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Figure 1: Our algorithm synthesizes detailed hand movements for a wide variety of objects. (Cyan and yellow dots indicate contacts between
the object and the hand and between the object and the environemnt respectively. Red arrows indicate contact forces.)

Abstract

Capturing human activities that involve both gross full-body mo-
tion and detailed hand manipulation of objects is challenging for
standard motion capture systems. We introduce a new method for
creating natural scenes with such human activities. The input to our
method includes motions of the full-body and the objects acquired
simultaneously by a standard motion capture system. Our method
then automatically synthesizes detailed and physically plausible
hand manipulation that can seamlessly integrate with the input mo-
tions. Instead of producing one “optimal” solution, our method
presents a set of motions that exploit a wide variety of manipula-
tion strategies. We propose a randomized sampling algorithm to
search for as many as possible visually diverse solutions within the
computational time budget. Our results highlight complex strate-
gies human hands employ effortlessly and unconsciously, such as
static, sliding, rolling, as well as finger gaits with discrete reloca-
tion of contact points.
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1 Introduction

Synthesis of full-body motion with detailed hand-object manipula-
tion is a very challenging problem in computer animation. The per-
ception of realism depends not only on motions on a grand scale,
but also on subtle movements of the hand as it interacts with the
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environment. As a recent study by Joerg et al. [2010] shows, even
very subtle desynchronization errors in body-and-hand motions can
be detected by the human eye. As a result, the level of accuracy re-
quired for generating believable body-and-hand motion sequences
raises significant challenges for existing methods of motion track-
ing. Existing optical motion capture systems are unsuitable for si-
multaneous tracking of full-body motion and detailed hand-object
manipulation. The camera parameters and placement optimal for
full-body tracking do not produce accurate hand motions due to in-
sufficient resolution and occlusion. The most popular method in
film industry of multi-resolution tracking of body and hand is to
capture the full-body motion of the actors and manually animate the
hand. This process usually takes enormous effort, and highly de-
pends on the animators’ skills. An alternative approach is to capture
the body and the hand separately with different mocap settings, and
synchronize the motions as a post-process [Majkowska et al. 2006].
However, performing the same scene multiple times can be diffi-
cult, especially when the scene involves incidental contacts with ob-
jects. Another option is to use wearable devices such as data gloves
[Cyb ] to capture hand motion separately. One potential issue of
this approach is that these devices often restrict the movement of
the hands for fine manipulation.

This paper introduces a new method for synthesizing human activ-
ities with both gross body motion and detailed hand manipulation.
We aim to synthesize a rich variety of plausible hand motions that
exhibit different manipulation strategies human hands employ, such
as contact rolling, sliding, and relocation. Although it is difficult to
mocap detailed finger motions, standard optical tracking systems
are able to capture motions of rigid objects and the wrists with rea-
sonable accuracy. Therefore, the input to our system is a sequence
of full-body motion with accurate wrist movements, and a simul-
taneously acquired sequence of object motion. The output is a set
of detailed, expressive, and physically plausible hand motions that
seamlessly integrate with the input. The decision of our system in-
put is crucial to the success of our algorithm because motions of the
object and the wrist encode important information of possible hand
motions. Movements of the object determine forces and torques
that the hand must generate, as well as the locations of the fingers.
In addition, motion of the wrist strictly constrains the range of fin-
ger movements. These dynamic and kinematic constraints greatly
reduce the state space of our problem.

Continuous optimization techniques have been successfully applied
to solve manipulation problems with similar constraints. However,
they are not suitable for our problem because the distinctive ma-
nipulation strategies we aim for often lead to discontinuous con-
straints. Moreover, the design of an appropriate objective function


http://doi.acm.org/10.1145/2185520.2185537
http://portal.acm.org/ft_gateway.cfm?id=2185537&type=pdf

for the desired outcome remains a difficult challenge as the crite-
ria for optimality is not obvious. Instead of formulating a con-
tinuous optimization over joint trajectories, we develop a discrete
randomized search algorithm that explores the space of possible
hand-object contact positions over time. At each time step, the al-
gorithm stochastically chooses a set of contact points on the object
and determines whether they can be achieved kinematically and dy-
namically from the current state of the hand and the object. Because
the goal of our system is to quickly generate as many complete se-
quences as possible while presenting rich diversity in the solutions,
we introduce a few strategies to expedite the randomized search.

The key choice we made in designing our algorithm was to work
in the space of contact positions instead of joint angles. The main
advantage of this choice is that we can achieve desired manipula-
tion strategies by directly controlling contact positions. In addition,
given the trajectory of contact points, the hand motion can be easily
reconstructed using inverse kinematics (IK). However, a naive sam-
pling approach in the space of contact positions is very inefficient
because the probability of generating physically accurate contact
points from random sampling is extremely low. The key idea of
this paper is to utilize physics information of contact to improve
efficiency of sampling. At each time step, we first solve for con-
tact forces given the object motion, then use these forces to narrow
down the sampling space such that only contact points that satisfy
contact dynamics in the next frame will be generated as new sam-
ples. For example, if the contact force is on the boundary of the
friction cone, the possible contact positions at the next frame will
be limited to the opposite direction of current tangential contact
force.

