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Abstract - Power estimation in combinational modules is
addressed from a probabilistic point of view. The zero-delay
hypothesis is considered and under highly correlated input
streams, the activities at the primary outputs and all internal
nodes are estimated. For the first time, the relationship
between logic and probabilistic domains is investigated and
two new concepts - conditional independence and isotropy of
signals - are brought into attention. Based on them, a
sufficient condition for analyzing complex dependencies is
given. In the most general case, the conditional independence
problem has been shown to be NP-complete and thus
appropriate heuristics are presented to estimate switching
activity. Detailed experiments demonstrate the accuracy and
efficiency of the method. The results reported here are useful
in low power design.

I. INTRODUCTION

With the growing need for low-power devices, power
analysis and optimization techniques have become
crucial tasks challenging the CAD community from the
architectural to the device level. The key issue in power
analysis was from the very beginning switching activity
estimation because charging and discharging different
load capacitances is by far the most important source of
energy dissipation in digital CMOS circuits. Power
estimation techniques must be fast and accurate in order
to be applicable in practice. Not surprisingly, these two
requirements interfere with one another and at some
point they become contradictory. General simulation
techniques can provide sufficient accuracy, but the price
tag is too high; one can extract switching activity
information by exhaustive simulation on small circuits,
but it is unrealistic to rely on simulation results for larger
circuits. A few years ago, probabilistic techniques came
into the picture and demonstrated their feasibility at least
for limited purposes [1], [2]; at that time, it was a good
bargain to process combinational and sequential circuits
in a few seconds even if the results provided by such an
analysis were inaccurate for practical purposes. The
reason for this inaccuracy was that the results were
extracted using only the circuit description and assuming
the input independence. Signal probability estimation
techniques based on global Ordered Binary Decision
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Diagrams (OBDDs) can capture dependencies among
internal signal lines, but they are impractical to use on
anything other than fairly small circuits [2]. Common
digital circuits are dominated by the reconvergent fan-out
(RFO) problem; over the years, people working in
testing, timing and more recently in power areas have
been faced with difficult problems arising from the fan-
out reconvergence, mostly when they want to calculate
the signal probability [3], [4], [5]. In general, accounting
for structural dependencies is a difficult task, but when
combined with spatial and temporal dependencies on
circuit inputs it becomes even harder. To accurately
compute the switching activity one has to account for
both spatial and temporal dependencies starting from the
primary inputs and continuing throughout the circuit.
Recently, a few approaches which account for
correlations have been proposed: using an event-driven
probabilistic simulation technique, Tsui et al. account in
[6] only for first-order spatial correlations among
probabilistic waveforms. Kapoor in [7] suggests an
approximate technique to deal with structural
dependencies, but on average the accuracy of the
approach is modest. In [8] the authors rely on lag-one
Markov Chains and account for temporal correlations;
unfortunately, they assume independent transition
probabilities among the primary inputs and use global
OBDDs to evaluate switching activity (this severely
limits the size of the circuits that can be handled). In [9],
an analytical model accounting for spatiotemporal
correlations and a technique which gives good results for
moderate sized combinational circuits are presented;
however, the run time is still a problem for large circuits.

The approach presented in this paper improves the
state-of-the art in two ways: theoretically, by providing a
deep insight into the relationship between the logic and
probabilistic domains, and practically, by offering a
sound mathematical framework and an efficient
technique for power analysis. For the first time to our
knowledge, the mathematical concept ofconditional
independence is brought into attention and based on it, a
complete analytical model for power analysis is
developed. Defining a new working hypothesis based on
the notion ofalmost isotropic signals, this paper presents
theoretical and practical evidences that conditional
independence is a concept powerful enough to overcome
the difficulties arising from structural dependencies as
well as highly correlated input streams; more precisely,
based on conditional independence and signal isotropy,
we give a formal proof showing that the statistics taken
for pairwise correlated signals are sufficient enough to
characterize larger sets of dependent signals. The
practical value of these results becomes particularly
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evident during optimization and synthesis for low power;
a detailed analysis presented here demonstrates the
importance of being accurateline-by-line (not only for the
total power consumption) and identifies potential
drawbacks in previous approaches. To support the
potential impact of this research, experimental results are
presented for benchmark circuits.

