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ABSTRACT
Constant-rate multi-mode systems are hybrid systems that
can switch freely among a finite set of modes, and whose
dynamics is specified by a finite number of real-valued vari-
ables with mode-dependent constant rates. The schedulabil-
ity problem for such systems is to design a mode-switching
policy that maintains the state within a specified safety set.
The main result of the paper is that schedulability can be
decided in polynomial time. We also generalize our result
to optimal schedulability problems with average cost and
reachability cost objectives. Polynomial-time scheduling al-
gorithms make this class an appealing formal model for de-
sign of energy-optimal policies. The key to tractability is
that the only constraints on when a scheduler can switch
the mode are specified by global objectives. Adding local
constraints by associating either invariants with modes, or
guards with mode switches, lead to undecidability, and re-
quiring the scheduler to make decisions only at multiples of
a given sampling rate, leads to a PSPACE-complete schedu-
lability problem.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Real-time systems and
embedded systems; B.5.2 [Design Aids]: Optimization,
Verification

General Terms
Theory, Verification

Keywords
Multi-Mode Systems, Cyber-Physical Systems, Peak Mini-
mization, Green Scheduling, Hybrid Automata

1. INTRODUCTION
Our study of optimal scheduling on constant-rate multi-

mode systems is motivated largely by a series of work by
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Nghiem et al. [17, 18] on energy peak demand reduction
within a large organization by synchronizing switching deci-
sions of various “heating, ventilation, and air conditioning”
(HVAC) systems. The correlation between extreme weather
and energy demand peaks is well documented [6], and hence
reducing the energy peak demand due to HVAC systems
can potentially significantly reduce the total energy peak
demand. In [17] Nghiem et al. considered a model of an or-
ganization where at any given time the HVAC system of a
zone can be in either ON or OFF mode, and in each mode
the temperature of the corresponding zone changes with a
mode-dependent constant rate. In order to minimize peak
energy-usage they studied the following schedulability prob-
lem: find a switching schedule of HVAC systems across dif-
ferent zones so as to maintain the temperature in each zone
within a given temperature interval, with the restriction that
simultaneously at most a fix number of HVAC systems are
switched ON. They showed that the schedulability problem
can be reduced to testing an inequality involving the rates
of temperature change. Our motivation is to explore that to
what extent this result can be generalized, and to identify
where this result fits into existing literature on schedulability
such as real-time scheduling theory [9] and hybrid automata
based schedulability analysis [1, 2].

Real-time scheduling is a mature research area [9] with an
excellent collection of well-studied algorithms for periodic
scheduling, for instance the rate monotonic and the earliest
deadline first algorithms. However, as noted by Nghiem et
al. [18], generally these algorithms are restricted to tasks
whose worst case execution times are fixed and known in
advance, and hence they are not directly applicable to energy
peak reduction problem as posed in [18, 17].

Another prominent approach [1, 2] to real-time schedu-
lability analysis is via reduction to optimization problems
on timed and hybrid automata. Timed automata [3] can
model multi-mode systems with a finite set of continuous
variables, called clocks, that grow with uniform rate. Clocks
can be used to constrain mode-switches and to specify mode-
dependent invariants. The decidability of a number of opti-
mization problems [4, 7] on timed automata, and availabil-
ity of efficient tool support, e.g. Kronos and UPPAAL [15,
20], make them an attractive choice for real-time scheduling.
They are, however, not applicable in energy peak reduction
problem as the temperature variables in our system grow
with non-uniform rates. Hybrid automata generalize timed
automata by allowing mode-dependent variable rates, how-
ever having two variables with different rates leads to unde-
cidability [11] even for reachability problems. As we see later



the key property of our systems that contributes to decid-
ability (and even tractability) of schedulability problems is
the absence of structure in the system, i.e. intuitively speak-
ing as long as global safety set is not violated schedulers are
allowed to switch among modes without any restriction.

Results. We define our model, a constant-rate multi-mode
system (MMS), as a hybrid system with a finite set of modes
where dynamics of each mode is specified by a finite set of
continuous variables with mode-dependent constant-rates.
Given a bounded convex set of safe states (variable valua-
tions) and a starting state, the safe schedulability problem
for an MMS is to find a non-Zeno schedule that visits only
safe states. Another closely related problem is safe reacha-
bility problem that asks if there exists a schedule to steer the
system from a given starting state to a given set of target
states while only visiting states from a given safety set.

Our first result concerning safe schedulability problem is
that for all the starting states in the interior of the safety
set, a safe schedule exists iff there is an assignment of dwell
times to modes that allows the system to return to the start-
ing state. Due to constant-rate dynamics of the system this
condition can easily be posed as a linear programming (LP)
feasibility problem. The algorithm for finding safe sched-
ule is more involved if the starting state is on the bound-
ary of the safety set. A key contribution of the paper is a
polynomial-time algorithm for computing a safe schedule for
an arbitrary starting state when the safety set is given as a
bounded convex polytope.

For safe reachability problem we show that if a state is
reachable from a given starting state for some assignment
of dwell times to modes, then it is safely reachable for any
arbitrary bounded and convex safety set as long as both
states lie in the interior of the safety set. We show via an
example that this observation is not valid when one of the
states lies on the boundary of the safety set. We present a
polynomial-time algorithm to find safe schedules for reacha-
bility problems when both the starting and the target states
lie in the interior of the safety set.

In Section 3 we extend these results to optimization prob-
lem with average cost and reachability cost objectives, and
present polynomial-time algorithms to solve these problems.
Furthermore, we prove that reachability-cost optimal and
average-cost optimal strategies always exist, and have a par-
ticular simple periodic structure as long as both the target
and the starting states are in the interior of the safety set. In
Section 4 we show that requiring the scheduler to make de-
cisions only at multiples of a given clock-rate makes the safe
schedulability and safe reachability problems complete for
PSPACE. We also show that the largest sampling rate for
which safe schedulability problem yields a positive answer
can be approximated in polynomial space.

Related Work. The work most closely related to our is
of Nghiem et al. [17]. The energy peak reduction problem
was first posed in [17] and safe schedulability checking for
this problem was reduced to checking a simple formula on
temperature rates. Authors also presented a lazy scheduling
algorithm where scheduler is required to take decisions only
at multiples of a given sampling rate. Although the practi-
cal motivation of our approach is the same as [17] we have
different goals. The central focus of our research is to char-
acterize the complexity of various schedulability problems in

this context. Safe schedulability problem for MMSs general-
izes the energy peak reduction problem studied by Nghiem
et al. in [17] since MMSs can model HVAC systems with
more modes than simply ON and OFF. Moreover, MMSs
allow safety set to be an arbitrary bounded convex set as
opposed to hyperrectangular sets in [17]. Unlike [17] our
algorithm can analyze the safe schedulability problem for
starting states on the boundary of the safety set, assum-
ing it is a polytope. Moreover, we also extend our results
to safe reachability problem, and optimization problems for
average cost and reachability cost objectives. We also estab-
lish PSPACE-completeness of finding the optimal sampling
rate for safe schedulability of our more general systems.