Our results demonstrate a rich set of manipulation strategies for
various everyday tasks on objects of different shapes and properties
(Figure 1). We show that detailed finger movements, such as con-
tinuous sliding and rolling as well as discrete relocation of contact
points, greatly improve the believability and aesthetics of human
motion. Our algorithm is able to discover sophisticated finger gaits
and coordinations of both hands without any prior knowledge or
data. In addition, our method allows users to control the output mo-
tion by editing object properties, such as the motion, the geometry,
or friction coefficients of the object.

2 Related Work

Creating a natural scene with rich and close interaction between hu-
mans and the environment has been a challenging research problem.
Many existing approaches combine motion capture data with mo-
tion adaptation techniques to synthesize interactions between the
character and the objects in the environment. Gleicher [1998] used
kinematic constraints to fix the character’s hands on the manipu-
lated objects. Yamane et al. [2004] presented a global path planner
to synthesize the object’s trajectory while maintaining kinematic
constraints and naturalness of motion capture data. Ho et al. [2010]
introduced a mesh representation to maintain implicit spatial rela-
tionship of the scene during motion editing. Jain and Liu [2009]
coupled full-body mocap data with manipulated objects via phys-
ical simulation. Through the dynamic coupling, human motion
adaptation can be driven by the edited motion of the object. In
this work, we aim to create interactive scenes in much greater de-
tail than what previous methods produced. The hand motion must
be dynamically and kinematically consistent with the objects and
the full-body motion, while exhibiting the level of complexity and
diversity of real human hands during manipulation.

Many researchers have proposed different approaches to synthesiz-
ing detailed hand motions in computer animation. Hand motions
can be directly captured from the real world and played back in the

virtual world [Majkowska et al. 2006]. However, when the motion
involves object manipulation, occlusion and imprecision become
major issues. Previous work has applied kinematic approaches
to create grasping motions [Koga et al. 1994; Huang et al. 1995;
Aydin and Nakajima 1999] or manipulation of musical instruments
[Kim et al. 2000; ElKoura and Singh 2003]. These methods add
great detail to character animation, but the resulting motions usu-
ally lack physical realism and variability. Our method also applies
inverse kinematics to generate joint motions for the hand. However,
the contact points used to constrain the hand poses are computed in
consideration of motion diversity and physical realism.

Physical simulation is another promising approach to synthesizing
hand animation [Albrecht et al. 2003; Pollard and Zordan 2005;
Tsang et al. 2005; Kry and Pai 2006; Sueda et al. 2008]. Previous
methods developed grasp controllers using recorded hand motion
[Pollard and Zordan 2005; Kry and Pai 2006] and contact forces
[Kry and Pai 2006] . Because the motion is physically simulated,
one can apply the same controller to different dynamic situations
or objects. Although our method does not focus on realtime simu-
lation, our results can serve as input data to exsiting dynamic con-
trollers. Physically plausible hand motion can also be generated by
optimization-based approaches. Liu [2009] formulated a layered
optimization that solves for contact forces, contact positions, joint
torques, and hand motion. ~We also use a layered framework to
solve contact positions and hand motion in two separate steps, but
the contact points are sampled based on contact dynamics rather
than emerging as the optimal solution of a single metric. As a re-
sult, our approach generates motions with much greater details and
diversity.

Detailed manipulation exploiting various manipulation strategies
or finger relocation have been extensively studied in robotics.
These strategies adjust hand poses and contact positions in concert
to achieve more robust manipulation. Common strategies such as
controlled sliding and rolling contact [Tournassoud et al. 1987;
Cai and Roth 1987;  Cole et al. 1992;  Cherif and Gupta 1999],
or finger gait [Hong etal. 1990; Han and Trinkle 1998;
Xu et al. 2007] can largely improve the capability of robotic
manipulators. In addition to synthesis, robotics researchers can
also transfer manipulation to different situations by analyzing
the quality of contact locations [Pollard and Hodgins 2002;
Pollard and Wolf 2004] and the relative motion between the object
and the wrist [Ciocarlie and Allen 2008; Hamer et al. 2011]. We
draw many insights from the robotics literature in developing
our method, but ours is fundamentally different in the underlying
assumption. We do not assume the manipulation will be stable,
nor do we assume any prior knowledge or data of the task are
available. Rather, we employ a generic randomized algorithm to
automatically and efficiently discover possible strategies consistent
with the dynamics of the object and contact constraints.

