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Abstract

We investigate the design of mechanisms to incentivize high quality
outcomes in crowdsourcing environments with strategic agents, when en-
try is an endogenous, strategic choice. Modeling endogenous entry in
crowdsourcing markets is important because there is a nonzero cost to
making a contribution of any quality which can be avoided by not par-
ticipating, and indeed many sites based on crowdsourced content do not
have adequate participation. We use a mechanism with monotone, rank-
based, rewards in a model where agents strategically make participation
and quality choices to capture a wide variety of crowdsourcing environ-
ments, ranging from conventional crowdsourcing contests with monetary
rewards such as TopCoder, to crowdsourced content as in online Q&A
forums.

We begin by explicitly constructing the unique mixed-strategy equilib-
rium for such monotone rank-order mechanisms, and use the participation
probability and distribution of qualities from this construction to address
the question of designing incentives for two kinds of rewards that arise in
the context of crowdsourcing. We first show that for attention rewards
that arise in the crowdsourced content setting, the entire equilibrium dis-
tribution and therefore every increasing statistic including the maximum
and average quality (accounting for participation), improves when the re-
wards for every rank but the last are as high as possible. In particular,
when the cost of producing the lowest possible quality content is low, the
optimal mechanism displays all but the poorest contribution. We next
investigate how to allocate rewards in settings where there is a fixed to-
tal reward that can be arbitrarily distributed amongst participants, as
in crowdsourcing contests. Unlike models with exogenous entry, here the
expected number of participants can be increased by subsidizing entry,
which could potentially improve the expected value of the best contri-
bution. However, we show that subsidizing entry does not improve the
expected quality of the best contribution, although it may improve the
expected quality of the average contribution. In fact, we show that free
entry is dominated by taxing entry— making all entrants pay a small
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fee, which is rebated to the winner along with whatever rewards were al-
ready assigned, can improve the quality of the best contribution over a
winner-take-all contest with no taxes.

1 Introduction

Crowdsourcing, where a problem or task is broadcast to a crowd of potential
contributors for solution, is a rapidly growing online phenomenon being used
in applications ranging from seeking solutions to challenging projects such as
in Innocentive or TopCoder, all the way to crowdsourced content such as on
online Q&A forums like Y! Answers, StackOverflow or Quora. The two key
issues which arise in the context of crowdsourcing are quality— is the obtained
solution or set of contributions of high quality?— as well as participation—
there is a nonzero effort or cost associated with making a contribution of any
quality in a crowdsourcing environment which can be avoided by simply choosing
to not participate, and indeed many sites have too little content. In such a
setting, the effort an agent decides to exert will depend on how many other
agents are likely to participate and how much effort they will exert, since the
amount of effort necessary to obtain a particular reward depends both on the
number and strength of competitors an agent faces. Naturally, the level of effort
agents choose, and therefore the quality of the output created, depends on the
incentives offered to agents. How should rewards be designed to incentivize high
effort, in a setting where entry is an endogenous, strategic choice?

We are motivated by two different kinds of questions that arise in the context
of designing rewards for crowdsourced content, depending on the setting and the
nature of the rewards. The first is in the context of attention rewards on user-
generated content (UGC) based sites, such as online Q&A forums like Quora
or StackOverflow. Here, the mechanism designer, or site owner, has a choice
about how many of the received contributions to display, i.e., how to reward the
contributions with attention — he could choose to display all contributions for
a particular task, or display only the best few, suppressing some of the poorer
contributions. What strategy improves the quality of the best contribution
supplied? What about the average quality of contributions? On the one hand,
suppression should cause quality to rise, because the payoff to poor content
falls; on the other hand, suppressing content also corresponds to decreasing the
total reward paid out, which could decrease quality. Is it a good idea, in a
game-theoretic sense, to display all contributions?

The second question arises in settings where there is some fixed total
available reward which can be distributed arbitrarily amongst the agents. This
happens, for example, in the setting of crowdsourcing contests with monetary
rewards, where the principal posing the challenge or task offers some fixed
amount of money for obtaining the solution to the challenge. Another instance
is systems which reward agents with virtual points1. (The distinction between

1If the value of points is determined only in proportion to the total number of points
awarded (so that just doubling the number of points awarded for all tasks has no effect on
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this setting and attention rewards is that it is not possible to take away
attention from the second position and add it to the first position since, to a
first approximation, attention to the second spot comes from a subset of viewers
providing attention to the first; so attention rewards cannot be arbitrarily
redistributed across ranks.) How can rewards be designed to improve the
quality of contributions in settings with arbitrarily redistributable rewards,
when entry is endogenous?

