
minsep/slop minsep; least slop as the tie-breaker
minsep/�l(q) minsep; least �l(q) as tie-breaker

Scheduling Heuristic
Gupta[3] urgency, vertex elimination

Benchmark #v #fwd.e. #back e.
rp-mode 8 12 1
fwd-mode 16 21 9
r-init 7 10 1
record 34 40 10
play 6 7 3
reset 6 6 2

Fig. 7: Heuristics and Examples Tested. p = current
vertex, q = candidate

Gupta's heuristic [3]. They are summarized in Fig. 7,
where p is the \current vertex," and q is a candidate. All
except the last are applied in the SelectCandidate() step.
slop(q) : the di�erence between the upper and lower
bound execution delays of a candidate q. We try to keep
slop small because if a slop is larger than the correspond-
ing slack, i.e., di�erence between the max and min con-
straints, then no valid schedule exists.
minsep(p; q) : the min-constraint between the current
vertex p and the candidate q, namely w(p; q). A candi-
date with a smaller minsep require less idle time (locally)
to meet its min constraint and is selected �rst.
indegree(q) : the number of incoming edges to a can-
didate q. A vertex with a high indegree may be due two
things: either there are many speci�ed constraints on it,
or it has been eligible for a long time but has not been
selected (\starvation"). This heuristic selects the candi-
date with the highest in-degree �rst.
Gupta's heuristic: a non-backtracking heuristic that
uses urgency (max constraint) as its cost function. It
is designed to �nd a valid schedule quickly using a ver-

tex elimination scheme, which deletes those vertices that
have been scheduled and their associated edges after re-
expressing the constraints to be relative to the anchor.
Note that this is a heuristic, which, unlike our heuristic-
ordering, may fail to �nd a schedule when one exists.

B Benchmarks

The benchmarks include three code fragments of a
robot controller and three fragments of a voice digi-
tizer. All except the �rst benchmark have non-zero slop.
The constraint topologies of these benchmarks can be
classi�ed into parallel chains, tightly-synchronized clus-

ters, and partially-ordered clusters, where a cluster is a
maximally strongly connected component in a constraint
graph.
In parallel chains, several independent sequences of op-

erations with their own constraints are to be interleaved.
One such example is the \record" benchmark, which is

an unrolled loop that services three devices concurrently,
and they synchronize only at the end.

In a tightly-synchronized cluster and partially-ordered
clusters, the concurrent operations synchronize often, in-
stead of only once at the end. The former contains max
constraints across synchronization points, as exhibited
by the \play" and \fwd-mode" benchmarks. Partially-
ordered clusters, on the other hand, have only min con-
straints across synchronization points.

C Results and Analysis

We have implemented the heuristics in C++ and ran
the benchmarks on a Sparcstation 2. We show the length
bounds on the schedule produced by the algorithms in
Fig. 8, with the best schedule length for each benchmark
shown in bold. The run-time in milliseconds is shown in
Fig. 9. Two cases timed out after 20 minutes. Overall,
the heuristic with the best performance is minsep/slop,
which considers candidates in order of increasing min-
separation and uses slop as the tie-breaker. In this sub-
section, we discuss the e�ectiveness of the techniques on
the di�erent topologies.

Heuristics based on least-slop as the primary function
do well in the tightly-synchronized clusters (fwd-mode
and play) with nonzero slop. In this case, it is impor-
tant to minimize the slop because the constraints for the
entire graph are all related. On the other hand, Least-
slop yields average results in partially-ordered clusters,
because the (max) constraints do not go between clus-
ters and thus slop does not matter as much. Least-slop
times out in the parallel chains benchmark (record) due
to starvation: one chain consistently contains operations
with larger slop than the others. Since there are no prece-
dence constraints between the chains, its operations are
deferred until the very end. In this case, it would take
an exponential number of steps to move the operations
into valid positions, and this did not happen within 20
minutes. The in-degree heuristic prevents the problem of
starvation by scheduling the candidate with the largest
in-degree. However, this seems to be its only feature.

