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Abstract: Some important trends in geometric model-

ing are the reliance on solid models rather than surface-
ba.swd models and the enhancement of the expressive
power of models, by using free-form objects in addition
to the usual geometric primitives and by incorporating
physical principles. An additional trend is the emphasis
on interactive performance.

In this paper we integrate all of these requirements in
a single geometric primitive by endowing the tri-variate

tensor product free-form solid with several important
physical properties, including volume and internal de-
format ion energy, l~olurne preservation is of benefit in
several application areas of geometric modeling, includ-

ing computer animation, industrial design and mechani-
cal rngiueeri ug. However, previous physics-based meth-
ods, which usually have used some forms of ‘energy’,
have neglected the issue of volume (or area) preserva-

tion,

We present a novel method for modeling an object
composed of several tensor-product solids while pre-
serving the desired volume of each primitive and ensur-
ing high-order continuity constraints between the prim-
itives. The nlethod utilizes the Uzawa algorithm for
non-linear optimization, with objective functions based
011deformation energy or least squares.

We show how the algorithm can be used in an inter-
active environment by relaxing exactness requirements
while the user interactively manipulates free-form solid

primitives On current, workstations, the algorithm runs
ill real-time for tri-quadratic volumes and close to real-
tinle for tri-cubic volumes.
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1 Introduction

Modern geometric modeling emphasizes solid n]odels
rather than surface-based models, usage of free-form
objects in addition to the usual geometric primitives,
incorporation of physical principles, and ir]teractive per-
formance. In this paper we integrate these four issues
in a single setting by endowing tbe tri-variat(’ tensor
product B6zier free-form solid with physical properties.

1.1 Background

The common approach to representing and manipulat-
ing free-form objects is by using a boundary represen-
tation (Brep), with parametric surfaces for the bound-
ary. Adjacencies between neighboring surface patches

are stored explicitly. Using a Brep, it is inherently dif-
ficult to model physical attributes associated with the
object. Such attributes are easier to cotlsider when us-

ing parametric free-form sohds instead of surfaces. ‘rhe
difference between the two is the dimension of the pa-
rameter space (two for surfaces and three for solids. )

Some previous systems have used free-form solids (e.g.
[Farouki85].) However, parametric volumes are usually
not used in the way that surfaces are used, for direct
object design, but rather for design of separate defor-
mation entities used for modification of existing objects.
This can be explained by the fact that if only the bound-

ary of the object is of interest, there is no nped to use
free-form solids, which enable control ovrr what hap-
pens ‘inside’ the object.

Free-form deformations (FFD) were introduced in
[Sederberg86] as a technique for defining a smooth de-
formation on a space including the objects embedded
within that space, regardless of their geometric rep-

resentation. FFD utilizes a tri-variate tensor-product

parametric B6zier solid defined by a lattice of control
points. The defining parameter space is the unit CUIX’
To deform an object point, its local coordinates in-
side the unit cube are computed. Then the image of
the point under the deformation is computed using the
B6zier control points and basis functions. Naturally,
other basis functions (such as NIIRBS) could be tlsd
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as well [Griessmair89].

Seclerberg suggested a user interface based on control
point manipulation, with which is it rather difficult and
tedious to obtain a desired deformation. Direct manip-
u]at ion of object points instead of control point nlanip-
ulation was suggested in [Borre191, Hsu92]. The user di-
rect ly moves an object point, and the system automat-
ically computes the control point configuration yield-

ing the desired point, displacement constraints. [Rap-
poport94] extends this method to approximate (’prob-

abilistic’) point, constraints with a non-isotropic shape
parameter, [Joy91] gave methods to manipulate a group

of control points in a single operation. A more gen-
eral type of extension to FFD was presented in [Co-
quil]art 91], wTho defined an arbitrary volume and used
numerical routines to compute local coordinates within
this volume. Neither of the above methods attaches
any physical meaning of the deformation. Simple con-
strained deformations were described in [Borre194].

Physics-based modeling is a successful research area
in geometric modeling. Several papers [Terzopoulos94,
Welch92, Ka.llay93, Moreton92, Celniker91, Greiner93]
presented surface design schemes based on minimiza-
tion of an energy functional subject to linear point, con-
straints such as location and tangent vectors. We are
not aware of any work using similar ideas for free-form
solids. Other applications of physics-based modeling are

in reconstruction and tracking [Fang92], motion control

[Shapiro8t3] i and modeling of flexible and rigid objects
[Barzeltltl].

