
Proceedings of the 1985 Winter Simulation Conference
D. Gantz, G. Blais, S. Solomon (eds.)

TWO APPROACHES TO THE IMPLEMENTATION OF A DISTRIBUTED SIMULATION SYSTEM

Murali Krishnamurthi
Industrial Automation Laboratory

Dept. of Industrial Engineering

Usha Chandrasekaran
Laboratory for Software Research

Dept. of Computer Science

Sallie Sheppard
Laboratory for Software Research

Dept. of Computer Science

Texas A & M University
College Station, TX 77843

ABSTRACT

This paper describes two approaches to the implementation of distributed simulation currently being pursued at
Texas A&M University. The first approach describes the design and the implementation of a distributed simulation
system onto a Motorola 68000 based architecture. This approach involves transparently distributing the language sup­
port functions of an existing simulation language (GASP) onto multiple processors. The se<:ond approach dis<:usses the
implementation of simulation support software in a high level distributed pro<:essing language. This approach involves
the distribution of protions of the simulation model whkh can be executed in parallel onto multiple processors by the
model builder. The paper discusses the details of both the approaches and the current status of their implementation.

1.0 INTRODUCTION

Sin<:e 1983 Texas A&M University has been involved in
a project to design and implement a distributed simulation
system. Funded in part by the National Science Foundation
[31], the first phase of the project which ended in May 1985

concentrated on exploring software implementation strategies
for distributed simulation [15,16,33,34]. Three strategies for
the distribution of the software onto multiple processors were
defined and emulated via multitasking on single processor
systems. As a result of this work two of the strategies were
selected for further study in the implementation phase of
the project currently in progress. The first strategy involves
taking an existing simulation language, GASP IV, and
transparently distributing the support subroutines onto the
available processors. All user-written model code is executed
on a single processor thus avoiding problems in deadlock
detection and avoidance. Various support functions such as
random variate generation, statistics processing and filing
are distributed onto the different processors. The second
approach implements simulation support software in a high
level distributed processing language. Here the distribution
is not transparent to the model builder who must designate
which portions of the model can be executed in parallel.
This further means that the implementation must include
provision for automatic deadlock detection and prevention
but offers more potential speed-up from the distribution than

the first approach.

The goal of current phase of the distributed simulation
project is to construct hardware/software systems utilizing
multiple processors to support simulation for both of these
strategies. The two different designs being pursued dictate
two different approaches in the implementation. The first
design is being implemented on a distributed architecture of
Motorola 68000 processors while the second design is being
implemented in the Ada* programming language and will

* Ada is a trademark of the U.S. Department of Defense.

be portable to any distributed architecture supporting Ada.
This paper describes these approaches along with the relative
merits of each.

2.0 THE DESIGN AND IMPLEMENTATION OF A
LANGUAGE SUPPORTED DISTRIBUTED
SIMULATION SYSTEM

One approach to distributed simulation implementation
is through the distribution of simulation language functions
onto individual processors [5,6,33,36,37]. The basic differ­
ence between the distributed simulation via model function
approach [2,4,26,30] and this approach is that the model
function approach distributes simulation model functions
onto separate processors whereas this approach distributes
language support functions onto individual processors, thus
exploiting the inherent parallelism in the language functions.
This approach has the advantage of avoiding deadlock
problems but the disadvantage of not exploiting any of the
parallelism in the system being simulated.

One of the distributed simulation systems currently
being built and implemented at Texas A&M University is
based on the distributed simulation via language functions
approach. The objectives of this system are (1) to implement
a distributed simulation system using off-the-shelf hardware
components, (2) to use an existing simulation language in the
system, (3) to maintain the existing language and execution
structures of the language, (4) to maintain the distributed
implementation transparent to the user, and (5) to speed up
the simulation at a low cost. The following sections describe
the design, architecture and the implementation status of this
system.

2.1 System Design

Designing a dedicated system to support distributed sim­
ulation necessitates a clear definition of the requirements. For
example, requirements such as the type of architecture, the

" This material is based upon work supported in part by the National Science Foundation under Grant No. ECS-1;215550

435

http://crossmark.crossref.org/dialog/?doi=10.1145%2F21850.253423&domain=pdf&date_stamp=1985-12-15

Murali Krishnamurthi, Usha Chandrasekaran, Sallie Sho:eppard

type of interprocessor communication, the type of operating
system configuration and the language to be used have to be
defined. Generally, the multiprocessor architectures are clas­
sified by the interconnection structure between the processors
and the memories. The three most common interconnections
are (1) time shared or common bus, (2) cross bar switch
network, and (3) mJltiport memories [10]. Among the three,
the common bus interconnection scheme is the least expensive
and the least complex scheme, but it is also the least efficient
scheme. The common bus interconnection scheme is ideal
for building dedicated, exploratory multiprocessor systems
using off-the-shelf hardware components since the hardware
complexity is minimal in this scheme. Several distributed
simulation systems have been designed based on the common
bus architecture or on the enhancements of the same [25,27].
The common bus architecture has been chosen for this system
since it is the simplest of the interconnection schemes and
also because off-the-shelf hardware is available for this type
of interconnection scheme.

