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Figure 1: The table-chair sets, arm chairs, plants, shelves, and floor lamps in this coffee shop were arranged using our locally annealed
reversible jump MCMC sampling method. The users don’t need to specify the number of objects beforehand.

Abstract

We present a novel Markov chain Monte Carlo (MCMC) algorithm
that generates samples from transdimensional distributions encod-
ing complex constraints. We use factor graphs, a type of graphi-
cal model, to encode constraints as factors. Our proposed MCMC
method, called locally annealed reversible jump MCMC, exploits
knowledge of how dimension changes affect the structure of the
factor graph. We employ a sequence of annealed distributions dur-
ing the sampling process, allowing us to explore the state space
across different dimensionalities more freely. This approach is mo-
tivated by the application of layout synthesis where relationships
between objects are characterized as constraints. In particular, our
method addresses the challenge of synthesizing open world lay-
outs where the number of objects are not fixed and optimal config-
urations for different numbers of objects may be drastically differ-
ent. We demonstrate the applicability of our approach on two open
world layout synthesis problems: coffee shops and golf courses.
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1 Introduction

Constraints are powerful ways to describe the layout of man-made
and natural objects. For example, the arrangement of furniture in
a room can be described by a set of constraints that specify that
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furniture does not overlap, that chairs face each other in seating
arrangements, and that sofas are placed with their backs against the
wall, etc. Books have been written describing the constraints that
characterize pleasing design patterns [Alexander et al. 1977].

Recently in graphics, researchers have applied optimization algo-
rithms and probabilistic inference to the problem of constrained
layout synthesis. For example, a parallel tempered Metropolis-
Hastings algorithm has been used to synthesize furniture lay-
out [Merrell et al. 2011]. A similar layout problem has been solved
using simulated annealing [Yu et al. 2011]. In these two systems,
the designers need to specify the number and types of objects in
advance. However, a general layout algorithm needs to choose the
number of tables and the types of furniture as well as their positions
and orientations. For example, consider the placement of tables and
chairs in the design of a coffee shop. Good layouts satisfy the con-
straints of physical plausibility and functionality, but also crowded-
ness and appropriateness of the furniture. An open layout will have
fewer tables than a crowded layout.

We use probability distributions that have a variable set of random
variables to characterize these kinds of layout problems. In the field
of AI, if the world has a fixed set of objects, it is called closed uni-
verse. Whereas, if it has a variable number of objects, it is known
as open universe [Milch et al. 2005].

In graphics, open universe distributions can be created using pro-
cedural grammars. Talton et al. [2011] have employed reversible
jump MCMC, an inference algorithm for open universe distribu-
tions, to constrain the output of grammars describing models such
as trees, cities, and Mondrian paintings. In particular, they use par-
allel tempered RJMCMC with delayed rejection in order to find
high probability models more efficiently.

In this paper, we focus on open universe layout problems for which
there do not exist good descriptions as grammars, that also have
complex constraints. We describe the layout problem in two parts:
(i) a probabilistic generative model that creates random variables,
and (ii) a system of constraints encoded as a factor graph. We call
such layouts open world layouts.

Our goal is to synthesize diverse layouts that satisfy constraints. In
order to do this, we formulate the space of layouts as a probabil-
ity distribution and use a sampling algorithm to synthesize layouts.
Sampling, where the chance of a layout being produced is propor-
tional to its probability, is useful if more than one layout needs to be
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generated, and not just the best ones. This is in contrast to pure op-
timization methods, which are used to produce the highest scoring
members of a space.

However, we find that state of the art MCMC techniques often
cannot efficiently generate open world layouts. In this paper, we
propose a new probabilistic inference algorithm called locally an-
nealed RJMCMC (LARJ-MCMC) to address this challenge. The
idea behind LARJ-MCMC is to introduce a sequence of intermedi-
ate distributions between jump moves. The sequence interpolates
between the old factors and the new factors. We prove that it is
a valid MCMC method and show how, through exploiting knowl-
edge of how the structure of the constraints change when adding
and removing variables, LARJ-MCMC can more efficiently gener-
ate good configurations with different sets of variables. To our
knowledge, we are the first to address the combination of complex
constraints and varying number of objects which are prevalent in
many instances of layouts. Our contributions are:

1. We formalize open world layout synthesis as sampling from
an open universe probability distribution with constraints en-
coded as factor graphs.

2. We propose a novel MCMC method, called locally annealed
reversible jump MCMC, which exploits the structure of the
repeated constraints to synthesize layouts more efficiently.

We formulate open world distributions in Section 3. In Section 4,
we first describe the challenges of synthesizing open world layouts
using previous methods and then present the core of our algorithm,
the locally annealed jump proposal. In Section 5, we show how our
algorithm performs on complex examples.

2 Related Work

Probabilistic graphical models. Probabilistic graphical mod-
els have been used for various prediction and learning tasks.
Two common classes of graphical models are directed (e.g.
Bayesian networks (BN)) and undirected (e.g. Markov random
fields (MRF)). Koller et al. [2009] summarize these models. Factor
graphs [Kschischang et al. 2001], a comparatively modern inven-
tion in graphical models, subsume both BN and MRF [Frey 2003].
However, it is not necessary for a graphical model to be purely di-
rected or undirected. Hybrid graphical models including both di-
rected and undirected relations, such as chain graphs [Frydenberg
1990], have also proven to be useful.