Sampling-based approach for controlling the outcome
of physical simulation has been applied to rigid body
[Chenney and Forsyth 2000; Twigg and James 2007] and var-
ious character animatioins [van de Panne and Fiume 1993;
Ngo and Marks 1993; Sims 1994; Liu et al. 2010; Sok et al. 2007].
For methods involving actively controlled systems, determining a
proper sampling space is crucial. For example, Liu et al. [2010]
sampled the desired joint angles around the nominal trajectory,
Sok et al. [2007] sampled the initial joint configuration of the
character, and van de Panne and Fiume [1993] sampled the weights
of a neural network for the sensors and actuators of a controlled
system. Our method generates random samples in the domain of
contact positions on the object. This choice of sampling space
has the advantages of providing important constraints to hand
poses, and at the same time, being highly constrained by the state
of contact forces. The former simplifies the process of creating
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final hand motion and the latter greatly reduces the number of
required samples. A few applications in computer animation adopt
randomized path planning algorithms from robotics literature
[Choi et al. 2003; Yamane et al. 2004]. Our problem is different in
that the dynamic constraint in contacts defines a narrow and nons-
mooth feasible region. While existing path planning methods, such
as Rapidly-exploring Random Trees [Lavalle and Kuffner 2000]
and Probabilistic Roadmap [Kavraki et al. 1996], are designed for
efficient exploration of space. Additional techniques are required
to navigate such a complex constrained space.

3 Overview

The input to our system is a mocap sequence of an actor perform-
ing a full-body motion while physically interacting with objects in
the environment. The sequence is acquired using a mocap system
calibrated for wide-range full-body motions. The resolution of the
system is sufficient to capture the wrist and the object movements,
but not enough for fine finger movements. Our goal is to create
realistic, detailed hand motions to fill the missing gap between the
full-body and the manipulated object.

Our algorithm, illustrated in Algorithm 1, consists of two steps:
search of feasible contact point trajectories (Section 4) and recon-
struction of hand motion (Section 6). While the second step is nec-
essary to generate smooth final animation, the main contribution of
this work lies in the first step.

We formulate the problem of generating feasible contact point tra-
jectory as a randomized depth-first tree traversal. Each level of the
tree corresponds to a time instance ¢ in a contact point trajectory.
Each node of the tree represents a state, s = {q,P,F}, where q in-
dicates a hand pose, P indicates a set of contact points between
the hand and the object, and F indicates the corresponding contact
forces. Our algorithm recursively expands feasible nodes on the
tree from the root to the leaf nodes at level 7', where T indicates
the number of frames of the input animation. At each level #, we
generate new nodes based on contact dynamics using information
st from the previous level 7 — 1 (Section 4.2). If a node is kine-
matically and dynamically feasible (Section 4.3), we continue to
the next level ¢ 4+ 1. Otherwise, we consider this node a dead end.
When a feasible path is found, or when a dead end is encountered,
we perform a randomized backtracking to explore more possibili-
ties. In Section 5, we describe a few strategies to discover visually
distinctive paths efficiently.

Algorithm 1: SynthesizeHandManipulation
S={};

while isTimeLimitReached =FALSE do

LS“’):{};

SearchContactPoints(S, S 1) ;

foreach S') € S do
L qp — ReconstructHandMotion(S(T>) ;

// Section 4

// Section 6

4 Search for Contact Point Trajectories

In this section, we introduce the basic algorithm for searching con-
tact point trajectories using a straightforward depth-first search on
a tree structure. At each level of the tree, the search algorithm com-
pletes two main tasks. First, it generates a small set of nodes as
potential expansion of the tree. Second, it tests the feasibility of a
node randomly chosen from this set. Before we delve into details
of the algorithm, we first define a few useful notations.
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4.1 Notations

Given the definition of a state s = {q,P,F} from Section 3, we
further define a contact point p € P as a pair of local coordinates
p.o and p.h, on the surface of the object and the surface of the
hand respectively. A contact force f € F is defined by a nonnegative
scalar force f1 along the contact normal n that points to the object,
and a tangential force vector £/, The force vector applied to the

object in Cartesian space is computed as fc = f'n +f//.

Our definition of s contains sufficient information to synthesize
hand motions, but the dimension of the state space is too high for
the search process. We observe that when the position and orienta-
tion of the wrist is fixed, a finger pose can be approximately deter-
mined by a single contact point due to kinematic constraints. Thus,
we define a more compact representation, a guiding configuration
¢, which consists of up to one contact point for each finger. We
term these contact points guiding points, p.  To recover the cor-
responding full state from ¢, we apply inverse kinematics (IK) and
collision detection to obtain q and P. From P and the input motion
of the object, we can solve for the corresponding contact forces F.
Therefore, a valid c¢ sufficiently represents a full state s. Working
in the space of ¢ greatly simplifies the search process illustrated in
Algorithm 2.