‘The only relevant reference we are aware of for vol-
ume preservation is [Aumann92], which gives au algo-
rithnl that approximates a surface of revolution by a
surface which is not a surface of revolution while trying
to preserve the origins] volume. Free-form solids are
not, discussed, and it seems that the algorithm is not
suited for them at all. Formulae for computing the area
or volume enclosed by curves and surface patches were
given in [Elber94, Liu87].

1.2 Proposed Approach

We use free-form solids as design primitives. In the con-
text of solid model design in general and specifically of
free-form solids, one of the most basic physical proper-
ties of a space cell is its volume size. A major drawback

of current, user interaction techniques when applied to
free-form solid design is that the user has no way of
controlling the contained volume size. Currently, solid
clesign (as opposed to using volumes for free-form defor-
mations) is not much more than design of the surfaces
hounding the volume. each of them independently.

1[Sederberg86] refers to an unpublished report about volume
preserving deformations, but such deformations cannot be every-
where locally satisfied with polynomial fields except for the simple
case of pure shears.

We present a novel method for modeling an ol>ject
composed of several tensor-product solids while preserv-
ing the desired volume of each primitive and ensuri]lg
high-order continuity constraints (and any linear cotl-
straints in the control points) between the primitives,
The method utilizes the [Tzawa algorithm for non-linear
optimization, with an objective function based on defor-
mation energy or least squares (LSQ ).

The algorithm is very useful for several applications.
For example, hierarchical FFDs were used by [Chad-
wick89] for computer animation of muscles. A similar
effect could be achieved by a combination of point dis-
placement constraints and smooth modification of de-
sired volume size. The algorithm is useful in industrial
design, where basic functional requirements are auto-

matically obeyed without imposing limitation on the
creativity of the designer. When the object material is

known, volume preservation means weight preservation,
hence is attractive for mechanical engineering applica-
tions when the engineer designs a part or an assembly.
The preservation of volume of each element of the ob-
jects enables us to keep required proportions between
volumes and weights of object parts. Obviously, simple
scaling of the object in order to achieve a desired volume
is not possible, due to the presence of point location and
continuity constraints.

Our algorithm uses B6zier solids of arbitrary orders

as the underlying mathematical definition of a free-form
solid primitive. A B6zier solid of known orders is con]-
pletely specified by its control points. The input to
our algorithm consists of a desired object form (a set
of primitives defined by their control poil]ts configu-
rations), desired primitives volume sizes and a set of
linear constraints on the control points implied by con-
tinuit y requirements between the primitives or imposed
directly by the user. The control points configurations
can either be given directly by the user through control
point manipulation, or computed from point displace-
ment, constraints specified by direct solid manipu]at ion

as in [Borre191, Hsu92]. The algorithm computes a coll-
trol point configuration closest to the given one (i]) a
deformation energy minimization or least square sense)
such that the deformed primitives contain volume of the
given sizes and obeying the linear constraints. The algo-
rithm does not automatically guarantee that, the bound-

aries do not self-intersect.
Note that it is the global volume of a given free-form

cell that is being preserved, not the volume of an object
embedded within the cell or of local sub-cells. This ap-
proach was introduced in the finite element method for
rubber type materials, but here we avoid the complexity
of the penalty approach [Bercovier81] ancl use a dual-
ity argument to deal with the constraint, based on the
Uzawa algorithm for non-linear programming [Arro\v.58,
Ciarlet88].

Special measures were taken in order to endow the al-
gorithm with real-t ime performance on current workst a-
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tions, We utilize the fact that the volume size actually
depends only on the boundary surfaces of the deformed
primitive hence volume size computation can be done
with a subset of the control points. The inside points
are of no interest to the user as well for the object’s ge-
ometry, but are required for physical computations on

the object,, such as tear strength or deformation energy,

The inside control points are computed from the outside

points using a 3-D variant of the Coons surface formula
~vhen energy computation is required. This does not

prevent them in general from crossing the parametric
boundary, but intersection is not caused for most mod-
eled objects.

