
New Ideas for Solving Covering Problems

Olivier Coudert Jean Christophe Madre

Synopsys, 700 East Middle�eld Rd.

Mountain View, CA 94040

Abstract

Covering problems occur at several steps during logic syn-
thesis including two-level minimization and DAG cover-
ing. This paper presents a better lower bound compu-
tation algorithm and two new pruning techniques that
signi�cantly improve the e�ciency of covering problem
solvers. We show that these techniques reduce by up to
three orders of magnitude the time required to solve cov-
ering problems exactly.

1 Introduction

The (unate or binate) covering problem is a well known
intractable problem. It has several important applica-
tions in logic synthesis, such as two-level logic minimiza-
tion, two-level Boolean relation minimization, three-level
NAND implementation, state minimization, exact encod-
ing, and DAG covering [1, 3, 2, 10, 7, 12, 15, 14, 8].

Although from the practical point of view people are
more interested in low cost heuristic algorithms that pro-
duce approximate solutions, solving covering problems ex-
actly is the only way to evaluate the performance of these
heuristic algorithms. Moreover, improving exact solvers
can bring out new e�ective heuristics algorithms: bound-
ing the number of operations that an exact algorithm is
allowed to perform is the simplest way to get a heuristic
algorithm.

In practice one encounters covering problems whose
covering matrices are small but that cannot be solved
because the search space is too large. The only way of
reducing the search space is to prevent the solver from

exploring unsuccessful branches. This relies on two as-
pects: lower bound computation and pruning techniques.

This paper proposes new techniques that improve sig-
ni�cantly the performance of covering problem solvers.
The �rst one deals with computing a lower bound of the
minimal solution of a covering problem. The lower bound
computation algorithm which results is more costly than
others that have been proposed, but it provides better
lower bounds on di�cult covering problems. The sec-
ond improvement consists of two new pruning techniques.
They are the most important from the practical point of
view: �rst, they can be incorporated in any branch-and-
bound based covering problem solver; second, they guar-
antee a low overhead in the worst case and can yield an
exponential reduction of the search space.

This paper is organized as follows. Section 2 reviews
concepts related to covering problems. Section 3 presents
the skeleton of a branch-and-bound solver. Section 4 ad-
dresses the lower bound computation and proposes a bet-
ter lower bound computation heuristics. Section 5 intro-
duces two pruning techniques. Section 6 presents experi-
mental evidences that demonstrate the e�ectiveness of the
pruning techniques and the robustness of the lower bound
computation on di�cult covering problems.

2 Covering Problem

This section reviews the unate and binate covering prob-
lems. It also reviews concepts that will be used in the se-
quel. For the sake of simplicity, the resolution techniques
discussed later will be focused on set covering problems,
i.e., unate covering problems. These techniques extend to
binate covering problems as well, and this section outlines
how it can be done through a simple transformation.

2.1 Set Covering Problem

Let X be a set, and Y � 2X . An element y of Y covers
an element x of X i� x 2 y. A subset Y 0 of Y covers
a subset X0 of X i� X0 �

S
y2Y 0 y. Let Cost be a cost

1

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

http://crossmark.crossref.org/dialog/?doi=10.1145%2F217474.217603&domain=pdf&date_stamp=1995-01-01

y1 y2 y3 y4 y5
x1 1 1 1
x2 1 1
x3 1
x4 1 1
x5 1 1
x6 1 1

Figure 1. A covering matrix.

function de�ned on Y , i.e., a function from Y into the
set of positive real numbers. For any subset Y 0 of Y , we
de�ne Cost(Y 0) as

P
y2Y 0 Cost(y).

De�nition 1 (Set covering problem) The set cover-
ing problem hX;Y;Costi consists of �nding a minimal cost
subset of Y that covers X.

The covering matrix associated with the set covering prob-
lem hX;Y;Costi has rows labeled with elements of X and
columns labeled with elements of Y , such that the element
[x; y] of the matrix is equal to 1 i� y covers x. Assum-
ing the same non zero cost for all columns, the minimal
solutions of the covering matrix shown in Figure 1 are
fy2; y3; y4g and fy3; y4; y5g.

