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Abstract

This paper investigates “Schelling points” on 3D meshes, feature
points selected by people in a pure coordination game due to their
salience. To collect data for this investigation, we designed an on-
line experiment that asked people to select points on 3D surfaces
that they expect will be selected by other people. We then analyzed
properties of the selected points, finding that: 1) Schelling point
sets are usually highly symmetric, and 2) local curvature proper-
ties (e.g., Gauss curvature) are most helpful for identifying obvious
Schelling points (tips of protrusions), but 3) global properties (e.g.,
segment centeredness, proximity to a symmetry axis, etc.) are re-
quired to explain more subtle features. Based on these observations,
we use regression analysis to combine multiple properties into an
analytical model that predicts where Schelling points are likely to
be on new meshes. We find that this model benefits from a variety
of surface properties, particularly when training data comes from
examples in the same object class.
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1 Introduction

Detection of “salient” feature points on 3D surfaces is a fundamen-
tal problem in computer graphics with many applications in shape
analysis and related fields, including object recognition [John-
son 2000], shape matching [Zhang et al. 2008], shape-based re-
trieval [Funkhouser and Shilane 2006], metamorphosis [Alexa
2000], cross-parameterization [Kraevoy and Sheffer 2004], texture
mapping [Zhang et al. 2005], deformation transfer [Sumner and
Popovic 2004], shape approximation [Lee et al. 2005], viewpoint
selection [Lee et al. 2005], symmetry detection [Xu et al. 2009],
and part-based segmentation [Katz et al. 2005; Zhou and Huang
2004].

Although many definitions have been proposed for what constitutes
“salient” feature points in the computer graphics literature (e.g.,
maxima of average geodesic distance, maxima of Gauss curvature,
maxima of mean curvature differences at increasing scales, etc.),
none of them captures the social/psychological essence of salience
as defined in the Oxford English Dictionary: “the quality or fact of
being more prominent in a person’s awareness or in his memory of
past experience” [Simpson 1989]. It is this definition that captures
the semantic essence of a stable feature point, and therefore one that
we believe is useful for applications in computer graphics.

The goal of this paper is to develop a model of salience on 3D
surface meshes based on this social/psychological definition. To

Figure 1: Schelling points (red). Positions on a surface selected
consistently by many people when trying to match each other with-
out communication.

achieve this goal, we leverage the concept of focal points as in-
troduced by Schelling in his seminal paper on pure coordination
games [Schelling 1960]. In game theory, “a focal point (also called
a Schelling point) is a solution that people will tend to use in the
absence of communication, because it seems natural, special or rel-
evant to them” [Parker 2011]. To discover focal points, Schelling
performed user studies in which he asked people to make selec-
tions that they expect will match other people’s selections. Since
the people were not allowed to communicate in any way, they usu-
ally picked the most conspicuous point, often using semantic infor-
mation not provided in the input. For example, if asked to select a
time and place in New York City to meet someone without any prior
communication, people tended to choose Grand Central Terminal at
noon. This choice is clearly the result of prior semantic knowledge
that makes that choice more prominent in a person’s awareness or in
his memory of past experience (i.e., social/psychological salience).

Inspired by Schelling’s work, we designed a user study that asks
people to select points on 3D surface meshes that they expect will
be selected by other people and used the acquired data to build a
model of mesh saliency. Our primary research contribution is the
analysis of the collected data. We find that: 1) Schelling point
sets are usually highly symmetric, and 2) local curvature proper-
ties (e.g., absolute value of minimum curvature) are most helpful
for predicting obvious Schelling point features, but 3) global prop-
erties (e.g., symmetry and segment centeredness) are required to
explain other features. Our secondary research contributions are
the methods used for acquiring, analyzing, and predicting Schelling
points on 3D meshes. They include: 1) the design of a user study,
2) the analysis of consistency and properties of Schelling points, 3)
a learned model for predicting the distribution of Schelling points,
and 4) an algorithm that uses the learned model to extract Schelling
points on new meshes.



2 Related Work

Detection and matching of salient feature points are classical prob-
lems in computer vision, geometric modeling, computer-aided de-
sign, computer graphics, and several other fields [van Kaick et al.
2010]. In this section, we cover the most related work, focusing on
methods designed for saliency estimation at a point.

Feature Point Detection: There has been lots of recent work on
automatically extracting feature points on 3D meshes. Example
methods include local maxima of average geodesic distance (AGD)
to other points on the surface [Zhou and Huang 2004; Zhang et al.
2005; Zhang et al. 2008], local maxima of differences of Gaus-
sians at multiple scales [Castellani et al. 2008], local maxima of
Gaussian curvature [Lipman and Funkhouser 2009], properties of
the Heat Kernel Signature [Sun et al. 2009], scale-space analy-
sis of mean curvature flow [Zaharescu et al. 2009], other multi-
scale analysis [Li and Guskov 2005; Li and Guskov 2007; Novotni
et al. 2005; Schlattmann et al. 2008; Sonthi et al. 1997], points
on the convex hull after MDS embedding [Katz et al. 2005], leaf
nodes of a curve skeleton extraction [Hisada et al. 2002], points
with unlikely local shape descriptors [Chua and Jarvis 1996; John-
son 2000], and points with local shape descriptors distinctive of
an object class [Shilane and Funkhouser 2007]. Most methods are
based on differential properties of the surface (e.g., [Castellani et al.
2008]), while others are based on global properties [Zhang et al.
2008] and/or shape descriptor statistics (e.g., [Johnson 2000]). Pre-
vious work has analyzed which of these feature points is most sta-
ble under various models of perturbation [Bronstein et al. 2010], but
none as studied how they relate to semantic salience in the Schelling
sense.

Saliency Estimation: In related work, methods have been pro-
posed to define continuous measures of “saliency” across a surface
for mesh processing applications. Motivated by perceptual crite-
ria [Hoffman and Singh 1997], [Lee et al. 2005] used a center-
surround filter of curvature across multiple scales to select salient
regions for mesh simplification and viewpoint selection. [Gal and
Cohen-Or 2006] computed the saliency of a region based on its size
relative to the whole object, its curvature, the variance of curvature,
and the number of curvature changes within the region. [Shilane
and Funkhouser 2007] defined the “distinction” of a surface region
based on its similarity to objects within the same class and differ-
ence to objects in other classes. This paper studies how these types
of saliency measure relate to human-selected focal points and pro-
vides a new saliency measure learned from examples.