Since one of the objectives of the distributed simulation
system is to use an existing simulation language, the GASPIV
Simulation Language [28] has been chosen for implementation
(see [38] for the reasons for selecting GASPIV). The selection
of GASPIV required the analysis of the language to identify
major functional subprogram groups which could be shown
to demonstrate relative independence during execution. A
complete analysis of GASPIV showed that the subprograms
could be grouped into eight tasks which are mutually
exclusive for most of the simulation run except during
program initialization and termination. Since these tasks are
mutually exclusive they have independent instruction streams
and have been partitioned into eight separate tasks with each
partition executed on a separate processor. Figure 1 shows
the eight partitions and the subprograms grouped within each
partition.

Main DATIN SLM<Y FJLEM CO.CT CiRAI'O GTI'BL
JNlLC OF AUT I"'<rn RM:JVE TJMST GOLAY
sc:x:N) JPACK PRNTS CO>Y 'liMSA I'Fll'D
OlPUT JMAP PRNTQ Sl.t"Q KROSS
LMCM" BUILD CLEAA t-PRED

UERR ERR IN ERROR PRODQ

STATE SET GPLOT NSUCR
EVNTll HJSTO ~

RandOm
Deviates

USER lN'UT ruiPur Fli.IN3 STATJSTlCS RI'N:XE'I camN.

Figure L GASPIV Subprogram Paritition Groups

Even though the eight tasks are mutually exclusive in
terms of processing activity, discrete simulation requires the
tasks to communicate with one another to exchange the nec­
essary results. This requires designing a mechanism to allow
the tasks executing on separate processors to communicate
with one another. There are several mechanisms available
for interprocessor communication in multiprocessor syBtems
[18]. In the case of the common bus architecture it is possible

to design a bghtly coupled system with the processors
communicating through shared memory or a loosely coupled
system with the processors communicating directly through
the bus. It is also possible to design a system with a single bus
or wlth multip:te buses [7] based on the system requirements
and the availability of off-the-shelf hardware to meet those
requirements. A single common bus architecture with shared
memory type communication or a common bus architecture
with interrupt driven communication mechanism are the most
commonly used architectures for distributed simulation [27].

436

Since the simplest mechanism for FORTRAN tasks to
communicate with one another is through a global com­
mon data are<• (BLOCK DATA), the shared memory type
communication (with the global common area located in
the shared memory) has been designed for this distributed
simulation system. The tightly coupled architecture of the
system with one supervisory task and seven slave tasks
distributed on eight processors required a compatible oper­
ating system configuration. The commonly used operating
system configurations in multiprocessing systems are the
master-slave, floating supervisor, and separate supervisor
'oype configurations. The master-slave type configuration
has been chosen for this distributed simulation system since
it is compatible with the hierarchical design of the system
and also because it is the simplest of the operating system
configurations available for multiprocessors built from off-the­
shelf hardware components.

After the design of the distributed simulation system was
completed its feasibility was verified by emulating the system
on a Texas Instruments 990/12 minicomputer. The emulation
provided satisfactory results on the feasibility of the designed

system (see [15,16] for details on the emulation of the system).

2.2 Hardware Architecture

The design of the distributed simulation system neces­
sitated that the processors should be capable of executing
tasks of size at least 64K and allow the creation of sizable
user programs. The architecture required that the processors
should be capable of communicating through the common bus
and the shared memory. The system design also required that
the selected processors should have additional features such as
an I/0 bus to facilitate user interaction and communication
with peripheral and storage devices, a suitable operating
system and adequate software support.

The selection of the hardware depended on the availabil­
ity of the hardware that satisfied the system requirements.
Motorola's Hi-bit microprocessors have been selected for the
the distributed simulation system since they met the system
requirements and were also relatively inexpensive compared
to mini or mainframe computers. The hardware consists of
a VME/10 microcomputer and seven VMEllO monoboard
microcomputers interconnected via a common bus called the
VMEbus and associated hardware components such as serial
ports, card cage and power supply. Figure 2 shows the
configuration of the hardware as designed in this project. The
following subsections describe the operation of the hardware
and its configuration.

Two Approaches to the Implementation of a Distributed Simulation System

r--,---r~~~~-r~~~ ~~
Cllrllcage

\'1"£110 -Ml~ 64K aHlOOlll RI'M/EPRCN
RS m-e sertaJ Port

Figure 2.Hardware Setup of the Language Supported
Distributed Simulation System

2.2.1 Hardware Description

The VME/10 is a development system consisting of a
M68010 processor and the VERSAdos operating system. The

•
111 ft d' k VME/10 has a 15megabyte hard d1sk, a 54 oppy IS

drive, 384K of RAM expandable to 1152K and a 16 megabyte
addressing range. The VME/10 has three bus facilities:
a local on-board bus, an I/0 channel (or an I/0 bus)
and the VMEbus. The local bus provides communication
between the microprocessor unit, memory management unit,
keyboard, RAM, ROM, CRT and the I/0 channel. The
1/0 channel consists of 64 signal lines and interfaces the
local bus to hard disk and communicates with off-board
devices such as serial ports, parallel ports, terminals and
printers. The VMEbus is an industry standard bus with 96
signal lines which allows the VME/10 to access additional
memory, processors, or controllers. The VME/10 requires the
configuring of its memory map, I/0 ports, and the tailoring
of its operating system at system generation to suit the
customized hardware configuration of the system. The VER­
SAdos operating system is a multitasking, multiprogramming
operating system which supports high level languages such
as FORTRAN, Pascal and other software utilities (see [24]
for more information on the VME/10 and the VERSAdos
operating system).