Algorithm 2: SearchContactPoints ( S,S0~1 1)

C) — GenerateNewNodes(s 1) ;
success < FALSE ;

nTrials <+ 0 ;

while nTrials < maxBranchFactor do
¢ — PickOneNode(C")) ;
isFeasible,s") — TestFeasibility(c)); // Section 4.3
if isFeasible = TRUE then

S® — Append(S(~D s)); // a feasible frame
if =T then

L S.push(S(T));

// Section 4.2

// a feasible trajectory
success < TRUE ;

else
L success «—

success OR SearchContactPoints(S,S$() 7 +1) ;

B nTrials < nTrials+1 ;

return success;

4.2 Generate New Nodes

To keep the search process tractable, our algorithm explores only
states that satisfy the contact dynamics. Specifically, we generate
samples of guiding points for each finger based on input motion and
contact information from the previous state st=1). Guiding points
are then randomly grouped into a set of guiding configurations c),
We handle the initial case and the general case of sampling sepa-
rately as follows.

Initial case. An initial case is a frame in the input motion at which
a finger establishes contact with the object. We identify them in two
preprocessing steps. First, we use the input wrist motion to compute
a reachable volume for each finger tip at each frame. Next, we
intersect the volumes with the surface of the moving object. We call
the intersecting areas on the surface of the object contact patches,
where kinematically feasible contact points should lie. Figure 2
illustrates this process.



Once we identify the initial frames when intersection takes place for
each finger, we create uniform point samples on the contact patches
at these frames. Because each contact patch is associated with a fin-
ger, we can pair each sample on the patch with the corresponding

finger tip to form a guiding point f)lm, where the subscript i indi-
cates the finger index and the superscript ¢ indicates the time index.
The number of samples is proportional to the area of the patches.
In practice, we further prune kinematically infeasible samples in

preprocessing to expedite the search process.

t=1 t=2 t=3 t=4

r~

¢ { <

Figure 2: The blue and the yellow blobs represent reachable vol-
umes of two fingers respectively, and the pink square is the object
being manipulated. The purple lines and orange lines are contact
patches of each finger. We create uniform point samples (dark blue
dots and red dots) on contact patches at frames when contacts are
established.

General case. . In the general case, we produce a set of new guid-

ing points at level ¢ from s(=1) based on contact dynamics: static,
sliding, and breaking. They directly correspond to three manipula-
tion strategies: static contact, sliding contact, and relocating con-
tact.

To generate new guiding points, we begin with selecting some seed
) from s~1). Given all the contact points from the pre-
vious level, Pl _1>, we choose the most distal contact point on each
finger as a seed point U1 € PU—1)_ From a seed point pU~1) and
its associated contact force f/=1), we use the following sampling
rules to create a new guiding point, f)(’ ), for the current level:

points PU~1

1. If £¢=1) is within friction cone, the current contact must re-
main static. f),o(’ ) is at the same location as f).o(’ -

2. if f'=1 is on the boundary of friction cone, the current contact
can remain static or slide. p.o(") can be the same as p.ol~ 1),

t—1
or be along the direction of f /=0 away from f).0<’ -1,

3. If £ = 0, the finger can remain static, or release contact
and move to a neighboring location. f).0<l) can be the same as
f).o("l), or be in the neighborhood of f),o(t”).

Next, p.o") is paired with p.h~ 1 to form a new guiding point p*).
Figure 3 shows examples of how contact points evolve over time on
the object surface.

4.3 Test feasibility

After generating a new set of guiding configurations, we randomly
select one guiding configuration ¢ € C 1o test its feasibility. We
consider ¢ kinematically feasible if a penetration-free hand pose can
be recovered from c. Likewise, we consider ¢ dynamically feasible
if there exists a set of contact forces consistent with the dynamics
of the input object motion.

Kinematics. To test kinematic feasibility, we attempt to recon-
struct a penetration-free hand pose from ¢ by solving a sequence of

. f)(t)
. o to1¢”

© p)

(0> <3)
(2) Sliding  (3) Relocating

(0) Establishment (1) Static

Figure 3: Each colored region indicates a surface patch for a fin-
ger. Three initial patches appear att = 1, and a fourth one appears
at t = 3. Contact points evolve on the patches over time according
to strategies (0)-(3).

IK problems. The selected guiding configuration c fails the test if
we cannot resolve penetration completely within the iteration limit,
or if the fingers inter-penetrate each other.

The IK problem is formulated as a nonconvex optimization to solve
for the desired hand pose.

min}_ | f(a, pi-h) - pi.o]* M
subjectto  g(q,p;.h) m;(p;.0) >0, Vi ®)
lq—q' V< 8q 3)

where f(q,p.h) in Equation (1) is the forward kinematic function
that computes the position of p.h in the local coordinates of the
object given pose q. In Equation (2), g(q,p.h) outputs the normal
direction of the nail on the finger that contains p.h. By aligning the
normal direction of a nail with the surface normal, we avoid many
unnatural hand poses. Lastly, Equation (3) prevents large change of
hand poses across frames to favor smooth motions. §q determines
how fast the fingers can move in a time step.