Graphical models typically specify probability distributions over a
fixed set of random variables. It is also possible to define distri-
butions where the number of random variables can change. Re-
cently, a number of representations have appeared that explicitly
handle such probability distributions. One can specify the number
and dependence of random variables explicitly in BLOG [Milch
et al. 2005], quantify over random variables in Markov logic net-
works [Richardson and Domingos 2006], or construct the variables
during the execution of a probabilistic program [Goodman et al.
2008]. In this paper, we use factor graphs to encode constraints in
open world layouts and describe a specification language to con-
struct factor graphs dynamically.

Markov chain Monte Carlo. Markov chain Monte Carlo
(MCMC) methods have been widely used in probabilistic inference.
Two of the most common MCMC methods used to sample from
distributions are Metropolis-Hastings (MH) [Hastings 1970] and
Gibbs sampling [Geman and Geman 1984]. Green [1995] included
jump moves (birth and death) in his reversible jump MCMC method
to sample from distributions that can vary in their number of dimen-
sions. In MH settings, proposal functions are critical to the perfor-

mance of the sampler, especially when there are isolated modes in
the target distribution. One class of algorithms tries to generate bet-
ter proposals by constructing a sequence of intermediate auxiliary
states, leading to candidate states with higher acceptance proba-
bilities. Members of this class include tempered transitions [Neal
1994], delayed rejection [Green and Mira 1999] [Mira 2001], mode
jumping incorporating deterministic optimization [Tjelmeland and
Hegstad 1999], and multiple-try methods [Liu et al. 2000]. Our
method belongs to this category. In particular, we exploit knowl-
edge of the graphical model structure to improve the efficiency of
exploring states across different dimensionalities. We anneal in new
factors and anneal out old factors during jump moves that change
the number of dimensions.

Content generation via probabilistic inference. The optimal
spatial arrangement of a pre-specified set of elements according to
a cost function is a well-studied problem that occurs in many disci-
plines. Recently, techniques for the optimization of layouts based
on MCMC have been applied to specific domains in graphics, such
as the arrangement of furniture in a room [Yu et al. 2011] [Mer-
rell et al. 2011]. While these methods handle the problem for a
fixed set of elements, it is still the user’s job to pick the set of el-
ements beforehand. In this work we consider the problem of open
world layouts, where the existence and number of elements is not
considered as given, but rather as another design variable that is in-
fluenced by the cost function. This is similar to the work by Talton
et al. [2011] where parallel tempered RJMCMC is used to sample
models from a grammar that satisfy additional constraints. In this
paper, we focus on models that are better described declaratively as
systems of constraints rather than as being generated by a grammar-
like procedural process.

3 Representation

We define open world layouts as states x in a state space X of
varying dimensionality. We synthesize layouts by sampling from
a target distribution π over X. Informally, we can consider open
world layouts as being generated in two phases. The first phase
starts by randomly generating objects. In this phase, both the
types and the numbers of objects can vary. Constraints can then
be defined on these configurations of random objects using factors.
Factors are functions that map the values of a random variable to
real-valued scores. Configurations that satisfy the constraints have
higher scores. These functions change the landscape of the proba-
bility distribution from a relatively flat one to one where there are
peaks corresponding to satisfying configurations.

We then decompose π into two components corresponding to these
two phases. One extends the state space by creating new random
variables, and the other shapes the energy landscape of the ex-
isting state space. Our synthesis algorithm is designed to work
with any such π. Thus, we formulate π for open world layouts
by using a programming language extended to include probabilistic
primitives. The use of programming languages to describe prob-
ability distributions is a recent development in AI and machine
learning [Lunn et al. 2000] [Milch et al. 2005] [McCallum et al.
2009] [Goodman et al. 2008]. We will first give a formal specifi-
cation of the semantics of the language, and walk through a simple
example to provide intuition for the semantics.

3.1 Specification of Open World Distributions

Our specification language consists of a standard imperative pro-
gramming language augmented with two probabilistic primitives,
random variables and factors, corresponding to the creation and
constraint components of π.
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  1 def sample_plate():
  2     return Plate(
  3             position ~ (Uniform(-10, 10), Uniform(-10, 10))
  4             size ~ Uniform(0.1, 2.0))
  5 
  6 def sample_table():
  7     return Table(
  8         num_plates ~ randint(1, 10)
  9         size ~ Uniform(15.0, 25.0))
10 
11 Table = sample_table()
12 
13 for i in 1:Table.num_plates:
14     Plates[i] = sample_plate()
15 
16 #Occupied area factor
17 Factor(SoftEq(0.7, total_area(Plates)/area(Table)))
18 
19 #Inside factor
20 for Plate_i in Plates:
21     Factor(SoftEq(0.0, area_outside_table(Plate_i)))
22 
23 #Non-overlap factor
24 for (Plate_i, Plate_j) in pairs(Plates):
25     Factor(SoftEq(0.0, overlap_area(Plate_i, Plate_j))

Occupied area factor
Inside factor
Non-overlap factorPlate_i RV

Table RV

Figure 2: Distributions of open world layouts can be described by
imperative programs. Here we show an example of placing plates
on a table. The program (a) dynamically instantiates a set of plates
and constraints (probabilistic factors) over them, pictured in (b).
Here, the constraints are that plates do not overlap, they are inside
the table boundaries, and occupy 70% of the table area.

In our language, random variables are declared by calling sampling
functions that draw values from a standard probability distribution
or other random variables. For example, the Uniform(a, b)
sampling primitive declares a real-valued random variable, and the
expression Uniform(0, 1) < 0.5 declares a boolean random
variable whose distribution is uniform over {true,false}. In
general, to create random variables of a given type, the program-
mer provides a sampling function that produces values of that type.
Defining random variables by providing functions to sample them
is very similar in spirit to the probabilistic language Church [Good-
man et al. 2008].