In [18] Nghiem et al. generalized their work to multi-mode
systems with linear dynamics. Using similar restrictions
as [18] the ideas presented in this paper can be general-
ized to handle linear dynamics with some effort. Heymann
et al. [12] study checking whether a given hybrid system,
under several restrictions, is strongly Zeno and characterize
LP feasibility test for this problem. Like Nghiem et al. [17],
Heymann et al. only consider hyperrectangular safety states
and starting states in the interior of the safety region.

The practical stabilization problem studied by Xu and
Antsaklis [21] roughly corresponds in our model to an uncon-
strained reachability followed by a specifically constrained
safe schedulability problem where the system cannot leave
a ball of radius ε when starting from anywhere inside a ball
with the same origin and radius δ. The existence and syn-
thesis of a scheduler satisfying such constraints can be solved
in polynomial time using our algorithms, while the running
time of the method suggested in [21] is exponential in the
number of modes. Moreover, the scheduler proposed in [21]
is more complicated than ours and requires solving multiple
linear programs as opposed to essentially one in our algo-
rithm. Finally, the problem of computing a lower bound
on the optimal sampling rate was studied there for systems
with two variables and the problem was left open for sys-
tems with more variables. We show that even approxima-
tion of the optimal sampling rate within a constant error
is PSPACE-hard, which makes unlikely the existence of a
tractable general procedure for this problem.

We also mention the work of Jha et al. [13, 14] where they
synthesize guards for multi-mode systems so as to satisfy cer-
tain optimization criteria. Their model is more general than
ours as it allows guards on mode-switches, and moreover
variables are allowed to have more general dynamics, how-
ever authors did not present any complexity or decidability
results. Henzinger and Kopke [10] studied the safe reach-
ability problem for hybrid automata [10] where the sched-
uler is allowed to make decisions at multiples of a given
sampling rate, and showed the problem to be PSPACE-
complete. Upper bound for the similar problem for MMSs
directly follows from their work. Bouyer et al. [8] study
the safe schedulability problem on weighted timed automata
(timed automata extended with a cost variable having mode-
dependent constant-rate) with global cost constraints. The
safe schedulability problem is to find a schedule that keeps
the value of the cost variable within a given interval. MMS
and weighted timed automata are incomparable models: the
former disallows guards on mode-switches, while the latter
disallows more than one variable with mode-dependent rate.

An extended version of this paper with complete proofs is
available as a technical report [5].



2. SAFE SCHEDULABILITY
Before we formally introduce constant-rate multi-mode

systems, we need to introduce the notation used through-
out the rest of the paper. We write N for the set of natural
numbers, R for the set of real numbers, and Z for the set
of integers. Also, we write R≥0 for the set of non-negative
reals and N>0 for the set of positive integers.

States of our system will be points in Rn that is equipped
with the standard Euclidean norm ‖ · ‖. By x, y we denote

points in this state space, by ~f,~v vectors, while x(i) and
~f(i) will denote the i-th coordinate of point x and vector
~f , respectively. We denote the distance between x and y

by ‖x, y‖ def
= ‖x − y‖. For two vectors ~v1, ~v2 ∈ Rn, we write

~v1◦~v2 to denote their dot product defined as
Pn

i=1 ~v1(i)~v2(i).

We write ~0 for any vector with all its coordinates equal to
0; its exact dimension will depend on the context.

We say that a point x is a convex combination of a set
of points X = {x1, x2, . . . , xk} if there exist λ1, λ2, . . . , λk ∈
[0, 1] such that

Pk
i=1 λi = 1 and x =

Pk
i=1 λixi. We say

that the set S ⊆ Rn is convex iff for all x, y ∈ S and all
λ ∈ [0, 1] we have λx + (1 − λ)y ∈ S and moreover, S is
a convex polytope if there exists k ∈ N, a matrix A of size

k × n and a vector ~b ∈ Rk such that x ∈ S iff Ax ≤ ~b.
Let Bd(x) = {y ∈ Rn : ‖x, y‖ ≤ d} denote a closed ball of
radius d ∈ R≥0 centered at x. We say that a set S ⊆ Rn is
bounded if there exists d ∈ R≥0 such that for all x, y ∈ S we
have ‖x, y‖ ≤ d. The interior of a set S, int(S), is the set of
all points x ∈ S for which there exists d > 0 s.t. Bd(x) ⊆ S.

2.1 Constant-Rate Multi-Mode Systems
A constant-rate multi-mode system consists of a finite

number of modes and a finite number of real-valued vari-
ables whose dynamics is specified by mode-dependent con-
stant rates. Formally,

Definition 1. A constant-rate multi-mode system (MMS)
is a tuple H = (M,n,R) where M is a finite nonempty set
of modes, n is the number of continuous variables in the
system, and R : M → Rn gives for each mode the rate vec-
tor whose i-th entry specifies the change in value of the i-th
variable per time unit.

For computation purposes, we assume that all real numbers
are rational and represented in the standard way by writing
down the numerator and denominator in binary.

A schedule of an MMS specifies a timed sequence of mode
switches. Formally, a schedule is defined as a finite or infinite
sequences of timed actions, where a timed action (m, t) ∈
M × R≥0 is a tuple consisting of a mode and a time delay.
We say that an infinite schedule 〈(m1, t1), (m2, t2), . . .〉 is pe-
riodic if there exists k ≥ 1 such that for all i ≥ 1 we have
(mi, ti) = (m(i mod k)+1, t(i mod k)+1), and it is ultimately pe-
riodic if it has a suffix that is periodic. We say that an infi-
nite schedule 〈(m1, t1), (m2, t2), . . .〉 is Zeno if

P∞
i=1 ti <∞.

Zeno schedules require infinitely many mode-switches within
a finite time, and hence, are physically unrealizable.

For a (finite or infinite) schedule σ = 〈(m1, t1), (m2, t2), . . .〉,
we write Tk(σ)

def
=
Pk

i=1 ti for the total time elapsed up to

step k of the schedule σ, and we write Tm
k (σ)

def
=
P

i≤k:mi=m ti
for the total time spent in mode m up to step k. For any
non-Zeno schedule σ we have that limk→∞ Tk(σ) =∞.

