
Proceedings of the 1985 Winter Simulation Conference
D. Gantz, G. Blais, S. Solomon (eds.)

ON DETERMINING THE DISTRIBUTION
OF SOFTWARE RESPONSE TIMES

Charles M. Shub
Associate Professor

Computer Science Department
University of Colorado at Colorado Springs

P.O. Box 7150, Colorado Springs CO 80933

1. ABSTRACT

This paper reports on a simulation model for
predicting software response time in symmetric
distributed computing systems. This model extends
previous work by considering a collection of
similar processing elements connected together by
some interconnection mechanism. The model also
extends previous work by considering stimuli that
require processing at multiple priority levels.

The paper begins by describing the nature of the
problem. In this section, the overall problem is
decomposed so that attention may be focused on the
software response, the topic of this report. Next a
model is formulated. The coding of the model in
GPSS/H is described. Finally, sample results are
presented.

2. THE PROBLEM

In many transaction based systems, including but
not limited to, data base systems, real time
systems, there is concern for predicting response
time. In this context, response time is defined as
the time between when a stimulus is sent from an
external device to the time that a response is
received by that device. For the purposes of this
problem, it is assumed that there is no peripheral
I/0 other than message communication so response to
all stimuli is processing and communication
intensive.

A typical scenario proceeds as follows:

1. A user generates a stimulus by depressing
a key on a terminal.

2. The terminal generates a message
encapsulating the key depression.

3. The message flows over some medium and
arrives at a processing element.

4. The message is now ready for processing
and exists competing for the processor
to receive service.

5. After receiving processing, the message
may be forwarded over some medium to
receive additional processing from
another physical processor. This may
happen several times.

6. A response message flows over some medium
and arrives at the terminal.

7. The terminal displays the response.

405

It is furthermore assumed that for any given
stimulus there is a single response, and that the
displaying of the response by the terminal occurs
instantaneously. This definition is compatible with
the usual definition of response time as being from
the point when the "carriage return" key is
depressed until the time when the response message
first starts appearing on the screen. Moreover, it
is certainly the case that processing may continue
after the response point, so there can be overlap
between "clean up" processing and what is normally
thought of as think time.

From the above description, it is clear that there
are several components making up the response
delay. These include:

1. The delay between the stimulus and the
arrival of the message at a processing
element for processing.

2. The delay between the transmission of the
response message from a processing
element to the terminal and the ensuing
display.

3. The communication delay when a message is
forwarded from one processing element to
another.

4. The processing service received.

5. The time spent contending for a
processor.

The crucial point in the above analysis is that the
message transmission delays are INDEPENDENT of the
processing and contention delays. The message
transmission delays, of course, consist of
contending for the message transmission medium at
the endpoints, the transmission latency, and any
message processing at an intermediate network
point.

Clearly the first three items are highly dependent
on the terminal and transmission media. They are
thus not included in the model described below. In
terms of application, these delays can be modeled
by stochastic variables to be convolved with the
distribution described below to determine an
overall response time distribution.

Thus, the overall response distribution is composed
of the five components described above and can be
expressed as the convolution of:

1. The initial arrival delay distribution.

2. The final departure delay distribution.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F21850.253419&domain=pdf&date_stamp=1985-12-15

Charles M. Shub

3. The n-fold convolution of the
transmission delay distribution, where n
is the known (for a particular stimulus)
number of inter processor transmissions.

4. The processing time distribution.

5. The processor contention time
distribution.

The remainder of this paper describes the model
used to generate an approximation to the
distribution of the software delays.

3. THE MODEL

The model described in this section is designed to
predict the software latency in the stimulus
response problem described above. In turn, we shall
describe the operating system environment; how
stimuli are processed; the relation among
processes, processors, and stimuli; the model for
contention; the handling of multiple priority
levels; the model for competing work; and the
integration of all these components into the
overall model.

3.1 The Operating System

The following assumptions are made about the
operating system support for software running in
this system:

1 • The software processing is done in an
environment where the operating system
suppor·ts several software processes,
each of which can perform some
service in processing stimuli to
generate responses.

