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ABSTRACT 

This paper describes two approaches to the implementation of distributed simulation currently being pursued at 
Texas A&M University. The first approach describes the design and the implementation of a distributed simulation 
system onto a Motorola 68000 based architecture. This approach involves transparently distributing the language sup­
port functions of an existing simulation language (GASP) onto multiple processors. The se<:ond approach dis<:usses the 
implementation of simulation support software in a high level distributed pro<:essing language. This approach involves 
the distribution of protions of the simulation model whkh can be executed in parallel onto multiple processors by the 
model builder. The paper discusses the details of both the approaches and the current status of their implementation. 

1.0 INTRODUCTION 

Sin<:e 1983 Texas A&M University has been involved in 
a project to design and implement a distributed simulation 
system. Funded in part by the National Science Foundation 
[31], the first phase of the project which ended in May 1985 

concentrated on exploring software implementation strategies 
for distributed simulation [15,16,33,34]. Three strategies for 
the distribution of the software onto multiple processors were 
defined and emulated via multitasking on single processor 
systems. As a result of this work two of the strategies were 
selected for further study in the implementation phase of 
the project currently in progress. The first strategy involves 
taking an existing simulation language, GASP IV, and 
transparently distributing the support subroutines onto the 
available processors. All user-written model code is executed 
on a single processor thus avoiding problems in deadlock 
detection and avoidance. Various support functions such as 
random variate generation, statistics processing and filing 
are distributed onto the different processors. The second 
approach implements simulation support software in a high 
level distributed processing language. Here the distribution 
is not transparent to the model builder who must designate 
which portions of the model can be executed in parallel. 
This further means that the implementation must include 
provision for automatic deadlock detection and prevention 
but offers more potential speed-up from the distribution than 

the first approach. 

The goal of current phase of the distributed simulation 
project is to construct hardware/software systems utilizing 
multiple processors to support simulation for both of these 
strategies. The two different designs being pursued dictate 
two different approaches in the implementation. The first 
design is being implemented on a distributed architecture of 
Motorola 68000 processors while the second design is being 
implemented in the Ada* programming language and will 

* Ada is a trademark of the U.S. Department of Defense. 

be portable to any distributed architecture supporting Ada. 
This paper describes these approaches along with the relative 
merits of each. 

2.0 THE DESIGN AND IMPLEMENTATION OF A 
LANGUAGE SUPPORTED DISTRIBUTED 
SIMULATION SYSTEM 

One approach to distributed simulation implementation 
is through the distribution of simulation language functions 
onto individual processors [5,6,33,36,37]. The basic differ­
ence between the distributed simulation via model function 
approach [2,4,26,30] and this approach is that the model 
function approach distributes simulation model functions 
onto separate processors whereas this approach distributes 
language support functions onto individual processors, thus 
exploiting the inherent parallelism in the language functions. 
This approach has the advantage of avoiding deadlock 
problems but the disadvantage of not exploiting any of the 
parallelism in the system being simulated. 

One of the distributed simulation systems currently 
being built and implemented at Texas A&M University is 
based on the distributed simulation via language functions 
approach. The objectives of this system are (1) to implement 
a distributed simulation system using off-the-shelf hardware 
components, (2) to use an existing simulation language in the 
system, (3) to maintain the existing language and execution 
structures of the language, (4) to maintain the distributed 
implementation transparent to the user, and (5) to speed up 
the simulation at a low cost. The following sections describe 
the design, architecture and the implementation status of this 
system. 

2.1 System Design 

Designing a dedicated system to support distributed sim­
ulation necessitates a clear definition of the requirements. For 
example, requirements such as the type of architecture, the 

" This material is based upon work supported in part by the National Science Foundation under Grant No. ECS-1;215550 
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type of interprocessor communication, the type of operating 
system configuration and the language to be used have to be 
defined. Generally, the multiprocessor architectures are clas­
sified by the interconnection structure between the processors 
and the memories. The three most common interconnections 
are (1) time shared or common bus, (2) cross bar switch 
network, and (3) mJltiport memories [10]. Among the three, 
the common bus interconnection scheme is the least expensive 
and the least complex scheme, but it is also the least efficient 
scheme. The common bus interconnection scheme is ideal 
for building dedicated, exploratory multiprocessor systems 
using off-the-shelf hardware components since the hardware 
complexity is minimal in this scheme. Several distributed 
simulation systems have been designed based on the common 
bus architecture or on the enhancements of the same [25,27]. 
The common bus architecture has been chosen for this system 
since it is the simplest of the interconnection schemes and 
also because off-the-shelf hardware is available for this type 
of interconnection scheme. 