In addition to constructing and computing random variables, we can
associate scoring functions, or factors, to configurations of random
variables. In our setting, factors represent constraints, and the exe-
cution of each Factor statement corresponds to the instantiation
of a constraint on the open world layout. The subset of the language
dealing with factors is very similar in spirit to FACTORIE [McCal-
lum et al. 2009].

To give intuition for the semantics of our language, we present a
simple layout problem: placing plates on a table (see Figure 2(a)).

X2X1 X6

f1 f2 f4

D3

X5X3 X4

f3

P (X) ∝
4�

i=1

fi

Figure 3: A factor graph that describes the joint dis-
tribution P (X1, . . . , X6) with the factorization f1(X1, X2),
f2(X1, X2, X3), f3(X3, X4, X5), and f4(X5, X6). D3 =
(X3, X4, X5) is the scope of f3.

The sample table function at line 11 in the program creates
a random variable Table with a corresponding prior distribution
PTable, defined in terms of how its fields are sampled. In particular,
Table.num plates is another random variable representing the
number N of place settings num plates, sampled uniformly be-
tween 1 and 10. Next, on lines 13 to 14, we use the sampled value
of Table.num plates to create a set of Plate-type random vari-
ables, Plates[i], i ∈ {1 . . . N}, sampling their locations uni-
formly from the region [−10, 10]× [−10, 10].

The rest of the probability distribution is defined by the next part of
the program where we impose constraints on the random variables.
On line 17, we create a factor that specifies that the total area oc-
cupied by the plates is 70%. One line 20, we create a factor that
ensures each plate is on the table. Finally, in lines 24-25, we create
factors that enforce non-overlapping of plates.

Formally, the overall probability distribution resulting from the pro-
gram is defined as follows:

π ∝ π1π2π3π4,

where π1 corresponds to the prior distribution induced by the sam-
pling of the table and plates, and π2, π3, π4 correspond to the fac-
tors instantiated:

π1 = PTable(x0)

NY
i=1

PPlate(xi).

π2 = Eq(0.7, total area(x1 . . . xN )/area(x0))

π3 =

NY
i=1

Eq(0.0, area outside table(xi)),

π4 =

NY
i=1

NY
j=1,j 6=i

Eq(0.0, overlap area(xi, xj)).

and Eq represents soft equality of real numbers. The precise formu-
lation of Eq is given in the supplementary materials.

3.2 Relationship to Factor Graphs

Another view of this program is that it creates a mathematical
model of the probability distribution as a factor graph. A factor
graph (Figure 3) is composed of random variable nodes, factor
nodes, and edges between them. Circles represent random vari-
able nodes and squares represent factor nodes. Each factor node is
connected to a set of random variable nodes, known as the scope
of the factor, Di. For each factor node, there is a factor function,
fi, that takes assignments to the random variables in its scope to
real-valued numbers. The unnormalized joint probability encoded
by a factor graph is the product of all its factor functions.

Figure 2(b) depicts two factor graphs specified by the plate layout
program, corresponding to two layouts with different numbers of



objects. Our algorithm, described in Section 4, exploits knowledge
of how the structure of the factor graph changes when the number of
dimensions changes. This allows us to interpolate between energy
landscapes of different dimensionalities, resulting in more efficient
sampling in the presence of complex constraints.

3.3 Staged Synthesis

Many layout synthesis problems may be broken up into different
stages. For example, a layout synthesis involving tables and chairs
in addition to place settings can be broken up into two stages. First,
we synthesize the layout of tables and chairs only. Then, the place-
ment of individual place settings containing plates, tableware, and
glasses is synthesized while holding the tables and chairs fixed. Al-
though this is an approximation to the full synthesis problem, stages
capture the natural hierarchy found in many layouts.

A stage is defined to be an independent constrained synthesis prob-
lem conditioned on the results from previous stages; that is, there
can be no dependency from the current stage back to the previous
one. We can exploit this property to speed up the synthesis process.
Each stage runs a sampler conditioned on the values sampled in pre-
vious stages. If there is a branching hierarchy of stages, then each
subsequent stage may contain multiple independent sub-problems;
each of these can then be run in parallel. The technique of break-
ing down a sampling problem into separate stages has been used to
speed up probabilistic inference in general [Pfeffer 2007].

4 Locally Annealed Reversible Jump MCMC

The main difficulty our algorithm addresses is layout problems
where the set of good layouts changes drastically when the num-
ber of dimensions changes.

4.1 Metropolis-Hastings Basics

We formulate the problem of generating layouts as sampling
from the target distribution π. Our algorithm belongs to a
class of Markov chain Monte Carlo (MCMC) methods known as
Metropolis-Hastings (MH).

The MH procedure generates a sequence of samples from a target
distribution by iteratively applying a proposal step and an accep-
tance step. Let q(x∗|x) be the proposal function generating a
candidate state x∗ given the current state x. The next state is set to
x∗ with the probability equal to the MH acceptance ratio:

α = min


1,
π(x∗)q(x|x∗)
π(x)q(x∗|x)

ff
. (1)

Otherwise, x remains as the next state. After an initial burn-in pe-
riod, states traversed using this procedure can be considered as sam-
ples from the target probability distribution π.