The VMEllO is a single board microcomputer that can
function as a stand-alone microcomputer or as one of several
CPU elements in a multi-processor VMEbus configuration
[22]. The VMEllO is a 16-bit microprocessor with an
MC68000 processor, 64K on-board RAM/ROM/EPROM and
a 16 megabyte addressing range. The VMEllO has similar
bus features as the VME/10 and it can also access off-board
resources on the VMEbus,

The VMEbus interface on the VME/10 and the VMEllO
provides data and address path from the on-board MPU via
the local bus to the VMEbus. The VMEbus interface system
is comprised of four groups of signal lines called buses and a
collection of functional modules which can be configured as
required to interface devices to buses. The four buses are, (1)
Data Transfer bus, (2) Data Arbitration bus, (3) lnterrupt
bus, and (4) Utility bus. The Data Transfer Bus (DTB) is
used by the devices to transfer data and the DTB contains the
data and address pathways and the associated control signals.
Functional modules (a collection of electronic components
with a single functional purpose) called DTB Masters and
DTB Slaves use the DTB to transfer data between each other.
The Data Arbitration Bus is used to guarantee that only
one DTB Master is in control of the bus at any time since
it is possible to configure the VMEbus with several DTB
Masters. The Data Arbitration Bus is used to transfer control
of the bus between DTB Masters and this is performed by the
modules DTB Requester and the DTB Arbiter. The Interrupt
Bus facilitates the interruption of the normal bus activity by

devices so that the interrupt requests can be serviced. The
interrupt requests can be prioritized to a maximum of seven
levels. The functional modules associated with the interrupt
bus are the Interrupters and the Interrupt Handlers which
use the signal lines of the interrupt bus. The Utility bus
includes a collection of utilities for failure detection, system
clock, initialization and system reset (see (11,12,35] for more
information on the VMEbus and its specifications).

2.2.2 Hardware Configuration

The use of off-the-shelf hardware in the distributed sim­
ulation system requires configuring the hardware, integrating
all the hardware components and customizing the operating
system to suit the desired system design. The VMEllO
processor, when supplied contains only the processor, bus
interfaces and the basic hardware components. The memory
devices, the address map decoder and the operating system
are not provided with the processors since they have to be
selected and configured as required by the application system.
The memory map of the VMEllO has to be configured to
allow the accessing of on-board RAM/ROM/EPROM, off­
board RAM (shared dual-ported memory accessible through
the VMEbus) and the on-board boot-strap software. The
configuring of the dual-ported memory accessible through
the VMEbus as off-board memory for both the VME/10 and
the VMEllOs enables the processors to share the memory
for communication purposes. After the memory map had
been appropriately configured, the address map for the
memory access was designed and programmed into an address
map decoder PROM and installed on the VMEllO. The
operating system for the VMEUO was generated from the
VERSAdos utilities and the necessary device drivers available
on the VME/10. The customized operating system was then
programmed into EPROMs and installed on the VMEllO (see
[17] for more information on the hardware configuration of the
distributed simulation system).

The integration of the system involved the interconnec­
tion of the various hardware components, the establishment
of hierarchical control levels in the system, the establishment

437

Murali Krishnamurthi, Usha Chanclr.Jsekaran, Sallie Sheppard

of user interface and the implementation of the software. The
VMEUO processors were interconnected with one another by
housing them in a card cage with the VMEbus backplane

[23] and the I/0 channel. The integration of the VMEj 10
and the VMEUO processors required the interconnection of
the VMEbus and the I/0 channel between the VME/10 and
the VMEllOs card cage. The establishment of hierarchical
control levels in the system required configuring one of the
processors as the System Controller. The system controller
provides system management and control functions to the
distributed simulation system. The software architecture
and its implementation are described in Section 2.3. User
interface is necessary only to the VME/10 since the user
program creation and simulation initiation and termination
take place on the VME/10. The user is not required to
interact with the VMEllO processors since the execution
of the language tasks on the slave processors is maintained
transparent to the user.

2.3 Software Architecture

Since the system objectives included maintaining the
existing language structure of GASPIV and its user interface,
a unique design of t.he software architecture was required. A
software kernel was built around the GASPIV language t<tsks
to allow the subprogram groups to execute independently
and communicate with each other. In addition a software
layering approach was developed to maintain the existing
functional flow of GASPIV and its user interface. This
software architecture is described in the following subsections.

2.3.1 Software Design

In GASPIV, the user writes the program, event rou­
tines, system initialization routines and any other necessary
routines. When the user's main program is executed, it
calls the subroutine GASP which establishes the simulation
environment. From then on, subroutine GASP takes over
until the specified completion time of simulation. After the
completion of the simulation, subroutine GASP returns to the
user's main program where the simulation may be terminated
by the user's main program. The distributed simulation envi­
ronment is required to maintain this conventional execution
structure of GASPIV.

The implementation of the eight partitioned GASPIV
language tasks in the distributed simulation system requires
the consideration of these needs: (1) the partitioned language
tasks containing subprograms written in FORTRAN need a
MAIN program or a driver for each task (except the USER
task which will be driven by the user's main program) to exe­
cute independently, (2) the subprograms need a mechanism to
call subprograms residing in other tasks executing on separate
processors, and (3) the need to interface user's programs
with the other tasks. To satisfy these system needs a
software layering approach has been developed. The software
architecture of the distributed simulation system consists of
three layers namely, (1)the GASPIV subprogram group, (2)
the task interface layer which interfaces a subprogram group
with other subprogram groups and the user programs, and
(3) the operating system which allows the programs to access
the common bus, shared memory and other system resources
in the distributed simulation environment.