Since one of the objectives of the distributed simulation 
system is to use an existing simulation language, the GASPIV 
Simulation Language [28] has been chosen for implementation 
(see [38] for the reasons for selecting GASPIV). The selection 
of GASPIV required the analysis of the language to identify 
major functional subprogram groups which could be shown 
to demonstrate relative independence during execution. A 
complete analysis of GASPIV showed that the subprograms 
could be grouped into eight tasks which are mutually 
exclusive for most of the simulation run except during 
program initialization and termination. Since these tasks are 
mutually exclusive they have independent instruction streams 
and have been partitioned into eight separate tasks with each 
partition executed on a separate processor. Figure 1 shows 
the eight partitions and the subprograms grouped within each 
partition. 
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Figure L GASPIV Subprogram Paritition Groups 

Even though the eight tasks are mutually exclusive in 
terms of processing activity, discrete simulation requires the 
tasks to communicate with one another to exchange the nec­
essary results. This requires designing a mechanism to allow 
the tasks executing on separate processors to communicate 
with one another. There are several mechanisms available 
for interprocessor communication in multiprocessor syBtems 
[18]. In the case of the common bus architecture it is possible 

to design a bghtly coupled system with the processors 
communicating through shared memory or a loosely coupled 
system with the processors communicating directly through 
the bus. It is also possible to design a system with a single bus 
or wlth multip:te buses [7] based on the system requirements 
and the availability of off-the-shelf hardware to meet those 
requirements. A single common bus architecture with shared 
memory type communication or a common bus architecture 
with interrupt driven communication mechanism are the most 
commonly used architectures for distributed simulation [27]. 
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Since the simplest mechanism for FORTRAN tasks to 
communicate with one another is through a global com­
mon data are<• (BLOCK DATA), the shared memory type 
communication (with the global common area located in 
the shared memory) has been designed for this distributed 
simulation system. The tightly coupled architecture of the 
system with one supervisory task and seven slave tasks 
distributed on eight processors required a compatible oper­
ating system configuration. The commonly used operating 
system configurations in multiprocessing systems are the 
master-slave, floating supervisor, and separate supervisor 
'oype configurations. The master-slave type configuration 
has been chosen for this distributed simulation system since 
it is compatible with the hierarchical design of the system 
and also because it is the simplest of the operating system 
configurations available for multiprocessors built from off-the­
shelf hardware components. 

After the design of the distributed simulation system was 
completed its feasibility was verified by emulating the system 
on a Texas Instruments 990/12 minicomputer. The emulation 
provided satisfactory results on the feasibility of the designed 

system (see [15,16] for details on the emulation of the system). 

2.2 Hardware Architecture 

The design of the distributed simulation system neces­
sitated that the processors should be capable of executing 
tasks of size at least 64K and allow the creation of sizable 
user programs. The architecture required that the processors 
should be capable of communicating through the common bus 
and the shared memory. The system design also required that 
the selected processors should have additional features such as 
an I/0 bus to facilitate user interaction and communication 
with peripheral and storage devices, a suitable operating 
system and adequate software support. 

The selection of the hardware depended on the availabil­
ity of the hardware that satisfied the system requirements. 
Motorola's Hi-bit microprocessors have been selected for the 
the distributed simulation system since they met the system 
requirements and were also relatively inexpensive compared 
to mini or mainframe computers. The hardware consists of 
a VME/10 microcomputer and seven VMEllO monoboard 
microcomputers interconnected via a common bus called the 
VMEbus and associated hardware components such as serial 
ports, card cage and power supply. Figure 2 shows the 
configuration of the hardware as designed in this project. The 
following subsections describe the operation of the hardware 
and its configuration. 
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Figure 2.Hardware Setup of the Language Supported 
Distributed Simulation System 

2.2.1 Hardware Description 

The VME/10 is a development system consisting of a 
M68010 processor and the VERSAdos operating system. The 