A finite run of an MMSH is a finite sequence of states and
timed actions r = 〈x0, (m1, t1), x1, . . . , (mk, tk), xk〉 such that

for all 1 ≤ i ≤ k we have that xi = xi−1 + ti · R(mi). For
such a run r we say that x0 is the starting state, while xk is
its terminal state. Given a state x and a finite schedule σ =
〈(m1, t1), (m2, t2), . . . , (mk, tk)〉, we write Run(x, σ) for the
(unique) finite run 〈x0, (m1, t1), x1, (m2, t2), . . . , (mk, tk), xk〉
such that x0 = x. In this case, we also say that schedule σ
leads the systemH from state x0 to state xk. The concept of
an infinite run and an infinite run Run(x, σ) corresponding
to an infinite schedule σ is defined in an analogous manner.

Given a set S ⊆ Rn of safe states, we say that an infinite
run 〈x0, (m1, t1), x1, (m2, t2), . . .〉 is S-safe if for all i ≥ 0
we have that xi ∈ S and xi + τi+1 · R(mi+1) ∈ S for all
τi+1 ∈ [0, ti+1]. Notice that if S is a convex set then xi ∈ S
for all i ≥ 0, implies that xi +τi+1 ·R(mi+1) ∈ S for all i ≥ 0
and all τi+1 ∈ [0, ti+1]. Given a set S ⊆ Rn of safe states and
a starting state x ∈ Rn, we say that an infinite schedule σ =
〈(m1, t1), (m2, t2), . . .〉 is S-safe at x if the corresponding run
Run(x, σ) is S-safe. The concept of S-safety for finite runs
and schedules is defined in a similar manner. Sometimes we
simply call a schedule or a run safe when the safety set and
the starting state is clear from the context.

We say that a state x′ is “S-safe reachable” from a state x
if there exists a finite schedule σ that is S-safe at x and leads
the system from state x to x′. The following observations
will be useful in some of the proofs later.

Proposition 1. For every MMS H and a convex safety
set S we have that any convex combination x∗ =

Pk
i=1 λixi

of S-safe reachable states x1, x2, . . . , xk from a given state
x is also S-safe reachable from x. Moreover, if mode m is
safe for t amount of time at xi ∈ S, then it is safe for λit
amount of time at x∗.

Two fundamental problems for MMS are the following safe
schedulability and safe reachability problems.

Definition 2 (Safe Schedulability). Given an MMS
H, a bounded convex set S ⊆ Rn, and a state x ∈ S, decide
if a non-Zeno infinite schedule exists that is S-safe at x.

Definition 3 (Safe Reachability). Given a MMS H,
a bounded convex set S ⊆ Rn, and a pair of states x, x′ ∈ S
decide if x′ is S-safe reachable from x.

We present algorithms to solve safe schedulability and safe
reachability problems in Section 2.3 and 2.4, respectively.
We next present two examples of posing scheduling problems
using constant-rate multi-mode systems.

2.2 Examples
The first example generalizes energy peak demand mini-

mization problem as studied by Nghiem et al. [17].

Example 1. Consider an organization with two zones A
and B. HVAC units in each zone can be in one of the three
modes 0 (OFF), 1 (LOW),and 2 (HIGH). We write the mode
of the combined system as mi,j to represent the fact that
unit A is in mode i and unit B is in mode j. The rate of
temperature change and the energy usage for each zone in
each mode is summarized in the following table:

Zones HIGH LOW OFF
A (temp. change rate/ usage) -2/3 -1/2 2/0.2
B (temp. change/ usage) -2/3 -1/2 3/0.2



m2,0

(−2, 3)

m0,2

(2,−2)

m0,0

(2, 3)

m1,1

(−1,−1)

m1,0

(−1, 3)

m0,1

(2,−1)

Figure 1: Rate vectors from Example 1.

For instance, if HVAC unit in zone A is in mode LOW then
the temperature of the zone A drops 1 unit per second, while
the HVAC unit consumes 2 energy units per second. To
simplify energy pricing, we assume that the energy cost is
equal to energy usage if peak energy usage (sum of the energy
usage in all units) at every given point in time is less than
or equal to 4 units, otherwise energy cost is 10 times of that
standard rate. This assumption is in agreement with the
bucket-based pricing [19] used by some energy providers.

It follows that to minimize energy cost, the peak usage, if
possible, must not be higher than 4 units at any given time.
Hence we model the system as an MMS with modes m0,0,
m0,1, m1,0, m0,2, m2,0, and m1,1, because these are the only
ones that have peak usage at most 4. The temperature of
the zones are the variables of the MMS, while the safety set
as the constraint that temperature of both zones should be
between 65oF to 75oF . The existence of a safe non-Zeno
schedule implies the existence of a switching schedule with
energy peak demand less than or equal to 4 units. The rates
of the variables in different modes is shown in Figure 1.

Two tank system model, a popular [16, 12] example of
hybrid systems, can be modeled as MMS as shown below.

Example 2. Consider a system consisting of two leaking
tanks and a hose, such that each tank leaks water with some
constant rate, and the hose can pump water in either of the
tanks with a constant rate. The goal is to find a non-Zeno
schedule to keep the water level of both tanks within a given
range. It is straightforward to see that this problem can be
modeled as a safe schedulability problem on MMS with two
variables (water levels of tanks) and three modes that corre-
spond to the positions of the water hose.

2.3 Safe Schedulability Problem
There exists a simple characterization of safe schedulabil-

ity if the starting state x is in the interior of set S. However,
if the starting state x is on the boundary of safety set S, then
the safe schedulability problem is more involved. We treat
these two cases separately.

2.3.1 Starting state is in the interior of the safety set
For all starting states in the interior of the safety set a

safe non-Zeno schedule exists iff the following constraints

are feasible for some vector (f (1), f (2), . . . , f (|M|)) ∈ R|M|≥0 :

|M|X
i=1

R(i)(j) · f (i) = 0 for 1 ≤ j ≤ n and

|M|X
i=1

f (i) = 1. (1)

The first constraint simply states that starting from an arbi-
trary state if the system spends f (i) fraction of total time in
mode i then system comes back to the original state, while
the second constraint is required to ensure non-Zenoness.
The “if” part is straightforward as for any starting state x a
satisfying assignment to f (i) can be used to characterize a
non-Zeno periodic S-safe schedule that forces all intermedi-
ate states to stay within a closed ball of arbitrary non-zero
radius centered at the starting state. The “only if” part fol-
lows from Farkas’ lemma that states that constraints in (1)
are feasible if and only if the following constraints are infea-
sible for all vectors (v(1), v(2), . . . , v(n)) ∈ Rn:

(v(1), v(2), . . . , v(n)) ◦R(i) > 0 for all 1 ≤ i ≤ |M | (2)

Hence if constraints in (1) are infeasible, then constraints

in (2) are feasible, i.e. there exists a vector (v(1), v(2), . . . , v(n))
such that no matter which mode system stays in, it makes
a positive progress along that vector. Since we assume the
safety set is bounded, it implies that no safe non-Zeno sched-
ule can exists in this case. This observation also implies that
if there exist a safe non-Zeno schedule then there exists one
that is periodic.