2. Processes can send messages to other
proce:Jses. After sending a message, a
process. can continue execution.

3. Processes can become blocked when they
attempt to receive a message that has not
arrived yet.

4. Processes have static priorities
associated with them, and the operating
system assures that the highest
priority process on any given processor
has control of the processor. In other
words, if a message arrives for a high
priority process, a currently running
low priority process will be preempted
until no high priority process is un~
blocked. The preempted process will
then continue from the point of
interruption.

5. Processes can block themselves waiting
for a specific message even though there
may be other messages waiting for service
by that process.

6. The operating system maintai.ns ready
lists in a first come first served
arrangement at each priority level.

In summary, then, we have a multi programming
environment with preemptive resume scheduling and a
complex processor allocation algorithm.

40t.

3.2 Stimulus ProcEJsslng

In adclition, we must .1ow consider the type of
processing a stimulus receives. The following
f:roperties hold:

1. Fer any specific stimulus, the service
required is well known. That is to say
tr..at whenever a particular stimulus
arrives, the sequence of processes that
mt..tst process that stimulus is known.
Moreover, the work to be done by each
pr·ocess in the chain is known. Thus,
for any particular stimulus, we have a
pr·edetermined route through the system
and the work required at each stop on the
route is known. This information can be
obtained in many fashions, including
t!'aces, walkthroughs, measurement, and
the like. The details of how this
information is obtained is outside the
scope of this paper.

2. Since priorities are associated with
processes, and the !'Outing of a stimulus
is to a sequence of processes, it is the
case that a particular stimulus can
receive different portions of its pro
cessing at distinct priority levels.

3. The distribution of all work to be
performed by the processor can be
approximated. The technique is rather
simple. Given an overall stimulus
arrival rate, and a distribution of
stimulus types, the known data about
service for stimuli can be used to
model the processor occupancy at any
given priority level. Moreover,
from the scenario traces one can derive
distributions of the service times.

4. l'ihat is unknown is exactly which stimuli
are being processed when any particular
stimulus arrives for processing.

We divide t.he total work distribution on a
processor into two pieces parts. One is the work
requirement. for the specific stimulus in question
wl'mse response distribution is to be determined.
The other is the work requirement for all stimuli
in competition with the selected stimulus. We use
the term "competing work" to describe this second
component.

Thus, the actual work and routing for a particular
stimulus is well known, but the work requests for
competing stimuli are not exactly known. However,
the distrijution of the competing request8 are
known, so the competing work can be characterized
by a stochastic process. This competing work
causes a specific stimulus to encounter delays in
its progress through the system due to contention.
It is the purpose of this model to characterize the
distribution of these contention delays.

The service require~ent distribution seleeted for
the competing work takes the form shown below.

On Determining the Distribution of Software Response Times

This model of service requirements for competing
work is intended to represent a uniform
distribution with a tail portion. It was chosen
because the majority of the service times fall in a
range, and there are a few outliers outside the
range. Although we use overall average, maximum
value, and percentage in the tail, almost any three
of the following parameters are sufficient to
characterize the distribution.

The percent of area in the tail
The average value
The maximum value
The ratio of the tail length to the

majority length
The maximum non-tail value

3.3 Processors, Processes, and Stimuli

Stimuli are served by several processes in
succession. These processes may be distributed
among several physical processors. On any given
physical processor, only one process can have
control of that processor at a given time. Thus,
there is contention among processes for processors.
Moreover, at any given time, several stimuli may be
competing for service from a process. None of these
stimuli can receive service until the process both
has control of the processor and decides to perform
work on a particular stimulus.

In terms of contention algorithms, stimuli are
served by processes on a first come first served
basis. When a stimulus is sent to a process, the
stimulus is placed at the end of the queue of
stimuli awaiting service by the process. In
addition, if the process is not already waiting for
the processor, the process is placed at the end of
the queue of processes waiting for the processor.
This means that stimuli are not necessarily served
in first come first served sequence.