• 
111 ft d' k VME/10 has a 15megabyte hard d1sk, a 54 oppy IS 

drive, 384K of RAM expandable to 1152K and a 16 megabyte 
addressing range. The VME/10 has three bus facilities: 
a local on-board bus, an I/0 channel (or an I/0 bus) 
and the VMEbus. The local bus provides communication 
between the microprocessor unit, memory management unit, 
keyboard, RAM, ROM, CRT and the I/0 channel. The 
1/0 channel consists of 64 signal lines and interfaces the 
local bus to hard disk and communicates with off-board 
devices such as serial ports, parallel ports, terminals and 
printers. The VMEbus is an industry standard bus with 96 
signal lines which allows the VME/10 to access additional 
memory, processors, or controllers. The VME/10 requires the 
configuring of its memory map, I/0 ports, and the tailoring 
of its operating system at system generation to suit the 
customized hardware configuration of the system. The VER­
SAdos operating system is a multitasking, multiprogramming 
operating system which supports high level languages such 
as FORTRAN, Pascal and other software utilities (see [24] 
for more information on the VME/10 and the VERSAdos 
operating system). 

The VMEllO is a single board microcomputer that can 
function as a stand-alone microcomputer or as one of several 
CPU elements in a multi-processor VMEbus configuration 
[22]. The VMEllO is a 16-bit microprocessor with an 
MC68000 processor, 64K on-board RAM/ROM/EPROM and 
a 16 megabyte addressing range. The VMEllO has similar 
bus features as the VME/10 and it can also access off-board 
resources on the VMEbus, 

The VMEbus interface on the VME/10 and the VMEllO 
provides data and address path from the on-board MPU via 
the local bus to the VMEbus. The VMEbus interface system 
is comprised of four groups of signal lines called buses and a 
collection of functional modules which can be configured as 
required to interface devices to buses. The four buses are, (1) 
Data Transfer bus, (2) Data Arbitration bus, (3) lnterrupt 
bus, and (4) Utility bus. The Data Transfer Bus (DTB) is 
used by the devices to transfer data and the DTB contains the 
data and address pathways and the associated control signals. 
Functional modules (a collection of electronic components 
with a single functional purpose) called DTB Masters and 
DTB Slaves use the DTB to transfer data between each other. 
The Data Arbitration Bus is used to guarantee that only 
one DTB Master is in control of the bus at any time since 
it is possible to configure the VMEbus with several DTB 
Masters. The Data Arbitration Bus is used to transfer control 
of the bus between DTB Masters and this is performed by the 
modules DTB Requester and the DTB Arbiter. The Interrupt 
Bus facilitates the interruption of the normal bus activity by 

devices so that the interrupt requests can be serviced. The 
interrupt requests can be prioritized to a maximum of seven 
levels. The functional modules associated with the interrupt 
bus are the Interrupters and the Interrupt Handlers which 
use the signal lines of the interrupt bus. The Utility bus 
includes a collection of utilities for failure detection, system 
clock, initialization and system reset (see (11,12,35] for more 
information on the VMEbus and its specifications). 

2.2.2 Hardware Configuration 

The use of off-the-shelf hardware in the distributed sim­
ulation system requires configuring the hardware, integrating 
all the hardware components and customizing the operating 
system to suit the desired system design. The VMEllO 
processor, when supplied contains only the processor, bus 
interfaces and the basic hardware components. The memory 
devices, the address map decoder and the operating system 
are not provided with the processors since they have to be 
selected and configured as required by the application system. 
The memory map of the VMEllO has to be configured to 
allow the accessing of on-board RAM/ROM/EPROM, off­
board RAM (shared dual-ported memory accessible through 
the VMEbus) and the on-board boot-strap software. The 
configuring of the dual-ported memory accessible through 
the VMEbus as off-board memory for both the VME/10 and 
the VMEllOs enables the processors to share the memory 
for communication purposes. After the memory map had 
been appropriately configured, the address map for the 
memory access was designed and programmed into an address 
map decoder PROM and installed on the VMEllO. The 
operating system for the VMEUO was generated from the 
VERSAdos utilities and the necessary device drivers available 
on the VME/10. The customized operating system was then 
programmed into EPROMs and installed on the VMEllO (see 
[17] for more information on the hardware configuration of the 
distributed simulation system). 

