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This paper describes a simulation model of the MPP Pyramid ,: l] that has been constructed 
at the George Mason University. This model has been designed to facilitate experiments 
in processor control and in instruction set design. 

I. SOME CONCEPTS OF COMPUTER ARCHITECTURE 

The architecturE• of computer systems has remained 
virtually unchanged since von Neumann developed the 
stored program model in the 1940's. This may, 
however, change dramatically in the near future. 
Most advances in computing have been the result of 
reducing the cycle time of the switching devices 
which comprise digital computers. Over the past 
forty years, cycle times for digital computers have 
been reduced by five orders of magnitude from 
hundreds of microseconds to approximately ten 
nanoseconds. The practical application of artifi
cial intelligence techniques, the next anticipated 
advance in computing, will require even faster 
computers. 

Further decreases in cycle time may be very diffi
cult to obtain. An electrical pulse travels about 
one foot (the length of this page) in a nanosecond. 
To decrease cycle time to one nanosecond, an addi
tional order of magnitude, will require a computer 
with a maximum distance between components of less 
than one foot to permit pulses to travel between 
components within a clock cycle. Because of the 
high degree of circuit connectivity within a digital 
computer, the entire computer, thus, must be con
tained within a one foot diameter sphere. To 
decrease the cycle time to one-tenth of a nano
second, a second order of magnitude, will require 
that the computer be built in an volume delimited by 
a 1.2 inch sphere. This increasing miniaturization 
will be accompanied by increases in heat. Within a 
logic family, an increase in speed is always accom
panied by an increase in the amount of heat 
generated by each component. Preventing very fast 
computers from melting will itself be a major 
engineering challenge. 

A second technique for speeding up computation is to 
have a number of processing units operating simul
taneously. The traditional architecture for digital 
computers, dev<>loped by von Neumann, involves a 
"data fetch", "operate", and "store result" cycle. 
This type of architecture is called single instruc
tion ~ingle iata (SISD). Because fetching data and 
storing results takes a disproportionate amount of 
time in the SISD computing cycle, architectures 
which oper~te on more than one unit of data simul
taneously have been developed. This permits 
multiple data fetch and result storing operations to 
be overlapped. 

To develop a new architecture, four major design 
issues must be addressed: ( 1) the number and power 
of the processing elements; (2) the interconnection 
of the processing elements; (3) the scope of memory 
(shared or local); and (4) the method of control. 

476 

One class of architectures, called "spatially 
parallel", combines a large number of identical 
processing elements [2]. Until recently, most 
spatially parallel computers were interconnected as 
two dimensional arrays of computing elements. These 
arrays of computing elements are generally called 
array processors. For problems like numerical 
solution of partial differential equations, this 
method of interconnection is generally satisfactory. 
The nature of these problems requires only very 
localized communications between processing elements. 
However, for problems in artificial intelligence 
(e.g., image recognition, expert systems), distant 
processors must be able to communicate easily. 

The pyramid architecture is an attempt to combine a 
large number of processors in a way so that infor
mation can be transferred between them quickly. A 
pyramid is composed of a number of layers. The top 
layer consists of a single processor. Each 
successive layer contains k-times as many processing 
elements as the one above it. A processing element 
within a layer can directly communicate with the 
other processing elenents immediately adjacent to it 
on the same layer. Thus, a pyramid processor can be 
visualized as a three dimensional structure con
taining interconnected layers of two dimensional pro
cessing arrays. 

ThE> scope of memory for multiprocessor systems can be 
Jocal, global, or mixed. If the memory has local 
scope then each processor has a private memory and 
communicates with other processors by passing data as 
messages via the interprocessor buses. If the memory 
has global scope then all processors share a common 
memory. In some multiprocessor systems, part of the 
memory may be local while other elements of memory 
are global. This is called mixed scope. 

A computer's control mechanism determines the 
sequence of instruction execution. Two of the most 
popular control mechanisms are control flow and data 
flow. In control flow systems, the instruction to be 
executed is pointed to by an instruction address 
register. Normally the instruction address register 
is incremented after each instruction is executed. 
This causes the instruction in the next memory 
address to be executed. A branch instruction simply 
puts a new memory address in the instruction address 
register causing the flow of control to "jump" to the 
new address. Another popular control mechanism is 
data flow. In data flow systems, an instruction is 
executed when all of its operands become available. 
Control flow is an example of synchronous control 
while> data flow is an example of asynchronous con
trol. 
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In a multiprocessor system, a decision must be made 
regarding the scope of the control mechanism. In 
one scheme, all of the processors are controlled by 
a single control mechanism. Each processor executes 
the same instruction on the operands available to 
it. This is called single instruction multiple data 
(SIMD) control. A~other ~cheme uses- a separate 
controller for each processor or for a number of 
groups of processors. This is called ~ultiple 

!nstruction ~ultiple ~ata (MIMD) control. 