The paper is organized as follows. Section 2 presents in
detail the concepts of conditional independence, isotropy
and their relationship with switching analysis problem. In
section 3 we present a Markov Chain based approach and
an incremental technique for power estimation. Section 4
is devoted to practical aspects: an efficient heuristic for
run time improvement and a detailed analysis concerning
highly correlated inputs are provided. In section 5 we give
our experiences on benchmark circuits ranging from
hundreds to thousands of gates. Finally, we summarize
our contributions.

II . AN AXIOMATIC APPROACH TOCONDITIONAL

PROBABILITY

A. Stochastic Independence

Conventional probability models consist of triplets (Ω, Σ,
P) describing an experiment; more precisely,Ω represents
the set of all possible outcomes of an experiment,Σ is the
class of events that are of interest andP is the probability
on the basic class of events. IfA is an event of the basic
class, then the probability ofA can be determined by an
experiment or may be described on the basis of an earlier
known event B; thus the valueP(A | B) (read as
’probability of A given B’) depending on bothA and B,
becomes the target probability. Consequently, ifB is the
set of known events prior to the experiment (but related to
it), and A is the class of events of interest, thenP(⋅|⋅): A x
B → R+ is the basic probability function that is considered
here; this is in some sense motivated by the intuition that,
every probability is in reality conditional[14].
Definition 1. (Conditional Probability)
If (Ω, Σ, P) is a probability space,B ∈Σ with P(B) > 0,
then theconditional probability of A given B is:
P(A | B) = P(A ∩ B) / P(B)            A∈Σ, B ∈Σ              (1)
❐
Note: P(A|B) satisfies the axioms of probability; in
particular, we have that 0≤ P(A|B) ≤ 1.
Definition 2. (Stochastic Independence)
Let (Ω, Σ, P) be a discrete probability space and letA and
B be two events.A andB are said to beindependent iff

P(A B) = P(A) P(B)                             (2)
❐

Independence of events is primarily a numerical fact
about probabilities rather than a fact about their
relationship. To emphasize this feature, we will use the
term ‘‘stochastically independent’’ instead of saying
simply ‘‘independent’’.
Proposition 1. If P (Ai | Ai+1∩ ... ∩ An) = P (Ai), i = 1,...,
n - 1 then:

                 (3)

(Due to space limitation, all proofs are given in [15].)
When (3) holds then we say thatA1, A2,..., An are

P A1 … Am∩∩( ) P Ai( )
i 1=

m

∏= 1 m n≤<

mutually (or universally) independent events without
regard to any other conditions such asP(Ai) > 0. Since the

sequenceA1, A2,..., An has (2n - n - 1) subsequences of
two or more events, the mutual independence ofA1, A2,...,

An is equivalent to satisfying (2n - n - 1) equations. One
natural restriction may arise now: we may consider that
equation (3) is true only for each pair of events in the

sequence. This then requires only  equations to be

satisfied. This situation corresponds to aweaker concept
of independence and will be termed aspairwise
independence. Except for the casen = 2, the concepts of
mutual independence and pairwise independence are
distinct. If n ≥ 3 events are mutually independent then
they are for sure pairwise independent, but not vice-versa.
Thus, mutual independence is stronger than pairwise
independence.
Proposition 2. [10] If A1, A2,..., An are mutually
independent events and each ofB1, B2,..., Bm   equals the
intersection ofsome Ak’s, 1 ≤ k ≤ n, and if noAk is used
more than once, thenB1, B2,..., Bm are mutually
independent.❐

B. Logic Independence

Based on Proposition 2 and notion of support of a boolean
function (i.e. the set of variables on which it depends), we
give the following definition:
Definition 3. (Logic Independence)
Two boolean functionsf and g are said to belogically
independent (notationf ⊥ g) iff Sup(f) ∩ Sup(g) = ∅; if
they are not logically independent thenf andg must share
at least one common input variable.❐
Note: It can be seen from the above definition off andg
that logic independence is afunctional notion and does
not use any information about the statistics of the inputs.
If the hypothesis of independent inputs is satisfied, the
two concepts (stochastic and logic independence)
coincide due to Proposition 2.

Let us consider the following simple circuits where the
primary inputsx, y, c and x, y, c1, c2 respectively, are
assumed to be stochastically independent:

Fig.1
In (a) x, y, c are mutually independent; signalsa andb are
not stochastically independent becausep(a b) ≠ p(a) p(b).
Moreover, linesa andb are not logically independent. For
(b), a and b are stochastically independent and because
Sup(a) ∩ Sup(b) = ∅, they are also logically independent.