Saliency Evaluation and Comparison: [Kim et al. 2010] stud-
ied how eye fixations relate to mesh saliency [Lee et al. 2005],
and other studies have evaluated and compared feature point detec-
tion algorithms for images in computer vision [Ko and Nam 2006;
Moreels and Perona 2007; Privitera and Stark 2000; Schmid et al.
2000; Stark and Schiele 2007; Zuliani et al. 2004]. For example,
[Schmid et al. 2000] and [Sebe and Lew 2003] compare interest
point detectors on the basis of stability, repeatability, and informa-
tion content. [Privitera and Stark 2000] compare region of interest
algorithms based on how well they match eye fixations measured
with an eye tracker. [Huang et al. 2009] compare algorithms with
respect to points collected in a game (Photoshoot) that asks people
to select points on images that they expect will match a partner’s
selection, much like the ESP game proposed by [Von Ahn and Dab-
bish 2008]. This work is similar to ours in that it also asks people
to match point selections. However, the methodology of that study
can produce bias in selected points due to training effects of imme-
diate feedback (it is not a pure coordination game), it considers only
2D points in natural images, it does not provide any analysis of how
image properties correlate with selected points, it does not suggest
new properties correlated with the selected points (e.g., symmetry,

segmentations, etc.), and it does not provide a predictor of points
learned from the collected examples.

Perceptual Psychology: There have been many studies in percep-
tual psychology to understand how people assign importance to re-
gions of images. Most have been based on visual attention [Koch
and Ullman 1985; Milanes et al. 1994; Tsotsos et al. 1995; Itti et al.
1998; Rosenholtz 1999; Santella and DeCarlo 2004]). For exam-
ple, [Koch and Ullman 1985] proposed a model that salient points
would be ones that are different from their surroundings. Other
perceptual psychology studies have studied which points are most
important for approximation of a contour. For example, [Attneave
1954] showed 80 subjects a series of 16 shapes drawn as 2D con-
tours and then asked them to select “a pattern of 10 dots which
would resemble the shape as closely as possible.” His main find-
ing was that most people select points where the “contour is most
different from a straight line” – i.e., where the curvature has large
magnitude. While these studies are related to ours, we aim to dis-
cover which points have semantic salience in 3D meshes.

Studying how people do X: There have very recently been studies
in computer graphics aimed at understanding how people perform
tasks of interest in computer graphics. For example, [Cole et al.
2008] studied where artists draw lines when make line drawings,
and [Chen et al. 2009] analyzed how people decompose surfaces
into parts. In both cases, machine learning algorithms were then
developed to produce predictions for new surfaces based on training
a classifier on examples collected from humans [Cole et al. 2008;
Kalogerakis et al. 2010]. Our study follows this line of research,
focusing on feature point detection. It is novel not only because it
considers a new question: “where do people select feature points?,”
but also because it asks the question in a different way: “where do
other people select feature points?” and because it includes new
algorithms for analyzing and extracting feature points based on the
collected data.

3 Approach

The goal of this paper is to develop a model of semantic salience
for 3D surfaces. Our general approach is to gather a large collec-
tion of feature points from people and then to study what geometric
properties distinguish them from others.

Although this general idea may sound straight-forward, it is surpris-
ingly difficult to design a study to collect useful data on salience.
We did not want to simply ask people to “please click on impor-
tant points” because different people might have different ideas of
what it means to be important (e.g., functional, structural, social,
visual, etc.), and it would be difficult to ask the question in a way
that reveals people’s intentions without leading them to an answer.

During a pilot study, we tried an approach based on [Attneave
1954], where we asked people to select points on a 3D surface from
which another person could recognize the object class by just view-
ing those points. This approach was a resounding failure. We found
that most people selected points only on a 2D silhouette curve of the
surface as seen from a single canonical view (e.g., the outline of a
fish as seen from the side), which does not seem to match a notion
of semantic salience that is useful for 3D applications.

Ultimately, we arrived at an approach based on Schelling’s focal
points: we ask people to select points they think will be selected
by others. The concept of focal points was introduced in pure co-
ordination game theory in the 1960’s [Schelling 1960] (page 57)
– Schelling found that people asked to make selections that match
other people’s selections amongst seemingly equivalent distinct op-
tions (segregated Nash equilibria) often make the same choices
without any communication or feedback. For example, if people



were asked to choose “heads” or “tails” with no other information
besides the goal of matching as many other people as possible, 86%
chose heads [Schelling 1960]. If asked to match other people’s se-
lection on a map, most people agreed on just a few points (e.g.,
prominent intersections). It was conjectured that the commonly se-
lected focal points (later called Schelling points) arise from a strat-
egy or outcome with properties of “prominence or conspicuous-
ness” [Schelling 1960].

A decade later, Lewis used Schelling’s ideas to introduce the term
“salience,” which he defined, first, as the property of an outcome
of “standing out from the rest by its uniqueness in some conspicu-
ous respect” and, second, as “being unique in some way everyone
will notice, expect the others to notice” [Lewis 1969] (page 35).
He used formal game models to characterize coordination strate-
gies, hypothesizing that people use “common knowledge” to select
amongst distinct Nash equilibria. It is this “common knowledge”
about feature points on 3D surfaces that we aim to capture and
leverage in our work.

Inspired by the ideas of Schelling and Lewis, we have designed
a method to study semantic salience on 3D meshes. Specifically,
we first acquire a large number of Schelling points by asking peo-
ple to select points on 3D surface meshes that they expect will be
selected by other people (Section 4). We then analyze properties
of the collected point sets, asking questions like: “how consistent
are Schelling points selected on different meshes within the same
object class?” and “how are the locations of Schelling points as-
sociated with geometric properties of the surface?” (Section 5).
Next, we train a regression model that predicts the likelihood that a
point on a surface is a Schelling point based on its surface proper-
ties (Section 6). Finally, we provide an algorithm to predict a set of
Schelling points for new meshes (Section 7).

4 Study Design

The first and most difficult issue faced in our investigation is how
to design a study to acquire Schelling points from many people for
many types of 3D surfaces. We would like to collect enough data
to analyze how Schelling points relate to surface properties across
a wide variety of meshes and to train a predictive model that can be
used to estimate Schelling points for new 3D meshes. Of course,
this is difficult because it requires recruiting and supervising many
(possibly hundreds or thousands of) human subjects in a user study.