The inner layer <:ontains the GASPIV subprograms in
their original form. These subprograms residing on different
tasks are interfaced with one another through the task drivers
and the task inter/act: library. The task driver is the main
program of a task group which can execute the subprograms
residing in its task at the request of a subprogram residing
in another task and can suspend or terminate itself. The
task interface library consists of pseudo subprograms of all
the subprograms needed by more than one task. When a
subprogram residing in a task calls another subprogram which
is not residing in the same task, the pseudo subprogram of the
ealled subprogram in the task interface library is referenced.
The pseudo subprogram serves as a communication vehicle
between the calling subprogram and the called subprogram.
The pseudo subprogram places the subprogram parameters
In the shared memory and sets the semaphore of the actual
subprogram to be executed. The task containing the called
subprogram detects this change in status of this semaphore
in the shared memory and reads the subprogram parameters
from the shared memory and executes the requested actual
subprogram residing in it. A pseudo subprogram GASP has
been designed for inclusion in the USER task and this pseudo
GASP will serve as the task driver for USER task (see [15,16]
for more information on the software design).

2.3.2 Software Execution Structure

Once the tasks have been installed on the appropriate

processors and the necessary input files for the simulation
have been crea'Ged, the simulation can be started by executing
the user program. When the user program is executed,
the user's main program will call subroutine GASP. The
wbroutine GASP in the USER task is actually the pseudo
GASP which will first execute an assembler program to
allocate the shared memory to the task. Then all the
shared variables and the semaphores will be initialized in the
shared memory and the language tasks residing on individual
processors will be activated separately. The pseudo GASP
will then set the semaphore of the SUPERVISOR task to
execute the actual subprogram GASP residing in it. The
:SUPERVISOR task will check its semaphore, detect the
request for executing GASP and will execute subprogram
GASP. The subprogram GASP will take over from here as
in the conventional GASPIV execution. The interactions
between the subprograms, task driver and the task interface
library are shown in Figure 3. After the completion of the
simulation, the SUPERVISOR task will send a me3sage to all
tasks except the USER task to terminate themselves and then
terminate itself. The USER task will find that all the tasks
have terminated from the change in their semaphore status
and will return to the user's main program and will complete
normally.
2.4 Current Status

The software development and the design verification
phases of the language supported distributed simulation
system have been completed. The processors and the
other necessary hardware have been acquired and configured.
The remaining tasks involve the completion of the software
implementation and the testing of the system. The final phase
of this project will involve the performance evaluation and the
bench-marking of the developed system.

4311

Two Approaches to the Implementation of a Distributed Simulation System

SHARED H:M:RY

(contains Sl.Clprogr.m par..-neters of Sl.Clprognrns
called by more 11m me task and semaphores Of
all taskS and Sl.Clprogr.ms)

Ched< If my Set the
Sl.qlrogr.m statuS
In this ttssk verleDle
~'las \.0 tle \n shaiell
executea merrory

for tne

TasK 011ver Ol.tl!lrognm
that nas

A
to be

Execute executea
SUJprograns by another
reslatng In task
this task

ca11 pseuao
Slilprognrns

Sl.tJprogr<flls In the TIL Task
reslalngln lolhen the InterfaCe

neeaed
this task actual Library

Slllprograms
are rotln
tn!s tas1<

TasK EnV!nnnent

Figure 3. Interaction between Task Driver, Task
Interface Library and the GASPIV Subprograms

3.0 lMPLEMENATION OF A MODEL BASED
DISTRIBUTED SIMULATION
The principle behind distributed simulation is to in­

troduce concurrency into the implementation so that the
functionally independent units of the simulation model
and the support functions can execute in parallel. The
performance of such a system can be enhanced over that
possible in the strategy described in section 2 by introduc­
ing concurrency into the components of simulation models
themselves. This second approach is being researched at
Texas A&M University. This effort explores the language
requirements for distributed simulation of concurrent models.
The objective of this research is to build the minimal
simulation primitives suitable for distributed simulation on
microprocessor architectures. Essentially the design includes
an asynchronous simulation strategy, concurrent simulation
primitives, deadlock prevention or recovery algorithms and
a support environment. An overview of this approach is
presented in this section.

3.1 Simulation Modeling Technique Suitable for Distributed
Simulation

The simulation strategy determines the modeling method­
ology and the fundamental nature and world view of the
system. Kiviat [14} identified three major modeling strategies
in discrete simulation: (i) event scheduling, (ii) activity
scanning, and (iii) process interaction. The event oriented
methodology represents an instantaneous occurrence as an
event and carries out the simulation by scheduling these

439

events. The activity scanning approach carries out an
action if the corresponding state changes and time scheduling
conditions are met. The process interaction methodology
models the system as a set of coexisting or cooperating
processes each communicating through messages. Each
process unit is controlled independently and the simulation is
carried out by activity scanning or event scheduling.

From an analysis of the existing simulation strategies, the
process interaction strategy was selected for the distributed
simulation implementation since it maintains the inherent
concurrency in the system being modeled to a greater extent
than any other approach. The basic unit of computation is
a process that sends and receives entities as messages: the
entity flow between the processes characterizes the simulation
progress. Thus the system to be simulated is modeled as
a set of coexisting or cooperating processes. All processes
execute concurrently and communicate through message
passing interfaces. All messages or entities are time encoded
and queued in transit. The message order is preserved
between the processes and the time stamps of the messages
are maintained in monotonically increasing order to insure
proper and correct simulation.