The integration of the system involved the interconnec­
tion of the various hardware components, the establishment 
of hierarchical control levels in the system, the establishment 
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of user interface and the implementation of the software. The 
VMEUO processors were interconnected with one another by 
housing them in a card cage with the VMEbus backplane 

[23] and the I/0 channel. The integration of the VMEj 10 
and the VMEUO processors required the interconnection of 
the VMEbus and the I/0 channel between the VME/10 and 
the VMEllOs card cage. The establishment of hierarchical 
control levels in the system required configuring one of the 
processors as the System Controller. The system controller 
provides system management and control functions to the 
distributed simulation system. The software architecture 
and its implementation are described in Section 2.3. User 
interface is necessary only to the VME/10 since the user 
program creation and simulation initiation and termination 
take place on the VME/10. The user is not required to 
interact with the VMEllO processors since the execution 
of the language tasks on the slave processors is maintained 
transparent to the user. 

2.3 Software Architecture 

Since the system objectives included maintaining the 
existing language structure of GASPIV and its user interface, 
a unique design of t.he software architecture was required. A 
software kernel was built around the GASPIV language t<tsks 
to allow the subprogram groups to execute independently 
and communicate with each other. In addition a software 
layering approach was developed to maintain the existing 
functional flow of GASPIV and its user interface. This 
software architecture is described in the following subsections. 

2.3.1 Software Design 

In GASPIV, the user writes the program, event rou­
tines, system initialization routines and any other necessary 
routines. When the user's main program is executed, it 
calls the subroutine GASP which establishes the simulation 
environment. From then on, subroutine GASP takes over 
until the specified completion time of simulation. After the 
completion of the simulation, subroutine GASP returns to the 
user's main program where the simulation may be terminated 
by the user's main program. The distributed simulation envi­
ronment is required to maintain this conventional execution 
structure of GASPIV. 

The implementation of the eight partitioned GASPIV 
language tasks in the distributed simulation system requires 
the consideration of these needs: (1) the partitioned language 
tasks containing subprograms written in FORTRAN need a 
MAIN program or a driver for each task (except the USER 
task which will be driven by the user's main program) to exe­
cute independently, (2) the subprograms need a mechanism to 
call subprograms residing in other tasks executing on separate 
processors, and (3) the need to interface user's programs 
with the other tasks. To satisfy these system needs a 
software layering approach has been developed. The software 
architecture of the distributed simulation system consists of 
three layers namely, (1)the GASPIV subprogram group, (2) 
the task interface layer which interfaces a subprogram group 
with other subprogram groups and the user programs, and 
(3) the operating system which allows the programs to access 
the common bus, shared memory and other system resources 
in the distributed simulation environment. 

The inner layer <:ontains the GASPIV subprograms in 
their original form. These subprograms residing on different 
tasks are interfaced with one another through the task drivers 
and the task inter/act: library. The task driver is the main 
program of a task group which can execute the subprograms 
residing in its task at the request of a subprogram residing 
in another task and can suspend or terminate itself. The 
task interface library consists of pseudo subprograms of all 
the subprograms needed by more than one task. When a 
subprogram residing in a task calls another subprogram which 
is not residing in the same task, the pseudo subprogram of the 
ealled subprogram in the task interface library is referenced. 
The pseudo subprogram serves as a communication vehicle 
between the calling subprogram and the called subprogram. 
The pseudo subprogram places the subprogram parameters 
In the shared memory and sets the semaphore of the actual 
subprogram to be executed. The task containing the called 
subprogram detects this change in status of this semaphore 
in the shared memory and reads the subprogram parameters 
from the shared memory and executes the requested actual 
subprogram residing in it. A pseudo subprogram GASP has 
been designed for inclusion in the USER task and this pseudo 
GASP will serve as the task driver for USER task (see [15,16] 
for more information on the software design). 