Combined heuristics using minsep as the primary func-
tion both perform well for the three constraint topologies.
In parallel chains, they try to meet the min constraint
in one chain by interleaving an operation from another
chain. This is good for schedule length and avoids the
starvation problem. For both the tightly coupled clus-
ters and partially-ordered clusters, minsep-based heuris-
tics greedily schedule the operations that result in the
least idle time, regardless of the clusters they belong to.
This enables them to �nd potentially shorter schedules
than those techniques that schedule each cluster sepa-
rately.
Gupta's heuristic does well in two partially-ordered

clusters benchmarks (rp-mode and r-init), but fails on
the parallel chains (record) and one of the tightly-

synchronized clusters (play). This heuristic is based on
the assumption that constraint interaction is somewhat
localized or bounded. It works well for partially-ordered
clusters because the max constraints can be decoupled
between di�erent clusters. When the constraints span a
larger scope or have more interaction than can be pre-
dicted by the vertex elimination scheme, then the exact
algorithm must be used.

V Conclusion and Future Work

We have presented a new technique for statically
scheduling a set of operations with delay intervals. The
output is a sequence of operations separated by idle in-
structions. The resulting schedule is guaranteed to meet
all �ne-grained min/max timing constraints for all com-
binations of actual delay values, without using any run-
time executive. This is particularly important for low-
level I/O operations in hardware-software co-synthesis.
We have also presented heuristic ordering functions for

�nding short schedules quickly. These are used by the
exact algorithm to consistently produce short schedules,
including cases where [3] did not �nd solutions. Some of
our heuristics such as least-slop are speci�c to the inter-
val scheduling problems, but most heuristics are readily
applicable to previous techniques that did not try to op-
timize for schedule length [4, 5].
We have assumed the execution delays are independent

of each other, and that all combinations of delay values
within the given bounds are possible. In practice, the de-
lays may be causally related, and that our scheduler may
be too pessimistic about the worst-case delays because
certain combinations may not be possible. For future
work, we would like to incorporate additional informa-
tion derived by the timing prediction program to enable
us to �nd more valid and possibly shorter schedules.
Acknowledgment

We thank Elizabeth Walkup and Henrik Hulgaard for
their helpful input.

References

[1] C. Y. Park. Predicting Deterministic Execution

Times of Real-Time Programs. PhD thesis, Univ. of
Washington, 1992. Tech. Report 92-08-02, Dept. of
Computer Science & Engineering.

[2] E. A. Lee and S. Ha. Scheduling strategies for mul-
tiprocessor real-time DSP. In Proc. of GLOBECOM,
volume 2, pages 1279{1283, Nov. 1989.

[3] R. K. Gupta and G. De Micheli. Constrained software
generation for hardware-software systems. In Proc.

Third International Workshop on Hardware/Software

Codesign, pages 56{63, Sept. 1994.

Bench- no least slop minsep in- Gupta's
mark heuristic minsep slop �l degree Heuristic

rp-mode 40 36 32 32 32 32 40 32

fwd-mode 57/135 54/132 54/132 57/135 54/132 54/132 57/135 57/135
r-init 38/54 37/53 37/53 38/54 34/50 34/50 38/54 34/50

record 172/269 timeout timeout 173/270 164/261 167/264 173/270 fail
play 10/16 10/16 10/16 11/17 10/16 10/16 10/16 fail
reset 20/32 20/32 20/32 20/32 20/32 20/32 19/31 20/32

Fig. 8: Resulting scheduling lengths. Timeout after 20 minutes.