If the solution pose penetrates the object, we formulate a new IK
problem to resolve penetrations. We consider penetrations only on
intermediate and distal phalanges because proximal phalanges and
the palm have very limited freedom to move given the input wrist
motion. For each colliding finger, we use a standard collision de-
tection method to identify a pair of contacts that corresponds to the
deepest penetration. The pair is then substituted into Equation (1)-
(2) to form a new problem. The solution to the new problem can
effectively reduce penetrations. In most cases, a few iterations of
this process are sufficient to generate a penetration-free hand pose
q. Finally, we collect all contact points between the hand (in-
cluding the palm and proximal phalanges) and the object in a set P,
which usually include the guiding points and other incidental con-
tact points. The guiding points may not be present in P, however,
when the point on the object moves to a location that is not reach-
able by the finger point, or moves across discrete features such as
an edge or a corner. Such change of contact is desirable because it
can result in finger rolling.

Dynamics. Once the proposed guiding configuration ¢ passes the
kinematic test, we further test whether the contact points P can pro-
duce sufficient contact forces F to move the object in accordance
with the input object motion. This dynamic feasibility test can be
formulated as a convex conic programming. If a feasible solution
cannot be found, we consider that ¢ fails the dynamic feasibility
test. The optimization can be formulated as follows:
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Equation (5) enforces the dynamics of the object, where the 3 x 6
Jacobian matrix J; is a transformation between Cartesian coordi-
nates and generalized coordinates. The inertial and the gravitational
forces in the generalized coordinates are included in G. To ensure
f is a valid contact force, we constrain the friction direction to be
perpendicular to the contact normal (Equation 6) and within the
Coulomb friction cone (Equation 7). If the object is also in contact
with the environment, we need to solve for environment contact
forces simultaneously with F. Because the contact information be-
tween the object and the environment is a-priori, we can easily add
appropriate environment contact constraints depending on whether
the contacts are static or sliding. The above constraints may have
many solutions. To encourage contact movements while keeping
the problem simple, we minimize the sum of normal forces (Equa-
tion 4). This objective exploits friction force as much as possible
to satisfy constraints because only normal forces are penalized. As
a result, sliding contacts frequently occur in the resultant motion.
The minimization also prevents using unnecessary forces so that
fingers are more likely to relocate when they are not essential to
satisfy constraints. While uniform weighting (w; = 1) works well
in most cases, we can fine tune the weights for better performance.

5 Create Diverse Solutions

Because the baseline algorithm searches the solution space exhaus-
tively, most computation is spent on discovering very similar tra-
jectories. To improve the baseline algorithm, we introduce four
strategies to increase diversity in solutions within the same compu-
tation time.

Sparse exploration. We can reduce the search complexity by ex-
ploiting temporal coherence in a path. Because a static or sliding
contact is not noticeable unless it persists for a few consecutive
frames, we keep the same manipualtion strategy for a small win-
dow of time before branching out to take a new strategy. In other
words, instead of treating a single frame as a node, we treat a short
sequence of frames as a node. To generate more variations, we use a
uniform random variable as the window size, whose expectation is
determined by a parameter €. With this treatment, the search com-
plexity is explicitly controlled by €, and independent of the length
of the motion.

In addition, we choose a small branching factor to reduce computa-
tion on visually similar paths, because sibling nodes often represent
similar states. When searching for a feasible path, we branch once
in every two chances on average. When looking for alternative fea-
sible paths , we choose a branching factor such that on average no
more than 2.5 feasible paths can be created for each initial sample.
We use these branching factors for all our examples.

Informed backtracking. There are many causes of an infeasible
frame. If the cause of failure can be propagated backward during
backtracking, we can utilize this information to expand different
nodes with higher likelihood of success. In our algorithm, we iden-
tify three different infeasible situations. If a frame fails on the kine-
matic test for a particular finger (e.g. unsolvable penetration), we

choose a new guiding point for the failing finger and keep guiding
points for other fingers unchanged. If an infeasible frame is caused
by inter-penetration between two fingers, we choose new guiding
points that maximally separate the two fingers apart. Finally, if a
frame fails on the dynamics test, we simply choose a new guiding
point for every finger.

We can also diversify solutions when backtracking from feasible
paths by choosing nodes that are most different from the explored
ones. The metric used to measure similarity is a simple summation
of Euclidean distance of guiding points.

Manipulation strategy preference. Instead of picking a random
strategy for each finger every time, we can give high priority to
a preferred manipulation strategy. For example, by always choos-
ing static contacts, we can obtain a trajectory with minimum con-
tact changes. Alternatively, we can choose sliding or relocating
contacts whenever possible to produce a trajectory with rich move-
ments. More interesting behaviors can emerge if we assign different
preferences to different portions of the input motion.