We say that mode m is S-safe at x ∈ S for t > 0 amount of
time iff x+tR(m) ∈ S andm is S-safe at x if there exists such
a t > 0. We show that the constraints in (1) give a necessary
and sufficient condition for safe schedulability for all starting
states where all modes are S-safe. Algorithm 1 returns an
S-safe schedule from a given starting state x0 ∈ S where
all modes are S-safe, while Theorem 2 states the correctness
and the complexity of the algorithm.

Algorithm 1: Returns an S-safe schedule, if it exists,
from a given x0 where all modes are safe.

Input: MMS H, staring state x0 and t > 0 such that all
modes of H are safe at x0 for t amount of time.

Output: A periodic S-safe schedule from x or NO if no
such a schedule exists.

Check whether the following linear program is feasible:1 X
m∈M

R(m) · f (m) = ~0

X
m∈M

f (m) = 1 (3)

f (m) ≥ 0 for all m ∈M .

if no satisfying assignment exists then
return NO2

else3

Find a polynomial size assignment {f (m)}m∈M .4

return the following periodic schedule with period5

|M |: mk = (k mod |M |) + 1 and tk = f (mk) · t.

Theorem 2. Given an MMS H, a bounded convex safety
set S, a state x0 ∈ S and t > 0 s.t. all modes are safe at x0

for at least t amount of time, Algorithm 1 returns an S-safe
non-Zeno periodic schedule (if exists) in polynomial time.

Notice that Algorithm 1 solves safe reachability problem
for all starting states in the interior of the safety set, thanks
to the following proposition.



Proposition 3. If x ∈ int(S) then there exists t > 0 such
that all modes are safe at x for at least t amount of time.

Proof. Since x ∈ int(S), there exists d > 0 such that
Bd(x) ⊆ S. We can just set t to be minm∈M d/‖R(m)‖ > 0,
because then for any m ∈M we have ‖tR(m)‖ ≤ t‖R(m)‖ ≤
d and so x+ tR(m) ∈ Bd(x) ⊆ S.

The constraints (1) and (2) give us two ways to test safe
schedulability of an MMS for staring states in the interior
of the safety set. From (1) it follows that there exists a safe
non-Zeno schedule if and only if the origin lies in the convex
hull of the points corresponding to the rate vector of each
mode. While from (2) it follows that there is no safe non-
Zeno schedule if there exists a vector such that the angles
between that vector and every other rate vector are all less
than 90◦.

Example 3. Using Figure 1 one can easily check that for
the MMS from Example 1 there exists a safe non-Zeno sched-
ule for all starting states in the interior of the safety set, as
the convex hull (the shaded area) of the points correspond-
ing to the rate vectors includes the origin, and also there is
no vector which makes an angle less than 90◦ with all the
vectors. It can also be easily verified that if we remove mode
m1,1 then there is no safe non-Zeno schedule.

2.3.2 Starting state is on the boundary of safety set
Feasibility of constraint 1 is not a sufficient condition for

safe schedulability if the starting state lies on the boundary
of the safe region as shown in the following example.

Example 4. In the following figure we revisit Example 1
and draw the safety set (shaded region) S and four states
s0, s1, s2 and s3 inside the safety set. The state s3 is in-
side the interior of the set S, while other states are on the
boundary of the set S.

s0

s1

s2

s3

From Theorem 2 it follows that from the starting state s3

there exists a safe non-Zeno schedule. Now let us consider
the state s0. It is clear that no mode is safe at s0 as making
any infinitesimally small progress along one of the rate vec-
tors leads outside of the safety set S. Hence, for the starting
state s0 there is no safe non-Zeno schedule. On the other
hand, from state s1 choosing the vector (2,−2) corresponding
to mode m0,2 leads into the interior of the safety region from
where there exists a safe non-Zeno schedule. Similarly, from
state s2 first choosing the vector (−1,−1) corresponding to
mode m1,1, and then choosing vector (2,−2) corresponding
to mode m0,2 leads into the interior of the safe set.

The algorithm for the safe schedulability problem for bound-
ary starting states follows from Theorem 7 presented in Sec-
tion 3 and crucially depends on our results for the safe reach-
ability problem presented next.

2.4 Safe Reachability Problem
Given an MMS H = (M,n,R), a bounded convex safety

set S, and a starting state x ∈ S, and a target state x′ ∈ S,
the safe reachability problem is to decide whether x′ is S-safe
reachable from x. When all modes of H are safe at x and x′,
a safe schedule from x to x′ exists iff the following constraints

are satisfied for some vector ~t = (t(1), t(2), . . . , t(|M|)) ∈ R|M|≥0 :

x(j) +

|M|X
i=1

R(i)(j) · t(i) = x′(j) for all 1 ≤ j ≤ n (4)

This constraint expresses that using a combination of rate
vectors it is possible to reach x′ from x. If the set of con-
straints in (4) is feasible and x, x′ are in the interior of the
safe set—or more generally all modes are safe at x and x′—
then a satisfying assignment to t(i) can be used to make
progress towards the vector x′ − x by scaling the t(i)-s ap-
propriately without leaving the safety set. Repeating this
process, x′ can be reached from x in finitely many steps.

Algorithm 2 returns an S-safe schedule, if exists, that
leads the system from x to x′ given all modes are safe at
both states. Theorem 4 establishes the correctness and the
computational complexity of the algorithm.

Algorithm 2: Returns an S-safe schedule, if exists, from
states x and x′ when all modes are safe at x and x′.

Input: MMS H, two points x, x′ and t > 0 such that
all modes are safe at x and x′ for time t.

Output: NO, if no S-safe schedule from x to x′ exists,
and a periodic such schedule, otherwise.

Check whether the following linear program is feasible:1

x+
X

m∈M

R(m)t(m) = x′ and (5)

t(m) ≥ 0 for all m ∈M.

if no satisfying assignment exists then2

return NO3

else4

Find a polynomial size assignment {t(m)}m∈M .5

Let l be the smallest natural number greater than6 P
m∈M t(m)/t.

return the following schedule of length l|M | with7

period |M |: mk = (k mod |M |) + 1 and tk = t(mk)/l
for k = 1, 2, . . . , l|M |.

Theorem 4. Given an MMS H, a bounded convex set
S ⊆ Rn, a starting state x ∈ S and a target state x′ ∈ S,
and a t > 0 such that all modes are safe at x and x′ for
at least t amount of time, Algorithm 2 returns an S-safe
schedule (if exists) from x to x′ in polynomial time.