3.2 Language Requirements for Distributed Simulation

The language requirements for distributed simulation
can be broadly classified into three categories: power to
express concurrent activities at source level, a distributed
control mechanism to carry out simulation and a minimal
set of modeling tools. These are described in the subsections
below.

3.2.1 Distributed Simulation Control Mechanism

The system to be modeled is represented as parallel
processes which operate on entities and send them to other
processes through a message passing mechanism. Thus each
process removes entities from its input message queue till
it is empty or till the simulation termination conditions
are satisfied, performs the necessary operations, updates its
status and sends the entity or message to the next process
in line. Figure 4 represents such a system with processes
shown as nodes and message paths as arcs. Each node has a
message buffer such as the one shown for P4 which contains
the time-ordered input messages for that node. A process
with multiple input edges and messages on only a subset of
them, like P4 in Figure 4, has to wait until it has at least
one message on all of them to simulate correctly. Such a
process enters a blocked state. But this is overly restrictive
since a blocked process with partial message input can still
simulate forward without causing any incorrectness under
certain conditions. The validity of the above statement is
a direct consequence of the assumption that the messages
have increasing time stamps along any virtual channel: in
other words, a process can never send a message in its past.
Thus P 1 cannot send a message with time stamp less than 110
units. Hence a receiving process can never receive a message
with time stamp less than the minimum clock time of its
predecessors and it can simulate or process the messages with
time stamps less than or equal to the smallest local clock time
'~fits predec~ssors. In Figure 4, all input edges of P4 except
the one between P1 and P4 have messages. The forward

Murali Krishnamurthi, Usha Chaodrasekaran. Sallie Sheppard

simulation time of P4 is the minumum of the clock vaLles
of Pt, P2, Pa and P,. and is 90. Thus P4 can still process all
the messages with time stamp less than or equal to 90 though
it does not have a message from P 1 .

110

Me•sage buffer of P4

Figure 4. Blocking Situation

The basic principle behind the asynchronous execution
of the simulation program without causing any incorrectness
is to compute the safe forward simulation time (FST) for
each process as the minimum of the local clock time of the
predecessor processes and allow each process to operate on
the messages with time stamp less than the safe forward
simulation time. This algorithm is similar to the demand
driven null messages method proposed by Chandy and Misra
[4] except that the edges between processes do not have a
clock associated with them. Rather, a successor process
maintains and updates the clock value of its predecessors
while processing the messages. Thus the update of the
forward simulation time for a process is based on the clock
value of its predece.ssors unlike the clock value of the edges as
in the model proposed by Chandy and Misra. The advantage
of this approach is that it avoids deadlock that arises due to
total absence of messages along any edge. This situation is
illustrated in Figure 5 in which Ps keeps sending the messages
to P6 only. P4 can not progress since its FST equals the local
clock time of Pn· Hence P4 would send an awakening signal to
Pn requesting Pn to update its clock. This awakening signal
is propagated to the predecessor Pk of Pn until the clock of Pk
exceeds 90 units. If no such Pk exists the signal is transmitted
back to P4 which detects the deadlock situation and avoids by
not considering the clock value of Pn in computing its forward
simulation time. However, in the current situation, the clock
value of Ps namely 111 units will be sent to P4 as reaction
to the awakening signal which then can process all messages
with time stamp less than or equal to 111 units. The reader
is referred to [3] for further details.

Since the clock values are not maintained for the edges all
the similar messages from various predecessors are enqueued
in a single buffer. This approach also makes the handling
of a multiple entity simulation system much ea.'lier. The
same simulation strategy and the queueing algorithms can

"

Message buffer of P4

@Ofll08Jl IOJ115Jl20 I

Figure 5. Deadlock Situation

be ea.'li!y extended to simulate a multiple entity system in
which processes send or receive more than one type of entity.
Thus the number of buffers for a process is dictated by the
different types of entities received by it and not by the number
of edges betwE!en its predecessors and itself.

This strategy forms the crux of the run-time control
environment and could be implemented a.'l one single control
module to govern the activities of all the user defined
processes or as a set of concurrent control processes for each
individual user defined processes. The second approach is a
better alternative since the control module of each process
conserves the locality and both the user defined process and
its control module can be loaded onto the same processor in a
multiprocessing environment. This approach is in accordance
with the primary goal of developing a truly distributed
simulation system.

3.2.2 Minimal Set of Modeling Tools

The modeler views a 11ystem to be simulated a.'l a set of
interacting processes that operate on the locally queued-in
entities until the simulation termination conditions are met.
Thus the modeling tools should have the following basic
capabilities to build a simulation model: facility to represent
and define the coexisting processes and entities of the real
system, facility to create and remove an entity from the
system, synchronized message communication mechanisms
to simulate the flow of entities, access capabilities to the
random number generators and statistics collection routines,
and statements to begin and end simulation. This system
is being built as an extension of a host language to allow
rapid prototyping. The desired language features and the
suitability of the chosen host language are discussed in the
following section.