Contact force preference. Because the set of possible manip-
ulation strategies are determined by contact forces, we can adjust
Equation 4 to indirectly favor different strategies. For example, if
contact relocation is preferred, we can assign larger weights to fin-
gers that do not apply force in the previous frame. As a result,
once a finger is released, it tends to remain free, provided that the
dynamic constraints can be satisfied.

6 Reconstruct Hand Motion

After we obtain feasible trajectories of contact points, we apply
a spacetime optimization to create smooth hand animations with
respect to the contact points.

Do) ()
min E;’ +wE
qn ,;1 1 2

subject to f(q,(f),p.h(t)) =po, t=1,--.T )

where the objective term E| encourages smooth change of joint an-
gles by minimizing acceleration (Equation 10), and E, favors joints
on the same finger having similar bending angles (Equation 11).
The subscripts of g indicate DOFs of the same rotation axis on three
consecutive joints shown in Figure 4.

£ =gy~ 24+ (10)

EY) =Y g 1p. — 2ap. + aip:|I? (11

For fingers in contact, we initialize them with poses solved in the
kinematic test. For fingers not in contact, they assume a rest pose
specified by users, or a similar pose as neighboring fingers. Non-
contacting cases include finger gaiting between contact locations
and transition between manipulating different objects. We break
down a long sequence into short segments to expedite the optimiza-
tion. Because contact constraints only exist when fingers exert con-
tact forces, the resultant motion may exhibit penetration artifacts for
fingers not in contact. In such cases, we iterate between resolving
collisions (as described in Section 4.3) and smoothing joint angles
until penetrations are resolved.

Finally, we attach the resultant motions to the wrists of the charac-
ter, and we complete the reconstruction of a full-body human mo-
tion with both locomotion and hand manipulation of objects.



7 Results

We applied our algorithm to a variety of hand manipulation tasks,
ranging from simple lifting and turning of a box on a tabletop, to
a realistic cooking scene that involves objects of different shapes,
as well as two-hand manipulation tasks. Our algorithm automat-
ically generates many possible hand motions with rich variations
and details. In addition, users can modify object properties, such
as geometry, material, or motion, after the data acquisition process.
Please see the supplementary video to evaluate our results.

MCP (x.2) Wrist (6 DOFs)
X,Z
CMC (ball)
PIP (y,2) PIP (z,y)
IP(z) DIP (2)
DIP (z) —
z7|Y
X

Figure 4: Each finger in our hand model has 6 DOFs. Each of the
four digits has a 2-DOF joint originated near the wrist to model
small deformations of the palm.

We use a hand model with 36 DOFs (Figure 4). The six DOFs
on the wrist are given as input and the remaining 30 DOFs on the
palm and fingers are synthesized by our algorithm. We solve the
nonconvex IK optimization using SNOPT [Gill et al. 1996], and the
convex conic program using MOSEK [Andersen et al. 2009]. We
use Bullet [Coumans 2005] for collision detection.

Performance. We tested our algorithm on a 2.8 GHz Intel Core 2
Duo machine running as a single thread. The runtime of optimiza-
tion highly depends on the number of contacting fingers and con-
tact points. With five contacting fingers, each frame takes 200ms
on average for the kinematic test and 5 — 10ms for the dynamic
test. The performance of search also depends on the size of feasi-
ble regions in the problem domain. Because our method is not de-
signed for real-time, interactive applications, we sometimes trade
off performance for more variations in results. For example, we
adjust the parameter € so that the search algorithm branches less
frequently and spends more time to seek solutions with greater vari-
ations within the same amount of time. Table 1 shows statistics
for one execution of Algorithm 1, which terminates with a desired
number of solutions. Due to the stochastic nature of the algorithm,
the numbers can vary across different executions. Column 6-10
show the average numbers of 5 executions.

A cooking scene. We tested our algorithm in a realistic cook-
ing scene where the actor moves around in a cluttered environment
to fetch and manipulate kitchenware of various shapes (Figure 5).
Motions of the full-body and the objects were captured using a stan-
dard motion capture setting. We segmented the input sequence into
short clips to improve the performance of the search algorithm.

Results show that the same algorithm can synthesize detailed hand
motions for a variety of shapes and manipulation tasks without any
prior knowledge or user intervention. They also show that our al-
gorithm is insensitive to the initial contact location and timing. For
evaluation, we manually specified the timing of the initial contact
for each finger in the scene of turning a small bottle on the table, and
compared the result with the one synthesized automatically (Figure

(a) motion capture setting

(b) our synthesized result

Figure 5: Our algorithm synthesized detail hand motions for a re-
alistic cooking scene.

6). In both motions, the fingers exhibit qualitatively similar behav-
iors.