2.3.2 Software Execution Structure 

Once the tasks have been installed on the appropriate 

processors and the necessary input files for the simulation 
have been crea'Ged, the simulation can be started by executing 
the user program. When the user program is executed, 
the user's main program will call subroutine GASP. The 
wbroutine GASP in the USER task is actually the pseudo 
GASP which will first execute an assembler program to 
allocate the shared memory to the task. Then all the 
shared variables and the semaphores will be initialized in the 
shared memory and the language tasks residing on individual 
processors will be activated separately. The pseudo GASP 
will then set the semaphore of the SUPERVISOR task to 
execute the actual subprogram GASP residing in it. The 
:SUPERVISOR task will check its semaphore, detect the 
request for executing GASP and will execute subprogram 
GASP. The subprogram GASP will take over from here as 
in the conventional GASPIV execution. The interactions 
between the subprograms, task driver and the task interface 
library are shown in Figure 3. After the completion of the 
simulation, the SUPERVISOR task will send a me3sage to all 
tasks except the USER task to terminate themselves and then 
terminate itself. The USER task will find that all the tasks 
have terminated from the change in their semaphore status 
and will return to the user's main program and will complete 
normally. 
2.4 Current Status 

The software development and the design verification 
phases of the language supported distributed simulation 
system have been completed. The processors and the 
other necessary hardware have been acquired and configured. 
The remaining tasks involve the completion of the software 
implementation and the testing of the system. The final phase 
of this project will involve the performance evaluation and the 
bench-marking of the developed system. 

4311 



Two Approaches to the Implementation of a Distributed Simulation System 

SHARED H:M:RY 

(contains Sl.Clprogr.m par..-neters of Sl.Clprognrns 
called by more 11m me task and semaphores Of 
all taskS and Sl.Clprogr.ms) 

Ched< If my Set the 
Sl.qlrogr.m statuS 
In this ttssk verleDle 
~'las \.0 tle \n shaiell 
executea merrory 

for tne 

TasK 011ver Ol.tl!lrognm 
that nas 

A 
to be 

Execute executea 
SUJprograns by another 
reslatng In task 
this task 

ca11 pseuao 
Slilprognrns 

Sl.tJprogr<flls In the TIL Task 
reslalngln lolhen the InterfaCe 

neeaed 
this task actual Library 

Slllprograms 
are rotln 
tn!s tas1< 

TasK EnV!nnnent 

Figure 3. Interaction between Task Driver, Task 
Interface Library and the GASPIV Subprograms 

3.0 lMPLEMENATION OF A MODEL BASED 
DISTRIBUTED SIMULATION 
The principle behind distributed simulation is to in­

troduce concurrency into the implementation so that the 
functionally independent units of the simulation model 
and the support functions can execute in parallel. The 
performance of such a system can be enhanced over that 
possible in the strategy described in section 2 by introduc­
ing concurrency into the components of simulation models 
themselves. This second approach is being researched at 
Texas A&M University. This effort explores the language 
requirements for distributed simulation of concurrent models. 
The objective of this research is to build the minimal 
simulation primitives suitable for distributed simulation on 
microprocessor architectures. Essentially the design includes 
an asynchronous simulation strategy, concurrent simulation 
primitives, deadlock prevention or recovery algorithms and 
a support environment. An overview of this approach is 
presented in this section. 

3.1 Simulation Modeling Technique Suitable for Distributed 
Simulation 

The simulation strategy determines the modeling method­
ology and the fundamental nature and world view of the 
system. Kiviat [14} identified three major modeling strategies 
in discrete simulation: (i) event scheduling, (ii) activity 
scanning, and (iii) process interaction. The event oriented 
methodology represents an instantaneous occurrence as an 
event and carries out the simulation by scheduling these 
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events. The activity scanning approach carries out an 
action if the corresponding state changes and time scheduling 
conditions are met. The process interaction methodology 
models the system as a set of coexisting or cooperating 
processes each communicating through messages. Each 
process unit is controlled independently and the simulation is 
carried out by activity scanning or event scheduling. 

From an analysis of the existing simulation strategies, the 
process interaction strategy was selected for the distributed 
simulation implementation since it maintains the inherent 
concurrency in the system being modeled to a greater extent 
than any other approach. The basic unit of computation is 
a process that sends and receives entities as messages: the 
entity flow between the processes characterizes the simulation 
progress. Thus the system to be simulated is modeled as 
a set of coexisting or cooperating processes. All processes 
execute concurrently and communicate through message 
passing interfaces. All messages or entities are time encoded 
and queued in transit. The message order is preserved 
between the processes and the time stamps of the messages 
are maintained in monotonically increasing order to insure 
proper and correct simulation. 