To address this issue, we performed our study on-line. Following
the approach of [Chen et al. 2009] and [Cole et al. 2009], we re-
cruited subjects for our study through Amazon’s Mechanical Turk
(AMT) [Amazon 2009], an on-line platform that matches people
willing to work with paying tasks. Alternatively, we could have de-
signed an on-line game to acquire input (as in [Huang et al. 2009;
Von Ahn and Dabbish 2008]), but that approach would have re-
quired attracting a player population, which is beyond the scope of
this paper. Since tasks on the AMT are typically short in duration
(a minute or two), inexpensive (around 10 cents), and accessible
on-line (in a web page), it is well-suited for studies like ours that re-
quire lots of people to do simple, menial tasks (e.g., clicking points
on a surface).

The challenge with any on-line study is to design a protocol that
acquires useful information from a diverse population of subjects.
Unlike a laboratory study, where a handful of screened subjects are
trained, monitored, and employed for several hours, we have access
to a much larger number of people, but less control over subject
selection and less trust that every individual is motivated to do a
good job. As such, our challenge is to design a study that motivates
people to work responsibly and incorporates unbiased mechanisms
to discard data from those that don’t.

We designed an easy-to-learn task in which subjects that provide
“better” input get paid more, and those that do not do a “good”
job get paid nothing. Specifically, we presented each user with a
3D mesh shown in an interactive viewer with a crystal ball camera
control and a simple method for clicking on points with the mouse
(one key for adding a point at the selected position on the mesh
and another key for removing a previously added point). Then, we
provided the following instructions: “ select points on the surface of
a 3D object likely to be selected by other people. We will ask many
people to do the same task and see how your selection matches
others.” Our reward structure ranked people according to a scoring
function that provides positive credit for each point also selected
by at least 25% of other people, negative credit for other points,
and zero credit if less than ten points were selected. Based on the
ranking, we paid the top scoring 30% of people X, the next 60%
X/2, and the bottom 10% were not paid. This incentive structure
was chosen based on the results of a pilot study, which suggested
that it is useful to provide motivation for people to select more than
just the very obvious Schelling points (e.g., the ends of limbs on
animals) and that it is better to acquire too many points from people
than too few (if a surface has fewer Schelling points, then “extra”
points will be distributed somewhat randomly).

Data Filtering: Even though our pay structure encourages people
to do a good job, we employ three filters to discard point sets we
expect to provide bad data: i.e., when the user: 1) clicks too few
points (less than ten), 2) maintains approximately the same camera
viewpoint for the entire interactive session (the cumulative camera
rotation is less than 36 degrees), and 3) clicks too hastily (the av-
erage time per click is less than one second). These filters were
chosen on the basis of a pilot study, which showed empirically that
a significant fraction of people provided careful data and that these
simple filters were effective at conservatively discarding the care-
less data while retaining much of the good data. In this regard, we
designed our filters to favor false-negatives (discarding good data)
over false-positives (accepting careless data), since it is easy to col-
lect data on the AMT.

Mesh Selection: In order to cover a wide variety of object cate-
gories, and to leverage data collected in previous studies, we chose
to collect Schelling points for the 3D meshes from the Watertight
Track of the 2007 SHREC Shape-based Retrieval Contest. This
data set contains 400 meshes spread evenly among 20 object cat-
egories (human, cup, glasses, airplane, ant, chair, octopus, table,
teddy, hand, plier, fish, bird, spring, armadillo, buste, mechanical
part, bearing, vase, and four-legged animal), of which we use all
but the “spring.” It forms an interesting data set for our study be-
cause it contains categories with different articulated poses (ant,
octopus, bird, teddy, pliers, glasses), different local parts (human,
hand, four-leg animals), and different global structures (fish, table,
cup, mechanical part, bearing, chair, buste, and vase). Also, the data
set is highly tessellated (an average of 10,223 vertices per mesh),
and so we can limit selected points to vertices of the mesh. Finally,
since it has been used for previous studies of mesh matching [Giorgi
et al. 2007] and segmentation [Chen et al. 2009], it provides an op-
portunity to investigate how Schelling points correspond with other
types of data.

Protocol Implementation: To reduce bias in the acquired data, we
implemented a scheduling program that records the AMT identifier
and IP address of every subject doing our task. That program en-
sures that no single AMT identifier or IP address can work on the
same mesh twice, that meshes are distributed in randomized order,
and that data is provided by approximately the same number of sub-
jects for every mesh. The interactive Java Applet presented to the
user for viewing meshes and selecting points is initialized with a
random camera direction and two virtual lights, all that point at the
object centroid from a distance relative to the object bounding box



size. As the user rotates the meshes, the lights move with the cam-
era, staying along the equator at 90 degree angles to the camera.
The Applet records the position, time stamp, and camera parame-
ters for every point added or deleted from the data set, and sends
the data back to our server. No feedback or payments were made to
any subject until all data was collected to avoid training effects.

Data Collection: Using this protocol, we used the AMT to ac-
quire 24,124 point sets from 1,696 unique AMT accounts. Of this
raw data, 9,965 point sets (44%) from 1,060 unique AMT accounts
passed all three data filters – 16% had too few points, 14% were
entered with too little camera motion, and 28% were clicked too
hastily. The 9,965 point sets in our final data set contain 201,304
points in total, an average of approximately 10,000 points per ob-
ject category, 500 points per mesh, and 20 points per point set. Each
of the 380 meshes was represented by data from 25 people, on av-
erage, and every mesh had at least 23 point sets.

Schelling Point Extraction: As a post-process, we extract a dis-
crete set of Schelling Points from the collected data – i.e., the ones
upon which many people agreed. Of course, since the data is dis-
crete (on vertices of a mesh), and there is spatial noise σ in the
point selection process, some aggregation is required to identify
commonly selected points. To address this issue, we first construct
a function on every mesh M that indicates the number of times
every vertex V was selected by different people. Then, to reduce
spatial noise, we blur that function geodesically with a Gaussian fil-
ter with maximal value 1 and σ = 0.01R, where R represents the
radius of the mesh (R =

p
SurfaceArea(M)). The result is a

smooth Schelling distribution function, SD(V ), roughly estimating
the probability that each vertex V will be selected by a person in
our study (shown in red in Figures 1 and 2).

Then, we extract a discrete set of Schelling points, S, from lo-
cal maxima of SD(V ) and build an indicator function, SP (V ),
that tells whether vertex V is a Schelling point (SP (V ) is one at
Schelling points and zero otherwise). To form this set, we select
every vertex V with SD(V ) greater than 12.5% and spatial sepa-
ration by more than 0.02R from any other vertex Vk with higher
SD(Vk). These choices include at least the vertices that were se-
lected with spatial error less than σ by at least 25% of the people
in our study (the positive payment threshold in our study). Some
examples point sets are shown in blue in Figure 2.