On the other hand, in (a), if we have an input sequence
such thatp(c) = 1 (i.e.c is constant one), thena andb are
stochastically independent. For (b), ifc1 has the same
behavior asc2, i.e. c1 = c2, andc1 is not constant 1 or 0,
we get thata and b are stochastically dependent even if
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they are logically independent. This is not a contradiction;
it rather shows that logic and stochastic independence are
different concepts if the assumption of input
independence is dropped. Intuitively, neither stochastic,
nor logic independence are sufficient concepts to be used
in real circuits where structural dependencies are
dominant.

C. Conditional Independence

Definition 4. (Conditional Independence)
Let (Ω, Σ, P) be a discrete probability space and letA, B
and C be three events; the eventsA and B are
conditionally independent (notationc.in.) with respect to
C iff P(A B | C) = P(A | C) P(B | C).❐

The above definition may be extended to digital
signals and to any number of signals as follows:
Definition 5.
Given the set ofn signals {x1, x2,..., xn} and an indexi (1
≤ i ≤ n), we say that the subset {x1, x2,..., xi-1, xi+1,..., xn}
is conditionally independent with respect to xi if

.❐

Note: It should be pointed out that if the set {x1, x2,...,xi-1,
xi+1,..., xn}is c.in. with respect toxi, it might not bec.in.
with respect toxi. However, the corresponding set in
which any variable (or subset of variables) is
complemented, is stillc.in. with respect toxi.

For boolean functions, we may state the following:
Proposition 3. Let f and g be two boolean  functions and
f c, g c the cofactors off andg with respect to a common
variablec; if f c ⊥ g c thenf andg arec.in. with respect to
c that is,p(f g | c) = p(f | c) p(g | c).❐

In Fig.1, signalsa, b are c.in. with respect toc. It is
worthwhile to note that, in order to computep(a b c), if a
and b are c.in. with respect toc, we may use only
pairwise signal probabilities as follows:p(a b c) = p(a b |
c) p(c) = p(a | c) p(b | c) p(c) = p(a c) p(b c) / p(c) which
reduces the problem of evaluating the probability of three
correlated signals to that of considering only pairwise
correlated signals.

Consequently, the conditional independence concept can
lead to efficient computations even in very complex
situations. In fact, Proposition 3 gives us asufficient
condition for conditional independence and this is very
useful from a practical point of view, because all events
appearing in digital logic are somehow logically correlated.
However, the general problem, to determine a variablexi
from a set ofn signals {x1, x2,...,xn} such that the remaining
set of (n - 1) signals isc.in. with respect toxi is a difficult
problem (actually it isNP-complete [15]).

One may extend the notion of conditional independence
with respect to a single signal to that with respect to a
subset of signals. The disadvantage is that, even if we find
such a set, we may not express the probability of complex
events in terms of probabilities of pairs of events as in the
case ofc.in. with respect to a single signal. Thus, from a
computational point of view, this does not seem to be
useful.

Since we deal with inputs which are not independent,
information about the logic (structural) independence of
any subsets of signals is not particularly useful as any

p xj
1 j n≤ ≤ j i≠,

∏ xi( ) p xj xi( )
1 j n≤ ≤ j i≠,

∏=

logically uncorrelated signals may becomestochastically
correlated due to input dependencies. In the following,
we will use an approximation ofc.in. which holds for
correlated inputs as well as for uncorrelated ones.
Definition 5. (Isotropy)
Given the set ofn signals {x1,x2,...,xn}, we say that the
c.in. relation isisotropic, if it is true with respect to every
signalxi, i = 1, 2,...,n; more precisely, taking out allxi’s
one at a time, the subset of the remaining (n - 1) signals is
c.in. with respect to the takenxi.❐

Returning to our example in Fig.1 (a), given the set of
signals {a, b, c} we have that {a, b} is c.in. with respect
to c, but the sets {a, c} or { b, c} are notc.in. with respect
to b, or a, respectively; it follows thatc.in. is not isotropic
in this particular case. Intuitively, the concept of isotropy
as defined above, is very restrictive by its nature and it is
hardly conceivable that a set of signals taken randomly
from a target circuit will satisfy Definition 5. Our goal,
however, is not to use this concept as it is, but to make it
practical for our purposes. As we shall see later, the main
advantage of isotropy is that it offers a canonical
approach to the estimation of different kinds of
probabilities in digital circuits.
Definition 6. (Almost Conditional Independence)
Givenn signalsx1, x2,..., xn (n ≥ 3), we say that the subset

 is almost conditionally independent

(notationa.c.in.) with respect toxi (i = 1, 2,...,n) if there
exists anε (0 ≤ ε < 1) such that:

                                                 (4)

❐
In Fig.1, signalsa andb area.c.in. with respect to signalc
with ε = 0 (in fact, they arec.in.); also, there exist0 ≤ ε1,
ε2 < 1 such thata, c area.c.in. with respect tob, andb, c
are a.c.in. with respect toa. In other words, almost
conditional independence is an approximation of
conditional independence within given bounds of relative
error.
Definition 7. (Almost Isotropy)
The property of conditional independence for a set ofn

signals  is calledalmost isotropic (notation

a.is.) if there exists someε (0 ≤ ε < 1) so that it is satisfied
within ε relative error for any signalxi.❐

Differently stated,a.is. is an approximation of isotropy
within given bounds of relative error. In practice, is
appropriate to considera.is. as an approximation of pure
isotropy. Based on the previous definition, we get:

Proposition 4.Given ana.is. set of signals  for

someε, the probability of the composed signal

may be estimated withinε relative error as:

xj{ }
1 j n≤ ≤ j i≠,

p xj xi( )
1 j n≤ ≤ j i≠,

∏
p xj

1 j n≤ ≤ j i≠,
∏ xi( )

-------------------------------------------- 1– ε≤

xj{ }
1 j n≤ ≤

xj{ }
1 j n≤ ≤

p xj
j 1=

n

∏( )



                                           (5)

❐
This proposition provides us a very strong result: given
that n signals area.is. for someε, the probability of their
conjunction may be estimated withinε relative error using
only the probabilities of pairs of signals, thus reducing the
problem complexity from exponential to quadratic.

III. A PROBABILISTIC MODEL FOR SWITCHING ACTIVITY
ANALYSIS

A. Spatiotemporal Correlations

In order to characterize the signals in the probabilistic
domain, we use the model presented in [9]. Two useful
concepts defined in that paper are thesignal probability

 and transition probability  for a given
signal x and i, j = 0, 1. Pairwise correlated signals are
characterized by signal (SC) and transition (TC)
correlation coefficients:

     (6)

wherei, j, k, l = 0, 1 [9].
Starting with this model for capturing the spatiotemporal

correlations, we are able to develop a new, more efficient
technique, based on thealmost conditional independence
hypothesis. Two approaches are used:

- The global approach - for each node, the OBDD is built
as a function of the primary inputs;

- The incremental approach - for each node, the OBDD
is built in terms of its immediate fanin and the transition
probabilities and theTCs are propagated through the circuit.

Whilst the first method is more accurate and time/
memory consuming, the second one provides a sufficient
level of accuracy within reasonable bounds of time and
space complexity.

B. An Incremental Propagation Mechanism Using Almost
Conditional Independence

If the almost conditional independence property is satisfied,
Proposition 4 may be easily extended to boolean functions
represented by OBDDs. Letf be a boolean function ofn
variablesx1, x2,..., xn which may be defined through the
following two sets of OBDD paths:
 - ∏1 - the set of all paths in the ON-set of f
 - ∏0 - the set of all paths in the OFF-set off
Based on this representation, we give the following result:
Proposition 5. Given f a boolean function of variablesx1,
x2,...,xn, then:

a) If the set  (  denotes eitherxi or xi) is

a.is. for someε (0 ≤ ε < 1), then thesignal probability p(f
= i) with i = 0, 1 may be expressed withinε relative error
as:

p xj
j 1=

n

∏( )

p xixj( )
1 i j< n≤ ≤

∏ 
 

2
n
---

p xi( )
i 1=

n

∏ 
 
 

n 2–
n

------------
-----------------------------------------------≈

p x i=( ) p xi j→( )

SCij
xy p x i= y j=∧( )

p x i=( )p y j=( )
----------------------------------------= TCij kl,

xy
p xi k→ yj l→∧( )

p xi k→( )p yj l→( )
----------------------------------------=

xj
∗{ }

1 j n≤ ≤
xj

∗

                   (7)

where ik is the value taken by variablexk in the cubeπ
∈Πi.

b) If the set  isa.is. for someε (0 ≤

ε < 1),    then the transition probability p(fi→j) with i, j =
0, 1 may be expressed withinε relative error as:

           (8)

where ik, jk are the values taken by the variablexk in the
cubesπ ∈Πi andπ’  ∈Πj. ❐
Corollary 1. Given sets of signals as in Proposition 5 and

a boolean functionf of variables , signal and

transition probabilities may be estimated withinε relative
error as:

 and

.❐

This result has also been extended to the calculation of
correlation coefficients (SCs or TCs) between two signals
in the circuit (see [15]). From a practical point of view,
this becomes an important piece in the propagation
mechanism of probabilities and coefficients through the
boolean network.