3.3 Language Features Essential for Distributed Simulation

The analysis of the languages suited for distributed
s:tmulation reveals that it should be able to handle the
dynamic entity creation and queue handling. The number
of entities prevalent in a system and the queue size of the

44()1

Two Approaches to the Implementation of a Distributed Simulation System

processes are dynamic during simulation. While languages
like Ada [19] and Pascal provide access and pointer types
to handle such_dynamic situations, FORTRAN has to utilize
static single dimensional arrays with predefined size. The
shortcoming of using static arrays is that neither the model
builder nor the system designer can estimate this parameter
precisely due to the stochastic nature of the simulation prob­
lems. Furthermore this parameter will vary from problem
to problem. While oversized arrays waste the memory space
considerably, undersized arrays will jeopardize the simulation

system performance.

The handling of entity flow has an impact on the simu­
lation control environment. The entity flow can be handled
by synchronized message communication, that is to transfer
the entities with their attributes through the processes in
the system or by storing the entities in a common global
store and simulate the entity flow by sending a time encoded
message. The first approach is ideal for a truly distributed
architecture while the second approach needs a distributed
architecture with a common global store, in a multiprocessing
environment. However, the second method violates one of the
operating characteristics of distributed systems namely not to
have global variables and to use message passing protocols
for all transfers, both in interprocess and interprocessor
communications. Thus a communication mechanism like
the rendezvous in the Ada programming language is ideal
and necessary to represent the entity flow in a simulation
system. The run-time system of the simulation language
should also be capable of assigning the concurrent program
units to different processors failing which the modeler should
be provided with a facility to assign the concurrent program
units to different processors. The entity definition along with
its attributes, the operations to be performed on an entity like
creation and destruction, queue handling mechanisms and the
simulation termination conditions should be known at each
individual processing unit to support distributed simulation.
The simulation language also has to provide random number
generators and statistics collection routines as concurrent
units that emit a random number and accept an input data
value respectively on a call from other program units.

Current research at Texas A&M University involves the
rapid prototyping of the above mentioned concurrent simula­
tion system. This implementation will provide the concurrent
simulation primitives as extensions to a host language. The
appropriate choice for the host language is a language with
concurrent features at source level since it provides a natural
base for the simulation implementation that has to support
logically concurrent activities and synchronization protocols.
Further a program developed on a single processor can be run
unaltered on any number of processors since the allocation
of tasks to processors is built in the run-time system of
the host concurrent language. Ada and Occam [20,21,29] of
!NMOS were considered for the host language since both have
message passing as their communication mechanism between
concurrent program units and generic facilities for creating
processes. However, Occam provides excellent concurrent
primitives at the cost of good data structures and its primitive
nature discourages the integrated system development at a
higher level. Further Occam does not provide data types to
handle dynamic situations while Ada's access types come in

handy. Extensions to Ada are provided to facilitate a user
in building a simulation model. The syntax of the extensions
that provide the basic simulation primitives is given in Table

1.

441

Prima'tiv.e Syntax of the e:tten.n'on
Representation of a.n ENTITY entity-name
entity = list of attributes;
Representation of a. PROCESS proc::ess-na.me;
process unit Begin

......

......
end process-name;

Creation of an entity CREATE entity-variable;
Flow of an entity SEND entity-vMiable TO process-name;

RECEIVE entity-variable;
Enqueing and dequeing ENQUEUE entity-variable;
an entity DEQUEUE entity-variable;
Removal of an entity REMOVE entity-variable;
form the system
Advance the clock of HOLD thne-uniti
a pro-c:e;,s
Simulation termination STOP SIMULATION WHEN TIME
condition - time-unitj
Random varaite UNIFORM(•tream,parameters)
generators EXPONENTIAL(stream,pa.rameters)

POISSON(•tream,parametero)
NORMAL(stream,parameters)
RANDOM(•tream)

Statistics collection Automatic data collection on entities
processes a.nd queues in the s:iro.ula.ti<m
system 8 the following statements:

TALLY real-variable;
ACCUMULATE real-va.ri,.ble;

Table 1. Syntax of the Extensions that provide
Simulation Primitives

The user model is processed by a preprocessor to replace
the extensions by Ada statements and to create a simulation
environment by instantiating a control module for each user
defined process.

3.4 Three Different Ada Environments for Implementation

The primary aim of using Ada to build simulation
environments has been to exploit and to study the utility
of the package and generic concepts in generalizing the
simulation tools and the_ tasking facilities in distributing the
simulation by improving the concurrency [1,33]. The initial
Ada implemenations at Texas A&M University involved the
development of two systems that support process and event
oriented simulation [13,32]. These two software systems were
implemented and executed on a VAX 11/782 using the NYU
Ada/Ed Translator /Interpreter version 1.1.4. The event
oriented version was later modified to support distributed
simulation by executing the support functions concurrently,
on a VAX 11/750 [33,34]. Though the NYU Ada/Ed Transla­
tor is not a production compiler, the ease of generalizing the
simulation concepts through the packages and generic units
of Ada and the portability of Ada through various compilers
encouraged us to test Ada in developing an integrated and
concurrent simulation environment.

Recently Texas A&M University has acquired three more
Ada compilers which overcome the very low productivity
associated with the NYU Ada/Ed Translator significantly.
The three compilers are Telesoft Ada and Digital Electronics
Corporation Ada for the VAX 11/750 [9] and the ROLM Ada
compiler [8] for the Data General MV /10000. With very
few modifications the Ada programs written for one system
have been easily run on the other systems. The strength of
Ada thus lies in its portability and maintainability among

Murali Krishnamurthi, Usha Chandras<>karan, Sallie Sheppard

the different compilers and machines. Among the three
systems Telesoft Ada has not been considered for distributed
simulation application, since our current version does not
support tasking.