Our contributions. We use a mechanism with monotone, rank-based re-
wards in a model with contributors who strategically choose both participation
and quality to simultaneously capture a wide variety of crowdsourcing envi-
ronments, ranging from conventional crowdsourcing contests with monetary re-
wards such as TopCoder, to crowdsourced content such as in Q&A forums.
We first analyze the equilibria of such monotone rank-order mechanisms, and
explicitly construct the unique mixed-strategy equilibrium for this mechanism
(§3). We then use this construction, which explicitly gives us the equilibrium
participation probability and distribution of qualities, to address the question
of how to design rewards for each of the two settings previously mentioned.

We first show (§4) that for attention rewards, the entire equilibrium dis-
tribution and therefore every increasing statistic, including the maximum and
average quality (accounting for participation) improves when the rewards for
every rank but the last are as high as possible: if there are n potential con-
tributors, then the optimal mechanism sets the attention rewards for ranks 1
through n− 1 to be the maximum possible, while the attention to the nth rank
is curtailed to the cost of producing the lowest possible quality contribution
(note here that k < n agents may participate, in which case only the rewards
for ranks 1, . . . , k are given out). If this cost is low, this prescribes, roughly
speaking, displaying all but the poorest contribution.

We next investigate redistribution of rewards (§5). Unlike in models with
exogenous entry with a fixed number of participants, it is possible here to in-
crease the expected number of participants by subsidizing entry, for example,
by providing a small reward to all participants in addition to a large reward to
the winner. In models with exogenous entry, more participants lead to higher
qualities, suggesting that subsidizing entry may be productive in this endoge-
nous entry setting as well. Also, even if subsidizing entry (at the cost of paying
less to the winner) were to reduce the equilibrium distribution from which each
contributor chooses her quality, the expected value of the maximum quality could
nonetheless increase when the number of contributors increases, since we have
the maximum of a larger number of random variables. However, we show that
subsidizing entry does not improve the expected value of the maximum quality,
although it may improve the expected value of the total contribution. In fact,
we show that free entry (corresponding to a winner-take-all contest) is domi-
nated by taxing entry - making all entrants pay a small fee, which is rebated

incentives), the total number of points available to reward agents with is effectively fixed as
well.
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to the winner along with whatever rewards were already assigned, can improve
the expected quality of the outcome.

Related work. There is a growing literature on the optimal design of con-
tests [13, 14, 12], as well as specifically on the design of online crowdsourcing
contests [1, 4, 3] and online procurement (e.g., [15]). The most relevant of these
to our work are the following. [13] investigates the optimal structure of rewards
when the objective is to maximize the sum of qualities of contributions, for con-
cave, linear and convex costs; [14] also considers the objective of maximizing the
highest quality contribution. [1] studies the optimal design of crowdsourcing
contests in a setting with agents with heterogeneous abilities and linear costs,
when the objective is to maximize the sum of the top k qualities minus the total
reward paid out to agents. [3] study the design and approximation of optimal
crowdsourcing contests modeled as all-pay auctions, again for agents with lin-
ear costs, and investigate the extent of wasted effort compared to conventional
procurement. There is also a voluminous economics literature on contest design
not focused on crowd-sourcing, see, for example, [2] and references therein.

The key difference between this literature and our work is endogenous entry–
all these papers assume some fixed number n of contestants who always partic-
ipate (i.e., the cost of producing the lowest possible quality c(0) = 0), whereas
whether to participate or not is an endogenous strategic choice in our model
(i.e., we allow for c(0) > 0). That endogenous participation may matter is
foreshadowed by the auction literature, which is the basis for much of the mod-
eling of crowdsourced content provision— auctions with endogenous entry are
quite different than auctions with exogenous participation. For instance, while
posting monopoly reserve prices is always part of seller maximization in auction
models with exogenous participation, a monopoly seller sets efficient reserve
prices when participation is endogenous [11]. Endogenous entry makes a sub-
stantial difference in the crowd-sourcing models for much the same reason—
it is no longer possible to reduce the profits of the contributors, because those
profit levels are determined by the cost of entry. Our results on the optimality
of taxing in §5 are foreshadowed by Taylor [16] and Fullerton and McAfee [5],
both of whom show, albeit in different settings, that free entry produces too
much entry. An additional, though less important, difference with the literature
on online crowdsourcing contests [1, 3] is that we allow general cost functions
rather than restricting linear cost functions.