In an interactive setting, the algorithm relaxes its ac-
curacy requirements during object manipulation, com-
puting an accurate solution only when real-time perfor-

)nancr is no longer essential. This technique gives the
\lser a feeling that volume is preserved during interac-

tion.
Alt bough in t his work we limit the method descrip-

t ion to I%zier solids, it can easily be adopted for most
of t be other common definitions of free-form solids, for
~xample N[TR 13S. The only restriction on the mathe-

Illatical definition of the solid that we have is that it
should be a defined as a linear combination of the con-
trol points.

The paper is organized as follows. Section 2 gives
necessary mathematical notations. Section 3 formalizes
t hr mathematical problem involved. Section 4 explains
III det ail bow to compute the size of the volume enclosed
by a tensor product Bezier solid and the partial deriva-
t ives of the volume size function. Section 5 explains how
t o represent, continuity constraints. Section 6 explains

how to compute the energy required for a change of a
tensor product IXzier solid from one control point con-

figuration to another, and the energy derivative. Sec-
tion 7 presents the numerical algorithm used to solve
t Iir n~atbematical problem, and Section 8 describes our
i]]]l~lel]lc>]]tatio]] and results,

2 Notations

W’e introduce here the formal mathematical notations

iiswl during the rest of the work. A tensor product
Wzier solid is defined using a set of control points P;jk E
R3. The image of a parametric point (u, t, w) in the unit
robe is

F’(u, 1’, w) =

where B;’ (t)

[hmote the

is the Bernstein polynomial defined by

()B:(t)= n (l-t) n-’i’.
i

x.vs~ coordinates of a control point by

P,~~, P,; ~, P,; ~ respectively. Denote the volume of the

solid primltive defined by a set P of control points by-

Volume(P), and denote by 8Voiume(P)/8P the vector
whose components are the partial derivatives

dVo/ume(P) dVolurne(P) c?~’olr.tme(f)

ap;bc 1 ap:bc ‘ (3P:bc

for every triplet abc E [1 . ..n] x [1... m] x [1 . ../].

Denote the energy of a transformation from a B6zier
solid defined by a configuration Q of control points to
one defined by configuration P of control points by
Energy(P – Q), and denote by c9Energy( P – Q)/dP

the vector whose components are the partial derivatives

c9Energy(P -Q) dEnergy(P -Q) t3Energy(P -Q)

(3P:bc ‘ Dp:bc ‘ ~p:bc

Denote by P the column vector of all the con-

trol points from all the B6zier solids in the system,

(P;k, P;k, P;k,l) = (P, 1),

3 Problem Statement

The general problem we handle is finding a control point
configuration that satisfies the constraints (linear and
volume) and which results in an object as close as pos-

sible to the given one. The change of an object can be

represented in two ways. The simpler is = the sum of
squares of distances between the original control point
positions and the new ones. The second is as the en-
ergy required to get from the original object to the new
one. In this section we formalize this problem as a set
of mathematical requirements that the target control
points configuration should satisfy.

We denote by Dist(P, Q) the distance between two
objects resulting from control points locations P and
Q, which can stand for:

● Energg(P – Q), when using an energy approach,

● *(P – Q)T(P —Q), when using a LSQ approach.

In case objects are modeled directly. the original ob-
jects are usually close to the desired final ones in which
case the the distance measure should be LSQ since we
want the resulting object control points to be close to

the original ones so that the shape of the object will

incur a minimal change.
With physics-baaed modeling, we use m the original

object the element in an initial state and we deform it by

applying linear constraints and minimizing the energy.
The resulting object then simulates the behavior of an
elastic material with internal pressure. Initial control
point configurations and the specification of constraints
can be obtained by any method, including direct control
point manipulation and direct manipulation of points

and vectors inside or on the object.
The resulting constrained minimization problem ( M )

is: given o control point configuration Q1, . . . . Qn (each
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Qj representing a single tri-variate primitive), a set
of corresponding volume sizes VI, . . . . Vn and a matrix

C’ representing linear constraints on the control points,

jind a new control point configuration P = PI,..., Pn

such that the following holds:

● P is the solution of minp; ~~=1 D~st(Pi’, Qi),

● For each i, Volume(Pi) = V:,

● CP=O.

The desired volumes Vi could be the initial volume
sizes or any other number. For example, smooth varia-
tion of the desired volumes can be used for dilating the
object during animations.