3.5 Current Status

The protype of the above system is being implemented
using the DEC Ada compiler running on VAX/VMS Version
4.1. The operation of the prototype will be analyzed by
simulating the benchmark applications. Thus the outcome
of this research will be a functional prototype of a discrete
concurrent simulation system in which the hierarchical ar­
chitecture is retained for the simulation support functions as
parallel processes while user written portions of the model are
simulated by the coexisting processes with message passing
interfaces. Another advantage of utilizing a concurrent
language as the host language is that the run-time system
of the concurrent language will take care of assigning the
concurrent units to the processors available. It will also
provide a framework to analyze the sensitivity of the system
to parameters like deadlock occurrences, processor utilization
and total turnaround time.

4.0 SUMMARY

The language supported distributed simulation system
is nearing its completion. The experience and insight gained
from the design and the development of this system offers
promise for exploiting the parallelism in the simulation
language functions as a means for improving the performance
of the system. This implementation approach also proves to
be advantageous since it avoids the deadlock and synchroniza­
tion problems and maintains the distributed implementation
transparent to the user.

The second implemena.tion approach will retain the
hierarchical distribution of simulation functions as in the
first approach and will also provide concurrency features in
its modeling of its user-written routines. Even though the
second implementation approach has to deal with deadlock
and synchronization problems and has to involve the user
in the distribution of simulation model, it promises a better
speed up from the distribution than the first approach. The
future research at Texas A&M University will involve the
complete implementation of the second approach and the
performance evaluation of the distributed simulation systems
implemented by both approaches.

REFERENCES

1. Bruno, G., "Using Ada for Discrete Event Simulation,"
Software-Practice and Experience, 14, 7, July 1984, pp.
685-695.

2. Bryant, R.E., "Simulation on a Distributed System,"
Distributed Computing Conference, 1979, pp. 544-552.

3. Chandrasekaren, U., Sheppard, S., "An Algorithm for
Distributed Concurrent Simulation", (submitted for pub­
lication).

442

·L Chandy, K.M., Misra, J., "Asynchronous Distributed
Simulation via a Sequence of Parallel Computations,"
Communications of the ACM, 24, 11, April 1981, pp.
198-206.

5. Comfort, .J.C., "The Simulation of a Master-Slave Event
Set Processor," Simulation, Volume 42, Issue 3, March
1984, pp. 117-124.

6. Comfort, J.C., Winquing, Y., and Li, Qiang., "The
Design of a Multi-microprocessor Based Simulation
Computer III," Record of Proceedings of the 17th Annual
Simulation Symposium, March 1984, Tampa, Florida,
pp. 227-241.

7. Concepcion, Arturo I., "Mapping Distributed Simula­
tors onto Hierarchical Multibus Multiprocessor Archi­
tecture," Distributed Simulation 1985, The 1985 SCS
Multiconference, San Diego, Ca, Vol. 15, No. 2, January
1985, pp. 8-13.

8. Data General Corp., "Ada Development Environment
(ADE) (AOS/VS) User's Manual," Data General Cor­
poration, April 1984.

9. DEC, "Developing Ada Programs on VAX/VMS ," Dig­
ital Equipment Corporation, Maynard, Massachusetts,
February 1985.

10. Enslow Jr., P.H., "Multiprocessor Organization-A Sur­
vey," Computing Surveys, Vol. 9, No. 1, March 1977.

11. Fischer, Wayne., "The VMEbus Project," Digest of
Papers Compean Spring 84, pp. 376-378.

12. Fischer, Wayne., "mEE P1014-A Standard for the High­
Performance VME Bus," IEEE Micro, February 1985,
pp. 31-41.

13. Friel, P., Sheppard, S., "Implications of the Ada Environ­
ment for Simulation Studies," Proc. of the 1984 Winter
Simulation Conference, December 1984, pp. 477-489, .

14. Kiviat, P.J. "Simulation Languages," On Computer Sim­
ulation Experiments with Models of Economic Systems,
T.H. Naylor, Ed., Wiley, New York, 1971, pp. 406-489.

15. Krishnarnurthi, Murali., and Young, Robert E., "A
Multitasking Implementation of System Simulation: The
Emulation of an Asynchronous Parallel Processor Using
a Single Processor," Proceedings of the 1984 Winter
Simulation Conference, Dallas, November 1984, pp. 261-
271.

16. Krishnamurthi, Murali., and Young, Robert E., "A
Multitasking Implementation of System Simulation: The
Emulation of an Asynchronous Parallel Processor for
System Simulation Using a Single Processor," Technical
Report, Volumes I and II, Department of Industrial
Engineering, Texas A&M University, November 1984.

17. Krishnamurthi, Murali., and Young, Robert E., "Design
of the Distributed Simulation System: Hardware Con­
figurations," Technical Report, Department of Industrial
Engineering, Texas A&M University, January 1985.

Two Approaches to the Implementation of a Distributed Simulation System

18. Krishnamurthi, Murali., and Lively, William M., "Inter­
processor Communication Methods in Multiprocessor
Systems," May 1985 (Submitted for publication).