IV. I SSUES INPERFORMANCEMANAGEMENT

A. Inherently Complex Circuits

In real examples, we may have to estimate power
consumption in huge circuits like ISCAS benchmarks
C6288, C7552, 32-bits multipliers, etc. where global
approaches are totally impractical; in such cases,
incremental approaches based on correlation coefficients
are still applicable, despite the significant amount of CPU
time they need for switching activity analysis [9].
Surprisingly enough, there are some other circuits, much
simpler (in terms of gate count and structure), which raise
a lot of problems in terms of running time; in such cases,
the incremental approaches ‘‘degenerate’’ in global
approaches, that is, they tend to behave almost alike, at
least as far as the running time is concerned.

To begin with, let us consider first ordinary tree circuits

p f i=( )

p xk ik= xl i l=∧( )
1 k l< n≤ ≤
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with k primary inputs consisting of common simple gates
(two inputs ANDs, ORs, XORs, etc.). At each levelj (1 <
j ≤ log2(k)) we need to compute for each gate (4j - 1) / 3

correlation coefficients, which add up to a total ofθ(k2)
calculations for the entire circuit. The running time for
tree circuits is thus about 4-5 times than that of non-tree
circuits with the same number of gates and circuit inputs.
This worst-case computation requirement is not present in
non-tree circuits. In order to reduce the running time, we
found the following result to be useful:
Proposition 6.If Cj is a correlation coefficient (SCor TC)
at level j (given by a topological order from inputs to
outputs of the circuit), then it is related toCj - l (0 < l < j)
by a proportionality relationship expressible as

 wheren represents the average fan-in
value in the circuit.❐
Corollary 2. If  then the signals behave as
uncorrelated.❐

In other words, we do not have to compute the
coefficients which are beyond some levell in the circuit;
instead, we may assume them equal to 1 without
decreasing the level of accuracy. Also,the larger the
average fanin n of the circuit, the smaller the value of l. It
is worthwhile to note that thec.in., more specifically, the
a.is., is essential for this conclusion. The approach based
on spatiotemporal correlationsonly, does not provide
sufficient conditions for this conclusion.

This is actually a very important heuristic to use in
practice and its impact on running time is huge; limiting
the number of calculations for each node in the boolean
network to a fixed amount (which depends on the value
set as threshold forl) reduces the problem of coefficients
estimationfrom quadratic to linear complexity.

B. Highly Correlated Signals

Accurate estimation of the switching activity is
particularly important in low-power design scenarios
when we are interested primarily inpoint-by-point
comparisons among different nodes in the boolean
network rather than the total power consumption in the
circuit; this need precludes the classical approaches
(which do not account for correlations) to have any
success in real applications and made us aware of the
importance of high signal correlations. The degree in
which the signals are correlated is reflected in the actual
values of correlation coefficients; for instance, given

,  and , then we may
say that the pairs (x, y), (z, t) and (u, v) are uncorrelated,
slightly correlated and highly correlated, respectively.

Highly correlated signals may arise everywhere in the
circuits, even starting at the primary inputs.
Consequently, we need a really good mechanism to
control the error level throughout the circuit; to confirm
that our approach indeed keeps the error small, let us
consider the benchmarkf51m and the following two
scenarios:

a) Low Correlations: the input patterns are generated by
a Linear Feedback Shift Register (LFSR) [13] which
implements the primitive polynomial:p(x) = 1 ⊕ x ⊕ x2

Cj Cj l–( )
2

n 1+
------------ 

  l

∝

l ∞→

TCij kl,
xy

1= TCij kl,
zt

4= TCij kl,
uv

256=

⊕ x7 ⊕ x8;
b) High Correlations: the input patterns are generated

using the state lines of an up-down 8-bit counter.
In order to do a fair comparison between the existing

estimation techniques (including the ones which use
global OBDDs) and our technique, we had to choose a
small sized circuit such asf51m. We were interested to
asses the impact of the correlation level on switching
activity estimation in different working hypotheses. In
these experiments, two cases were considered: the
pseudorandom one in Scenario a and the limit case of non-
randomness in Scenario b (when the input stream is
totally deterministic). The estimated values in both cases
were compared against the exact values of switching
activity obtained by exhaustive simulation; all internal
nodes and primary outputs have been taken into
consideration. (Fig.2)

Fig.2
In Scenario a, all approaches are quite accurate.

