
Proceedings of the 198S Winter Simulation Conference
D. Gantz, G. Blais, S. Solomon (eds.)

SIMULATION OF A I'YRAHlD PROCESSOR

Duane R. Ball
Gerard C. Blais

Federal Computer Performance
Evaluation and Simulation Center

Alexandria, VA 22310

David Schaefer
Gregory lhl :ox

George Mason University
Fairfax, V~ 22030

R. Neil Wagoner
Scott AFB, IL 36114

This paper describes a simulation model of the MPP Pyramid ,: l] that has been constructed
at the George Mason University. This model has been designed to facilitate experiments
in processor control and in instruction set design.

I. SOME CONCEPTS OF COMPUTER ARCHITECTURE

The architecturE• of computer systems has remained
virtually unchanged since von Neumann developed the
stored program model in the 1940's. This may,
however, change dramatically in the near future.
Most advances in computing have been the result of
reducing the cycle time of the switching devices
which comprise digital computers. Over the past
forty years, cycle times for digital computers have
been reduced by five orders of magnitude from
hundreds of microseconds to approximately ten
nanoseconds. The practical application of artifi
cial intelligence techniques, the next anticipated
advance in computing, will require even faster
computers.

Further decreases in cycle time may be very diffi
cult to obtain. An electrical pulse travels about
one foot (the length of this page) in a nanosecond.
To decrease cycle time to one nanosecond, an addi
tional order of magnitude, will require a computer
with a maximum distance between components of less
than one foot to permit pulses to travel between
components within a clock cycle. Because of the
high degree of circuit connectivity within a digital
computer, the entire computer, thus, must be con
tained within a one foot diameter sphere. To
decrease the cycle time to one-tenth of a nano
second, a second order of magnitude, will require
that the computer be built in an volume delimited by
a 1.2 inch sphere. This increasing miniaturization
will be accompanied by increases in heat. Within a
logic family, an increase in speed is always accom
panied by an increase in the amount of heat
generated by each component. Preventing very fast
computers from melting will itself be a major
engineering challenge.

A second technique for speeding up computation is to
have a number of processing units operating simul
taneously. The traditional architecture for digital
computers, dev<>loped by von Neumann, involves a
"data fetch", "operate", and "store result" cycle.
This type of architecture is called single instruc
tion ~ingle iata (SISD). Because fetching data and
storing results takes a disproportionate amount of
time in the SISD computing cycle, architectures
which oper~te on more than one unit of data simul
taneously have been developed. This permits
multiple data fetch and result storing operations to
be overlapped.

To develop a new architecture, four major design
issues must be addressed: (1) the number and power
of the processing elements; (2) the interconnection
of the processing elements; (3) the scope of memory
(shared or local); and (4) the method of control.

476

One class of architectures, called "spatially
parallel", combines a large number of identical
processing elements [2]. Until recently, most
spatially parallel computers were interconnected as
two dimensional arrays of computing elements. These
arrays of computing elements are generally called
array processors. For problems like numerical
solution of partial differential equations, this
method of interconnection is generally satisfactory.
The nature of these problems requires only very
localized communications between processing elements.
However, for problems in artificial intelligence
(e.g., image recognition, expert systems), distant
processors must be able to communicate easily.

The pyramid architecture is an attempt to combine a
large number of processors in a way so that infor
mation can be transferred between them quickly. A
pyramid is composed of a number of layers. The top
layer consists of a single processor. Each
successive layer contains k-times as many processing
elements as the one above it. A processing element
within a layer can directly communicate with the
other processing elenents immediately adjacent to it
on the same layer. Thus, a pyramid processor can be
visualized as a three dimensional structure con
taining interconnected layers of two dimensional pro
cessing arrays.

ThE> scope of memory for multiprocessor systems can be
Jocal, global, or mixed. If the memory has local
scope then each processor has a private memory and
communicates with other processors by passing data as
messages via the interprocessor buses. If the memory
has global scope then all processors share a common
memory. In some multiprocessor systems, part of the
memory may be local while other elements of memory
are global. This is called mixed scope.