Consider a case where there are three processes, P,
Q, and R, all resident on the same physical
processor and all assigned the same priority.
Suppose process P is using the processor and two
stimuli, A and 8 waiting for service from process
P. Suppose that process Q is waiting for the
processor to provide service to stimulus C and
process R is not waiting for the processor, Suppose
further that process P decides that stimulus A
needs additional work from process R. Process R
will then get in line behind process Q. If process
P then decides that stimulus B needs service from
process Q, the physical processor will eventually
pass control to process Q before process R so
stimulus 8 will receive another portion of service
BEFORE stimulus A does. Thus stimulus 8 has
effectively cut in front of stimulus A. The
sequence is shown below:

A receives service from p
B receives service from p

c receives service from Q

B receives service from Q

A receives service from R

407

3.l! Contention

We now address the circumstances under which a
stimulus can be delayed in receiving service, These
are enumerated below.

1. A stimulus can be receiving service from
a process, and that process may be
preempted by the arrival of a message
to a higher priority process.

2. A process, while providing service to a
stimulus, may decide the particular
stimulus needs additional service from
another process and may forward the
stimulus to that other process for
additional service. This can cause delay
in two fashions.

a. The sending process has control of
the processor and will continue to
work, probably on another stimulus,
thus causing the original stimulus
to wait until the receiving process
can get control of the processor.

b. Even though the receiving process
may get control of the processor,
the stimulus message may be
queued behind other messages
awaiting service by the receiving
process.

3. When a stimulus initially arrives at a
processor, the processor may be doing
something else. In this case, the
stimulus must wait its turn.

We have enumerated the three causes of delay for
processing a stimulus. The existence of higher
priority work can cause delays, and so can the
existence of contention among competing stimuli
receiving attention at the same priority level.
This second form of delay can occur only when a
stimulus is routed from one process to another for
additional processing. Finally, we have delineated
the initial arrival at a processor as another
potential contention point.

3.5 Priorities

Priorities can make the situation more complex. We
use the following scheme to alleviate the confusion
caused by multiple priorities. First, we consider
only the highest priority level. This is strictly a
one priority level system and can be modeled
easily.

Next, we consider ONLY the second highest priority
level. All the traffic at this level is a one
priority level system, and can easily be analyzed
or modeled.

We then ask, what is the effect of the higher
priority work being done on response at this second
priority level. The work at the higher priority
level introduces periods of unavailability that
increase the response time at the second priority
level. With analytic models, this complicates
matters considerably. With simulation, we can
easily model these preemption delays via preemption
capabilities in the simulation language. In fact,
it is this difficulty that leads to using
simulation as a technique for solving this problem.

Charles M. Shur:>

Going on to addi1~ional levels of priority, similar
techniques can be used to model the effects of more
priority levels.

3.6 Competing Work

We have already discussed the notion of competing
work. Since we know the proces~'ing of stimuli
exactly, we can ~~asily derive a distribution of
service quanta a·~ any priority level. Given a
system load, we can also derive a processor
occupancy for an:r priority level. Knowing both the
service distribu·~ion and the occupancy at a given
priority level, it is easy to derive the average
interarrival time. The only remaining issue is that
of the distribution to be assigned to competing
work.

We know that stimuli arrive independently, and t~e
stimuli arrive a·~cording to a Poisson process.
However, stimuli require a sequence of quanta for
service. One can argue, and justifiably so, that
the arrival of requests for quanta are highly
correlated and thus do not admit to being modeled
by a Poisson process. To put this another way, the
system might erroneously be viewed as an assembly
line with several tandem stations. In that
situation, the arrival at any station after the
first is highly correlated with the service at the
prior station. Below, we explain why this does not
happen.