There is also a related literature on models with endogenous entry [11, 5, 16,
9, 7, 8], although largely outside the specific setting of contest design (with the
exception of [16, 8]). [16] studies a setting with agents who all have a common
exogenous cost to participation, and draw the quality of their output from some
distribution. An agent’s only strategic choice is whether or not to enter in each
period of a possibly multi-period game. In this model, [16] finds that restricting
entry with taxation is optimal. The key difference from our work, of course, is
that quality is an endogenous choice in our model as opposed to an exogenous
draw from a distribution. [8] uses a very similar agent model to that in [16],
but instead addresses the question of implementation of optimal outcomes—
are contest structures where the highest quality contribution receives some high
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prize and all other contributions receive some low prize adequate to implement
the optimal outcome achievable with nonstrategic agents? We do not address the
question of implementability of optimal outcomes, but rather ask how to improve
equilibrium outcomes. [9, 7] address the question of incentivizing high-quality
user-generated content (UGC) in a game-theoretic framework with strategic
agents and endogenous entry, a setting related to that of crowdsourced content.
However, [9, 7] focus on the performance of mechanisms in the limit of diverging
rewards (as is the case with attention rewards in the context of very popular
UGC sites such as Youtube or Slashdot), while our results address the case of
finite, or bounded, rewards, as is relevant in much of crowdsourcing.

2 Model

We model a general social computing or crowdsourcing scenario as a game with
rank-dependent rewards, i.e., a rank-order mechanism with reward ai for pro-
ducing the ith best contribution, and focus on the effect of the reward structure
on the qualities of contributions produced by strategic agents in a single micro-
market, such as one crowdsourcing contest or a question in a Q&A forum.

There is a micromarket with a pool of n agents, each of whom is a potential
participant in this micromarket. Each agent can choose whether to contribute or
not, as well as the quality of the contribution she makes if she chooses to enter.
Agents make the decision of whether to participate strategically, i.e., entry is
endogenous, and each agent that chooses to participate then chooses her level
of effort, modeled as the quality q of the output she produces, strategically to
maximize her utility. We next describe the utility of an agent.

The cost, or effort, required to producing a contribution of quality q for
each agent is c(q). We will assume that c(q) ≥ 0 is some strictly increasing,
continuously differentiable function of q. Although we do not need this assump-
tion, it will be useful to imagine that c(0) > 0, i.e., there is a nonzero cost to
producing a contribution, even one of the lowest possible quality. This nonzero
participation cost models, for example, the cost of reading and understanding
the task for which contributions are being solicited, which can be avoided by
simply choosing to not participate. Since c(0) > 0, participation always has
a strictly positive cost, whereas not participating at all incurs zero cost and
produces zero benefit, and therefore has a net utility of 0.

Homogeneity. Note that our model of costs assumes homogeneity amongst
all potential contributors, corresponding to assuming that agents do not differ
in their abilities, but simply in the amount of effort that they choose to put
in. While there are indeed settings where potential contributors may differ
widely in their abilities, there are also settings where it is effort, rather than
ability, which dominates the quality of the outcome produced (for example,
writing a review for a product on Amazon, or producing an article for a
crowdsourced-content based site such as Associated Content which requires
exhaustively researching the topic rather than inherent expertise, fall in this
category). Also, in several settings, such as specific topics or categories in Q&A
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forums like Quora or Stackoverflow, the set of potential contributors may be
self-selected to have rather similar abilities or expertise levels, and therefore
have similar costs to producing a particular quality. While the most complete
model of the real world would allow for differences in both ability and effort, we
choose here to focus on strategic choice of effort, i.e., to focus on the strategic
question faced by an agent of “how little effort can I get away with?”, since this
is a reasonable first approximation in many settings relevant to crowdsourcing.

Mechanism G(a1, a2, . . . , an). Once agents have made their participation
and quality choices, the mechanism observes the qualities qi produced by the
agents who enter, and awards prizes ai to the participants in decreasing order of
quality. Specifically, a mechanism G(a1, a2, . . . , an) awards a prize of value ai to
the entrant who produces the ith highest-quality contribution. If more than one
agent produces the same quality, the mechanism breaks ties randomly amongst
these agents to obtain a strict rank order, and assigns rewards according to this
order. No prizes are awarded to agents who do not enter, and specifically, if
no agent participates, no prize is awarded. We note here that we assume that
qualities are perfectly observable, as in all the prior literature on contest design
and crowdsourcing contests [13, 3, 4, 1]— since each task in a crowdsourcing
environment is usually posed by some principal who can rank the contribu-
tions in decreasing order of quality (such as the person posting the task in a
crowdsourcing contest or the asker in an online Q&A forum), this assumption is
reasonable, particularly since G(a1, a2, . . . , an) only uses the relative ranks, and
not the actual absolute values of the qualities.

We will focus throughout on monotone mechanisms, in which higher ranks
receive higher rewards, and not all rewards are equal.