A covering matrix can be simpli�ed using essential-
ity [10], dominance [9], partitioning, and Gimpel's reduc-
tion [4, 13]. We only remind here the notion of essentiality
and dominance. The reader is referred to [1, 15, 3] for a
complete review of reduction techniques.

A column y is essential if it is the only one that cov-
ers some x. An essential column obviously must belong
to the minimal solution, so it can be removed from the
covering matrix as well as all the rows it covers. A row
x is dominated if there is another row x0 6= x such that
covering x0 necessarily results in covering x. A column y

is dominated if it covers a subset of the rows covered by
some y0 6= y, and Cost(y0) � Cost(y). Dominated rows
and columns can be removed from the covering matrix
to produce a smaller matrix whose minimal solutions are
minimal solutions of the original problem. Iterating this
row and column removal produces a �xpoint, called the
cyclic core of the covering matrix [11].

2.2 Binate Covering Problem

Let f be a Boolean function from f0; 1gn into f0; 1g. We
note v = (v1; : : : ; vn) a n-tuple of f0; 1gn. Let Costk be a
positive cost associated with the positive literal xk. The
cost of a n-tuple v is

P
n

k=1 vk:Costk.

x1 x2 x3 x4
x1 + x3 + x4 1 2 1 1
x1 + x2 + x4 0 1 2 0
x2 + x3 + x4 2 1 0 1
x2 + x3 + x4 2 0 1 0

Figure 2. A binate covering matrix.

x1 x1 x2 x2 x3 x3 x4 x4 d

x1 + x3 + x4 1 1 1 1
x1 + x2 + x4 1 1 1 1
x2 + x3 + x4 1 1 1 1
x2 + x3 + x4 1 1 1 1

r1 1 1
r2 1 1
r3 1 1
r4 1 1

Figure 3. A modi�ed binate covering matrix.

De�nition 2 (Binate covering problem) The binate
covering problem (also called minimum cost assignment
problem) consists of �nding a minimal cost n-tuple that
values f to 1.

A binate covering problem can be described with a cov-
ering matrix. Let

Q
m

i=1 si be a product-of-sums represen-
tation of f(x1; : : : ; xn). The covering matrix M of the
binate covering problem is a matrix made of m rows la-
beled with the sums si, and of n columns labeled with the
variables xj. An element M [i; j] of the matrix is equal to
1 if (xj) si), to 0 if (xj) si), and to 2 otherwise. A
n-tuple v 2 f0; 1gn covers a row si i� it exists a j such
that M [i; j] = vj . The binate covering problem consists
in �nding a minimal cost n-tuple that covers all the rows
of the matrix.

A product-of-sums representation of the function
f(x1; x2; x3; x4) = x2x3 + (x1 � x4) is for example:

(x1 + x3 + x4)(x1 + x2 + x4)(x2 + x3 + x4)(x2 + x3 + x4)

The covering matrix built from this product-of-sums is
shown in Figure 2. Assuming the same non zero weight
for positive literals, the minimal cost true assignments of f
are the 4-tuples (1; 0; 0; 0) and (0; 0; 0; 1). The binate cov-
ering problem reduction and resolution techniques gen-
eralize the ones outlined in Section 2.1. The reader is
referred to [2, 5, 6] for more details.

We now show how a binate covering problem can be
mapped on a modi�ed covering matrix with additional
entries. We associate with each column xj of the matrix

2

a pair of columns labeled with xj and xj. A dummy
row rj only covered by the couple of columns (xj;xj) is
added for 1 � j � n. A dummy null cost column d

is added, covering only the �rst m rows of the original
matrix. For example, applying this tranformation on the
matrix shown in Figure 2 produces the matrix shown in
Figure 3.

Now let us consider a set covering resolution algorithm
whose column dominance is modi�ed in the following way.
The dummy column d must never be removed or selected,
and it can dominate (in the sense de�ned in Section 2.1)
any di�erent single column. One can remove a single col-
umn c if it is dominated by the other column of the pair
that c belongs to. A pair of columns (xj;xj) dominates a
pair of columns (xk;xk) i� xj covers all non dummy rows
covered by xk, xk covers all non dummy rows covered by
xj , and Costj � Costk. A dominated pair of columns
(xk;xk) is removed from the matrix as well as the rows
covered by xk.