Proof. Assume that the linear constraints are feasible,
and consider the schedule constructed in Algorithm 2. Let
us denote that schedule by σ and consider the run r =
Run(x, σ) corresponding to this schedule from state x. Let
us denote the state visited after the k-th step of r by xk,
and also look at the states when the schedule σ is extended
by |M | extra steps. Notice that because σ is periodic with
period |M |, for any i < l and j ≤ |M | the following holds:

xi|M|+j = (1− i/l)xj + (i/l)xl|M|+j .



So it suffices to prove that the points xj and xl|M|+j are
S-safe for j ≤ |M |. Let us denote for j = 0, . . . , |M | by aj

the expression 1−
Pj

m=1 t
(m)/(t · l). Notice that

aj ≥ 1−
jX

m=1

t(m)/
X

m∈M

t(m) ≥ 0,

because t · l ≥
P

m∈M t(m). On the other hand, xj =

x+
Pj

m=1 R(m)t(m)/l = ajx+
Pj

m=1(t(m)/(t·l))(x+tR(m)).
However, all modes were assumed to be safe at x for t
amount of time and so xj ∈ S for all j ≤ M , because it
is a convex combination of states from the convex set S.
In exactly the same manner we show xl|M|+j ∈ S for all
j ≤ |M |. This concludes the proof that the schedule re-
turned by Algorithm 1 is S-safe.

The safe reachability problem can be solved in polynomial
time, since the main computation of the algorithm involves
solving a linear program, Moreover, although the schedule
can be of exponential length, it can be represented com-
pactly in polynomial space, because it has a period |M |.

2.4.1 General Case
Feasibility of the set of constraints in (5) does not guar-

antee safe reachability of state x′ from state x if both states
are on the boundary of the safety set. Moreover, in such a
case the state x′ may not be reachable in finitely many step
as shown in the following example.

Example 5. In the following figure we present a MMS
with two variables and two modes (1, 1) and (1,−1), and the
starting state is s, while the target state is s′.

s1 s2 . . .
s s′

The safety set is shown as the shaded area such that the
angle at state s′ is 30o. It is easy to see that the constraint
in Equation 5 is feasible for this example, however, as we
can see from the figure, the distance between states sk and

s′ is equal to ‖s, s′‖ · (
√

3−1√
3+1

)k. Hence, although x′ can be

approached arbitrarily close using the two available modes,
it is impossible to reach that state using a non-Zeno run.

3. OPTIMAL SCHEDULABILITY
In the previous section we presented algorithms to com-

pute an arbitrary schedule out of all possible safe schedules.
However, for most practical control problems when more
than one safe schedule exists, it is often desirable to use a
schedule that is optimal in according to some quantitative
objective. In this section we study a priced extension of
MMS where every mode is associated with a cost incurred
per time unit when the system is that mode, and the natu-
ral generalization of safe schedulability and safe reachability
problems to optimal average cost and optimal reachability
cost problems for such extension.

Definition 4. A priced constant-rate multi-mode system
is a tuple H = (M,n,R, π) where (M,n,R) is a MMS and

π : M → R is a price function such that π(m) characterizes
the price per-time unit of staying in mode m.

The price function can be extended to define costs for finite
and infinite schedules. The cost of a finite schedule σ =
〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 is defined as the sum of the

costs of its timed actions, i.e., Cost(σ)
def
=
Pk

i=1 π(mi) · ti.
The cost of an infinite schedule σ = 〈(m1, t1), (m2, t2), . . .〉
is defined as the average cost per time-unit, i.e.

AvgCost(σ) = lim sup
k→∞

Pk
i=1 π(mi) · tiPn

i=1 ti
.

Notice that we could define AvgCost(σ) with lim inf instead
of lim sup. However, because the aim is to find a schedule
with the minimum average cost, it makes more sense to pick
lim sup in order to minimize the maximal recurring average
cost along a run. Also, as we will see later, this assumption
is crucial in the proof of a key theorem of this paper.

Let Σ(x, x′, S) be the set of finite schedules that are S-
safe at x and lead the system from x to x′. The optimal
reachability cost CostS∗ (x, x′) for a starting state x, a target
state x′, and a safety set S is defined as:

CostS∗ (x, x′) = inf
˘

Cost(σ) : σ ∈ Σ(x, x′, S)
¯
.

We say that a schedule σ is reachability-cost optimal for
a starting state x, a target state x′ and a safety set S, if
σ ∈ Σ(x, x′, S) and Cost(σ) = CostS∗ (x, x′).

Let Σ(x, S) be the set of non-Zeno infinite schedules that
are S-safe at x. The optimal average cost of a state x and a
safety set S is defined as

AvgCostS∗ (x) = inf
˘

AvgCost(σ) : σ ∈ Σ(x, S)
¯
.

We say that a schedule σ is average-cost optimal for a start-
ing state x and a safety set S if σ ∈ Σ(x, S) and AvgCost(σ) =
AvgCostS∗ (x).

Two fundamental problems for priced MMS are the follow-
ing optimal reachability and optimal average schedulability
problems.

Definition 5 (Optimal Reachability). Given a priced
MMS H, a bounded convex set S ∈ Rn, a starting state
x ∈ S, and a target state x′ ∈ S, compute the optimal reach-
ability cost CostS∗ (x, x′) and find, if exists, a reachability-cost
optimal schedule.

Definition 6 (Optimal Average Schedulability).
Given a priced MMS H, a bounded convex set S ∈ Rn, and
a state x ∈ S compute the optimal average cost AvgCostS∗ (x)
and find, if exists, an average-cost optimal schedule.

In Sections 3.1 and 3.2 we present algorithms to solve op-
timal reachability and optimal average schedulability prob-
lems, respectively.

3.1 Optimal Reachability Problem
Let us fix a priced MMS H = (M,n,R, π), a starting

state x, a target state x′, and a bounded convex safety set S
for this section. As we noticed in Example 5, if the points x
and x′ are on the boundary of the safe set, optimal schedules
may not always exist. We now show that using Algorithm 3,
we can solve in polynomial time the optimal reachability
problem between any two points in the interior of S.



Algorithm 3: Given all modes are safe for time t > 0 at
x, x′ and at least one S-safe schedule from x to x′ exists,
the algorithm returns a cost-optimal such schedule.

Input: MMS H, two points x, x′ and t > 0 such that
all modes of H are safe at x and x′ for time t.

Output: NO, if no S-safe schedule from x to x′ exists,
and an optimal periodic such schedule, o/w.

Check whether the following linear programming1

problem with variables {t(m)}m∈M has a solution.