Figure 2: Schelling points. The saturation of red depicts the esti-
mated fraction of people selecting a mesh vertex in our study. Ex-
tracted Schelling points are shown in blue.

5 Analysis of Schelling Points

This large data set provides an opportunity to investigate a num-
ber of questions of potential interest in computer graphics and per-
ceptual psychology, including “How consistently do people select
points on the same mesh?,” “How symmetric are the selected point
sets?,” “How are the selected points distributed on the surface?,”
and “What geometric properties of a 3D surface are prominent at
selected points?.” This section takes steps towards addressing these
questions.

A. How consistently do people select points on the same
mesh? The first and most basic question is whether people se-
lect points consistently in our study.

To address this question, we compute the geodesic distances be-
tween points selected by different people on the same mesh. For the
k-th point P M

i,k in every point set P M
i selected on every mesh M ,

we compute the geodesic distance dM (P M
i,k, P M

j ) from that point
to the closest point in every other point set P M

j collected on the
same mesh, normalizing for scale by dividing by square root of the
surface area. We then analyze the consistency of the point sets by
plotting cumulative distributions of dM (P M

i,k, P M
j ) indicating the

fraction of point sets that are consistent with each selected point for
a range of distance thresholds.

For example, Figure 3a shows cumulative distributions where
the horizontal axis represents normalized distance thresholds
(dM (P M

i,k, P M
j )) and the vertical axis represents the fraction of

points within that threshold of point sets selected by different peo-
ple on the same mesh. The thick black curve represents the over-
all average of all points in the collected data set, aggregated first
over all points within the same mesh, then over all meshes within
the same object class, and finally over all classes in the data set to
avoid over-weighting point sets or meshes with large numbers of
points. The thin solid colored curves depict averages for different
subsets of the points based on the order in which a user selected a
point within his/her interactive session (e.g., the red curve shows
distances from the first point selected in each session, the purple
curve shows the same for the second and third point, the blue curve
for points 4-7, etc. These curves tell a more detailed story of how
consistency relates to the order that points were selected.

Looking at the curves in Figure 3a, we can readily make two obser-
vations. First, different people tend to pick points fairly consistently
with one another on the same mesh. Using a normalized distance
of 0.05R (approximately 3 inches on a human body) as a thresh-
old to classify whether a point P M

i,k is “consistent” with a point
set P M

j , we find that 48.5% of the selected points are “consistent”
with other point sets. This level of consistency is far greater than
12.8% that would be observed if points were selected randomly.
Second, we observe that points selected earlier in an interactive ses-
sion tend to be more consistent than ones selected later (there are
higher densities near dM (pi, Pj) = 0 in the curves representing
points selected earlier), which suggests that people choose the most
“salient” points first, and others later. These results, combined with
the visualizations in Figure 2, suggest that people selected points in
a non-random, consistent way in our study.

B. How consistently do people select points on different
meshes of the same object category? A second question of
potential interest is whether people select semantically equivalent
Schelling points on different meshes within the same object cate-
gory. For example, if they select a particular point (e.g., the knee)
when the object is in one pose (e.g., a running dog), do they also
select that point when the same object is in a different pose (e.g., a



(a) Consistency of points selected by (b) Consistency of points selected by c) Consistency of points selected by the
different people on the same mesh people on meshes of the same object class same person on symmetric sides of a mesh

Figure 3: Consistency of points collected in our study. The plots show cumulative distributions of normalized distance from each point to
the closest point in another point set. Different colored curves depict averages for different subsets points. The thick black curve represents
the overall average of all points. The thin colored ones separate points based on the order in which they were selected during an interactive
session: the consistency of the first point selected is shown in the top red curve, points 2-3 are shown in purple, points 4-7 in blue, etc. Note
that the average normalized edge length for these meshes is 0.013, and the normalized distance threshold used to call a point “consistent” in
our analysis is 0.05.

sitting dog)? And, do they select a semantically equivalent point on
a different object within the same general category (e.g., all four-
legged animals)?

To address these questions, we produced a semantic mapping be-
tween all pairs of the twenty meshes within each of the twenty
object categories and used those mappings to compute cumulative
distributions of normalized distances between selected points. To
produce the mappings, an expert user selected a set of landmark
points for every mesh that is semantically consistent with every
other mesh in the same category. For example, in the four legged
animal category, every mesh was marked with landmark points rep-
resenting the “tip of the nose,” “tip of right ear,” “middle of the
back,” etc. These landmark points provided a coarse point cor-
respondence from which a dense one-way inter-surface mapping
A→B was established from vertices of A to vertices of B using
a simple procedure based on similarities of pairwise geodesic dis-
tances (following the strategy outlined in [Bronstein et al. 2006],
except maintaining the explicit correspondences between landmark
points).

Using these inter-surface mappings, we can study the consistency
of points selected by people on different meshes within the same
object class. Specifically, for each point P M

i,k selected by a person
on mesh M , we use the inter-surface mapping M→M to trans-
fer it to the domain of every other mesh M in the same class to
form P M→M

i,k . Then, for every point set P M
j collected on mesh M ,

we compute dM (P M→M
i,k , P M

j ), the normalized geodesic distance
from the point P M→M

i,k to the closest point in P M
j , and add it to the

cumulative distributions using the same procedure as described in
the previous subsection. The results are shown in Figures 3b.

Interestingly, we find that the consistency of points selected by dif-
ferent people on different meshes in the same class is almost, but not
quite, as high as the consistency of points selected by different peo-
ple on the same mesh. Overall, 39.4% of the points selected on one
mesh are “consistent” with point sets selected on different meshes
of the same object class. Since the local geometry of meshes within
the same class are sometimes very different, this result suggests that
the criteria people used for selecting points is not based only on ab-
solute geometric properties (e.g., Gauss curvature), but rather on
relative properties (e.g., extrema of Gauss curvature) or on seman-
tic features that are consistent across different instances within the
same class.

C. How symmetric are the selected point sets? A third ques-
tion of interest regards symmetry: if a person selects a point on a
symmetric object, how often do they also select the its symmetric
correspondence(s)? For example, if a person selects the right ear on
a head, how often do they also select the left ear?

To investigate this question, we manually produced a symmetry
mapping from every mesh onto itself to establish dense symmet-
ric point correspondences for each of the 319 meshes with intrinsic
reflective symmetry. This was done by clicking on symmetric pairs
of landmark points (e.g., right eye to left eye, left elbow to right
elbow, etc.) and then interpolating those pairs to form a dense cor-
respondence over the entire surface using an algorithm based on
[Bronstein et al. 2006].