Note that if column xj (respectively xj) is selected for
branching or because it is essential, then column xj (re-
spectively xj) becomes dominated by the dummy column
d, an so is removed from the matrix. This guarantees that
one cannot have both xj and xj in the solution.

A minimal cost solution of the binate covering problem
can be built from the minimal cost solution S which is
produced by the modi�ed algorithm using the following
transformation: if xj 2 S, then xj = 1, otherwise xj = 0.

Although rewriting a binate covering problem into such
a modi�ed covering matrix is not the most e�cient way
to solve it, it shows that we can restrict ourselves to a
unate covering matrix modulo some transformations of
the resolution algorithm.

3 Solving Set Covering Problems

When solving a covering problem, it is �rst simpli�ed us-
ing the reductions mentionned in Section 2.1. This even-
tually yields a covering matrix that cannot be further re-
duced. If it is empty, a minimal solution is built with
the essential columns found during the reduction, and by
recompositions if some Gimpel's reductions have been ap-
plied [4, 13].

If the reduced covering matrix C = hX;Y;Costi is
not empty, a branch-and-bound resolution must be per-
formed. This consists of selecting a column y and gener-
ating two new set covering problems. The �rst one, which
considers that y belongs to the minimal solution, is Cl =
hX � y; Y � fyg;Costi. The second one, which excludes
y from the minimal solution, is Cr = hX;Y � fyg;Costi.
The two problems Cl and Cr are then recursively solved

1: X0 �;
2: while X 6= � do f

3: x0 an element of X;
4: X X � � (x0);
5: X0 X0 [fx0g;
6: g

7: return X0;

Figure 4. Greedy lower bound computation.

which produces the minimal solution of C.

Heuristics to properly choose a branching column are
discussed in [15, 1]. De�ning for a row x

Weight (x) = min
y2Y
y3x

Cost(y);

we choose

y = argmax
y2Y

1

Cost(y)

X

x2y

Weight(x)

jfy 2 Y j y 3 xgj
: (1)

The more rows y covers and the less costly y is compared
to the weights of the rows y covers, the more likely y is to
be selected.

Since the search space is in O(2jY j), it is very impor-
tant to have pruning techniques that prevent the solver
from exploring unsuccessful branches. Let C be a set cov-
ering problem yielded at some point of the binary search
tree. We note C:min the cost of its minimal solution,
and C:path the cost of the path that yields C, i.e., the
sum of the costs of all y's that constitute the solution
being built. We note C:upper the global upper bound,
i.e., the cost of the best global solution found so far.
Let C:lower be a lower bound of C:min. As soon as
C:path + C:lower � C:upper, the branch C belongs to
can be pruned.

4 Better Lower Bounds

It is critical to provide an accurate lower bound to ter-
minate useless searches as early as possible. This section
discusses new techniques to compute better lower bound
in a reasonable amount of time.

For a covering matrix C = hX;Y;Costi, let � (x) be
X \
S
y3x y. Let X

0 be an independent set of X w.r.t � ,
i.e., a subset of X such that any two di�erent rows x01 and
x02 of X

0 satis�es x01 62 � (x02) and x02 62 � (x01). To cover X
we must at least cover X0, so a lower bound of C:min is
the minimum cost needed to cover X0, i.e.,

X

x02X0

Weight(x0):

3

The problem is that �nding an independent subset X0

that maximizes this lower bound is NP-hard. This is why
the computation of X0 is done in a greedy way, as shown
in Figure 4. The quality of the lower bound obtained
with such a greedy algorithm depends on the heuristics
that selects the row x0 to be put in the independent set
X0.

4.1 Better Heuristic Selection

Once a row x0 has been selected, j� (x0)j rows are removed
from X. The greater j� (x0)j is, the smaller X becomes,
the less candidates remain to build a large independent
set. This is why it has been proposed to choose the row
x0 that minimizes j� (x0)j [14, 15, 1]. As explained below,
it works even better if we break ties by selecting the row
x0 maximizing

P
x2�(x0) j� (x)j.