In the most general setting, the proposal function can be any trans-
formation of the current state, including moves that change the
number of dimensions. In the case where dimension changing
moves are used as proposals, it is called Reversible Jump Markov
chain Monte Carlo (RJMCMC). The following acceptance proba-
bility is used for a change from m to n dimensions:

α = min


1,
π(x∗n)q(xm|x∗n)

π(xm)q(x∗n|xm)
× Jfm→n

ff
. (2)

fm→n, the dimension matching function [Green 1995], is used to
map the variables at dimensionalities m and n into a space of com-
mon dimensionality where π(xm)q(x∗n|xm) and π(x∗n)q(xm|x∗n)

Figure 4: A simple open world layout example that nevertheless ex-
hibits isolated modes across dimensions. There are two constraints:
(1) A fixed distance between consecutive pairs of circles. (2) The
circles are arranged as straight as possible.

Figure 5: The situation after a typical reversible jump proposal. In
order for the jump itself to be immediately accepted, the new circle
needs to be in the correct place in addition to all other circles fitting
around it. Our algorithm addresses this challenge by the letting the
new object adapt to the newly instantiated constraints.

can be meaningfully compared. This is usually done by introducing
additional n−m parameters um,n that compensate for an increase
in dimensionality, or projecting out the corresponding m − n pa-
rameters in the case of a decrease. Jfm→n is the Jacobian of the
dimension matching function:

Jfm→n =

˛̨̨̨
det

∂fm→n(xm, um,n)

∂(xm, um,n)

˛̨̨̨
. (3)

In the examples used in this paper, the Jacobian is 1 since the new
variables are always independently sampled from their domains.

The key to the design of MH-based algorithms is the proposal func-
tions because it would affect the rate of mixing of the chain. That
is, it affects how quickly the high probability states are explored.
Our locally annealed RJMCMC employs a jump proposal specially
designed to more efficiently traverse high probability states of dif-
ferent dimensionality.

4.2 Reversible Jump MCMC

In principle, we can apply the original RJMCMC algorithm to syn-
thesize open world layouts. However, it is often the case that adding
or removing a random variable to/from the current configuration
produces a low probability state. This results in a very low accep-
tance probability for jump moves.

We illustrate this effect for a simple layout problem (Figure 4).
There are two soft constraints: (1) Every consecutive pair of cir-
cles is a fixed distance d apart. (2) The curvature among any three
consecutive circles is 0, i.e., constrained to be as straight as pos-
sible. Figure 4 shows three high probability states with different
numbers of objects.

Whenever a new random variable is added, there are new factors
introduced as well as factors removed, resulting in change in the
energy landscape. Consider the jump proposal function where the
position of this new variable is uniformly sampled from the domain.

Figure 5 shows two states before and after a jump move is made
that adds a new circle to the layout. We can see that the likelihood
that this new variable is placed at a good location is very low. In
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Figure 6: (a) The set of factors in dimension 3 and 4 are F3 =
{f1, f2, f3} and F4 = {f1, f2, f4, f5}, respectively. (b) Factors
may be added, removed or kept when changing the number of di-
mensions. LARJ-MCMC introduces a sequence of annealed distri-
butions based on this structural change in the factor graph.

addition, without adjusting the rest of the random variables, it is un-
likely to obtain a good proposal state because the chain has already
spent time mixing in 5 dimensions. The result is low acceptance
rate for jump proposals.

4.3 Locally Annealed Jump

In this section, we describe the proposed locally annealed RJM-
CMC. The central idea of our method is to use a sequence of inter-
mediate annealed distributions when jumping between dimension-
alities, instead of immediately accepting or rejecting the candidate
state generated by a single big jump.

Suppose the Markov chain is currently in state y ∈ Rm, we are
considering a jump move toRn, and the functions for instantiating
factors and creating random variables are defined.

Let Fm denote the set of factors instantiated in Rm and Fn be
the set of factors instantiated in Rn. The following changes in the
factor graph occur:

1. add new factors F+ = Fn −Fm
2. remove factors F− = Fm −Fn
3. keep the common factors F∩ = Fn ∩ Fm

Figure 6 shows an example of these three sets of factors as we jump
from F3 to F4.

Our locally annealed jump move generates a sequence of interme-
diate states while annealing in F+ and annealing out F−. The se-
quence of annealing distributions is

pβt(x) ∝
Y
f∈F∩

f(xf )
Y
f∈F+

fβt(xf )
Y
f∈F−

f (1−βt)(xf ). (4)

β0 = 0.0, . . . , βt, . . . βT−1 = 1.0 is the annealing schedule. At
β0, F+ has no effect. As βt increases, the effect of F+ increases
while the effect of F− decreases. At βT−1, factors in F− have no
effect. We use the name ”locally annealed” RJMCMC to indicate
that we are not using globally annealed distributions as in simulated
annealing or parallel tempering.

The process of our locally annealed jump move from Rm to Rn
is described below and pictured in Figure 7. We use y to denote
the actual samples and x to denote the intermediate auxiliary states
generated in the annealing stage. Let qmn(·|·) denote a jump pro-
posal from a state of dimension m to n.

1. Jump. Make a jump proposal x∗0 ∈ Rn from density
qmn(x∗0|y). If n < m, set x∗0 to havem−n random variables
marked for removal at the end of the annealing stage.

2. Annealing. In the annealing stage, we generate states
(x∗1, · · · , x∗T ) in sequence. Let t be the annealing index. x∗t+1

is generated from x∗t using the transition kernel Qβt that has
pβt as an invariant distribution (4). The transition kernel Qβt

can be constructed by MH steps. In our implementation, we
generate x∗t+1 from x∗t by using one MH update.