Given the symmetric mapping, we analyze the consistency of ev-
ery point set with its symmetric correspondence using the methods
described in the previous subsections – i.e., we build cumulative
distributions of the normalized geodesic distance from every point
to the closest point in the same point set after the symmetric map-
ping has been applied (Figure 3c). Our results reveal that point
sets selected by people are highly symmetric – 76.0% of the points
are “consistent” with the symmetric mapping. More specifically,
comparing to the histograms in Figure 3, we find that point sets se-
lected by people are far more consistent with their symmetric map-
ping than they are with point sets selected by different people. As
such, we conclude that symmetry is an important cue for selecting
“salient” points in our study.

D. How are the selected points distributed on a surface? A
fourth question of interest is to characterize the spatial distribution
of points selected by people. To address this question, we show the
histogram of distances from each point to other points in the same
set for meshes of different object class in Figure 4. The plot shows a
separate curve for each of the 19 object classes (dotted lines), along
with the overall average (thick red line).

Three interesting observations can be made from these histograms.
First, people tend to spread points fairly evenly on a mesh – i.e.,
there are few points that are either very close to or very far from
other points. Second, the spacing for different object classes is dif-
ferent. For example, points on busts (statue heads) tend to be closer
to one another (dotted light blue curve on left), while points on oc-
topi are more widely spaced (light blue curve on right). Third, the



spacing of points appears to be dictated more by the size of the
mesh shown to the person than the physical size of the object in
the real world. For example, the spacing of points on a pair of eye-
glasses is the same as for a human body, and also the same as for
an airplane. Similarly, the spacing of points on a human hand is
different if shown alone or as part of an entire body. From these ob-
servations, we hypothesize that people think of the virtual objects
at the scale they are shown and select the largest features available
on the screen regardless of their size in the real world.

Figure 4: Histogram of spacings between points collected for dif-
ferent mesh categories. Distances are listed as fractions the square
root of the mesh area. Red line shows average.

F. What geometric properties distinguish Schelling points?
Finally, it is interesting to ask whether it is possible to character-
ize common geometric properties of Schelling points. For exam-
ple, are Schelling points commonly at extrema of Gauss curvature?
Can Schelling points be predicted by analysis of average geodesic
distance or other geometric properties commonly used for feature
extraction in computer graphics? And, are there other geometric
properties of meshes that are associated with Shelling points, but
have not been used for point feature extraction before?

To investigate these questions, we compute a number of geomet-
ric properties for every vertex V of every mesh M in the data
set, and then analyze how these properties explain the placement
of Schelling points based on information theory statistics. The set
of properties considered includes:

• Curvatures: the Gauss, mean, minimum, and maximum cur-
vatures at V , as computed in [Rusinkiewicz 2004].

• Mesh Saliency: the mesh saliency at V (at scales 0.1, 0.3,
0.5, and 0.7), as computed with code provided by [Lee et al.
2005].

• Geodesic Distance: the average (AGD), median (MGD),
standard deviation (SDGD), tenth percentile (10GD), nineti-
eth percentile (90GD), and maximum of geodesic distance
(GGD) from V to all other vertices in M , as estimated by
Dijkstra’s algorithm.

• Shape Diameter Function (SDF): the median length of
rays traced from V through the interior of M as described
in [Shapira et al. 2008] using the implementation provided
by [Kalogerakis et al. 2010].

• Heat Kernel Signature: the amount of heat diffused from V
to itself within time t, for five equally spaced time durations

ranging from very small (HKS1) to very large (HKS101), as
computed with the implementation provided by [Sun et al.
2009].

• Up: the Z coordinate (ZPosition) and normal direction (ZNor-
mal), assuming it is prescribed by standards in the modeling
language.

• Symmetry: the Intrinsic Reflective Intrinsic Symmetry Axis
function proposed by [Xu et al. 2009], per our implementa-
tion.

• Segment Centeredness: the centeredness of the point within
its part, as computed by first decomposing the mesh into
segments automatically with the algorithm in [Shapira et al.
2008] and then computing the distance from V to the clos-
est segmentation boundary divided by the maximal distance
to the closest segmentation boundary for all vertices in the
segment containing V .

Most of these properties have been used before for characterizing
saliency and/or generating point sets on meshes. However, we con-
sider two new ones that are specifically motivated by visual inspec-
tion of Schelling point sets collected in our study: symmetry and
segment centeredness. We observe that people often select points
on symmetry axes and centers of large convex parts in the absence
of other more distinguishing features nearby (e.g., the center of the
lens of the glasses and the belly button of the teddy bear in Figure 2.
Thus, we expect that extrema of these functions (e.g., segment cen-
teredness = 1) will be correlated with locations of selected points.
This hypothesis is corroborated by the histogram shown in Figure 5,
which plots frequencies of selected points versus segment centered-
ness (for automatic SDF segmentations, as used throughout this pa-
per: and for manual segmentations provided by the Benchmark of
3D Mesh Segmentation [Chen et al. 2009], which are included only
for comparison sake). We find that selected points appear most
often at the center of extract parts – i.e., the rightmost bin of the
histogram contains 25% of the distribution.

Figure 5: Schelling points are most often at centers of segments
(far right of plot).

We also consider functions derived from these basic geomet-
ric properties. Specifically, we include the difference between
minimum and maximum curvature (CurvDiff), which is smallest
at centers of local rotational symmetry. We include the abso-
lute value of Gauss, mean, minimum, and maximum curvatures,
which are largest at critical points, peaks/divots, peaks/divots, and
ridges/valleys, respectively. We also include blurs at four levels
(σ = 0.01R, σ = 0.02R, σ = 0.04R, and σ = 0.08R) for all



properties except HKS, CurvRing, and Geodesic Distance, which
are already very smooth. Finally, for every property, p, and func-
tion of that property, f(p), we include a percentile transformation,
%(p), that encodes the percentage of vertices that have a smaller
value within the same mesh.

To analyze how Schelling points are associated with these proper-
ties, we calculate information theory statistics and coverage plots to
estimate how well property distributions explain the Schelling dis-
tribution. Results for a representative set of properties and functions
on them are shown in Table 1 and Figure 6.