A computer's control mechanism determines the
sequence of instruction execution. Two of the most
popular control mechanisms are control flow and data
flow. In control flow systems, the instruction to be
executed is pointed to by an instruction address
register. Normally the instruction address register
is incremented after each instruction is executed.
This causes the instruction in the next memory
address to be executed. A branch instruction simply
puts a new memory address in the instruction address
register causing the flow of control to "jump" to the
new address. Another popular control mechanism is
data flow. In data flow systems, an instruction is
executed when all of its operands become available.
Control flow is an example of synchronous control
while> data flow is an example of asynchronous con
trol.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F21850.253427&domain=pdf&date_stamp=1985-12-15

Simulation of a Pyramid Processor

In a multiprocessor system, a decision must be made
regarding the scope of the control mechanism. In
one scheme, all of the processors are controlled by
a single control mechanism. Each processor executes
the same instruction on the operands available to
it. This is called single instruction multiple data
(SIMD) control. A~other ~cheme uses- a separate
controller for each processor or for a number of
groups of processors. This is called ~ultiple

!nstruction ~ultiple ~ata (MIMD) control.

II. ARCHITECTURE OF THE MPP PYRAMID

The Massively Parallel Processor (MPP) [3], a
historical predecessor of the MPP Pyramid, is a
single-instruction-stream multiple-data-stream
(SIMD) computer designed for the rapid and economi
cal extraction of information from data, especially
data in the form of images. The MPP was built by
Goodyear Aerospace Corporation for the NASA Goddard
Space Flight Center.

The logical building block of the MPP is the
Processing Element (PE), a one-bit computer with
local memory, and local connectivity. The MPP
consists of a square (128 x 128) array of 16,384
PEs, each of which has nearest neighbor communi
cation. Operating on eight bit integers, the MPP
can achieve speeds measured in billions of opera
tions per second. A conventional computer,
currently a Digital Equipment Corporation VAX,
provides supporting control and data management
functions.

Custom integrated circuits, used in the MPP, and
each containing eight PEs, were available to George
Mason University, and hence were selected to be the
basis of the MPP Pyramid. Each PE has six one-bit
registers (labeled A, B, C, G, P, and S); a variable
length (up to 30 bits) shift register; a full adder;
a random access memory with at least 256 bits of
data; and a data bus. The six one-bit registers are
used as follows:

A - addend register, added to P and C
B - stores the sum of P, A, and C
C - stores the carry of P, A, and C
G - mask register, used to inhibit operations
P boolean logic or inter-PE data routing
S input/output register.

The shift register is connected from the B register
to the A register. Its length may be set, under
program control, to 2, 6, 10, 14, 18, 22, 26, or 30
bits, providing a shift path length of 4, 8, 12, 16,
20, 24, 28, or 32 bits. The adder adds the contents
of the A, P, and C registers (a full-add), or just
the A and C registers (a half-add), and stores the
sum and carry bits in the B and C registers, respec
tively. The data bus is selected, under program
control, to transfer data among the registers, the
local memory, or the Boolean logic generator asso
ciated with the P register. A sum-or circuit forms
the logical or of all eight PE 1 s on a chip; cir
cuitry provides the sum-or bit for each level of the
pyramid to the control processor.

Table summarizes seven sub-categories of an MPP
instruction; one instruction, for example, could add
the A, P, and C registers; shift the shift register
one position; "and" the P register with the data
bus; and load G from the data bus.

The MPP PE's were
dimensional (i.e.,

designed to facilitate two
planar) data transmission. In

477

Data Bus Source

P Register Logic

P Register Routing

Adder

Shift Register

A Register

Miscellaneous

Memory C, B, P~G, S, P

15 Boolean operations on P,
data bus

N, E, S, W

Full Add, Half Add, Set C,
Clear C

Shift
Set length to 2, 6, 10,
14, 18, 22, 26, 30

Shift A from Shift Register
Load A from Data Bus
Clear A

Load G from Data Bus
Write Data Bus to Memory
Load S from Data Bus
Feed Sum-or from Data Bus
Clear Parity Error

Table 1: MPP Operations

order to implement a pyramid, a new circuit was
needed to permit inter-level data transfers. In the
MPP Pyramid, each PE (except the top and bottom) is
connected to nine neighbors: one above, four on its
plane {N, E, S, and W), and four below (called V, X,
y' Z).

A Level Transfer Control Unit (LTCU)
transfer of data between levels. A

controls the
control com-

puter, external to the pyramid, stores and transfers
64-bit instructions to the pyramid. Seventeen bits
become the operation code for each PE in the
pyramid. Ten bits are used by the LTCU to identify
a global transfer direction; select levels that will
transfer data; and identify PE's within a level that
will transfer data. A parent PE may transmit data
to four children PE's simultaneously; or the parent
PE's on a level may all simultaneously receive data
from one of their V, X, Y, and Z children.