3. Final acceptance. The last annealed state x∗T ∈ Rn is either
accepted as the next state y∗ or rejected. If rejected, the chain
remains in y. We use the following acceptance probability
αmn(y → y∗):

min

(
1,
π(y∗)

π(y)

qnm(x∗T |y∗)
qmn(x∗0|y)

T−1Y
t=0

pβt(x
∗
t )

pβt(x
∗
t+1)
Jfm→n

)
(5)

The proof of detailed balance can be found in Appendix A.

To provide further intuition, Figure 8 depicts the intermediate states
generated during an annealing run for a simple point layout prob-
lem. The constraints are the same as those in Figure 4.

5 Results

We implemented the LARJ-MCMC algorithm in Python. The li-
brary consists of a sampler that takes a specification consisting of
(1) how to create random variables, (2) how to attach factors to
given a set of random variables, and (3) proposal functions. All
probabilities were computed in log space to avoid underflow.

For all experiments in this paper, we use a linearly and evenly
spaced annealing schedule. We employ two types of proposal func-
tions: 1) shift moves that change an attribute of an object, and 2)
jump moves that add or remove one object. When adding an object,
the attributes of the new object are randomly selected from their
domains. For a LARJ-MCMC run with n annealing steps, each lo-
cally annealed jump consists of one jump move and n shift moves.
In our performance comparisons where the number of proposals is
used as a metric, each locally annealed jump thus counts as 1 + n
proposal moves.

In this section, we show that LARJ-MCMC is more efficient than
simple RJMCMC, delayed rejection (DR), and parallel tempering.
We also show two complex examples: synthesizing the layouts of
coffee shops and golf courses. For all the examples shown in the
paper, we include the precise mathematical formulation of all dis-
tributions in the supplemental materials.

5.1 Comparison with delayed-rejection and parallel
tempering

We compare our localized annealing algorithm (using 50 annealing
steps) with traditional RJMCMC, delayed rejection, and parallel
tempering. We test the relative performance using two probability
distributions. Each distribution is over strings of different lengths
consisting of random characters. Jump moves change the number
of characters by one, selecting the position of the character to add
or remove along with its value uniformly at random. Shift moves
select a character uniformly at random in the string and replace it
with a different character, also selected uniformly at random.

In the first experiment, the strings are constrained in different ways
depending on the length (dimensionality) of the string: 1) when the
number of dimensions is odd, the characters must all be a’s, and 2)
when the number of dimensions is even, the characters must all be
b’s. The dimensionality is allowed to vary between 5 and 10. Each
character can be a or b. Strings that satisfy the above constraints
are assigned an unnormalized log probability 0.0, while strings that
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final acceptjump

x∗T−1

t = 1 t = 2 t = T − 1

Qβ0 Qβ1 QβT−1
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y∗y

F3 F4
pβ0(x) pβ1(x) pβT−1(x)

Figure 7: The process of executing a single jump move in LARJ-MCMC. The sequence of annealing distributions allows us to gradually
adapt to different energy landscapes caused by the addition or removal of a single random variable.

t = 1 T − 1

Figure 8: One full sequence of intermediate states generated dur-
ing a locally annealed jump move.

do not are penalized proportional to the number of wrong letters.
All satisfying strings are assigned the same probability.

Figure 9(a) shows how KL-divergence changes as a function of the
number of proposal moves. The KL-divergence is computed be-
tween the samples from the distribution and the exact distribution.
We see that RJMCMC and delayed rejection converge slowly, being
slowed down at particular values of KL-divergence. These results
are expected since it is difficult for these algorithms to reach certain
parts of the space that involve changes in the set of constraints and
variables. In contrast, parallel tempering and LARJ-MCMC con-
verge within the first 10k proposal moves. Parallel tempering and
localized annealing both allow the distribution to gradually adapt to
the new constraints.

Although parallel tempering works well in this experiment, global
annealing schemes can be inefficient when changing the number of
dimensions only changes a small percentage of the constraints. To
illustrate this problem, we created a new test distribution with dif-
ferent constraints: 1) pairs of opposing letters of the string should
be the same, and 2) every consecutive pair of letters should be dif-
ferent. Each character can be a, b, or c. The length of the string
ranges from 6 to 9. These constraints are local, so adding or delet-
ing a single character keeps most of the factors the same.

Figure 9(b) shows the performance of all the algorithms when run
on this distribution. We see that DR performs better because the
constraints are simpler; it is possible to jump between high proba-
bility states in just a few proposal moves. There is a tradeoff be-
tween the number of annealing steps used and efficiency. We see
that LARJ-MCMC still converges significantly more quickly than
parallel tempering and RJMCMC.

5.2 Synthesizing diverse layouts

Several recent papers have addressed furniture layout in closed
worlds. In this section, we show how to lay out furniture in an
open world. We use coffee shops as instances of open world lay-
outs. We demonstrate not only the standard functional constraints
on individual pieces of furniture, but ones that influence the number
of furniture objects, such as constraints on the density of tables and
chairs that create open or crowded environments.

The input to our algorithm is a room shape and potential furniture
objects. We also define zones for placing different kinds of fur-
niture. There are zones corresponding to two-seated tables, four-
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Figure 9: The change in KL-divergence over the number of pro-
posals made for distributions with (a) a large change in the energy
landscape between different dimensions (b) a partially changed en-
ergy landscape. We compare 4 different algorithms: locally an-
nealed RJMCMC algorithm with 50 annealing steps (LARJ-50),
RJMCMC, delayed rejection (DR), parallel tempering with delayed
rejection with five chains (PT-5). 9 trials were used for each com-
bination of algorithm and distribution.

seated tables, and armchairs. Zones may overlap, allowing for mix-
tures of different types of furniture.