3.2 Language Requirements for Distributed Simulation 

The language requirements for distributed simulation 
can be broadly classified into three categories: power to 
express concurrent activities at source level, a distributed 
control mechanism to carry out simulation and a minimal 
set of modeling tools. These are described in the subsections 
below. 

3.2.1 Distributed Simulation Control Mechanism 

The system to be modeled is represented as parallel 
processes which operate on entities and send them to other 
processes through a message passing mechanism. Thus each 
process removes entities from its input message queue till 
it is empty or till the simulation termination conditions 
are satisfied, performs the necessary operations, updates its 
status and sends the entity or message to the next process 
in line. Figure 4 represents such a system with processes 
shown as nodes and message paths as arcs. Each node has a 
message buffer such as the one shown for P4 which contains 
the time-ordered input messages for that node. A process 
with multiple input edges and messages on only a subset of 
them, like P4 in Figure 4, has to wait until it has at least 
one message on all of them to simulate correctly. Such a 
process enters a blocked state. But this is overly restrictive 
since a blocked process with partial message input can still 
simulate forward without causing any incorrectness under 
certain conditions. The validity of the above statement is 
a direct consequence of the assumption that the messages 
have increasing time stamps along any virtual channel: in 
other words, a process can never send a message in its past. 
Thus P 1 cannot send a message with time stamp less than 110 
units. Hence a receiving process can never receive a message 
with time stamp less than the minimum clock time of its 
predecessors and it can simulate or process the messages with 
time stamps less than or equal to the smallest local clock time 
'~fits predec~ssors. In Figure 4, all input edges of P4 except 
the one between P1 and P4 have messages. The forward 
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simulation time of P4 is the minumum of the clock vaLles 
of Pt, P2, Pa and P,. and is 90. Thus P4 can still process all 
the messages with time stamp less than or equal to 90 though 
it does not have a message from P 1 . 

110 

Me•sage buffer of P4 

Figure 4. Blocking Situation 

The basic principle behind the asynchronous execution 
of the simulation program without causing any incorrectness 
is to compute the safe forward simulation time (FST) for 
each process as the minimum of the local clock time of the 
predecessor processes and allow each process to operate on 
the messages with time stamp less than the safe forward 
simulation time. This algorithm is similar to the demand 
driven null messages method proposed by Chandy and Misra 
[4] except that the edges between processes do not have a 
clock associated with them. Rather, a successor process 
maintains and updates the clock value of its predecessors 
while processing the messages. Thus the update of the 
forward simulation time for a process is based on the clock 
value of its predece.ssors unlike the clock value of the edges as 
in the model proposed by Chandy and Misra. The advantage 
of this approach is that it avoids deadlock that arises due to 
total absence of messages along any edge. This situation is 
illustrated in Figure 5 in which Ps keeps sending the messages 
to P6 only. P4 can not progress since its FST equals the local 
clock time of Pn· Hence P4 would send an awakening signal to 
Pn requesting Pn to update its clock. This awakening signal 
is propagated to the predecessor Pk of Pn until the clock of Pk 
exceeds 90 units. If no such Pk exists the signal is transmitted 
back to P4 which detects the deadlock situation and avoids by 
not considering the clock value of Pn in computing its forward 
simulation time. However, in the current situation, the clock 
value of Ps namely 111 units will be sent to P4 as reaction 
to the awakening signal which then can process all messages 
with time stamp less than or equal to 111 units. The reader 
is referred to [3] for further details. 

Since the clock values are not maintained for the edges all 
the similar messages from various predecessors are enqueued 
in a single buffer. This approach also makes the handling 
of a multiple entity simulation system much ea.'lier. The 
same simulation strategy and the queueing algorithms can 
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Figure 5. Deadlock Situation 

be ea.'li!y extended to simulate a multiple entity system in 
which processes send or receive more than one type of entity. 
Thus the number of buffers for a process is dictated by the 
different types of entities received by it and not by the number 
of edges betwE!en its predecessors and itself. 

This strategy forms the crux of the run-time control 
environment and could be implemented a.'l one single control 
module to govern the activities of all the user defined 
processes or as a set of concurrent control processes for each 
individual user defined processes. The second approach is a 
better alternative since the control module of each process 
conserves the locality and both the user defined process and 
its control module can be loaded onto the same processor in a 
multiprocessing environment. This approach is in accordance 
with the primary goal of developing a truly distributed 
simulation system. 