Minimize
X

m∈M

π(m)t(m) subject to:

x+
X

m∈M

R(m)t(m) = x′ and

t(m) ≥ 0 for all m ∈M.

if no satisfying assignment exists then2

return NO3

else4

Find a polynomial size assignment {t(m)}m∈M .5

Let l be the smallest natural number greater or6

equal to
P

m∈M t(m)/t.

return the following schedule of length l|M | with7

period |M |: mk = (k mod |M |) + 1 and tk = t(mk)/l
for k = 1, 2, . . . , l|M |.

Theorem 5. Given an MMS H, a bounded convex set
S ⊆ Rn, states x, x′, and t > 0 such that all modes of H
are safe at x and x′ for at least t amount of time, Algo-
rithm 3 returns a reachability-cost optimal schedule (if ex-
ists) in polynomial time.

Proof. It follows from the proof of Theorem 4 that the
schedule, σ∗, returned by Algorithm 3 is S-safe. We now
show σ∗ is also reachability-cost optimal.

Assume that there is at least one S-safe schedule from x
to x′. Let σ be an arbitrary such schedule and let k be its
length. Notice that of course we have

x′ = x+
X

m∈M

R(m)Tm
k (σ),

and for all m ∈M we have that Tm
k (σ) ≥ 0, since recall that

Tm
k (σ) is the total time spent in mode m up to step k.

Therefore, by setting t(m) 7→ Tm
k (σ) for all m ∈ M , the

linear constraints in Algorithm 1 become satisfied. Further-
more, we have Cost(σ) =

P
m∈M π(m) · Tm

k (σ), which is
exactly the same as the value of the objective function for
such an assignment. Hence, Cost(σ) ≥ Cost(σ∗) because
σ∗ has the minimal value of the objective function among
all assignments that satisfy the linear constraints in Algo-
rithm 1. However, we picked σ arbitrarily and so we have
that Cost(σ∗) = CostS∗ (x, x′).

3.2 Optimal Average Schedulability Problem
Let us fix a priced MMS H = (M,n,R, π) and a bounded

convex set S. We first present an algorithm for comput-
ing the average-optimal schedule for the case when all the
modes are safe at the starting state. From Proposition 3
such starting states include all states in the interior of the
safe set S.

3.2.1 Starting state is in the interior of the safety set
We show that the optimal average-cost does not depend

on the starting state as long as all modes are S-safe at that
state. Moreover, there always exists a period schedule that
has the optimal average-cost among all S-safe schedules.

Theorem 6. Given a MMS H, a bounded convex set S ⊆
Rn, t > 0, an initial state x0 ∈ S such that all modes of H
are S-safe at x0 for t amount of time, Algorithm 4 returns
a periodic average-cost optimal schedule in polynomial time.

Proof. We first show that for any S-safe schedule, σ =
〈(m1, t1), (m2, t2), . . .〉, from x0 we can construct a periodic
schedule with period |M | whose average-cost is not greater
than σ’s.

Let f
(m)
k = Tm

k (σ)/Tk(σ) represents the fraction of the

time spent by σ in modem up to step k; note that f
(m)
k ∈ [0, 1],

and
P

m∈M f
(m)
k = 1 for all k. Also, from the definitions,

xk = x0 +
X

m∈M

R(m)Tm
k (r) = x0 + Tk(r)

X
m∈M

R(m)f
(m)
k ,

for any k, and AvgCost(r) = lim supk→∞
P

m∈M π(m)f
(m)
k .

The definition of lim sup stipulates that we can pick a sub-

sequence of the sequence 〈
P

m∈M π(m)f
(m)
k 〉∞k=1 that con-

verges to AvgCost(r). In other words, there exists an in-
creasing integer sequence i1, i2, . . . such that AvgCost(r) =

limk→∞
P

m∈M π(m)f
(m)
ik

. Let us now look at the sequence

of vectors 〈~fk ∈ [0, 1]M 〉∞k=1 where we set ~fk(m) = f
(m)
ik

.
Since this sequence is bounded, by the Bolzano-Weierstrass
theorem, there exists an increasing integer sequence j1, j2, . . .

such that limk→∞ ~fjk exists and let us denote this limit by
~f . We next prove by contradiction thatX

m∈M

R(m)~f(m) = ~0. (6)

Assume that
P

m∈M R(m)~f(m) 6= ~0. Then for some variable

1 ≤ v ≤ n we have c :=
P

m∈M R(m)(v)~f(m) 6= 0 and wlog

assume this value to be positive. From the definition of ~f ,
for any ε > 0 we can pick N such that for all k > N and

m ∈M we have |~fjk (m)− ~f(m)| < ε. Now, notice that

xijk
(v)− x0(v) = Tijk

X
m∈M

R(m)(v)f
(m)
ijk

= Tijk

X
m∈M

R(m)(v)~fjk (m)

= Tijk

X
m∈M

R(m)(v) ·
`
~f(m) + (~fjk (m)− ~f(m))

´
≥ Tijk

X
m∈M

(R(m)(v) · ~f(m)−Rmaxε)

= Tijk
(c− |M |Rmaxε)

where Rmax := maxm∈M,w∈V |R(m)(w)|. If we now set ε to
be c/(2|M |Rmax) for Rmax 6= 0 and ε = 0 otherwise, then
xijk

(v)−x0(v) ≥ 1
2
Tijk

c, where the right-hand side tends to
∞, because limk→∞ ijk =∞ and c > 0. Therefore, we have
limk→∞ ‖xijk

, x0‖ =∞, which would imply that either S is
not bounded or r is not S-safe; a contradiction.

Let the periodic schedule σ′ = 〈(m′1, t′1), (m′2, t
′
2), . . .〉 be

s.t. m′k = (k mod |M |) + 1 and t′k = ~f(mk) · t for each k≥1.
Also, let r′ = 〈x0, (m

′
1, t
′
1), x′1, . . .〉 be the corresponding run



from x0. It is straightforward to see that σ′ is non-Zeno. We
show that σ′ is S-safe at x0. Notice that from (6) it follows

x′|M| = x0 +
X

m∈M

R(m)t ~f(m) = x0.

So it suffices to show that the finite prefix of length |M | of r′

is S-safe. However, this prefix is exactly the same schedule
that we would construct in the proof of Proposition 1 for the
convex combination of points {x0 + tR(m)|m ∈ M}, where
~f(m) is picked as the coefficient of the point x0 + tR(m) in
this combination. All these points are trivially reachable by
a finite path from x0, because all modes were assumed to be
safe for t amount of time at x0.

We now show that σ′ has the average-cost not greater
than the original schedule σ.

AvgCost(σ) = lim sup
k→∞

X
m∈M

π(m)f
(m)
k

≥ lim sup
k→∞

X
m∈M

π(m)f
(m)
jk

=
X

m∈M

π(m) lim
k→∞

f
(m)
jk

=
X

m∈M

π(m)~f(m) = AvgCost(σ′).