19. Military Std., "Ada Programming Language," Military
Standard, ANSI/MIL-STD-1983.

20. May, M.D., "Occam," SIGPLAN Notices, 18,4, April
1983, pp. 69-79.

21. May, M.D., Taylor, R.J.B., "Occam-an Overview," Mi­
croprocessors and Microsystems, 8, 6, Jul/ Aug 1984.

22. Motorola Inc., "MVMEllO VMEmodule Monoboard
Microcomputer User's Manual," MVME110/D2, March
1983, Motorola Semi-conductor Products Inc., Phoenix,
Arizona 85062.

23. Motorola Inc., "MVME900 Series Equipment User's
Manual," MVME900/D1, October 1983, Motorola Semi­
conductor Products Inc., Phoenix, Arizona 85062.

24. Motorola Inc., "VME/10 Microcomputer System Ref­
erence Manual" M68KVSREF /D1, February 1984, Mo­
torola Semiconductor Products Inc., Phoenix, Arizona
85062.

25. O'Grady, E.P., and Wang, C.H., "Multibus-based Paral­
lel Processor for System Simulation," Proceedings ofthe
1983 Simulation Conference, Vancouver, B.C., Canada,
July 1983, pp. 371-375.

26. Peacock, J.K., Wong, J.W., and Manning, E.G., "Dis­
tributed Simulation Using a Network of Processors,"
Computer Networks, 3, 1, Feb 1979, pp. 44-56.

27. Pimentel, J.R., "Real-time Simulation Using Multiple
Micro-computers," Simulation, March 1983, pp. 93-104.

28. Pritsker, A., Alan, B., "The GASPIV Simulation Lan­
guage," John Wiley & Sons, New York, NY 1974.

29. Product Review, "INMOS Launches Multiprocessor Lan­
guage Occam," A Product Review, Microprocessors and
Microsystems , 8, 1, Jan/Feb 1984, pp. 3-15.

30. Reynolds Jr, P. F., "Active Logical Processes and
Distributed Simulation: An Analysis," Proceedings of the
1983 Winter Simulation Conference, pp. 263-264.

31. Sheppard, S., Philips, D.T., Young, R.E., "The Design
and Implementation of a Microprocessor-based Dis­
tributed Digital Simulation System," NSF Proposal RF-
82-963' 1982.

32. Sheppard, S., Friel, P., Reese, D., "Simulation in Ada:
An Implementation of Two World Views," Simulation
in Strongly Typed Languages: Ada, Pascal, Simula, 13,
2, February 1984, pp. 3-9.

33. Sheppard, S., Chandrasekaran, U., Murray, K., "Dis­
tributed Simulation Using Ada," Distributed Simulation

1985, The 1985 SCS Multiconference, San Diego, Cali­
fornia, January 1985.

443

34. Sheppard, S., Young, R.E., Chandrasekaran, U.,
Krishnamurthi, M., Wyatt, D., "Three Mechanisms for
Distributing Simulation," Proc. of the 12th Conference of
the NSF production Research and Technology Program,
Madison, Wisconsin, 1985.

35. VMEbus Manufacturers Group., "VMEbus Specifica­
tions Manual," Rev. B, August 1982.

36. Wyatt, Dana L., Sheppard, Sallie., and Young, Robert
E., «An Experiment in Microprocessor-based Digital
Simulation," Proceedings of the 1983 Winter Simulation
Conference, December 1983, pp. 271-277.

37. Wyatt, Dana L., and Sheppard, Sallie., "A Language
Directed Distributed Discrete Simulation System," Pro­
ceedings of the 1981 Winter Simulation Conference,
Dallas, Texas, November 1984, pp. 463-464.

38. Young, Robert E., Sheppard, Sallie., and Krishnamurthi,
M., "A Parallel Processor for System Simulation: The
Design Rationale and Simulation Language Character­
istics Suitable for Parallel Processing Applications,"
October 1984, (submitted for publication).

Mu rali Krishnamurthi, Usha Chandrasekaran, Sallie Sheppard

444

MURALI KRISHNAMUR.THI

Murali Krishnamurthi is a doctoral student in the Depart­
ment of Industrial Engineering and Manager of the Industrial
Automation Laboratory at Texas A&M University. His
research interests are automated manufacturing, simulation,
and artificial intelligence and expert systems applications
to manufacturing. He is currently working on an expert
system tool evaluation project funded by the U. S. Air Force.
He received hi:; MS in Industrial and Systems Engineering
from Ohio University and his BSME from the University of
Madras, India. He is a member liE, ORSA/TIMS, IEEE,
SME and SCS.

Department of Industrial Engineering
Texas A&M University
College Station, Texas 77843
(409) 845-9363

USHA CHANDRASEKARAN

Usha Chandrasekaran is a doctoral student in the De­
partment of Computer Science at Texas A&M University.
Her research interests are simulation, high level languages,
concurrency and parallel processing. She reveived her MS in
Computer Science and BS in Electronics and Communication
Engineering from the University of Madras, India.

Laboratory for Software Research
Texas A&M University
College Station, Texas 77843
(409) 845-4301)

SALLIE SHEPPARD

Sallie Sheppard is an associate professor of Computer Science
and is director of the Laboratory for Software Research
at Texas A&M "C niversity. Her research interests include
simulation, concurrent high level languagers, software en­
gineering and expert systems. She has served as project
director on a National Science Foundation projecl; which has
investigated the uses of multiple microprocessors working
in parallel. She is chairman of the IEEE Computer Society
Technical Committee on Simulation. In 1985 she received the
Texas A&M University Former Student Faculty Achievement
Award for Teaching.

Department of Computer Science
Texas A&M University
College Station, Texas 77843
(409) 845-5466