Information Gain: The middle two columns of Table 1 show the
Information Gain, G(f), for functions f of several properties p.
G(f) is the difference between entropy of the Schelling point indi-
cator function, SP (V ) and its average entropy conditioned on dis-
cretized values of the property f – higher values of Information
Gain indicate a stronger predictor of the Schelling point locations
independent of other properties. From these results, we see that
curvature is the strongest single cue for feature point selection –
many of the Schelling points are at the tips of protrusions (fingers
and toes), which have large positive minimum curvature, and a few
are at conspicuous saddle points (e.g., between fingers), which have
highly negative Gauss curvature. Other properties commonly used
for feature point detection (e.g., Saliency, HKS, and AGD) also pro-
vide fairly good predictors.

Random Forest Importance: The rightmost two columns of Ta-
ble 1 show the importance of f as computed by the Random Forests
of [Breiman 2001], which estimate the importance of a feature in
combinations with others by building a large number of decision
trees trained with different sets of properties and measuring the dif-
ferences between prediction errors with and without each property.
It suggests that indeed minimum curvature and Gauss curvature are
most useful properties for predicting Schelling points. It also sug-
gests that the added value of AGD, HKS, mean curvature, and other
common properties is limited, since they are redundant with mini-
mum and Gauss curvatures. On the other hand, the importance of
global properties, such as symmetry, SDF, and segment centered-
ness, is relatively high (84, 54, and 33, respectively), which sug-
gests they provide cues that are independent of other properties.

We note that percentiles (columns 4 and 6) appear more useful
for predicting Schelling points than raw geometric property values:
e.g., vertices having curvature higher than others on the same sur-
face are more likely to be Schelling points than ones within any
specific range of values.

Coverage plots: Figure 6 shows stack plots representing the frac-
tion of Schelling points in S “explained” by extrema of different
mesh properties. To produce this result, we extracted the K largest
local maxima of each property (K = 14, matching the average
size of a point set collected in our study), with maxima spread by
at least geodesic distance 0.02R, using the algorithm described in
Section 7. Then, for each Schelling point, si ∈ S, we considered
the surface properties in the order from bottom to top, marking the
property with a vote if it is the first to have one of its K largest local
maxima within 0.05R of si. After all votes are cast (one for each
Schelling point on each mesh), we average the votes per mesh, and
then average the fractions per class (shown in the first 19 bars in
Figure 6), and finally average those fractions to get a result for the
entire data set (shown in the bar labeled “Overall” on the far right).

These results suggest that extrema of minimum curvature “ex-
plain” 56.7% of the Schelling points (bottom blue region on the
rightmost bar). Of the remaining Schelling points, 6.7% are ex-
plained by Gauss curvature (red); and 9.1% of the ones still re-
maining are explained by symmetry (IRSA); and so on. Please
note that there is variation in the results for different object classes:

Property Best Filter Info Gain Importance
(p) (f) G(f) G(%(f)) I(f) I(%(f))

MinCurv |(B(p, 1))| 195 203 216 801
GaussCurv |p| 201 211 59 267
Symmetry B(p, 4) 12 25 18 84

SDF p 17 26 31 54
SegCenter B(p, 3) 24 43 15 33
HKS(101) p 104 141 15 31

Saliency(0.3) p 48 85 26 30
MaxCurv B(|p|, 4) 53 99 19 30
ZPosition p 20 51 29 27
ZNormal p 11 14 24 25

MeanCurv B(p, 4) 43 98 11 23
CurvDiff p 29 46 22 21

AGD p 25 85 18 18

Table 1: Information gain (x1000) and random forest importance
of mesh properties (rows) for predicting the Schelling point distri-
bution. p represents the property value, f is the best filter found for
p, B(·, σ) is Gaussian blur, %(f ) is its percentile within a mesh,
G(·) is information gain, and I(·) is an estimate of importance by
analysis of Random Forests.

curvature measures are almost completely sufficient for explain-
ing Schelling points on airplanes, for example; but symmetry and
segment centeredness are more helpful properties for explaining
Schelling points on teddy bears.

Interestingly, approximately 11% of Schelling points are not de-
scribed by the strongest K local maxima of any property consid-
ered. Examining those points visually, we find that they tend to re-
side either at semantic features off-center on smooth surfaces (e.g.,
the eyes on the teddy bears) and/or at geometric features that did not
appear among the strongest maxima (e.g., a knee or elbow when the
appendage is not bent). Perhaps other geometric properties could
be discovered to explain these remaining points in future work.

Figure 6: Stackplot showing fractions of Schelling points first “ex-
plained” by extrema of each property considered in the order shown
bottom to top.

6 Prediction of Schelling Distributions

In this section, we investigate whether it is possible to predict mesh
saliency using the data collected in our study. That is, for a mesh
M never seen before, we aim to provide a method that estimates the
probability that a person would have selected each vertex V of the
mesh if it were included in our study – i.e., the predicted Schelling
point distribution, ŜD(V ).

Transfer: A simple method to approach this problem would be to
transfer the Schelling points from other similar meshes for which



AMT data has been collected. That is, given a new mesh M ,
we could select a set of K similar meshes Mi from the collected
Schelling point data set, compute a map mi(M → Mi) from each
vertex Vj of M to the corresponding vertex mi(Vj) in each similar
mesh Mi, and then predict the transferred Schelling point distribu-
tion ŜT (V ) for vertices of M by aggregating the Schelling points
mapped from other meshes: ŜT (V ) = 1/K

PK
i SP (mi(V )).

This method is very simple. However, it will work well only when
an accurate map can be computed, and when two meshes have the
same number of Schelling points in the same exact arrangement,
neither of which is often the case.

Regression: A second method is to build a regression model based
on geometric properties of a surface. Given a “training” set of
meshes Mi with collected Schelling points, we compute the ge-
ometric properties listed in Section 5 (Gauss curvature, etc.) for
every vertex of every mesh Mi in a training set and then learn a
model that relates those properties to the Schelling point indicator
function SP (V ). This model is simple to implement, since it con-
siders each vertex of the mesh independently, and it can be applied
to arbitrary new surfaces.

Our implementation for building the regression model is based
on M5P regression trees as provided by Weka [Witten and Frank
2005]). This model builds a decision tree that takes in a training
set of vertices labeled with the properties described in the previ-
ous section along with the observed value of the Schelling point
distribution at that vertex. It analyzes this data and builds a bi-
nary tree that splits feature space into distinct regions and then fits
a linear regression model for Ŝ(V ) for each region independently.
It was chosen for our study because it can fit non-linear relation-
ships between input and output variables (piecewise linear), and it
provides an explanation for how the model operates (the decision
tree), which is much easier to decipher than most other regression
models.