4 The Volume Function

Our volume preservation algorithm requires the com-

putations of Vo/ume(P) and of avO’~~e(P~. Below we
show how to analytically compute the exact volume size
of a tensor product B6zier solid. We show that the
computation of the volume size can be represented w
a scalar product of two vectors: one whose components
are the multiplication of the coordinates of the solid’s
control points, and a second one whose components are
based on the Bclzier basis functions and therefore can
be computed off-line just once for each combination of
orders of basis functions.

4. I Computing the Volume

The size of the volume specified by a three-dimensional
function F(u, v, w) defined over the unit cube is

111

HI
JFdudvdw

000

where JF is the determinant of the Jacobian matrix of

F:

()8Fi
JF=det ~ , ~=X,~,Z Zj=u)?),w.

1

In our case F is given by Equation 1. For example, the

entry in the first row and column of the Jacobian matrix
is

The derivative of a Bernstein polynomial of order n can
be expressed by the scaled difference of two Bernstein
polynomials of order n – 1 [Farin92]:

$%(4 =n(q.-:(u) – BP-l(U)) (2)

with the convention that l?;(u) = O for b < 0, a < 0, or

b > a. Denote

U:jk = ~~P(u)B~”(v)BJw(w) = (3)

n.(q’:l–l(u) – q“-l(u))q’”( v)q”(w),

and similarly tiij~ and tiijk. The determinant JF can
be written as:

(~ijk ‘iijkp~k ~ijkii]kp;k ~ijk ‘ijkp~k

d ~ijkwi]kp~k‘et ~ijk ‘ijkpijk ~ijk ‘iijkpijk

~ijk Uijkp~k ~ijktiijkp~k ~;jk~ijkpijk )

expanding, we obtain:

ij k ij k ij k

i j k ij k ij k

Since the determinant is a multylinear operator and due
to the structure of the summations, we can write:

‘F=nzx (4)
;j k Imn opq

(

fiij k iilmn ‘opq

det ~ij k U/mn ~opq

)

P;kp[mn P&~.
@ij k tilmn Wopq

Let 1 = ijklmnopq be a new index notation, in the

range 1.. .(nUnVnW) 3. Denote the determinant in Equa-
tion 4 by detI(U, v, w), and denote

111

c~ =

JH
detI(u, v, w)dudvdw.

000

Since the integral is a linear operator, the volume can
be written as:

ijk lmn opq

Let p be a column vector indexed by 1 containing all
terms of the form P; kP~m” P~pq, and let c be a column
vector of the same size whose components are the c1 ‘s.

Then Equation 5 can be expressed as the scalar product
of p and c:

Volume(P) = c~p.



The vector c depends only on the orders of the B6zier
basis functions. hence can be computed once and for

all for every practical order combination (the number
of all practically useful order combinations is small, )
(’o]nputing the elements of c via symbolic integration
is very conlp]icated even for relatively small B6zier or-
ders} therefore we compute them using Gauss numerical
il)tegration [Press88], which gives an exact result since
the integrated functions are polynomials. A component,
c] is computed as

T-st

where u,, u,, U](are the C,auss weights corresponding to
the points r,, r,,, rt in the unit. interval, The number of
sample points on each dimension is determined accord-
ing to the order of the basis function in that dimension.

‘lhe description above was simplified for ease of ex-

planation, Actually. volume size depends only on the

boundary surfaces (Stokes’ formula [Gibson44].) In
l%tier volun]es the boundary surfaces are not influenced

at all by the iliuer’ control points, which can be com-
pletely ueglected during the computation of the volume
size. In fact, \vhen computing the elements of the c vec-
tor \Ye find that for any index ijklmnopq containing co-
ordinates of an inside point the value ~ijklnm OPqis zero.

In practice, tht=u, to accelerate the volume computation
we let tile index 1 run only on values of ijklmnopq which
define ‘outer’ control points.

4.2 Computing the Volume Derivative

‘1’he volume preservation algorithm requires the com-
putation of the vector dl’olume(P)/dP whose compo-

nents are of the form dt ‘olume( P)/dP~b, where r is z, y
or :. For t=xamplt=.