III. SIMULATION

The authors decided to develop an instruction-level
simulation, or emulation, of the three-layer pyramid
to provide multiple, simultaneous program develop
ment facilities to coders; and to provide a basis
for exploring architectural alternatives for the
five-level pyramid. The simulation would be most
useful if it was inexpensive, not too slow, could
run on computers commonly available, and provided a
clear view of the internal state of the pyramid as
simulated execution progressed.

Apple Ile microcomputers with UCSD-PASCAL were
available to the authors, and to the George Mason
University community. Three programmers implemented
an emulation of the three-level pyramid in about
1,500 lines of PASCAL over a two month period.
Total development time was approximately one hundred
hours. Figure l depicts the structure of the
simulation.

To use the model, a researcher prepares a text file
of 64-bit machine language instructions, in either
decimal or hexadecimal. The routines on the left of

Duane R. Ball, Gerard C. Blais, David Sch<~efer Gregory Wilcox, R. Nei' Wagoner

Figure

Figure l will read the pyramid program to be simu
lated (Cnt Mem Read and Read Cnt Word), zero the
simulated -registers and memori-;:;-s (Initialize).
establish pyramidal connectivity among the simulated
PE's (Wire Wrap), and prompt the researcher to
choose graphics or hard-copy trace, or both
(Set_ Trace).

The routines on the right of Figure l simulate a
single instruction execution across all PE's.
Fetch Instruction increments the control processor
progr~m counter, and decodes the sixty-four bits
which specify oa-PE processing (Set PE), which PE's
will be masked (Set Mern), and any inter-level
transfers (Set rri). Each clock tick is processed
by the simulation as a first half, and a second
half. In the first half clock tick, Clock l PE
initiates data bus transfers, and stores the val~es
of the P and S registers for each PE.

Once Clockl_PE has looped through all of the PEs,
Clock2 PE can simulate data transfers into each PE,
and arithmetic and logical operations within the PE.
The Adder routine simulates a full add (of registers
A, P, and C) or a half add (registers A and C), and
stores the results in the B and C registers. The
P Operation routine simulates any boolean operation
on the P and D registers, and stores the result in
P. The Shift: Register routine simulates the
variable length shift register described earlier.
Load A may clear the A register, or set it from
eith;r the D register or shift register. The Load G
routine can set the G register to the contents ~f
the D register. The Memory Write routine stores the
D register in a local memory location. The Load_S
routine may clear the S register, or set it to the
contents of the D register, a neighbor's S register,
or a bit in the instruction word. The Sum_Or_Tree
routine extracts the contents of the D register to
from an input to the logical sum-or of all PEs on a

478

I
IICLOC KLPEI rlCLOCK2 _pEJ

IDATA...BUS ~
IXTPJoiL-R.EADI Hl'. OFERAT: ONI

SHJFT -REGJSTE'h

-!LOA .AI

LOAD....OI

HEHORY VRITEI

LOAD.-S

SUH OR. TREE

HSH OV TRA CEI

-I:;H IW. rF.A ;E

I

level. The Show Trace and Show Gtrace
implement nard-copy and CRT traces of
executions, respectively.

routines
program

Careful sequencing is required to correctly simulate
up or down inter-level transfers. During a transfer
dovm, Clock.2_PE simulates the on-chip processing for
each PE starting at the top. Functions and transfers
which require the value of the P or S register at the
start of the clock tick access the old contents
atored by Clock! PE. This is all that is required to
serialize the r;.rallel processing of the pyramid.
During a transfer up, Clock2_PE begins at the bottom,
anti process•?s PEs in reverse order.

Figure 2 d<>picts a graphical snapshot of simulated
execution. In the figure, O' s and X's on the left
represent the contents of the P-register for each PE
in the pyramid. The line labeled 0 through F depicts
sixteen bits of the current PE instruction, and "a b
c g p s" depict the six registers for the current PE,
in this case number 9. The eight numbers across the
bottom are the entire sixty-four bit controller
instruction, shown as decimal values for each eight
bits.

IV. CONCLUSIONS

Currently, the model takes approximately fifty
seconds to simulate a clock tick, approxinately five
hundred million times slower than the native speed of
the twenty-one PEs in the three-level pyramid. Even
though most algorithms written to date for the
three-level pyramid are relatively short, under a
hundred instructions, this speed is too slow for
practical use. The authors are nontheless quite
pleased that a simulation this complex could be done
at all on a machine as small as an Apple IIe.
Several possibilities for significant speed-up are
readily available.