Bench- no least slop minsep in- Gupta's
mark heu. minsep slop �l deg. Heuristic

rp-mode 12 15 14 14 14 14 19 12
fwd-mode 88 97 88 93 90 92 94 53
r-init 7 10 11 9 9 9 9 9
record 826 { { 1307 756 729 965 143 (fail)
play 6 6 6 8 7 9 6 8 (fail)
reset 18 8 8 27 20 16 16 11

Fig. 9: Run-time (in ms) on a Sparcstation 2

[4] D. C. Ku and G. De Micheli. Relative scheduling un-
der timing constraints: algorithms for high-level syn-
thesis of digital circuits. IEEE Trans. on Computer-

Aided Design, 11(6):696{717, June 1992.

[5] P. Chou and G. Borriello. Software scheduling in the
co-synthesis of reactive real-time systems. In Proc.

31st DAC, pages 1{4, June 1994.

[6] M. R. Garey and D. S. Johnson. Computers

and Intractability: a Guide to the Theory of NP-

Completeness. W. H. Freeman and Company, 1979.

Appendix: Proof

To prove the correctness of the algorithm, we need to
show (1) ScheduleInterval() always halts. (2) If Sched-
uleInterval() returns false then no feasible schedule ex-
ists. (3) If ScheduleInterval() returns true then the
schedule as constructed from O is valid.

(1) and (2) should be obvious, because the algorithm
considers all possible orderings, which are �nite. We
prove (3) inductively on the length of O. By inductive
hypothesis, O = (p1; : : : ; pk�1) for k � 1 is a valid or-
dering. It holds for k = 1 because O = (a), which is
correctly ordered by de�nition. Assume (p1; : : : ; pk) is a
pre�x of a valid schedule S. In the algorithm, pk is ap-
pended to O only if both SingleSourceLongestPath(Gl)
and VerifyUpper(Gu) return true.

Claim 1: SingleSourceLongestPath(Gl) either returns
true and assigns L := �S;l or returns false if �S;l is not
valid.

Lemma 1: VerifyUpper(Gu) returns true i� �S;u is
valid.

Proof: We show that the constraints inGu as induced by
VerifyUpper() are necessary and su�cient for the max-
run. Gu contains all the necessary constraints of Gl.
becauseW (e) � w(e) for forward edges andW (e) = w(e)
for backward edges. To show su�ciency, we show that
�S;u(pj) � �S;u(pi) � W (pi; pj) for all consecutive pairs
of operations pi; pi+1: �S;u(pi+1) � �S;u(pi) = �u(pi) +
IS(pi): IS(pi) must be the same for all runs and is equal
to L(pi+1)�L(pi)� �l(pi). By substitution of IS(pi), we
get �S;u(pj)��S;u(pi) = L(pi+1)�L(pi)+�u(pi)��l(pi) =
W (pi; pj): 2

Theorem 1: If �S;l and �S;u are valid then S is valid.
That is, if both the min-run and the max-run of a sched-
ule S are valid, then the schedule S is valid.
Proof: By de�nition, a schedule S is valid i� all consis-
tent runs of S are valid. We need to show that if �S;u
and �S;l are valid then any consistent �S;r is valid. In a
consistent run r, the start time of pj relative to that of pi,

where i < j, is �S;r(pj)� �S;r (pi) =
Pj�1

k=i �(pk)+ IS (pk):
Constraint satisfaction has the form minsep(pi; pj) �
�S;r(pj)� �S;r(pi) � maxsep(pi; pj): We have

minsep(pi; pj)

� �S;l(pj) � �S;l(pi) =
Pj�1

k=i �l(pk) + IS (pk)

� �S;r(pj)� �S;r(pi) =
Pj�1

k=1 �(pk) + IS(pk)

� �u;r(pj) � �u;r(pi) =
Pj�1

k=1 �u(pk) + IS(pk)
� maxsep(pi; pj): 2

Theorem 2: If ScheduleInterval() returns true then S

as constructed from O is valid.
Proof: When the algorithm returns true, S has satis-
�ed both SingleSourceLongestPath() and VerifyUpper().
By Claim 1 and Lemma 1, �S;u and �S;l are valid, and by
Theorem 1, S is valid. 2

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