As an example, Figure 7 shows the top nodes of a M5P regres-
sion tree learned by our system when trained on the sampled data
for teddy bears. Examining the tree, it is interesting to note that
the top few levels of splits take into account different properties:
minimum curvature, symmetry, segmentation centerness, shape di-
ameter, saliency, etc. Also, different derived properties are utilized,
with percentiles more often chosen for splits in the decision tree,
and values or derivatives more often chosen for linear equations
in the leaf nodes. Overall, this tree suggests that several types of
properties can be combined to make better predictions than any one
alone. Of course, nothing in our study is dependent on this partic-
ular choice of regression model, and we believe that several other
alternatives could have been used just as effectively.

Results: To evaluate and compare how effectively the transfer and
regression methods work, we performed a series of leave-one-out
experiments where we utilized the Schelling points collected from
people on all but one mesh to predict the Schelling point distribu-
tion on the one held out, and then we evaluated the quality of the
prediction by comparison to the Schelling point data collected for
that mesh. Evaluation was performed by computing the Informa-
tion Gain between the predicted and actual point set distributions,
as in Table 1.

For the first tests, we used vertex-to-vertex maps to transfer
Schelling points to the held out mesh M from other meshes in the
same object class. Maps were constructed with two different meth-
ods: 1) manually by interpolating human-selected landmark corre-
spondences (TrueMap),1 and 2) automatically using Blended Intrin-

1TrueMaps are considered only for didactic purposes. Since they are
entered manually, they could not be used in an automatic prediction system.

%(Blur(MinCurv,4) <= 65.56
| Symmetry > 35.669
| | SDF > 0.528
| | | Symmetry <= 101.366
| | | | %(GeodesicTenPercentile) <= 44.399
| | | Symmetry > 101.366
| | | | ZNormal <= 0.287
%(Blur(MinCurv4) > 65.56
| SegCenter <= 0.772
| | %(MaxCurv) <= 37.769
| | | %(Saliency0.7) <= 89.877
| | | | %(|Blur(MaxCurve)|,3) <= 33.576
| | | %(Saliency0.7) > 89.877
| | | | %(Blur(|MaxCurv|),3) <= 77.394
| | %(MaxCurv) > 37.769
| | | %(SDF) <= 43.417
| | | | Blur(Symmetry,4) <= 59.815
| SegCenter > 0.772
| | MeanCurv > 5.973
| | | %(ZNormal) <= 92.829
| | | | Blur(Symmetry,4) <= 63.682

Figure 7: Top nodes of an M5P regression tree learned from
Schelling points on teddy bears.

sic Maps [Kim et al. 2011] (BlendedMap). In both cases, we con-
sidered cases where points are transferred from just the most sim-
ilar mesh as computed with a geodesic D2 shap descriptor (Clos-
est), and where they are transferred and aggregated from all meshes
in the same object class (InClass). Results of these tests, averaged
over all 380 meshes, are shown in the top four rows of Table 2. They
suggest that transferring points does not work well, in general, For
many classes of objects (e.g., fish, vase, chair, airplane, bird, etc.),
different meshes have different arrangements of parts, accounting
for the failures of even TrueMap. For other classes (e.g., ant, hand,
etc.), computing semantically correct maps between meshes is dif-
ficult, accounting for the worse performance of BlendedMaps.

For the second tests, we used regression trees learned from
Schelling points on a subset of meshes to predict ŜD(V ) for oth-
ers. We executed two experiments that differ in how the training
sets were chosen. In the first experiment (InClass), regression trees
were built in leave-one-out style using training data from meshes
of the same class – i.e., the model was trained on 19 out of the
20 meshes in each object class and then tested on the 20th (as in
[Kalogerakis et al. 2010]). In the second experiment (OutClass),
the regression tree for each mesh was trained only using data from
meshes of other object classes. Results of this study are shown
in Table 2. They suggest that regression significantly outperforms
transfer algorithms on this data set, even when training is performed
only on examples from different object classes. They also show
that the regression model combining many surface properties out-
performs any single property – i.e., the highest Information Gain
achieved for any single property (GaussCurvature) is 0.211 (sec-
ond row of Table 1), in comparison to 0.257 (OutClass) and 0.341
(InClass) achieved with regression.

Prediction Source Best Filter Info
Method (p) Data (f) Gain
PredictMap Closest %(Blur(p, 2)) 70

InClass %(Blur(p, 2)) 105
TrueMap Closest %(Blur(p, 2)) 160

InClass %(Blur(p, 2)) 236
Regression OutClass Blur(p, 1) 257

InClass Blur(p, 1) 341

Table 2: Information gain (x1000) of Schelling point predictions.

Visualizations of Schelling point distributions predicted with a re-
gression model trained InClass are shown in Figure 8. The meshes
and color scheme are the same as in Figure 1 to facilitate direct



visual comparison. From these images (and others provided in sup-
plemental materials), we see that these learned models are not as
precise as the actual Schelling distributions. However, they predict
tips of protrusions well (corners in the airplane) as well as some
subtle features (e.g., centers of eyeglasses, eyes of the bust, belly
button of the teddy bear, etc.) that are difficult to recognize with a
threshold on any single surface property.

Figure 8: Visualizations of Schelling point distributions predicted
by our algorithm after training on properties of different meshes in
the same object class (InClass).

7 Prediction of Schelling Points

For many applications, it is important to not only estimate mesh
saliency, but also to extract a discrete set of salient feature points.
For example, surface matching algorithms often start by detecting
a set of features and then searching for correspondences between
them. To be successful, these algorithms require a set of feature
points that have many of the properties of Schelling points: stabil-
ity, spacing, symmetry, etc.

Many algorithms are possible to address this problem, including
ones that perform a combinatorial optimization over possible can-
didate sets, choosing the one that maximizes some objective func-
tion. However, for the purposes of this study, we choose a simple
greedy algorithm that has been used in several other saliency exper-
iments (e.g., [Shilane and Funkhouser 2007]). The algorithm aims
to select a set of vertices {Vi} that maximizes the sum of Ŝ(Vi)
at selected vertices, subject to the constraint that no two vertices
in {Vi} are too close to one another. It does so by sorting vertices
from highest Ŝ(V ) to lowest and then repeatedly selecting the next
vertex remaining whose position is not closer than a normalized
geodesic distance threshold, D, to any previously selected vertex
(D = 0.05). This process avoids selecting many points near one
another on the mesh and provides an easy way to reduce the point
set size by increasing the distance threshold D or terminating the
greedy search after a given number has been selected.