There are two effects that counter this argument.
One is the changes in priority level. The changes
in priority level are independent from stimulus to
stimulus, and these priority changes reduce the
correlation. The other factor that reduces the
correlation among requests for quanta is the
multiple processor configuration of the system. In
this multiple processor configuration, the
association between stimuli and physical processors
is independent of when stimuli arrive. Thus,
requests for quanta on a particular processor are
equally likely to come from processes residing on
any of the processors and are equally likely to be
routed to processes residing on different
processors. These two effects are used to justify
using an exponer,tial arrival pattern for the
competing quantum arrival process.

In summary, we have used the independence of
stimulus arriva1s, the routing independence, and
the multiple priority levels to justify using a
Poisson process to model the arrival of competing
service quanta. We recognize this as being somewhat
optimistic. The worst case would involve perfect
correlation bett.teen quanta. That case can be
handled analytically by taking the n-fold product
of a single server single queue contention system.
This situation .is more realistic and does not lend
itself to analytical modeling.

3. 7 The Integr;~ted Model

The model shoul,j be clear at this point. Given a
particular stimulus response trace, we merely
repeatedly simulate that trace allowing the
transaction to ·~ompete with competing work
generated as part of the simulation model. We
observe the transit times and present them in a
table. The GPSS/H implementation of this model is
described in the next section.

408

11. GPSS IMPLEMENTI\TION

GPSS (SCHR7~) was chosen for the programming. The
specific version selected was GPSS/H (HENR83) for
reasons detailed below. This choice allows the
mod.el to be data driven. We first describe the form
of the data. Next we describe the preliminary
processing tJy the GPSS/H program. We then describe
the simulation process. Finally, the verification
and validation of the program are delineated.

11.1 Data

':.'he GPSS/H program is data driven to allow runs for
various stimuli without reprogramming the model.
The data file contains the number of passes for the
specific stimulus to make. The next two lines of
data characterize the competing load by giving the
average quantum, the maximum quantum, and the
percent of the quanta in the tail. The fourth line
of data def:nes the occupancy at low and medium
priorities. The fifth line contains the number of
quanta in the specific stimulus under
consideration, and the rest of the lines
characterize each quanta of the special processing
by providing the length and priority.

4,2 Preliminary Processing

After reading in the data, some initial processing
is done. The values of GPSS/H variables used to
generate competing quanta are calculated from the
input values. The total work for the special
stimulus is also computed by adding all input
values. A first cut approximation of delay is made
using the formula that the expected delay will be:

work * occupancy I (1 - occupancy

A delay parameter is set to control the cycling
rate of the special stimulus so it will not always
be contending for resources. Since the occupancies
and average service times are known for the
competing ;.rork and the special stimulus, the
average int.erarrival time parameter is then
calculated for each priority level.

4.3 Simulation

Low priority transactions arrive at the system
according to the distribution detailed above. A
service time is assigned using the input
distribution. The transaction then seizes a
pr·ocessor for its quantum before leaving. There
are also appropriate bookkeeping blocks to tabulate
statistics about transit times.

Medium priority transactions arrive according to
their distr•ibution detailed above. Service times
are assigned to the transaction in a similar
fashion. The transaction then preempts the
processor for its quantum. Clearly, if there are
two medium priority transactions in the system at
tile same t:ime, the second one must wait until the
first has eompleted its quantum because the
pr·eemption is done on a priority basis. There are
also bookk•~eping blocks to keep track of occupancy,
contention, and preempted intervals.

A single transaction represents the special
stimulus. This transaction makes the requisite
number of ;Jasses through the system. For each pass,
t11e scenario is to save the current time, request
each of the quanta in the list of quanta, and

On Determining the Distribution of Software Response Times

record in a GPSS/H table the pass transit time. The
transaction then waits for a calculated period
before making another pass. For each quantum in the
pass, the service time and priority level is
selected from the appropriate table entry. GPSS/H
conditional branch statements route the transaction
to code that is similar to that for competing
transactions.

4.4 Verification and Validation

Verification and validation were done in
traditional fashions. The trace facilities of
GPSS/H assured correct transaction flow for all
logical paths through the model. Interactive
tracing assured that transactions were being
preempted properly, waiting was handled as intended
by the model designer, and that simultaneous events
were handled in the proper fashion.