Since for every ijk # obc thepartial derivative vanishes.
\ve gel

5 The Constraints

5.1 Continuity Constraints

Continuity constraints between primitives in an object
are essential for any object design. Continuity of order

k (Ck) between two adjacent volumes Fl(u, v,w) and

F2(u, v, w) defined on [0, 1] in the u direction is achieved
when the following holds

(13kF1(U, ~1,W)

&u )
(l, V’, W’)=

(

C7F2(U, U, w)

ak u )
(O, V’,2U’)

for every (rl, w’) E [0, 1] x [0, 1].
In our case for two adjacent primitives defined by con-

trol points configurations P and Q we will get

(dk(~,jk ~~”(U)~Jn”(V)B~”’(W)Pijk)

CY u
)

(1, 1“. u“) =

(t)k(~,jk ~:”(U)~;”(u)B;w(tU)f&k)

dk u
)

(O, v’. u”)

Since the derivative is a linear operator we get

(;rk:uu)) )(1”)=B;”(v) ~:’”(w)pl, k

(;rk%:u)) )(-B~”(t)B~w(w)QiJk

and therefore

~~;”(.’)B:w(~’)(~(ak:[;(u)(l)~,,k
jk t

~kBn”(u)—
~ku (0) QrJk)) = 0,

For this to hold for each t’, w’ E [0, 1] x [0, 1], a neces-
sary and sufficient condition is that for j = 1 n, k =

l.. .nw,

thus getting a set of nunu, linear equations in P,j k, Q,l A..
The derivative of a Bernstein polynomial of order n

was given in Equation 2. Since Biro(0) # O for I = O only

and B,~(l) # O only for I = m then the number of i’s

for which %(1 ) # O is k + 1 and the same holds
“

for W(1). Therefore. Ck continuity conditions
between adjacent B6zier volumes are expressed as a set
of rtvnW linear equations on k+ 1 layers of control points
of each volume from the adjacent border-

For the most common cases the conditions are:

III this section ~veexplain the different linear constraints
C’” PnU,l,j– Q1t,j=O i=l. ..n,. ~=1...nm

i]l)posed on t l~t control point configuration required in Cl nti(pnu,i,j – ~~U-I,,,j) – n“(Qz,t,j –QI,*,J) = 0.

(Jr(ler to achieve desired geometric or physical results. i=l. ,.rru, j=l, ..nu,.
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Another kind of continuity constraint between ele-
ments is geometric continuity, which is more general
than parametric continuity. Geometric continuity yields
non-linear constraints which are difficult to express and
solve, and therefore we do not use them in this work. For

more details on geometric constraints see [Bercovier93].

5.2 Other Constraints

The following types of constraints can easily be handled
in addition to continuity constraints:

●

●

●

Fixing a point at a given location, resulting in equa-
tions such as P; – c; = O, r = x,y, z, where c;

is a constant.

Attaching two points together, resulting in equa-
tions such as P: – Q: = O, r = x,y, z.

Preserving a given distance between points.

5.3 Summary

A general linear equation on variables Pi is expressed as

x CiPi + Cfl+l = O

i

or in vector representation as

CT(P, 1) = 0,

If we denote by C the matrix whose rows are the co-
efficients c of the linear equations and by P the col-

umn vector of all the control points, the constraints are
achieved when CP = O.

6 The Energy Function

Energy computation for a deformation of a B4zier prim-
itive from one control point configuration to another is
required by our algorithm. Here we show that it can be
computed using a matrix whose elements depend only
on the order of B6zier basis functions.

6.1 Computing the Energy

The energy of a deformation of a unit cube specified by
a 3-D vector function F(z1, Z2, x3) is usually [Terzopo-

Ius94] described as

(6)

with a and /? being material property constants. We
can write

Energy(F) = (7)

;~~~l~l~l (~)zdudvdw+
i

;.gJy~l (*)’d.d.dw

+1’1111 (%)’d”dvdw+

21111’ (W3d”dvdw)

In our case the deformations is of a body defined by
one B6zier point configuration to a body defined by an-
other one. Hence the deformation is defined as a tri-
variate B6zier function with distances between the con-
trol points of the two configurations serving as its con-
trol point lattice. Using P for these new ‘control points’,
we can write

(?F= 8Fz

%=x= x
fiijkp%~~

ij k

and consequently

We have

111

///000

m’ (%)’’udvdw=
(XE ~ijk~/mn pi~kpl=mn)dudvdw =

ij k lmn

(///ZZ ,10’ ,l@jk’rmndudvdw)P; kp~mn
ijk lmn

Let Du be a matrix indexed by ijk and lmn, defined
by

111

DUijk,/mn =
H/

Gij k~[mn dudvdw
000

and define D. and Dw similarly. Let Px be a column
vector with components P$ k, and similarly define Py

and Pz. then we have

m’(%)’dudvdw = PZT DuPZ .