The first inequality follows from the fact that removing el-
ements from a sequence can only lower its lim sup value,
while the second equality follows as the lim sup of a sum
of bounded converging sequences is equal to the sum of its
limits. This proves that the optimal average-cost among all
S-safe schedules is equal to the infimum of the average-cost
over S-safe periodic runs with period |M |.

Notice that Algorithm 4 differs from Algorithm 1 only at
line 1 where an objective function is added to the linear
program (7). The the linear constraints guarantee the peri-
odic schedule constructed at the end of the algorithm to be
S-safe, while the objective function guarantees its average-
cost to be the lowest among all S-safe schedules.

3.2.2 General Case
In this section we show how to handle arbitrary starting

states as long as the safety set is a convex polytope.

Theorem 7. Given any MMS H, bounded convex poly-
tope S ⊆ Rn, and an initial state x0 ∈ S, Algorithm 5 re-
turns in polynomial time an ultimately periodic S-safe sched-
ule with the minimum average-cost.

Proof. The algorithm first computes an increasing se-
quence of sets of modes M1 ⊂ M2 ⊂ . . ., where M1 is the
set of modes safe at x0, and for i ≥ 1 the set Mi+1 consists
of all modes safe at states S-safe reachable from x0 using
only modes in Mi. Let k be the smallest number such that
Mk+1 = Mk. Of course k ≤ |M |, because Mi+1 has to have
at least one more mode than Mi and the the total number
of modes is |M |. We will show that no mode outside of Mk

can ever become safe during a S-safe schedule starting at
x0. First, we need the following lemma that can transform
any S-safe schedule into a S-safe schedule with the set of
safe modes never decreasing as the new schedule progresses.

Lemma 8. Any S-safe finite schedule σ from x0 ∈ S can
be modified to a S-safe finite schedule σ′ of length polynomial
in σ in a way that all modes that were safe at any state along
σ will be safe at the terminal state of σ′ and no safe mode
along σ′ can become unsafe as σ′ progresses.

Algorithm 4: Given all modes are safe for time t > 0
at x and an S-safe non-Zeno schedule exists from x, the
algorithm returns average-cost optimal such schedule.

Input: MMS H, initial point x ∈ int(S), and t > 0
such that all modes of H are safe for time t.

Output: NO, if no S-safe non-Zeno schedule exists
from x, and a periodic such schedule with the
minimum average-cost, otherwise.

Check whether the following linear programming1

problem with variables {f (m)}m∈M has a solution.

Minimize
X

m∈M

π(m) · f (m) subject to

X
m∈M

R(m) · f (m) = ~0

X
m∈M

f (m) = 1 (7)

f (m) ≥ 0 for all m ∈M .

if no satisfying assignment exists then2

return NO3

else4

Find a polynomial size assignment {f (m)}m∈M .5

return the following periodic schedule with period6

|M |: mk = (k mod |M |) + 1 and tk = f (mk) · t.

Now, let σ be an arbitrary S-safe schedule starting at x0.
First, using Lemma 8, we construct a new schedule σ′ based
on σ with the property which implies the existence of a finite
list of states, x1, x2, . . ., along the run Run(x0, σ

′), such that
for any i ≥ 0 the set of safe modes at xi+1 is strictly greater
than at xi and does not change at the states between xi and
xi+1 in Run(x0, σ

′). Hence, for any i ≥ 0 the point xi+1

has to be reachable from x0 using modes safe at xi only.
From the definition of the sets Mi and an easy induction on
i, the set of modes safe at xi has to be a subset of Mi+1.
Therefore, the set of safe modes at the terminal state of σ′

is also a subset of Mi for some i. However, the set of safe
modes at the terminal state of σ′ was supposed to contain
all the modes safe along Run(x0, σ) and so any mode safe
along a S-safe schedule from x0 has to belong to Mk.

We now show that a very specific schedule always exists.

Lemma 9. There exist states x1, x2, . . . , xk ∈ S such that
for all 1 ≤ i ≤ k we have that state xi is S-safe reachable
from xi−1 using only modes in Mi, and all modes in Mi are
safe at xi−1.

Proof. Pick any mode q ∈Mk and let I(q) be the lowest
index such that q ∈ MI(q). Next, pick any finite S-safe
schedule such that mode q is safe at some state along the
run of this schedule from x0 and that is the first state of that
run where a mode belonging to MI(q) \MI(q)−1 is safe. Such
a schedule has to exist from the definition of the sets Mi. Let
σq be the result of the transformation of this schedule into a
new one using Lemma 8. For 1 ≤ i ≤ I(q)− 1, denote by xq

i

the first state along the run Run(x0, σ
q) when a mode from

Mi+1 \Mi becomes safe, some of these states may coincide,
and for all i ≥ I(q) let the terminal state of Run(x0, σ

q) be



assigned to xq
i . Notice that mode q is already safe at state

xq
i−1, because of the way we picked σq.

Let us define xi := 1
|Mk|

P
q∈Mk

xq
i for all i. From Propo-

sition 1, we know that xi ∈ S and any mode safe at xq
i is safe

at xi. But this means that all modes in Mi are safe at xi−1,
because any mode q ∈Mi is safe at xq

j for all j ≥ i−1. Fur-
thermore, we know that xq

i is S-safe reachable from xq
i−1 in

Run(x0, σ
q) using only modes from Mi, because only these

modes are safe before this run reaches xq
i . Therefore, it

has to be xq
i − x

q
i−1 =

P
m∈Mi

R(m)tqm for some tqm ≥ 0.

But this means that xi − xi−1 = 1
|Mk|

P
q∈Mk

xq
i − x

q
i−1 =P

m∈Mi
R(m)( 1

|Mk|
P

q∈Mk
tqm). Moreover, all modes from

Mi are safe both at xi and xi−1. Hence, based on the S-
safe reachability characterization given in Theorem 4, we get
that xi is reachable from xi−1 via a S-safe schedule.

Algorithm 5 computes the sets of modes Mi iteratively.
Having computed Mi for all i ≤ j, it checks for every mode
q ∈M\Mj whether there exists a sequence of states x1, . . . , xj

with the properties as in Lemma 9 and mode q being safe at
xj . Lemma 9 guarantees that all safe modes from Mj+1 will
be found this way. We can use Theorem 4 to characterize
the S-safe reachability of xi from xi−1 via a set of linear
constraints. Combining all of these for i = 1, 2, . . . , j, and
some additional checks regarding the safety of the states and
modes used, we obtain the same linear program as in step 6
of Algorithm 5. In the end, the algorithm finds a polyno-
mial size solution to the whole system of constraints while
maximizing t, the minimum amount of time each mode is
safe for. Algorithm 3 can then be used to find a polynomial
length schedule from xi to xi+1 for each i.