3.2.2 Minimal Set of Modeling Tools 

The modeler views a 11ystem to be simulated a.'l a set of 
interacting processes that operate on the locally queued-in 
entities until the simulation termination conditions are met. 
Thus the modeling tools should have the following basic 
capabilities to build a simulation model: facility to represent 
and define the coexisting processes and entities of the real 
system, facility to create and remove an entity from the 
system, synchronized message communication mechanisms 
to simulate the flow of entities, access capabilities to the 
random number generators and statistics collection routines, 
and statements to begin and end simulation. This system 
is being built as an extension of a host language to allow 
rapid prototyping. The desired language features and the 
suitability of the chosen host language are discussed in the 
following section. 

3.3 Language Features Essential for Distributed Simulation 

The analysis of the languages suited for distributed 
s:tmulation reveals that it should be able to handle the 
dynamic entity creation and queue handling. The number 
of entities prevalent in a system and the queue size of the 
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processes are dynamic during simulation. While languages 
like Ada [19] and Pascal provide access and pointer types 
to handle such_dynamic situations, FORTRAN has to utilize 
static single dimensional arrays with predefined size. The 
shortcoming of using static arrays is that neither the model 
builder nor the system designer can estimate this parameter 
precisely due to the stochastic nature of the simulation prob­
lems. Furthermore this parameter will vary from problem 
to problem. While oversized arrays waste the memory space 
considerably, undersized arrays will jeopardize the simulation 

system performance. 

The handling of entity flow has an impact on the simu­
lation control environment. The entity flow can be handled 
by synchronized message communication, that is to transfer 
the entities with their attributes through the processes in 
the system or by storing the entities in a common global 
store and simulate the entity flow by sending a time encoded 
message. The first approach is ideal for a truly distributed 
architecture while the second approach needs a distributed 
architecture with a common global store, in a multiprocessing 
environment. However, the second method violates one of the 
operating characteristics of distributed systems namely not to 
have global variables and to use message passing protocols 
for all transfers, both in interprocess and interprocessor 
communications. Thus a communication mechanism like 
the rendezvous in the Ada programming language is ideal 
and necessary to represent the entity flow in a simulation 
system. The run-time system of the simulation language 
should also be capable of assigning the concurrent program 
units to different processors failing which the modeler should 
be provided with a facility to assign the concurrent program 
units to different processors. The entity definition along with 
its attributes, the operations to be performed on an entity like 
creation and destruction, queue handling mechanisms and the 
simulation termination conditions should be known at each 
individual processing unit to support distributed simulation. 
The simulation language also has to provide random number 
generators and statistics collection routines as concurrent 
units that emit a random number and accept an input data 
value respectively on a call from other program units. 

Current research at Texas A&M University involves the 
rapid prototyping of the above mentioned concurrent simula­
tion system. This implementation will provide the concurrent 
simulation primitives as extensions to a host language. The 
appropriate choice for the host language is a language with 
concurrent features at source level since it provides a natural 
base for the simulation implementation that has to support 
logically concurrent activities and synchronization protocols. 
Further a program developed on a single processor can be run 
unaltered on any number of processors since the allocation 
of tasks to processors is built in the run-time system of 
the host concurrent language. Ada and Occam [20,21,29] of 
!NMOS were considered for the host language since both have 
message passing as their communication mechanism between 
concurrent program units and generic facilities for creating 
processes. However, Occam provides excellent concurrent 
primitives at the cost of good data structures and its primitive 
nature discourages the integrated system development at a 
higher level. Further Occam does not provide data types to 
handle dynamic situations while Ada's access types come in 

handy. Extensions to Ada are provided to facilitate a user 
in building a simulation model. The syntax of the extensions 
that provide the basic simulation primitives is given in Table 

1. 
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Prima'tiv.e Syntax of the e:tten.n'on 
Representation of a.n ENTITY entity-name 
entity = list of attributes; 
Representation of a. PROCESS proc::ess-na.me; 
process unit Begin 

...... 