However, we point out that considering spatiotemporal
correlations and conditional independence gives the
highest accuracy (100% of the nodes estimated with error
less than0.1). However, in Scenario b, the level of
correlation strongly impacts the quality of estimation.
Specifically, it makes completely inaccurate the global
approach based on input independence (despite the fact
that internal dependencies due to reconvergent fan-out are
accounted for); as expected, less than20% of the nodes
are estimated with precision higher than0.1. On the other
hand, even if temporal correlations are taken into account,
but the inputs are assumed to be spatially uncorrelated,
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only 80% of the nodes are estimated with error less than
0.1. Accounting for spatiotemporal correlations provides
excellent results for highly correlated inputs (100% of the
nodes estimated with precision0.1), but   the mean error
in the hypothesis of conditional independence is anyway
smaller (90% of the nodes are estimated with error less
than 0.05). This results clearly demonstrate that power
estimation is astrongly pattern dependent problem,
therefore accounting for dependencies (at the primary
inputs and internally, among the different signal lines) is
mandatory if accuracy is important; from this perspective,
accounting for spatiotemporal correlations in the
conditional independence hypothesis seems to be the best
candidate to date.

V. EXPERIMENTAL RESULTS

All experiments were performed in the SIS environment
on a Sun Sparc II workstation with 64 Mbytes of
memory; the working procedure is shown below:

Fig.3
To generate highly correlated inputs, we used different
strategies: modified LFSR generators, generating
PseudoRandom (PR) vectors at the inputs of some circuit
A and then cascading A with the target circuit B, using
the state bit lines of different types of counters, built-in
random functions in the C language. In short, we were
mainly interested to obtain as many correlations as
possible among primary inputs. For large circuits, we
tried to keep time/space requirements of the simulation at
a reasonable level and used up to 220 input vectors during
the actual logic simulation.

We performed two types of experiments: one to assess
the impact of proposed heuristic for speeding up the
computation and another one to validate our model based
on conditional independence. Switching activity values
and power consumption were estimated ateach internal
node and primary output and compared with the ones
obtained by actual logic simulations. We found that
power estimation for the entire circuit is not a real
measure to use in low-power design and power
optimization where the switching activity ateach node
has to be accurately estimated with high degree of
confidence.

A. Experiments Concerning Run Time Improvement

The heuristic proposed in Corollary 2 is important in

   circuit description      input vector
     generation

logic simulation
 tool

      preprocessing
      unit

  data compilation
 unit

   power estimation
  engine

comparison
unit

practice, not only for substantially reducing the running
time, but also for keeping the same level of accuracy as
the case when the threshold limit is set to infinity. In the
following, we present a detailed analysis for the
benchmarkduke2 which exhibits a typical behavior; in
the first case the limit was set to infinity, in the second
one the limit was 4. To report error, we used standard
measures for accuracy: maximum error (MAX), mean
error (MEAN), root-mean square (RMS) and standard
deviation (STD); we excluded deliberately the relative
error from this picture, due to its misleading prognostic
for small values.

As we can see, the quality of estimation is practically the
same in both cases whilst the running time was
significantly reduced in the second approach. It should be
pointed out, that this limitation works fine also for
partitioned circuits which is an essential feature in
hierarchical analysis. Running extensively our estimation
tool on circuits of various sizes and types (ISCAS
benchmarks, adders, multipliers), we observed the
following general tendency for speed-up:

Fig.4
We can see that, whilst the speed-up is about 3÷ 5 times
for moderate size circuits, it may become 20÷ 30 times
for large examples; we estimated the power consumption
for multipliers on 16 bits (2048 gates) and 32 bits (9124
gates) and the running times were320.11 sec. and
1052.85 sec.,respectively. Consequently, we claim an
average time of150 sec. necessary to process about1K
gates if the threshold limit is set to 4; the time value is90
sec. if the limit is 3.