We synthesize coffee shop layouts in two stages. Each of these two
stages specifies an open world layout problem. In the first stage we
place table and chair arrangements, armchairs, and shelves. Once
this furniture has been placed, the second stage places indoor plants
and floor lamps. We run LARJ-MCMC for each of these stages.
Finally, for additional detail, we sampled tableware and food on
each table from a set of predetermined configurations.

Furniture in the first stage were constrained to not overlap, to be
inside their designated zones, and to align to a wall. Shelves were
additionally constrained to be flush against a wall or a user spec-
ified segment (for example, the edge of a pathway). Armchairs
were also constrained to face outwards if they were near a window,
or to face nearby armchairs. In the second stage we place plants
and lamps. We imposed the constraints that they do not overlap
other objects, plants are close to furniture, and lamps are close to
just armchairs. Finally, there is a factor that controls the density of
tables and chairs.

Proposal functions Each piece of furniture or a group of tables
is parameterized by 1) position p = (px, py) ∈ R2, 2) orientation
φ ∈ {0, 1

12
π, . . . , 2π} for sofas and shelves; φ ∈ {0, 1

8
π, . . . , 2π}

for table groups and 3) type t ∈ {0, . . . , 4} for table groups,
{0, 1} for sofas. Groups of tables also include extra parameters
1) the number of table/chair sets n ∈ {2, . . . , 10}, and 2) the
offset vector between each one v = (r, θ) where r ∈ R+ and
θ ∈ {0, 1

4
π, . . . , 2π}.
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Figure 10: Sequences of cafe layouts generated using different algorithms, indexed by the number of proposals used. Regular RJMCMC and
delayed rejection schemes, DR-1 and DR-5 (with 1 and 5 steps of delayed rejection), synthesize layouts with fewer objects than LARJ-MCMC
does (showing results with 50, 200, 400 annealing steps).
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Figure 11: Plot of unnormalized log probability versus number of
proposals used for the runs in Figure 10. LARJ-MCMC converges
faster than regular RJMCMC and delayed rejection.

Each jump move adds or removes one furniture or table group from
the scene. The attributes of the new object are uniformly randomly
selected from their domains. Because they are uniformly selected,
when jumping up, the reversible jump correction q(x|x∗)/q(x∗|x)
is set to d, the product of domain sizes for each attribute of the new
object. When jumping down, it is set to 1/d.

Each shift move consists of selecting one of the above random at-
tributes to perturb according a probability distribution that is deter-
mined empirically, then applying the corresponding operations:

• Perturb px, py, and r by offsetting it with a value sampled
from a GaussianN (0, σ).

• Perturb φ and θ by the corresponding fractional unit of π.

• Perturb t by uniform random selection from its domain.

Figure 10 compares LARJ-MCMC with delayed rejection using
different parameters for each algorithm by arranging table groups,
sofas and shelves in a given room shape. Each sequence of sam-
ples is indexed by the number of proposals made. One anneal-
ing step or delayed rejection counts as one proposal. In addition
to single-step delayed rejection, we also include the ”DR-5” algo-
rithm which allows 5 delayed rejection steps before final accep-
tance. We found that more delayed rejection steps do not help. We
ran LARJ-MCMC using different annealing steps: 50, 200, and
400. We see that LARJ-MCMC manages to introduce more furni-
ture objects and lay them out properly. It is able to make accepted
jump proposals even in this highly constrained space, placing new
table groups in satisfying locations. In contrast, DR runs are stuck
at suboptimal arrangements in lower dimensional states. Although
more annealing steps result in earlier jumps, the effective number of



Figure 12: Coffee shops with various room shapes synthesized by our algorithm. The 3-D models were obtained from Google 3D Warehouse.

samples is reduced. We use 200 annealing steps for the other cafe
layouts shown in the paper. Figure 11 shows the evolution of log-
probability over the number of the proposals for each of the runs
in Figure 10, demonstrating LARJ-MCMC’s ability to reach higher
probability regions of the space more quickly.

Figure 12 shows several coffee shop layouts synthesized using
LARJ-MCMC under these constraints. In particular, the coffee
shops have different numbers of tables, yet still satisfy the con-
straints in different ways. The figure shows examples where the
density constraint acting in concert with alignment constraints can
lead to a few long rows of tables or T-shaped arrangements of
smaller groups of tables. We also see that the total number of fur-
niture adapts to the available area. We used 200 annealing steps.
The total time taken to generate 100k samples was 36 minutes. All
timings were obtained using an Intel Xeon desktop clocked at 2.66
GHz with 8GB RAM.

5.3 Automatic game level design

We also apply our technique to the problem of generating golf
course layouts for the golf game Tiger Woods PGA Tour 2008.
We chose golf courses because the design of a golf course is com-
plex [Graves and Cornish 1998]. At one level, the course has to
adapt to the landscape, at another level, it has to follow the rules of
the game, and finally, it must be challenging, yet fun to play.

The input to the system is the boundary shape, the lakes, and de-
sired level of difficulty. We generate 9-hole golf courses given three
different boundary shapes and three target difficulty levels in Fig-
ure 13(a). We synthesize a course in two stages. First, we lay out
the hole start, middle and end positions within the boundary along

with the positions of the greens and flags for a fixed number of holes
(closed universe). Second, we lay out the fairways and bunkers for
each hole, sampling over varying sets of control points that deter-
mine fairway and bunker shapes (open universe).