II. ARCHITECTURE OF THE MPP PYRAMID 

The Massively Parallel Processor (MPP) [3], a 
historical predecessor of the MPP Pyramid, is a 
single-instruction-stream multiple-data-stream 
(SIMD) computer designed for the rapid and economi
cal extraction of information from data, especially 
data in the form of images. The MPP was built by 
Goodyear Aerospace Corporation for the NASA Goddard 
Space Flight Center. 

The logical building block of the MPP is the 
Processing Element (PE), a one-bit computer with 
local memory, and local connectivity. The MPP 
consists of a square (128 x 128) array of 16,384 
PEs, each of which has nearest neighbor communi
cation. Operating on eight bit integers, the MPP 
can achieve speeds measured in billions of opera
tions per second. A conventional computer, 
currently a Digital Equipment Corporation VAX, 
provides supporting control and data management 
functions. 

Custom integrated circuits, used in the MPP, and 
each containing eight PEs, were available to George 
Mason University, and hence were selected to be the 
basis of the MPP Pyramid. Each PE has six one-bit 
registers (labeled A, B, C, G, P, and S); a variable 
length (up to 30 bits) shift register; a full adder; 
a random access memory with at least 256 bits of 
data; and a data bus. The six one-bit registers are 
used as follows: 

A - addend register, added to P and C 
B - stores the sum of P, A, and C 
C - stores the carry of P, A, and C 
G - mask register, used to inhibit operations 
P boolean logic or inter-PE data routing 
S input/output register. 

The shift register is connected from the B register 
to the A register. Its length may be set, under 
program control, to 2, 6, 10, 14, 18, 22, 26, or 30 
bits, providing a shift path length of 4, 8, 12, 16, 
20, 24, 28, or 32 bits. The adder adds the contents 
of the A, P, and C registers (a full-add), or just 
the A and C registers (a half-add), and stores the 
sum and carry bits in the B and C registers, respec
tively. The data bus is selected, under program 
control, to transfer data among the registers, the 
local memory, or the Boolean logic generator asso
ciated with the P register. A sum-or circuit forms 
the logical or of all eight PE 1 s on a chip; cir
cuitry provides the sum-or bit for each level of the 
pyramid to the control processor. 

Table summarizes seven sub-categories of an MPP 
instruction; one instruction, for example, could add 
the A, P, and C registers; shift the shift register 
one position; "and" the P register with the data 
bus; and load G from the data bus. 

The MPP PE's were 
dimensional (i.e., 

designed to facilitate two
planar) data transmission. In 
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Data Bus Source 

P Register Logic 

P Register Routing 

Adder 

Shift Register 

A Register 

Miscellaneous 

Memory C, B, P~G, S, P 

15 Boolean operations on P, 
data bus 

N, E, S, W 

Full Add, Half Add, Set C, 
Clear C 

Shift 
Set length to 2, 6, 10, 
14, 18, 22, 26, 30 

Shift A from Shift Register 
Load A from Data Bus 
Clear A 

Load G from Data Bus 
Write Data Bus to Memory 
Load S from Data Bus 
Feed Sum-or from Data Bus 
Clear Parity Error 

Table 1: MPP Operations 

order to implement a pyramid, a new circuit was 
needed to permit inter-level data transfers. In the 
MPP Pyramid, each PE (except the top and bottom) is 
connected to nine neighbors: one above, four on its 
plane {N, E, S, and W), and four below (called V, X, 
y' Z). 

A Level Transfer Control Unit (LTCU) 
transfer of data between levels. A 

controls the 
control com-

puter, external to the pyramid, stores and transfers 
64-bit instructions to the pyramid. Seventeen bits 
become the operation code for each PE in the 
pyramid. Ten bits are used by the LTCU to identify 
a global transfer direction; select levels that will 
transfer data; and identify PE's within a level that 
will transfer data. A parent PE may transmit data 
to four children PE's simultaneously; or the parent 
PE's on a level may all simultaneously receive data 
from one of their V, X, Y, and Z children. 

III. SIMULATION 

The authors decided to develop an instruction-level 
simulation, or emulation, of the three-layer pyramid 
to provide multiple, simultaneous program develop
ment facilities to coders; and to provide a basis 
for exploring architectural alternatives for the 
five-level pyramid. The simulation would be most 
useful if it was inexpensive, not too slow, could 
run on computers commonly available, and provided a 
clear view of the internal state of the pyramid as 
simulated execution progressed. 