Objects with sharp edges such as the milk box present challenges
to the dynamic test due to the discontinuity of normal directions.
Grasping near an edge in a simulation could result in inconsistent
forces across frames. In reality, grasping on edges tends to make
manipulation easier, because the contact area captures a large range
of normal directions. To model such phenomena, we approximate
an area contact by computing forces on a few proxy points in the
neighborhood of an actual contact point, capturing the local features
of geometry. As a result, grasping on an edge becomes an available
grasp style in our solutions.

Two-hand manipulations. Our algorithm can be directly applied
to two-hand manipulation tasks. These tasks require the hands to
coordinate and apply contact forces collectively (Figure 1). In the
example of fiddling a small box with alternating hands, our algo-
rithm accurately estimates the timing and position of finger-object
contacts, simply based on the relative motion between the wrists
and the object. Another example is to transport a bigger box from a
table to the floor. Before lifting, the hands casually reorient the box



€ T Time (sec) Solution Deadend | Total frame Success frame Success ratio Solution ratio
Milk box (turning) 10 71 834 10 241 2710 661 24.4% 4.0%
Milk box (pick up) 20 101 917 10 2208 26588 974 3.7% 0.45%
Spatula 20 | 226 1323 20 285 6324 3735 59.1% 6.6%
Pot (with Wine) 20 120 636 10 340 3235 1144 35.4% 2.9%
Two-hand (small box) 15 141 666 35 273 8833 4901 55.5% 11%

Table 1: Parameters and statistics of a few examples. “Dead end” indicates the number of infeasible frames encountered. “Total frame”
indicates the number of frames explored. “Success frame” indicates the number of distinctive frames on all solution paths. “Success ratio”
is the number of success frames to the total number of frames, and “Solution ratio” is the number of solutions to the total number of paths
(including both solutions and dead ends) explored. As the number of success frames gets closer to the number of solutions multiplied by T,
the solution paths contain more and more distinctive movements. The fact that success ratio is much higher than the solution ratio means our
algorithm does not waste computation on dead ends thanks to efficient backtracking.
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Figure 6: Our algorithm is insensitive to the initial contact location
and timing. Top row: automatically synthesized motion; bottom
row: manually specified initial contact timing.

by sliding it on the table. The contact establishment and release
generated by our algorithm appear coordinated although no prior
knowledge is used. During transportation, the fingers naturally slide
and move on the surface of the box due to physical constraints and
the relative motion between the wrists and the box.

Different manipulation strategies. Users can choose manipula-
tion strategies to create various finger gaits. Our algorithm respects
the user preference regardless of the friction condition, but friction
affects the execution of the preferred strategy. We first chose the
sliding strategy and tested it with different friction conditions. Re-
sults show significant finger sliding in all cases. However, the slid-
ing direction changes from the horizontal to the vertical direction
as the friction cone widens. This behavior is the result of force op-
timization exploiting friction force to minimize normal force. We
next tested static contacts under low friction and observed mini-
mum finger sliding. However, fingers start rolling when it becomes
kinematically difficult to maintain a static contact.

We can also generate finger gaits by changing the weighting scheme
in Equation (4). In the example of manipulating a paper cup in
hand, the fingers have to roll and relocate contacts asynchronously
to provide necessary torques within the kinematic limits. We en-
courage finger movements by penalizing force usage of free fin-
gers. As a result, the free fingers start applying forces only after
they find a new contact location that is more efficient than the ex-
isting ones. For the contacting fingers, rolling becomes the only
feasible strategy given the dynamics of the cup and kinematic con-
straints of the hand. It is surprising that such a complex behavior
can be synthesized efficiently via a stochastic approach without any

prior knowledge or heuristics. Our experiment suggests that much
of the finger information is implicitly encoded in the relative an-
gular velocity of the object and the wrist. When we tested on a
synthetic object motion with constant angular velocity, the finger
gaits appear unnatural.

Editing object properties. The ability to adapt the hand mo-
tion to various object properties is highly desirable in a production
pipeline because virtual props often need to be modified after cap-
turing the actor’s performance.

When we modified the distance between the object and the hand,
different grasp styles emerged. For example, closer distance results
in a power grasp while a longer distance generates a precision grasp.
In the cooking scene example, the original spatula motion results in
a hand motion that uses mostly finger tips to grip. By moving the
spatula closer to the palm, the fingers automatically curl around the
spatula to form an envelop grasp and use the palm to exert forces
(Figure 7). We can also use the same captured motion on objects
with different shapes. We show that replacing a box with a bunny
or a mug retains the quality of the original motion as the fingers
naturally adapt to the new object with the same wrist motion (Figure
9).

Figure 7: Different grasp styles. Figure 8: Fiddling with a box.

Figure 9: The hand adapts to a mug and a bunny from the same
input motions.

8 Evaluation

Comparison with ground truth. To evaluate the quality of our
results, we compare them side-by-side with close-range motion
capture data and video footage. We used a close-range camera set-
ting to mocap a motion of picking up a small box on the table, and
used motions of the wrist and the object as input to synthesize sev-
eral motion sequences of the hand. Within 10 sequences, we were



able to find one that is visually similar to the captured data, although
not identical (Figure 10).