Denote by Duv the matrix of the mixed derivatives
given by

111

Duvij b,l~n =
///

?ilj kiilmndudvdw
000
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itIl(l define Duu and Dt!u, similarly (DTIU = DUZIT.) We

llav(’

‘l’lIf>t’len]ents of the three mat,rices above can also be
rol])pltted nulnfwically, Substituting the matrices into
l;(lllation ‘i’,

Erlergy(F) =

;( ,3(P’’TDI, P” + PYTDVPY + P’~Du)P’)

+(\((PrT Df’P’r + PyTD71p~ + p“~ll?{,r?py

+pY7’D/, /P7) + (PTTDt,, PT + P2TDTlP:

+P”rDIIW7’1“ + P: TDuwPr) + ( PYTDwPY
+p.-~’[j(p: + pYTD1llTP: + P’TDvu,PY))).

Finally, let 1) be the Illatrix whose rows are

;(WXI + o(IA + DuI), (IDUZT, ODUWT),

+((, ]1(((, JDII + CY(DU+ DuI), (YhUT),
L

and

;((, Dt/[/, f}Dfff, ,?DU’ + O(LXI +

I,tt P be a colllllln vector concatenating

‘l’lIf’l) IV()bavc

Enrrgy(P) = P~DP.

D,,)),

(Pr. Py. P:).

Ail the elements of D depend only on the orders of the
Wzier basis functions, hence can be computed exactly
OUCPand for all for every practical order combination,
I(sing (;allss quadrature,

6.2 Conlputing the Energy Derivative

“Io nlinimize the deforlnation energy the algorithm re-
(I(lires the con~l~ut ation of the vector t)En frg~(P)/i3P
\v[)ost con]poncnts are of the form dE77ergy(P )/dP~b,_

Ivllew r IS J, y or :. It is easy to see t I[at, for example,

sillcr for every rijk # rabc the partial derivative of
[;~l~r!gy( P) according to PJb,. vanishes.

7 The Uzawa-Based Volume

Preservation Algorithm

ltI t Il]s wx-lie]} wf t’xp]aln in detail the algorithm we use

for sol~illg t h, problenl as defined in %’ction 3,

7.1 Lagrangian Multiplier Method

To convert the constrained minimization problem ( M):
minimize ~~ Dist( Pi, Qt ) .sr~bjecf fo th~ ronstraznts

CP = O and V~l~~~~(Pi) – it = O. i = 1.. .)1. into
an unconstrained min-max problem, we define a Ilew
functional L called the Lagrangian associated with the
problem (M) by

where -~ is vector with size the number of linear com
straints, The vector (Al A,, , -rl q,n ) is called thr
Lagrange multipliers vector. Ai is called the Lagrallgt>
multiplier for the constraint V~ltl?ne(Pi ) – t; = O and

~j !s called the Lagrange multiplier for the constraint

C’jf = O (CJ stands for row j of C).
As explained in [Ciarlet88], the constrained nlil~imiza-

tion problem (M) can be reformulated as finding a solu-
tion to the ullconstrainerl min-max problem (S) defilied
by

(s) yxnjnL(P, A. -;).

A necessary condition for a triplet (P, ~. ~ ) to be a so-
lution of (S) is the vanishing of the partial clerivatives:

l?l. (3L ~=()
—= —=
8P 8A &) ‘

which means that for each i = l.. .n, j =

1 . ..nUnltnU. r= xqy, z:

dL {)Dist( f, , Q,)
~= 8P:, +

(Ii)
1J

~ 8~”o17~rne(P, )
2

8P;j
+ ~(’1, = 0.