Removing � (x0) from X decreases the size of � (x00) for
all x00 such that � (x00)\� (x0) 6= �, which can contribute to
a larger independent set. Thus a better selection heuristic
must take into account the quantity j� (x)j for x 2 � (x0):
the greater it is, the less likely x belongs to a large inde-
pendent set, and the more rows x00 will have this quantity
decreased. This explains why the tie breaker introduced
above is e�ective. Also, we must take into account the
weight of x0: the greater, the better. To capture these
di�erent e�ects, we select

x0 = arg min
x02X

1

Weight (x0)

X

x2�(x0)

x6=x0

Weight(x)

j� (x)j
: (2)

This heuristic is much more costly than the one mentioned
above, but experimental results show that it is a good
balance between the computational cost and the quality
of the lower bound that results.

4.2 Covering Matrix Reduction

Line 4 of Figure 4 removes � (x0) from X. This is equiva-
lent to removing from the covering matrix all the columns
y's covering x0, as well as the rows these columns y's cover.
After this operation, new dominated columns may have
been created, and we can consequently simplify the cover-
ing matrix, as it is done for a cyclic core computation (see
Section 2.1). During this reduction, all essential rows are
put in the independent set and the terms j� (x)j are up-
dated for all remaining x's, which contributes to a better
selection.

This reduction has a large overhead compared with the
cost of selecting a row x0, but it eliminates rows that can-
not produce a larger lower bound.

5 Two New Pruning Techniques

The \standard" pruning technique consists in aborting
a recursion as soon as one �nds a lower bound that is
greater or equal to the cost of the best solution found so
far. This section presents two new pruning techniques.
They can be easily incorporated in any covering problem
solvers, and reduce dramatically the number of reductions
and consequently the time consumption.

5.1 Pruning with Cl's Lower Bound

Theorem 1 Let C be a set covering problem. If C:path+
Cl:lower � C:upper, then both Cl and Cr can be pruned,
and a strictly better lower bound for C is Cl:lower.

If the lower bound of Cl satis�es the given condition, we
do not even need to examine Cr

1. In practice, pruning Cr

thanks to Cl's lower bound does not occur very often, but
su�ciently enough to reduce the number of recursions of
about 5% on some examples. It happens when the selec-
tion heuristic fails to select a good branching column y.
In the worst case, the only cost of this pruning technique
is an arithmetic test at each branching.

5.2 The Limit Lower Bound

This section introduces the most important result. It al-
lows us to reduce very large search spaces by several orders
of magnitude.

Theorem 2 (Limit Lower Bound)

Let C = hX;Y;Costi be a set covering problem and X 0

be an independent set of X w.r.t. � . Let C:lower =P
x02X0 Weight (x0) be the lower bound of C obtained

thanks to X0. Let

Y 0 = fy 2 Y j y \X0 = �;

C:path+ C:lower+ Cost(y) � C:upperg:

Then C can be reduced to hX;Y � Y 0;Costi.

An interesting feature is that when the limit lower bound
applies, reducing hX;Y;Costi to hX;Y � Y 0;Costi makes
in practice the recursion terminate immediately, i.e., the
lower bound of hX;Y � Y 0;Costi nearly always exceeds
the global upper bound, or a better solution is imme-
diately found in hX;Y � Y 0;Costi. Note that testing
whether the limit lower bound applies has complexity

1The same result holds for binate covering problems, providing
that the branching column y is unate. Checking this condition is no

longer necessary if we use the modi�ed resolution algorithm on the
modi�ed covering matrix presented in Section 2.2

4

O(jX0j(jY j � jX0j)), which is not costly compared to the
gain it can produce. The limit lower bound technique can
only improve covering problem solvers.

One could object that under the condition given in The-
orem 2, the problems Cl and Cr that are generated fromC

would be pruned in the \usual" way, i.e., by using a lower
bound computation on Cl and Cr. It is not true: one
would have to perform several branchings before increas-
ing the lower bound and being able to prune the recursion.
Moreover, one could have to select all possible columns,
which yields to a O(2jY j) unsuccessful search space. Thus
from the theoretically point of view, the gain produced by
the limit lower bound is exponential. Evaluating the av-
erage gain is an open problem. Experimental results show
that the limit lower bound can reduce the search space by
three order of magnitudes, thus dramatically reducing the
computational time.