The holes are represented as a path consisting of 9 segments, where
the desired length of each segment depends on the par chosen for
that hole. The total par for the 9-hole course is softly constrained
to be 36, and there is a target distribution for the number of par 3s,
par 4s, and par 5s. The course is also constrained to stay within the
course boundaries and form a walkable chain from hole to hole.

Each hole is then broken into start, middle and end points. The end
point determines the green placement; the flag is a random point
on the green. The middle point allows us to generate doglegs. We
then layout the fairway, which we represent as a group of blobs.
The blobs are constrained to lie near the segments that define the
hole, and to be a certain distance apart. Finally, we determine the
expected position of each shot, and add the bunkers. The bunkers
are constrained to avoid each other and cluster around the probable
shot locations.

Proposal functions. Each control point is parameterized by its
position (x, y) ∈ R2 and radius r ∈ R. In the first stage, only shift
moves are used. Similar to the ones used in the cafe layouts, each
shift move perturbs the position or radius with a Gaussian sample.

In the second stage, each jump move perturbs the number of control
points by one. The position of the new control point is uniformly
sampled from its domain. For fairway points, the domain is the
bounding box of the hole start, middle, and end points padded by
50 units. For bunker points, the domain consists of 80 × 80-unit



rectangles around the green and the expected position of each shot.

We generated a total of 6.3k samples for the pathing stage, and 72k
samples for the hole layout stage, 8k samples per hole. Each hole
in the second stage is independent of the other holes, and can be
laid out separately. The total time to generate these samples was 43
minutes. We used 150 annealing steps for the fairway points and 50
annealing steps for the bunker points for all the courses.

Each target difficulty level in Figure 13 maps to a different set of
parameters for the factor constraints. At the easy level, holes are
constrained to be shorter in length, with wide straight fairways that
are hard to miss. At the hard level, holes are constrained to be
longer and will often feature sharp doglegs and shots over water
hazards. Fairways are allowed to vary more in shape, and sand
traps cluster more aggressively around predicted shot locations.

We evaluate the playability and difficulty of the synthesized lay-
outs by importing our courses into the actual Tiger Woods PGA
Tour 2008 game. The screen shots in Figure 13(b) are taken from
the game. We then run the game in automatic mode and record
the stroke totals for AI players of varying skill levels. We play 15
rounds of golf per course on the three different course locations,
testing just the easy and hard layouts. For the long golf courses in
the topmost row of Figure 13(a), AI players score an average of 1.2
strokes over par on the hard course and 1.53 strokes under par on
the easy course. For the pentagon- and square-shaped courses, the
average score on the hard course is 2.67 and 0.466 over par, respec-
tively, and the average score on the easy course is 2.53 and 0.27
under par. This shows that our system can synthesize playable golf
courses at different levels of difficulty.

6 Discussion

In this paper, we have developed a novel MCMC algorithm for
sampling generative models involving complex constraints. Our
approach uses a sequence of annealed distributions during jump
moves. This allows the sampler to propose states that better adapt to
the change in energy landscape when the dimensionality changes.
We applied this method to the application of open world layout syn-
thesis, demonstrating that this increases the efficiency with which
layouts with different number of objects are sampled under com-
plex constraints.

Optimization and heuristic search methods are also commonly used
in generating layouts. However, we believe the advantage of cast-
ing the layout synthesis problem as sampling is the ability to char-
acterize design spaces. For example, an artist may want to select
from a set of possibilities, not just the best one. In the case of pro-
cedural modeling, it is often necessary to generate a collection of
models, not a single model. Sampling also enables natural varia-
tion in the layouts. The golf course example encodes constraints
that give the highest score to perfectly straight holes, but in our ap-
plication we would like to generate curved holes centered around
the mode. Finally, the presented techniques do not have to be used
for only sampling. In order to be a valid MCMC sampling method,
LARJ-MCMC requires extra terms in the acceptance ratio to ensure
detailed balance. For applications where it is not important to sam-
ple from the distribution, we believe the localized annealing scheme
without the correction terms can also be useful as a stochastic opti-
mization/search technique.

In general, sampling from a factor graph requires greater compu-
tational resources than producing a derivation from a generative
model such as a stochastic grammar. However, by declaratively
specifying constraints on the layout of patterns, we gain greater
control of the results. As computers become faster and probabilis-
tic inference algorithms become more efficient, the cost of sampling

becomes less significant compared to the increase in controllability.

In this paper, we have concentrated on efficiently sampling from
constrained probabilistic models. We have not addressed the issue
of creating more intuitive higher-level representations, possibly in
the form of editing tools or modeling languages, for which our for-
malism can serve as a backend. However, we believe our approach
will lead to more powerful modeling interfaces.

Finally, this paper has only considered the forward direction: gener-
ating patterns from a predefined probability distribution. A natural
next step is to learn the constraints from a set of examples. We be-
lieve our representation can potentially serve as a new approach for
inverse procedural modeling.

A Proof of Detailed Balance

To show that we have a valid MCMC sampler, it is sufficient to
show that the detailed balance condition is satisfied. We follow the
proof of Tempered Transitions [Neal 1994].