(C[i denotes the columns of C’ that multiply tllc poi]]ts
of Pi in ~,) and

7.2 Solution Method

The volume derivative expression is llon-liuear, lIonce

the usual direct methods (such as LDLT and Gauss

elimination) cannot bc used to solve (S). We use a
version of the (Izawa met hod tailored to our prohleln
[Ciarlet88]. LJzawa’s method is an iterative method al-
lowing one to solve an inequality constraillt’d minimiza-
tion problem by replacing it with a sequence of uucol~-
strained minimization problems. Since we do not have

inequality constraints we can use a simpler version.
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Given the problem (M) the iteration starts with an
arbitrary values for Jo E R!, To G R~ (we start with O
for both), and with an initial value for PO for which we
use Q. These initial guesses are especially suitable in
an interactive setting, where it is expected that Q will

not change much after the constraints are satisfied. A

sequence of triplets

is defined by means of the following iterations:

The

Pk : solves inf (~ DM(P;) +
P’EV

i

(9)

i.=l. ..n,

‘+1 = rnaz(7~ + ~2(C’j F), 0)_Yj (11)

j=l. ..rn.

algorithm runs until the constraints are satisfied or

the number of iterations exceeds a given limit.
Pseudo-code for the algorithm is shown on Figure 1.

The initial values for P, A and ~ are set in lines 1 and
2. Line 3 computes the current volumes vi and line 4
initializes the loop counter k. The main (’outer’) loop
of the algorithm is performed in lines 5-10. The loop

iterates while the constraints are not satisfied, stopping

after the limit on the number of iterations has been

reached. In each iteration the system in Equation 8

is solved (line 6) and the current value of A and ~ is

updated using the tuning parameters pl and p2 respec-
tively (lines 7-8). Line 11 returns P as the answer.

The choice of tuning parameters pl and p2 as used
in Equation 10 and Equation 11 is the most difficult
practical issue when using Uzawa’s method. Each type
of problem has its own best range of values for Pi. In
our case we found it best to use pl = p2 = 0.15 for an
energy distance function and pl = p2 = 0.5 for a least
squares distance function. In general, the larger the p’s
the faster the convergence becomes, but the risk of non-
convergence due to overstepping the convergence point
increases.

Pseudo-code for one way of solving the inner prob-
lem is shown in Figure 2. The inner problem is solving

Equation 8 for P with the given ~ and }. It is a non-
linear problem; Figure 2 shows how to solve it using
successive approximation on P. We iteratively compute
new values for P based on Equation 8 until the dis-
tance between two successive iterations is small enough

(I1 P – P’ 112< 6~iSt). There are several other possi-
ble techniques for solving a set of non-linear equations
which can be used here as well.

Usually when solving physics-based problems by La-
grange multipliers methods the additional variables
added as multipliers have physical meaning. In our case
one can interpret A as an inner hydrostatic pressure to
keep the volume at a given value. We are looking for the
value of that pressure: the Uzawa outer step can be seen

as augmenting or diminishing the hydrostatic pressure
until convergence, This tuning is done with the parame-
ter pl. This observation relates our method to so-called
mixed finite element methods for the Stokes problem
[Hughes87]. In our case we have constant pressure for
each small volume element.

8 Results

The algorithm was implemented in C under Unix us-
ing SGI/GL for graphics and Motif for the user inter-
face. The interface lets the user work with a number
of B6zier primitives, the order of each selectable by the
user. In the initial state the primitives are displayed as
unit cubes (cubes whose volume is 1.) Control points on
each primitive can be selected and manipulated in 3-D,

We did not implement direct manipulation of boundary
surface points since it is immaterial to the problem be-

ing tackled. The primitives as whole can be selected as
well and manipulated.

Constraints are inserted via a Motif-based user in-
terface where the type of the constraint is set and then
through direct point manipulation the points or surfaces
involved are chosen.

There are two methods for object design. In the first

method, volume preservation can be turned off during
interaction and performed only when arriving at a de-
sired configuration. In the second method, it can be
turned on during the whole interaction process. The
first option is necessary since for high orders the perfor-
mance is not fully interactive.

Due to the complexity of computations in the inter-
active stage we cannot satisfy volume and linear con-
straints simultaneously, so the user has to choose which
one is preferred.

There are three sets of parameters to the algorithm:
parameters that influence volume preservation during
interaction while the user drags the mouse, parameters
that are for solving volume constraint when leaving the
mouse, and parameters for global computation when
solving all the constraints. Typically, for the interac-
tion mode the iteration limits are lower and the conver-
gence tolerances are larger than for the final mode, for

the global computation the tolerances usually do not in-
crease but the iteration limits are larger and the pi used
are smaller.