Results: To investigate how effectively an algorithm can predict
Schelling points, we perform an analysis of the similarities of the
automatically generated point sets to the ones collected from peo-
ple. For this analysis, we extract k = 14 points for each mesh
(the even number closest to the median of point sets collected from
people) and then follow the general methodology described in Sec-
tion 5A. That is, we measure the distance from points in our au-
tomatically extracted point sets to the Schellling points SP on the

same mesh and plot the cumulative distribution with respect to in-
creasing normalized distance thresholds.

For comparison sake, we consider point sets extracted with the
same algorithm from maxima of every surface property considered
in Section 5, and we consider point sets transferred from Schelling
points on other meshes within the same class using the mapping
algorithms described in Section 6.

Figure 9 shows the results. As in Figure 3a, the horizontal axis con-
tains increasing distance thresholds, D, and the vertical axis shows
consistency using the cumulative distribution of point pairs whose
normalized geodesic distance is less than D. The red curve on top
represents the consistency between Schelling points SP collected
from people with point sets extracted automatically from the distri-
bution predicted with regression using InClass training. The lower
curves represent the best point sets generated with other methods.
These results suggest that the points selected by our algorithm from
the distribution learned with regression using InClass training are
closer to the Schelling points collected in our study than those pre-
dicted with other methods. We also find that they are slightly more
consistent with the Schelling points than the average point set col-
lected from people, suggesting that the regression and point extrac-
tion algorithms for predicting Schelling point sets are effectively
relating surface properties to Schelling point locations.

Figure 9: Consistency between Schelling points and point sets ex-
tracted with different algorithms.

8 Validation with Controlled User Study

As a final test, we investigated the impact of collecting data via
the Amazaon Mechanical Turk (AMT) on the main conclusions of
our study. Although the AMT is becoming a common platform
for perceptual experiments in computer graphics (e.g., [Cole et al.
2009]) and there are several studies validating AMT studies in the
laboratory (e.g., [Heer and Bostock 2010]), it is valuable to ask
whether the data we gathered from the AMT is representative of that
which would be collected from a controlled group of participants in
a laboratory environment.

Of course, it is not practical to duplicate the AMT experiment ex-
actly in the laboratory, since it would take hundreds (or possibly
thousands) of hours to collect an equivalent amount of data. In-
stead, we ran a small study in which we recruited 30 volunteers
through email inquiries to acquaintences and students unfamiliar
with our project. Of these volunteers, 20 were male and 10 were



female. They span a range of ages: 6 were ≤ 20 years old, 16 (21-
30), 2 (31-40), 2 (41-50), 3 (51-60), and 1 (>60). All except four
self-evaluate as having at least “plenty” of experience with comput-
ers, but only 9 report having “plenty” of experience with graphics.
Every participant performed the study on a Windows computer with
a 3-button mouse.

We asked each of the participants to select points on 19 meshes (one
selected randomly from each object category) with the exact same
instructions and user interface provided on the AMT (substituting
the incentive to gain “points” for selections consistent with others’
rather than higher monetary payment). After completion, partipants
completed an exit survey, in which 25 responded “yes” or “mostly”
to a question asking whether they completed the task to their sat-
isfaction. We rejected data from the other users, leaving 474 point
sets from 25 participants. Of those, 354 (74.7%) passed all three
data filters – 66 (13.9%) had too few points, 23 (4.9%) were en-
tered with too little camera motion, and 31 (6.5%) were clicked too
hastily. This is a significantly lower rejection rate than for the data
collected on the AMT.

Analyzing the point sets passing all filters, we find that they closely
matches the characteristics of data collected on the AMT. In par-
ticular, the distribution of distances indicating the consistency of
points selected by different people on the same mesh (Figure 10a)
and the reflective symmetry of points selected by the same user
on the same mesh are almost identical to those collected on the
AMT for the same set of meshes (Figure 10b). Of course, there is
not enough data to study consistency across different meshes in the
same class, or to study variations within specific subsets of objects.
However, all statistics computed for this small, controlled data set
closely match those of the larger AMT data set.

Figure 10: Comparison of consistency and symmetry of point sets
collected in a small, controlled study (left) versus ones collected
from people on the Amazon Mechanical Turk (right). (a) The top
row shows the consistency of points selected by different people on
the same mesh (like Figure 3a). (b) The bottom row shows the con-
sistency of points selected by the same person on symmetric sides
of a mesh (like Figure 3c).

9 Conclusion

In this paper, we have described a study of Schelling points on 3D
meshes – i.e., points that people expect to be selected by other peo-
ple. With an on-line experiment, we gathered 9,965 points sets con-

Figure 11: The predicted Schelling distribution ŜD (left) can be
used to preserve salient detail during mesh simplfication.

taining a total of 201,304 points. During both qualitative and quan-
titative analysis, we find that these points appear mainly at “seman-
tically stable” positions on a 3D mesh – e.g., extrema of curvature,
on axes of symmetry, centers of segments, etc. We also find that
they are selected fairly consistently by different people on the same
mesh, and slightly less so on different meshes of the same object
class. However, they are selected very consistently on symmetric
parts within the same mesh. We have used this data to train an al-
gorithm for predicting the distribution of Schelling point on new
meshes and used it in algorithms for feature point detection.

The saliency measures produced with our methods could be used in
a variety of applications in computer graphics (e.g., [Alexa 2000;
Funkhouser and Shilane 2006; Johnson 2000; Katz et al. 2005; Lee
et al. 2005; Zhang et al. 2005]). For example, Figure 11 shows
how a predicted Schelling distribution can guide a mesh simplifica-
tion algorithm to preserve features with higher expected semantic



salience (as in [Lee et al. 2005]). In this case, quadric errors used
by QSlim [Garland and Heckbert 1997] were scaled by ŜD

2
learned

with regression from InClass examples. Note how detail is better
preserved in salient areas.

Our study is just a first step and thus has several limitations that
suggest topics for future work. First, it considers only water-
tight meshes with relatively smooth features, and therefore some
of the findings regarding local geometric features may not general-
ize to polygon-soup models commonly found in computer graphics
repositories. Second, it considers only point features: studying line
and region features would also be valuable. Third, it studies geo-
metric surface properties of the collected data: future work could
study other aspects of the data, including the time-dependent strat-
egy people used to select feature points. Finally, it focuses only on
applications in computer graphics (mesh saliency and feature point
detection): future work might consider questions in perceptual psy-
chology.
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