Figure 10: Left: motion capture data. Right: our synthesized re-
sult.

We also recorded a video of an actor fiddling with a box using one
hand, and captured motions of the wrist and the object at the same
time (Figure 8). The motion exhibits frequent contact movements
and complex contact relations among the hand, the object, and the
table. Although our solution is different from the actual perfor-
mance, partly due to the discrepancy in hand modeling, the overall
features of finger gaiting and contact sliding were reconstructed in
the synthesized motion. However, this challenging example also
revealed some drawbacks of our method. For instance, the fingers
sometimes penetrated the table during manipulation because we did
not consider collisions between the hand and the environment.

Path variability. Our improved search algorithm is more efficient
in discovering variabilities in the solution space compared to the
baseline. We visualized the search results after exploring the first
3000 nodes on a motion sequence of 230 frames (Figure 11). While
the baseline algorithm spent most computation time searching in a
narrow space, our algorithm covered a significantly larger space and
provided more variations in the solutions. Figure 12 shows some
distinctive solutions among the first 50.

Limitations. Many of the current limitations are due to the rudi-
mentary hand modeling. A hand made of rigid bodies cannot
model continuous area contacts, which are essential to many ma-
nipulation tasks. It is also difficult to handle simultaneous con-
tacts with multiple objects using a rigid hand. For example, scoop-
ing up a spatula lying on the table from the bottom cannot be
handled using the current collision resolution algorithm. In addi-
tion, our hand model does not simulate interdependency among
fingers. Consequently, the fingers appear to move independently
and sometimes unnaturally. Incorporating a more accurate hand
model with anatomically correct structure [Deshpande et al. 2009]
and deformable skins [Ciocarlie et al. 2007; Jain and Liu 2011] is a
fruitful future direction to pursue.

One drawback of using only guiding points for sampling is that the
sliding friction constraints might not be satisfied by all the contact
points. Although we did not remove such samples during search,
we excluded the solutions with this artifact at the motion recon-
struction stage. With a reasonable number of solutions, we are al-
ways able to find ones that respect constraints for all contact points.

The bottleneck of our current framework is the kinematic test which
resolves penetration by solving a few nonconvex optimizations.
While the method is straightforward, it fails at some difficult cases
such as manipulating a tiny marble or a piece of paper. A more
robust and efficient collision resolution routine can greatly improve
the performance and capability of our method.

Our search algorithm currently has limited planning capability be-
cause it does not anticipate future movements in choosing manip-
ulation strategies. Consequently, it is not efficient in discovering
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(a) baseline algorithm
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0 ' ' ' ' i

(b) our improved search strategy

Figure 11: Trajectories of a joint on the index finger after searching
3000 frames.

finger gaits that requires longer term planning. We can improve
the algorithm in challenging cases by incorporating short hori-
zon or receding horizon planning in search and sampling, and us-
ing grasp quality metrics [Miller and Allen 1999; Pollard 2004] for
early pruning. Planning is also important for free fingers to avoid
penetrations when transitioning between contact points. A more so-
phisticated pre-grasp and re-grasp planning algorithm will be more
suitable for general cases than our current simple treatment.

9 Conclusion

We introduce a new method for synthesizing human activities in-
volving both gross body motion and fine manipulation. Given a
full-body motion and object motion simultaneously acquired by
standard mocap system, our method automatically synthesizes de-
tailed, expressive, and physically plausible hand motions. Our ran-
domized algorithm searches for a set of hand motions that exploit
a wide variety of manipulation strategies, such as static, sliding,
rolling contact, as well as finger gaits with discrete relocation of
contact points.

In this work, we make a deliberate choice not to use any exam-
ple motions of grasps to test the capability of sampling techniques.
Incorporating a database of natural hand poses and a hand model
that captures the inter-dependencies of fingers may result in more
natural grasps and finger gaits.

Our technique opens up a few interesting future research directions.
Our current algorithm allows some limited user control, such as
choosing manipulation strategies (more steady or slippery), modu-
lating physical properties of the hands and objects, and modifying
the geometry of the objects. In practice, artists often demand direct
forward kinematics and inverse kinematics control. We would like



Figure 12: Our algorithm explores a variety of solutions.

to include these features in the future such that users can directly
specify angles for a particular joint or set a contact point at a partic-
ular location. Further, an intuitive user interface for visualizing and
selecting desired motions from a large pool of solutions can be im-
mensely useful. Similar to the Many-Worlds-Browsing technique
[Twigg and James 2007], one possible direction is to create an in-
teractive interface that allows users to browse and adjust parts of the
scene with ease. To provide a seamless interaction experience, we
can solve many solutions in parallel thanks to the stochastic nature
of our algorithm.
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