B. Experiments to Validate the Conditional Independence
Hypothesis

The experiments were performed on large ISCAS
examples using PR and highly correlated inputs (obtained
from counted sequences of length 220); all results reported

TABLE 1: DUKE2 - SPEED-UP VS.ACCURACY

LOW CORRELATIONS HIGH CORRELATIONS

Error NO LIMIT LIMIT=4 NO LIMIT LIMIT=4

MAX 0.0744 0.0710 0.0299 0.0299
MEAN 0.0133 0.0161 0.0056 0.0055
RMS 0.0223 0.0269 0.0085 0.0083
STD 0.0182 0.0219 0.0065 0.0063

TIME 760.2 s 162.7 s 777.7 s 168.8 s
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here, have been derived using the value 4 as the limit for
coefficients calculations. To report the error, all
estimations were verified against exhaustive simulation
performed with SIS logic simulator. To calculate dynamic
power consumption at any nodex, we have used the well-
known formula:P = 0.5 (Vdd

2/Tcycle) Cload sw(x) where
Vdd is the supply voltage,Tcycle is the clock cycle period,
Cload is the load capacitance andx is the output of the
target gate.Cload has been estimated as a function of the
fanout of the gate. Total power consumption is reported in
uW @ 20 MHz and running time in seconds.

It should be stressed that, not only the switching activities
at each internal node were completely different as the
level of inputs correlation changes, but also the values of
total power consumption. For example, forC3540, the
total power estimated under low correlated inputs was
16356.82 uW, while this value for strongly correlated
inputs was166.25 uW (there is a factor of98 between the
two). The same behavior has been observed for other
circuits. To conclude, input pattern dependence (in
particular highly correlated inputs) is an extremely
important issue in power estimation, despite other claims
which advocate independency and randomness on the
primary inputs (or worse, throughout the circuit). From
this perspective, power analysis needs analytical models
to overcome this difficulty. The model we proposed here,
based on conditional independence hypothesis while
accounting for spatiotemporal correlations, is an efficient
and robust analytical solution to this problem.

VI. CONCLUSIONS

We have proposed an efficient approach for power
estimation in large combinational blocks fed by input
streams which exhibit high levels of correlation. The
work reported here addresses the relationship between
logic and probabilistic domains and gives a sufficient
condition for analyzing complex dependencies. From this
perspective, the new concepts ofconditional
independence and isotropy of signals are used in a
uniform manner to fulfill practical requirements for fast

TABLE 2: LOW CORRELATIONS ON INPUTS

Circuit MAX MEAN RMS STD Power Time
C432 0.1916 0.0281 0.0465 0.0374 3372.57 104.22
C499 0.0624 0.0134 0.0184 0.0126 7645.56 100.56
C880 0.0691 0.0135 0.0211 0.0164 6391.83 95.02
C1355 0.0225 0.0041 0.0051 0.0030 6797.92 48.44
C1908 0.1315 0.0091 0.0206 0.0185 7435.34 65.11
C3540 0.2010 0.0307 0.0509 0.0407 16356.82 435.14
C6288 0.0890 0.0142 0.0241 0.0196 46846.48 211.42
duke2 0.0710 0.0161 0.0269 0.0219 3611.67 162.7

TABLE 3: HIGH CORRELATIONS ON INPUTS

Circuit MAX MEAN RMS STD Power Time
C432 0.2538 0.0225 0.0585 0.0545 306.88 94.99
C499 0.1566 0.0421 0.0760 0.0634 2283.03 107.95
C880 0.0175 0.0013 0.0040 0.0038 263.13 100.09
C1355 0.1930 0.0227 0.0520 0.0469 1865.81 45.11
C1908 0.3907 0.0294 0.0868 0.0820 3156.83 78.54
C3540 0.0279 0.0279 0.0030 0.0030 166.25 444.97
C6288 0.1773 0.0231 0.0521 0.0471 8843.72 201.8
duke2 0.0299 0.0055 0.0083 0.0063 820.87 168.8

and accurate estimation. Under general assumptions, the
conditional independence problem has been shown to be
NP-complete; consequently, efficient heuristics have been
provided for probabilities and coefficients calculation. A
comparative analysis with the existing techniques and
evaluations on benchmarks emphasize the effectiveness
and universality of our approach.
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