Different sets of parameters do not cause divergence

of the algorithm, since during interaction the current
configuration is very close to a solution satisfying the
volume constraint, and the algorithm needs fewer iter-



ations to reach a solution. The parameter sets can be
tuned using a dialog box.

“1’he user can manipulate a scale widget that defines
the desired volume for a chosen primitive. The volume
preservation algorithm is performed repeatedly while
t I}t’scale is dragged.

‘lri-quadratic free-form volume design is fully interac-
ti~e. For a typical movement of a single control point,

to reach a final volume tolerance of 10-4 and a final

distance tolerance of 10–3 requires about 15 outer it-
erations. each of them with 1-2 inuer iterations. This

t dies about 3 seconds on Silicon C,raphics workstations

with a MIPS R-4000 processor. During interaction it is

enough to set both tolerances to 10–2, in which case the

solution is completed in real-time,

For a tri-cubic free-form volume, to reach the same
tolcrauces requires about 25-30 outer iterations, each

of them with one inner iteration. This takes about 15

seconds. Whet) both tolerances are set to 10-2 dur-
i])g interaction the solver takes about 3 seconds, hence
tri-cubic int(’raction could be done in real-time using a
faster processor.

Tbe rllnniug times shove are of course dependent on
thr numbrr of linear constraints and on how far the

r(]rrent configuration is from their solution.

drsigned using the system. The amphora is modeled

frol]) a single primitive, and the phone was modeled

fro]]l three tri-ctlhic primitives with (71 continuity condi-
t ions between t hem. Its parts were designed by volume
nlodificat ions to create the right proportions between
t lIvm while keeping the desired shape constraints and
continuity.

9 Conclusion

We presented an approach for modeling with free-form
solid primitives while preserving the volume contained
within each primitive and satisfying continuity con-
straints between the primitives, C’areful tuning allows

our [Jzawa-baseri non-linear optimization algorithm to
h,’ fully interactive for tri-quadratic volume elements

and almost interactive for tri-cubic elements. The al-
gorithm possesses several possible applications in com-
puter animation. industrial design and mechanical engi-

I)erriug, broadening the scope of physics-based geomet-
ric modeling.
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Input:
A set of con,trol point configurations Q1, . . . . Qn
A set of dermed volumes VI, . . . . Vn
A matrix C of linear constraints

output:
A set of, new control oint \o,nfigurations Q1, . . . . Qn

Yt hat satisfies the Goa conditions.

Parameters:
Convergen~etolerances 6,,.1, 6COn,, 6~,,,
Iteration hrnlts L, L~,,,
Turung parameters PI, pZ
Goal:
Minimize ~, Dtst( P,, Q,) subject to Voiurne(P, ) = U,CP = O

Algorithm:
1 P=Q
2 ,J =0,7=0
3 v,= Voiume(Q, ) t=l. .,n
4 k=o
5 while ~, [v, – WI > 6“01 and IICP it> 6com. and k < L
6 find PI P. that solve aD~~:p~ + A avOt~~,e(P’~ + -@l, = O
7 A= A+pl(t-v)
8 7=7+p2cP

9 r, =\ ’olurne( P,) i=l. ..n
I() k=k+l

end
11 return P

Figure 1: The Uzawa-based volume preservation algorithm

Solution of ~D~~(p:~ + A, bv”i~~=(p’~ + yCl, = O,i = 1 . . . n :

1 if dist functi& is energy ‘

~ p;’”’ = Q,, -
Z, 2D,~(P1~-Q,,)+~,~d+7CI,J

2D,,
for each control point coordina~~ i, j

3 else
4 P;e’” = Q,, – A,

8V0/umc(PL

8P..
~ – yfqij

for each control poi;t coordinate i, I
,5 endif
6 1=0
7 while II P – Pn’” 112>b~ist and 1< L~t.t
8 P = P“eu’
9 if dist function is energy

1() p;’”’ = Qv -
~k~ 2Djk,P,,-Q,,)+A, _J+TClIJ

2D..

for each control point coordinate’.. i, j
11 else
12 P~~C” = Q,, – J, ‘vO~&~(pI1 – ~clij

for each control po;;t coordinate i, j
13 endif
14 I=i+l

end
15 return P“ew

Figure 2: The ‘inner’ P computation by successive approximation.
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Figure 3: AI1 amphora, modeled with a single tri-cubic free-form solid.

Figure 4: A phone, modeled with three tri-quadratic elements.
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