After that, Algorithm 5 calls Algorithm 4 to find the opti-
mal average-cost S-safe schedule σ from xk−1 that uses only
modes from Mk. If no such schedule exists, then there is not
any S-safe schedule from x0 either. However, we know that
no other mode can be used by a S-safe schedule and so we
can assume that the set of all modes is Mk. In such a case, σ
has the minimum average-cost among all S-safe schedules.
Moreover, a finite prefix of a schedule does not influence
its average-cost, so the schedule consisting of the polyno-
mial length S-safe schedules leading the system from x0 to
xk−1 followed by σ is an ultimately periodic S-safe schedule
which has the minimum average-cost. Finally, Algorithm 5
runs in polynomial time, because at most |M | iterations of
the loop is needed to find the sets of modes M1, . . . ,Mk and
it calls other algorithms that were already shown to run in
polynomial time.

4. DISCRETE-TIME SCHEDULABILITY
In the previous section, we showed that there exist op-

timal schedules for the average cost and reachability cost
criteria with time delays in each mode expressible as ratio-
nal numbers of the size polynomial in the size of the MMS.
Also, the optimal average cost schedule can be made peri-
odic with period |M | and the time delays for the optimal
cost one are also periodic with period |M |. It follows that
such schedules are implementable by a discrete controller
with the sampling rate ∆ being the least common multiple
of all these |M | rational time delays. Such a number will
also be a polynomial sized rational number, however it may
be exponentially smaller than any of the time delays used.

Algorithm 5: Finds a S-safe non-Zeno run from a given
x0 ∈ S with the minimal average cost, where S is a
bounded convex polytope.

Input: MMS H, l × n matrix A and vector ~b ∈ Rl that
together define a bounded convex polytope S

such that x ∈ S iff Ax ≤ ~b, and initial point
x0 ∈ S.

Output: NO if no S-safe non-Zeno schedule exists
from x0, and an average-cost optimal
ultimately periodic such schedule, otherwise.

M0 := ∅; k := −1;1

repeat2

k := k + 1;3

Mk+1 := Mk;4

foreach mode q ∈M \Mk do5

if the following set of linear constraints is6

satisfiable for some assignment to the variables

t, {t(m)
1 }m∈M1 , {t(m)

2 }m∈M2 , . . . , {t(m)
k }m∈Mk

t > 0

For all i = 1, . . . , k

t
(m)
i ≥ 0 for all m ∈Mi

xi = xi−1 +
X

m∈Mi

R(m)t
(m)
i

Axi ≤ ~b

A(xi−1 +R(m)t) ≤ ~b for all m ∈Mi

A(xk +R(m)t) ≤ ~b for all m ∈Mk ∪ {q} (8)

then
Mk+1 := Mk+1 ∪ {q};7

until Mk+1 = Mk ;8

Compute a polynomial sized solution to the linear9

program in step 6 but with the constraints (8) removed
and the objective function Maximize t.
Call Algorithm 4 with the set of modes Mk, starting10

point xk−1 and the safe time bound t.
if the call returned NO then11

return NO12

else13

Let σ be the periodic schedule returned otherwise.14

Repeatedly call Algorithm 3 to find S-safe schedules15

of polynomial length from x0 to x1 using only modes
in M1, from x1 to x2 using only modes in M2, . . . ,
from xk−2 to xk−1 using only modes in Mk−1.
return the ultimately periodic schedule created by16

composing the S-safe finite schedules from xi to
xi+1 for i = 0, 1, . . . , k − 2 with the average-cost
optimal S-safe periodic schedule σ from xk−1.

Such a sampling rate may not be acceptable in practice, e.g.,
the switching frequency is too high, or the dwell time for
some modes is too low. In this section we discuss discrete-
time schedulers that are allowed to switch modes only at
times multiple of a given sampling rate. We present results
on deciding whether a given ∆ suffices for schedulability or
optimality (Theorem 10), and how to find the maximum
sampling rate among all feasible ∆ values (Theorem 11).



Let H = (M,n,R) be an MMS and let ∆ be a given sam-
pling rate ∆. We say that a schedule σ = 〈(m1, t1), (m2, t2), . . .〉
is ∆-clocked if for all i ≥ 1 there is di ∈ N>0 such that
ti = di ·∆. Given a bounded convex set S and states x, x′ ∈
Rn, the optimal average cost AvgCostS∆(x) and optimal reach-
ability cost CostS∆(x, x′) over all ∆-clocked S-safe schedules
starting from x are defined in straightforward manner.

Theorem 10. Given a priced MMS H = (M,n,R, π), a
bounded polytope S, a sampling rate ∆, and states x0, xd ∈
Rn the discrete average cost and the discrete reachability cost
problems are PSPACE-complete.

PSPACE-membership of both problems is shown via dis-
cretization of the state space of H. Since the set S is given
as a bounded polytope, the size of the discretization can be
shown to be at most exponential in the size of H and ∆. We
prove PSPACE-hardness by a reduction from the acceptance
problem for the linear bounded automata (LBAs).

Lower bound on ∆ can be computed using Theorems 6
and 7, while the upper bound can be obtained from the di-
ameter of the safety set. Given a target average-cost, using a
straightforward binary search algorithm we can approximate
the maximum sampling rate for which the optimal average
cost does not exceed the target. Since the total number of
iterations is polynomial and in each iteration the optimality
can be checked in PSPACE, the following theorem follows.

Theorem 11. Given a MMS H, a bounded polytope S, a
starting state s, a budget B, and ε > 0, the maximum sam-
pling rate for which the optimal average-cost is not greater
than B can be approximated within ε in PSPACE.

5. CONCLUSION
We have proposed a model for constant-rate multi-mode

systems (MMSs) to analyze hybrid systems with variables
having mode-dependent constant-rates and no constraints
on mode-switching. For this model, we have developed poly-
nomial time algorithms to solve safe schedulability and safe
reachability problems, as well as their corresponding opti-
mization problems. From a practical perspective, a num-
ber of quantitative analysis problems for hybrid systems,
in particular, energy peak demand minimization problem
proposed recently by Nghiem et al., can be formalized as
optimal schedulability problems for MMSs. Our analysis al-
gorithms reduce the problem to linear programming, and are
tractable. As such, MMSs are a new promising, natural and
expressive subclass of hybrid systems. There are, however,
some natural optimization problems on MMSs where the lin-
ear programming formulation breaks down. For instance, if
we allow different prices for mode-switches then the choice
of the mode switching sequence plays a crucial role in the
average cost of a schedule, and the linear programming char-
acterization presented in this paper does not work. For this
setting, the exact complexity of optimal schedulability prob-
lem remains open.
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