...... 
end process-name; 

Creation of an entity CREATE entity-variable; 
Flow of an entity SEND entity-vMiable TO process-name; 

RECEIVE entity-variable; 
Enqueing and dequeing ENQUEUE entity-variable; 
an entity DEQUEUE entity-variable; 
Removal of an entity REMOVE entity-variable; 
form the system 
Advance the clock of HOLD thne-uniti 
a pro-c:e;,s 
Simulation termination STOP SIMULATION WHEN TIME 
condition - time-unitj 
Random varaite UNIFORM(•tream,parameters) 
generators EXPONENTIAL(stream,pa.rameters) 

POISSON(•tream,parametero) 
NORMAL(stream,parameters) 
RANDOM(•tream) 

Statistics collection Automatic data collection on entities 
processes a.nd queues in the s:iro.ula.ti<m 
system 8 the following statements: 

TALLY real-variable; 
ACCUMULATE real-va.ri,.ble; 

Table 1. Syntax of the Extensions that provide 
Simulation Primitives 

The user model is processed by a preprocessor to replace 
the extensions by Ada statements and to create a simulation 
environment by instantiating a control module for each user 
defined process. 

3.4 Three Different Ada Environments for Implementation 

The primary aim of using Ada to build simulation 
environments has been to exploit and to study the utility 
of the package and generic concepts in generalizing the 
simulation tools and the_ tasking facilities in distributing the 
simulation by improving the concurrency [1,33]. The initial 
Ada implemenations at Texas A&M University involved the 
development of two systems that support process and event 
oriented simulation [13,32]. These two software systems were 
implemented and executed on a VAX 11/782 using the NYU 
Ada/Ed Translator /Interpreter version 1.1.4. The event 
oriented version was later modified to support distributed 
simulation by executing the support functions concurrently, 
on a VAX 11/750 [33,34]. Though the NYU Ada/Ed Transla­
tor is not a production compiler, the ease of generalizing the 
simulation concepts through the packages and generic units 
of Ada and the portability of Ada through various compilers 
encouraged us to test Ada in developing an integrated and 
concurrent simulation environment. 

Recently Texas A&M University has acquired three more 
Ada compilers which overcome the very low productivity 
associated with the NYU Ada/Ed Translator significantly. 
The three compilers are Telesoft Ada and Digital Electronics 
Corporation Ada for the VAX 11/750 [9] and the ROLM Ada 
compiler [8] for the Data General MV /10000. With very 
few modifications the Ada programs written for one system 
have been easily run on the other systems. The strength of 
Ada thus lies in its portability and maintainability among 
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the different compilers and machines. Among the three 
systems Telesoft Ada has not been considered for distributed 
simulation application, since our current version does not 
support tasking. 

3.5 Current Status 

The protype of the above system is being implemented 
using the DEC Ada compiler running on VAX/VMS Version 
4.1. The operation of the prototype will be analyzed by 
simulating the benchmark applications. Thus the outcome 
of this research will be a functional prototype of a discrete 
concurrent simulation system in which the hierarchical ar­
chitecture is retained for the simulation support functions as 
parallel processes while user written portions of the model are 
simulated by the coexisting processes with message passing 
interfaces. Another advantage of utilizing a concurrent 
language as the host language is that the run-time system 
of the concurrent language will take care of assigning the 
concurrent units to the processors available. It will also 
provide a framework to analyze the sensitivity of the system 
to parameters like deadlock occurrences, processor utilization 
and total turnaround time. 

4.0 SUMMARY 

The language supported distributed simulation system 
is nearing its completion. The experience and insight gained 
from the design and the development of this system offers 
promise for exploiting the parallelism in the simulation 
language functions as a means for improving the performance 
of the system. This implementation approach also proves to 
be advantageous since it avoids the deadlock and synchroniza­
tion problems and maintains the distributed implementation 
transparent to the user. 

The second implemena.tion approach will retain the 
hierarchical distribution of simulation functions as in the 
first approach and will also provide concurrency features in 
its modeling of its user-written routines. Even though the 
second implementation approach has to deal with deadlock 
and synchronization problems and has to involve the user 
in the distribution of simulation model, it promises a better 
speed up from the distribution than the first approach. The 
future research at Texas A&M University will involve the 
complete implementation of the second approach and the 
performance evaluation of the distributed simulation systems 
implemented by both approaches. 
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