6 Experimental Results

This section demonstrates the e�ectiveness of the ideas
presented above. We study the resolution of di�cult cov-
ering problems with ESPRESSO-EXACT [15] and four set
covering solvers. These four solvers branch on the column
satisfying equation (1) and break ties by picking randomly
a column among the best candidates. They are identical
but for the way they compute a lower bound and exploit
pruning. The di�erences are described by Table 1. Solver
S1 is the closest to ESPRESSO-EXACT, but the branching
column and independent set selection heuristics are di�er-
ent, plus the implementation use more recent techniques
to manipulate the covering matrix.

Table 2 presents the experimental results obtained on
examples that have been selected for their large search
space. These examples consists in computing the mini-
mal cost sum-of-products of some multi-output Boolean
functions of the MCNC benchmark [16]. The cost func-
tion is the number of products, or some more complex
cost function depending on some literals (in this case the
name of the problem is post�xed with L or I).

ComparingS1 and S2 shows clearly the immediate gain
produced by the new pruning techniques presented in this
paper. Both the size of the search space and the CPU time
are de�nitely in their favor.

The gain produced by the lower bound computation
algorithm we proposed is intuitively less immediate, be-
cause it introduces a large overhead. The performances
of SCHERZO show that reducing the matrix during the
independent set computation often provides better lower
bounds. The lower bound computed by this method can
be up to 10% better compared to the one achieved by

Lower bound Pruning

Select Red. Cl's LB LLB

S1 argminx02X j�(x0)j
S2 same

p p

S3 equation (2)
p p

Scherzo same
p p p

Select : Heuristic selection (Section 4.1).
Red. : Reduction (Section 4.2).

Cl's LB: Pruning Cr with Cl:lower (Section 5.1).

LLB : Limit lower bound (Section 5.2).

Table 1. The di�erent solvers.

S1 and S2. This comes down to shortening the depth
of search by a similar ratio, which can reduce exponen-
tialy the search space. Note that because of its greater
lower bound computational cost, SCHERZO is sometimes
slower than S2, though the former's search space is always
smaller than the latter's one. But SCHERZO is de�nitely
the most robust solver. It is better than, or comparable
to the other solvers, and it is the only one that succeed in
solving problems prom2 , ex5 , and max1024 2.

7 Conclusion

Improving the e�ciency of covering problem solvers has
an immediate impact on logic synthesis tools. This pa-
per proposed a new lower bound computation algorithm,
and two pruning techniques. The lower bound computa-
tion algorithmhas a large overhead compared to the usual
heuristics, but it provides very good lower bound on dif-
�cult covering problems. The pruning techniques can be
straightforwardly incorporated in any covering problem
solver and can produce an exponential reduction of the
search space. Experimental results demonstrate that the
combination of these ideas yields an e�cient and robust
covering problem solver, which is up to three order of mag-
nitudes faster than the state-of-the-art ESPRESSO-EXACT.

8 Acknowledgments

The author would like to thank Richard Rudell who con-
�rmed with his own experimentations the e�ectiveness of
the limit lower bound and who provided the experimental
results for the covering solver of ESPRESSO-EXACT.

2We also improved the best known solution of some otherMCNC

benchmarks: bench1 (122, previously 125), test4 (100, previously
104), and test3 (477, previously 491).

5

Name row�col sol Espresso S1 S2 S3 Scherzo

node CPU node CPU node CPU node CPU node CPU

mlp4 303� 313 121 3601 46:6 116 1:3 60 0:9 20 0:6 20 0:8

pdc 6550� 18923 96 814 171:6 202 15:9 86 13:9 54 21:6 38 19:1

lin:rom 545� 578 128 13431 1456:7 1348 46:1 382 16:3 152 12:5 24 4:0
m4L 392� 621 101 300728 1554:6 35708 93:0 6282 28:3 4412 28:2 3958 37:0

addm4L 616� 997 189 181092 2704:6 17596 150:1 1904 25:8 1260 25:0 1218 45:6

m2I 150� 222 47 1190636 2870:0 137773 240:3 34208 94:3 27290 106:4 33232 187:6
f outL 152� 427 40 873837 3665:6 148676 253:1 17740 53:1 17160 70:2 13828 89:4