Simulation of a Pyramid Processor

0

X 0
ox

xxoo
xoxo
ox ox
ooxx

CLOCK: 1 1

0123456789ABCDEF
0100001110100111

abcgps =
1 011 00

id: 9

3 6 0 28 0 4 0 10

Figure 2: Pyramid Processor Simulation

Fidelity goals, and ease of use goals, were met. A
text file of controller instructions for the simu
lator is identical to the text file for the same
program that would be input to the pyramid con
troller. Several programs have been written and
debugged on the simulator.

The relatively low investment in program development
suggests that modification to explore MIMD, or
different inter-level transfer control, could also
be easily simulated.

Preliminary experiments with Turbo PASCAL and a Z-80
board for the Apple suggest a speed improvement of
ten to twenty times is readily available. Two to
three seconds to simulate a clock tick would
probably make the simulator a useful tool. Simula
tion of the five-level, 341 PE pyramid will require
another factor of ten improvement in speed; that may
be achievable on a mini-computer, such as a VAX 750
or 780.

REFERENCES

1. Schaefer, David H., Wilcox, Gregory C., and
Harris, Victor J., "A Pyramid of MPP Processing
Elements - Experiences and Plans", Proceedings
of the Eighteenth Annual Hawaii International
Conference on System Sciences, 1985. Volume 1,
pages 178-184.

2. Schaefer, David H., "Spatially Parallel Archi
tectures: An Overview", Computer Design, August
1982, pages 117-124.

3. Potter, J.L. Editor, The Massively Parallel
Processor, MIT Press, Cambridge, MA, 1985.

4. Wilcox, Gregory C., Pyramid Computer Systems.
Master's Thesis, George Mason University,
Fairfax, VA 1985.

479

5. "Functional Description of the MPP PE", internal
publication of the Goodyear Aerospace
Corporation, Akron, Ohio 44315, under contract
NASS-25392 to NASA/Goddard Space Flight Center.
Document GER-16624, 1 December 1978.

6. Schafer, David H., Wilcox,
Harris, Victor J. "A Pyramid
Elements", Proceedings of
Algorithm-Guided Parallel

Gregory C., and
of MPP Processing

the Workshop on
Architectures For

Automatic Target Recognition, Leesburg, VA, July
1984. Prepared by C. Lee Giles, Naval Research
Laboratory, Washinton, DC 20375 and Azriel
Rosenfeld, University of Maryland, College Park,
MD 20742, February 1985.

Duane R. Ball, Gerard C. Blais, David Sch<1efer Gregory Wilcox, R. Nei Wagoner

480

DUANE R. BALL is a Technical Manager in the
Direetorate of Design Assessment at FEDSIM. Mr. Ball
has a Master of Science degree in Mathematics from
the George Nason Univers.ity. He is the designer of
ACMS, an open queuing network modeling system for
computer performance prediction.

Duane R. Ball
Federal Computer Performance

and Simulation Center
Alexandria, VA 22310

Evaluation

(202) 274-8015

GERARD C. B:.AIS is the Deputy
of Design Assessment at FEDSIM.
Science degree in Mathematics
Polytechnic Institute.

Gerard C:. Blais

Director, Directorate
He has a Bachelor of
from the Rensselaer

Federal Computer Performance Evaluation
and Simulation Center

Alexandria, VA 22310
(202) 2/'4-8015

MAJOR R. NEIL WAGONER is C:hie f, Engineering,
Programs, and Acquisitions Requirements and Resources
Division, Air Force Communications Command. He
received a :Bachelor of Science degree in Mathematics
from Michigan State University in 1973, and a Master
of Science degree in Electrical Engineering and
Computer Science from the University of California at
Berkeley in 1979. He had previously been assigned to
the Air Force Technical Applications Center, Command
and Control Technical Center, and FEDSIM.

Major R. Neil Wagoner
HQ AFCC
Scott AFB, IL 36114
(618) 256-3995

DAVID H. SCHAEFER is Associate Professor of
Electrical and Computer Engineering at the George
Mason University, Fairfax, Virginia. He is the
fo:rmer head of the Computer Development Seetion, NASA
Goddard Space Flight Center.

David H. Schaefer
George Mason University
Fairfax, VA 22030
(703) 323-2302

GREGORY C. WILCOX received his Bachelor of Science
degree in Computer Engineering from Case Western
Reserve University, Cleveland, Ohio in 19i10. He has
completed t:he requirements for a Master of Science
degree in Electrical and Computer Engineering at the
George Mason University, Fairfax, Virginia.

Gregory C. Wilcox
George Mason University
Fairfax, VA 22030
(703) 323-2302