Apple Ile microcomputers with UCSD-PASCAL were 
available to the authors, and to the George Mason 
University community. Three programmers implemented 
an emulation of the three-level pyramid in about 
1,500 lines of PASCAL over a two month period. 
Total development time was approximately one hundred 
hours. Figure l depicts the structure of the 
simulation. 

To use the model, a researcher prepares a text file 
of 64-bit machine language instructions, in either 
decimal or hexadecimal. The routines on the left of 
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Figure l will read the pyramid program to be simu
lated (Cnt Mem Read and Read Cnt Word), zero the 
simulated -registers and memori-;:;-s (Initialize). 
establish pyramidal connectivity among the simulated 
PE's (Wire Wrap), and prompt the researcher to 
choose graphics or hard-copy trace, or both 
(Set_ Trace). 

The routines on the right of Figure l simulate a 
single instruction execution across all PE's. 
Fetch Instruction increments the control processor 
progr~m counter, and decodes the sixty-four bits 
which specify oa-PE processing (Set PE), which PE's 
will be masked (Set Mern), and any inter-level 
transfers (Set rri). Each clock tick is processed 
by the simulation as a first half, and a second 
half. In the first half clock tick, Clock l PE 
initiates data bus transfers, and stores the val~es 
of the P and S registers for each PE. 

Once Clockl_PE has looped through all of the PEs, 
Clock2 PE can simulate data transfers into each PE, 
and arithmetic and logical operations within the PE. 
The Adder routine simulates a full add (of registers 
A, P, and C) or a half add (registers A and C), and 
stores the results in the B and C registers. The 
P Operation routine simulates any boolean operation 
on the P and D registers, and stores the result in 
P. The Shift: Register routine simulates the 
variable length shift register described earlier. 
Load A may clear the A register, or set it from 
eith;r the D register or shift register. The Load G 
routine can set the G register to the contents ~f 
the D register. The Memory Write routine stores the 
D register in a local memory location. The Load_S 
routine may clear the S register, or set it to the 
contents of the D register, a neighbor's S register, 
or a bit in the instruction word. The Sum_Or_Tree 
routine extracts the contents of the D register to 
from an input to the logical sum-or of all PEs on a 
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level. The Show Trace and Show Gtrace 
implement nard-copy and CRT traces of 
executions, respectively. 

routines 
program 

Careful sequencing is required to correctly simulate 
up or down inter-level transfers. During a transfer 
dovm, Clock.2_PE simulates the on-chip processing for 
each PE starting at the top. Functions and transfers 
which require the value of the P or S register at the 
start of the clock tick access the old contents 
atored by Clock! PE. This is all that is required to 
serialize the r;.rallel processing of the pyramid. 
During a transfer up, Clock2_PE begins at the bottom, 
anti process•?s PEs in reverse order. 

Figure 2 d<>picts a graphical snapshot of simulated 
execution. In the figure, O' s and X's on the left 
represent the contents of the P-register for each PE 
in the pyramid. The line labeled 0 through F depicts 
sixteen bits of the current PE instruction, and "a b 
c g p s" depict the six registers for the current PE, 
in this case number 9. The eight numbers across the 
bottom are the entire sixty-four bit controller 
instruction, shown as decimal values for each eight 
bits. 

IV. CONCLUSIONS 

Currently, the model takes approximately fifty 
seconds to simulate a clock tick, approxinately five 
hundred million times slower than the native speed of 
the twenty-one PEs in the three-level pyramid. Even 
though most algorithms written to date for the 
three-level pyramid are relatively short, under a 
hundred instructions, this speed is too slow for 
practical use. The authors are nontheless quite 
pleased that a simulation this complex could be done 
at all on a machine as small as an Apple IIe. 
Several possibilities for significant speed-up are 
readily available. 
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Figure 2: Pyramid Processor Simulation 

Fidelity goals, and ease of use goals, were met. A 
text file of controller instructions for the simu
lator is identical to the text file for the same 
program that would be input to the pyramid con
troller. Several programs have been written and 
debugged on the simulator. 

The relatively low investment in program development 
suggests that modification to explore MIMD, or 
different inter-level transfer control, could also 
be easily simulated. 

Preliminary experiments with Turbo PASCAL and a Z-80 
board for the Apple suggest a speed improvement of 
ten to twenty times is readily available. Two to 
three seconds to simulate a clock tick would 
probably make the simulator a useful tool. Simula
tion of the five-level, 341 PE pyramid will require 
another factor of ten improvement in speed; that may 
be achievable on a mini-computer, such as a VAX 750 
or 780. 
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