mp2dL 458� 398 30 12845 4216:3 8382 296:3 696 54:1 374 59:7 362 64:3

expsI 258� 484 132 703460 4511:1 167576 1105:3 39771 343:0 26290 379:8 25112 737:3
test1 349� 2075 110 738165 5078:3 34665 274:2 4655 58:4 500 10:7 316 13:9

mlp4L 418� 587 121 3774328 61490:9 101836 625:2 11384 111:1 984 16:8 1016 27:2

max512L 419� 514 133 9832465 83998:7 195469 1273:8 40052 405:1 18700 282:0 13086 258:8
ocex2 575� 681 216 na na 63797 1241:3 19906 491:5 4938 223:4 2212 136:7

ocex1 328� 567 74 � � 1869219 28788:5 120305 2696:2 13123 409:0 6681 431:5

max1024 917� 904 259 � � � � � � � � 173318 29453:0
ex5 687� 974 65 � � � � � � � � 105862 34282:5

prom2 1988� 2617 287 � � � � � � � � 26496 36350:3

row � col: size of the covering matrix the solver starts with.

sol : #columns of the minimal cost solution.
node : #nodes explored in the search tree.

CPU : CPU time in seconds on a 60 MHz SuperSparc (85.4 SpecInt).

� : solver stopped after 4 days of CPU.

Table 2. Comparison of set covering solvers.

References

[1] R. K. Brayton, G. D. Hachtel, C. T. McMullen,
A. L. Sangiovanni-Vincentelli, Logic Minimization
Algorithms for VLSI Synthesis, Kluwer Academic
Publishers, 1984.

[2] R. K. Brayton, F. Somenzi, \An Exact Minimizer for
Boolean Relation", in Proc. of ICCAD'89, pp. 1062{
1081, November 1989

[3] O. Coudert, \Two-Level Logic Minimization: An
Overview", Integration, 17-2, pp. 97{140, Oct. 1994.

[4] J. F. Gimpel, \A Reduction Technique for Prime Im-
plicant Tables", in IEEE Trans. on Elec. Comp., 14,
pp. 535{541, June 1965.

[5] A. Grasselli, F. Luccio, \A Method for Minimizing
the Number of Internal States in Incompletely Se-
quential Networks", in IEEE Trans. on Elec. Comp.,
14, pp. 350{359, June 1965.

[6] R. W. House, D. W. Stevens, \A New Rule for Re-
ducing CC Tables", in IEEE Trans. on Comp., 19,
pp. 1108{1111, November 1970.

[7] Z. Kohavi, Switching and Finite Automata Theory,
McGraw Hill, 1978.

[8] K. Keutzer, \DAGON: Technology Binding and Lo-
cal Optimization", in Proc. of DAC'87, pp. 341{347,
June 1987.

[9] E. L. Jr. McCluskey, \Minimization of Boolean Func-
tions", in Bell Sys. Tech. Jour., 35, pp. 1417{1444,
April 1959.

[10] W. V. O. Quine, \A Way to Simplify Truth Func-
tions", inAm. Math. Monthly, 62, pp. 627{631, 1955.

[11] W. V. O. Quine, \On Cores and Prime Implicants
of Truth Functions", in Am. Math. Monthly, 66,
pp. 755{760, 1959.

[12] J. Rho, G. Hachtel, F. Somenzi, R. Jacoby, \Exact
and Heuristics Minimization of Incompletely Speci-
�ed Finite State Machines", in Proc. of EDAC'90,
Febrary 1990.

[13] S. Robinson, R. House, \Gimpel's Reduction Tech-
nique Extended to the Covering Problem With
Costs", in IEEE Trans. on Elec. Comp., 16, pp. 509{
514, August 1967.

[14] R. L. Rudell, A. L. Sangiovanni-Vincentelli, \Multi-
ple Valued Minimization for PLA Optimization", in
IEEE Trans. on CAD, 6-5, pp. 727{750, Sep. 1987.

[15] R. L. Rudell, Logic Synthesis for VLSI Design, PhD
thesis, UCB/ERL M89/49, 1989.

[16] S. Yang, Logic Synthesis and Optimization Bench-
marks User Guide, Microelectronics Center of North
Carolina, January 1991.

6

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