To satisfy detailed balance, we would like the probability of being
in state y ∈ Rm, jump to the launch state x∗0 ∈ Rn, and gener-
ate (x∗1, · · · , x∗T ) = x∗1:T in sequence and accepting this proposal
x∗T ∈ Rn as the new state y∗ to be the same as the probability of
being in state y∗ ∈ Rn, jump to the launch state x′0 ∈ Rm, and
generate (x′1, · · · , x′T ) = x′1:T= (x∗T−1, · · · , x∗0) and accepting
this proposal x′T ∈ Rm. Let αmn(y → y∗) and αnm(y∗ → y)
denote these two final acceptance probabilities. We want that

π(y)qmn(x∗0|y)Q(x∗0 · · ·x∗T )αmn(y → y∗) =

π(y∗)qnm(x∗T |y∗)Q(x∗T · · ·x∗0)αnm(y∗ → y)Jfm→n (6)

where y∗ = x∗T . Our goal is to find an appropriate choice of
αmn(y → y∗) such that (6) is satisfied.

Acceptance Probability. Our acceptance probability is

αmn(y → y∗) = min

(
1,
π(y∗)

π(y)

qnm(x∗T |y∗)
qmn(x∗0|y)

T−1Y
t=0

pβt(x
∗
t )

pβt(x
∗
t+1)
Jfm→n

)
(7)

Proof. Consider the sequence of intermediate states generated in
the annealing stage (x∗1, · · · , x∗T ). Each state x∗t+1 is generated
from state x∗t using the transition kernel Qβt that has pβt as in-
variant distribution. Let Q(x∗0 · · ·x∗T ) denote the transition prob-
ability for the sequence of moves from x∗0 to x∗T through kernels
Qβ0 · · ·QβT−1 , each of which satisfy detailed balance with respect
to their corresponding pβt . We can write down Q(x∗0 · · ·x∗T ) as
follows:

Q(x∗0 · · ·x∗T ) = Qβ0(x
∗
1|x∗0)Qβ1(x

∗
2|x∗1) · · ·QβT−1(x

∗
T |x∗T−1).

(8)
Because our design of the intermediate distributions is symmetric

for the forward and backward directions, the probability of a tran-
sition through the reverse sequence of states (x∗T , · · · , x∗0) can be
written as

Q(x∗T · · ·x∗0) = (9)
QβT−1(x

∗
T−1|x∗T )QβT−2(x

∗
T−2|x∗T−1) · · ·Qβ0(x

∗
0|x∗1).

Since each intermediate update satisfies detailed balance with re-
spect to its annealed distribution pβt , i.e.,

pβt(x
∗
i )Qβt(x

∗
j |x∗i ) = pβt(x

∗
j )Qβt(x

∗
i |x∗j ), (10)
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Figure 13: (a) Golf courses of varying difficulty levels and course boundaries synthesized by our algorithm. (b) The in-game screenshots of
the synthesized golf courses, corresponding to the marked locations A and B in the overhead view.

we can rewrite the forward transition probability (8) as

Q(x∗0 · · ·x∗T )

= Qβ0(x
∗
1|x∗0)Qβ1(x

∗
2|x∗1) · · ·QβT−1(x

∗
T |x∗T−1)

=
pβ0(x

∗
1)

pβ0(x
∗
0)
Qβ0(x

∗
0|x∗1)) · · · ×

pβT−1(x
∗
T )

pβT−1(x
∗
T−1)

QβT−1(x
∗
T−1|x∗T )

= Qβ0(x
∗
0|x∗1) · · ·QβT−1(x

∗
T−1|x∗T )×

pβ0(x
∗
1)

pβ0(x
∗
0)
· · ·

pβT−1(x
∗
T )

pβT−1(x
∗
T−1)

= Q(x∗T · · ·x∗0)
pβ0(x

∗
1)

pβ0(x
∗
0)
· · ·

pβT−1(x
∗
T )

pβT−1(x
∗
T−1)

= Q(x∗T · · ·x∗0)
T−1Y
t=0

pβt(x
∗
t+1)

pβt(x
∗
t )

(11)



where

pβt(x) =
Y
f∈F∩

f(xf )
Y
f∈F+

fβt(xf )
Y
f∈F−

f (1−βt)(xf ). (12)

With our acceptance probability αmn(y → y∗) in (7), the LHS of
(6) becomes

LHS

= π(y)qmn(x∗0|y)Q(x∗T · · ·x∗0)

"
T−1Y
t=0

pβt(x
∗
t+1)

pβt(x
∗
t )

#
×αmn(y → y∗)

= π(y)qmn(x∗0|y)Q(x∗T · · ·x∗0)

"
T−1Y
t=0

pβt(x
∗
t+1)

pβt(x
∗
t )

#

×min

(
1,
π(y∗)

π(y)

qnm(x∗T |y∗)
qmn(x∗0|y)

T−1Y
t=0

pβt(x
∗
t )

pβt(x
∗
t+1)
Jfm→n

)
= Q(x∗T · · ·x∗0)

×min

(
π(y)qmn(x∗0|y)

T−1Y
t=0

pβt(x
∗
t+1)

pβt(x
∗
t )

,

π(y∗)qnm(x∗T |y∗)Jfm→n

)
= Q(x∗T · · ·x∗0)π(y∗)qnm(x∗T |y∗)Jfm→n

×min

(
π(y)qmn(x∗0|y)
π(y∗)qnm(x∗T |y∗)

T−1Y
t=0

pβt(x
∗
t+1)

pβt(x
∗
t )
Jfn→m , 1

)
= RHS (13)

where Jfn→m = 1/Jfm→n , since fn→m is the inverse of fm→n.
�
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