Initially, tables were kept of service
distributions to assure GPSS/H was generating
service quanta according to the input
distributions. GPSS/H constructs were used to keep
track of occupancy at the different priority
levels. As this was the author's first use of this
particular dialect of GPSS, he was delighted with
the ease of this process. The GPSS/H program is 233
lines long including comments, and was designed and
debugged in less than a week of full time
equivalent time. The particular implementation is
of GPSS/H running on a VAX using the VMS 3.7
operating system. The system is highly loaded with
typical University academic and research use, and
the GPSS/H response was as good as anything during
the development phase.

In addition, the model was run in a single priority
mode, and the results were compared with numerical
results generated (JAGS82) by a different method.
The results obtained by the two methods did not
differ significantly.

Item Poisson

Low priority quanta 48297
Med priority quanta 23789
Special Transit 15.63
Low average wait 1. 837
percent waiting 30.5
Low non-zero avg 6.017
Medium avg wait 0.326
percent waiting 10.1
Medium non-zero 3.228
Preemptions 9176
Average Preempt 4.695

Time Poisson Cumulative ----
below 20 88.41 % 88.41 %
20 to 30 9.89 % 98.30 %
30 to 40 1.10 % 99.40%
40 to 50 0.46 % 99.86 %
50 to 60 0.14 % 100.00 %
60 to 70

409

5. RESULTS

The results presented here show the difference
between using Poisson arrivals and Uniform arrivals
for the competing load.

With uniform arrivals of the competitive load, the
results of the transit of the special-stimulus
change little. There are significant decreases,
however, in the waiting of competitive stimuli.
This is to be expected with uniform arrivals rather
than Poisson arrivals because the competitive
stimuli are less likely to compete with one
another.

Of interest is the distribution of the tail of the
special transit response distribution. This is
shown below.

It can be seen that there is very little difference
between the tail distributions.

The model has been used in other circumstances not
reported here, and the results have been equally as
good.

6. References

(HENR83)

(JAGE82)

(SCHR74)

Henriksen, J. 0. and Crain, R. C.,
"GPSS/H User's Manual," Wolverine
Software, Annandale, VA, 1983.

Jagerman, D. L., "An Inversion Technique
for the Laplace Transform," The Bell
System Technical Journal, Volume 61,
No. 8, October, 1982, pages 1195-2002.

Schreiber, T. J., "Simulation Using
GPSS," Wiley, 1974.

Uniform Difference

48418 0.25 %
24145 1.5 %
15.82 1.2 %
1. 467 20 %

25.4 17 %
5. 773 4.05 %
0.260 20 %

8.2 19 %
3.156 2.2 %

9569 4.3 %
4.818 2.6 %

Uniform Cumulative

87.19 % 87.19 %
10.54 % 97.73 %

1.1J9 % 99.22 %
0.57 % 99.79 %
0.19 % 99.98 %
0.02 % 100.00 %

Charles M. Shuh

410

DR. CHARLES M. SHUB

Dr. Charles. M. Shub, Associate Professor of
Computer Science at. the University of Colorado at
Colorado Springs, r·eceived his BSEE and MSEE from
the Univer&ity of Maryland in 1967 and 1968. He
received a Ph. D. in Computer Science from the
University of Kansas in 1974. In addition to his
current appointment, he has been on the Computer
Science faculty at the Universities of Wyoming and
Vermont. HEl has also been a researcher for A. T.
and T. Information Systems (nee Bell Laboratories)
working on the performance prediction of large
scale distributed systems. He is a member of ACM
and SIGSIM,. serving as vice chairman of SIGSIM from
1978 to 1980. He is also a member of the Society
for Comput•'r Simulation, having served on their
board of governors since 1982. He ha~:~ pub1ished
several papers and participated in panel
discussion:~ on Simulation, Performance Evaluation,
and Operating Systems.

Associate Professor
Computer S•~ience Department
University of Colorado-Colorado Springs
P.O. Box 7150
Colorado Springs CO 80933-7150
(303) 593-3492