Definition 2.1. Consider a micromarket with n agents. We say

G(a1, a2, . . . , an) is a monotone mechanism if a1 ≥ a2 . . . ≥ an and at least

one inequality is strict, i.e., ai > ai+1 for some 1 ≤ i ≤ n − 1. We say

G(a1, a2, . . . , an) is monotone nonnegative if G(a1, a2, . . . , an) is monotone and

an ≥ 0, i.e., all rewards are nonnegative.

Solution concept. We use the solution concept of a symmetric Nash equi-
librium, since agents’ payoff functions are symmetric in the parameters of the
game. In a symmetric strategy, each contributor participates with the same
probability and follows the same strategy of quality choices conditional on par-
ticipating. We will denote a pair of participation probability and CDF that
constitute a symmetric mixed strategy by (p,G(q)).

Definition 2.2. A symmetric mixed strategy equilibrium (p,G(q)) is a proba-

bility p and a distribution G over qualities q such that when every agent enters

with probability p, and chooses a quality drawn from the CDF G(q) conditional

on entering, no agent can increase her expected utility by deviating from this

strategy, i.e., by changing either the probability with which she participates or

the distribution G from which she draws a quality.
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3 Equilibrium Analysis

We begin by analyzing the equilibria of the mechanism G(a1, a2, . . . , an), which
we will then use to compare outcomes in different mechanisms. We first prove
the following simple lemma, which eliminates the possibility of ‘pure strategy’
equilibria in which all participants choose the same quality.

Lemma 3.1. There exists no symmetric equilibrium in the game

G(a1, a2, . . . , an) where all participants choose the same quality q conditional

on entering when the cost c(q) is continuous.

Proof. Suppose there is a symmetric equilibrium in which all participants choose
the same quality q conditional on entering. If k agents enter (where k can
be a random variable if participants randomized over the choice of entry), the
expected payoff to each agent that enters (where the expectation is over random

tiebreaking) is
∑k

i=1 ai/k. So the expected payoff to an agent who enters with
quality q is the expectation over all possible values of k,

E[U(q, q−i)] =

n
∑

k=1

Pr(k)

k
∑

i=1

ai
k

− c(q).

But note that entering with quality q + ǫ is a profitable deviation if all other
agents who enter choose quality q: choosing q + ǫ gives this agent a reward of
a1 for all values of k. Since ai > ai+1 for some i, a1 >

∑n
i=1

ai

n (and Pr(n) > 0
in a symmetric equilibrium in which all participants enter with some positive
probability). Since c(q) is continuous, there exists a choice of ǫ such that

E[U(q + ǫ, q−i)] > E[U(q, q−i)]

which constitutes a profitable deviation, contradicting the assumption that there
is a symmetric equilibrium in which all agents choose the same quality.

Since there can exist no symmetric pure strategy equilibria in which all
agents choose a single quality q∗ conditional on entering, we will investigate
symmetric mixed strategy equilibria where all agents randomize over their choice
of quality (conditional on entering) using the same distribution. First, of course,
we need to establish the existence of such symmetric mixed strategy equilibria—
we will do this by explicitly constructing such an equilibrium.

The next theorem establishes some properties that any symmetric mixed
strategy equilibrium to G(a1, a2, . . . , an), if one exists, must possess. We will
use these properties to prove the existence of a symmetric mixed strategy equi-
librium by constructing one in Theorem 3.2.

Theorem 3.1. Let (p,G(q)) be any symmetric mixed strategy equilibrium to

G(a1, a2, . . . , an). If the agents’ cost c(q) is continuous and strictly increasing

in q, then G(q) is continuous, i.e., contains no mass points, and has support on

an interval with left endpoint 0.
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Proof. Let U(q) =
∑n

i=1 aiPr(i|q), where Pr(i|q) is the probability of being
ranked ith when choosing quality q, given that the remaining agents participate
with probability p and draw qualities according to the distribution G(q) condi-
tional on participating, and ties are broken at random. U(q) is the benefit to
this agent from entering with quality q when other agents play (p,G(q)). The
payoff to an agent who enters with quality q, when other agents play according
to a mixed strategy (p,G(q)) in G(a1, a2, . . . , an) is

π(q) = U(q)− c(q) =

n
∑

i

aiPr(i|q) − c(q).

1. G(q) has no mass points: We first show that G(q) is continuous on its
support, i.e., it has no mass points. Suppose not; let q0 be a mass point.
Then, since ties are broken randomly, note that

lim
ǫ→0

U(q0 + ǫ) > U(q0),

since there is a positive probability of a tie at q = q0, which can be
eliminated by choosing a slightly higher quality. This implies that there
is an ǫ such that the payoff from choosing q0 + ǫ is strictly greater than
that at q0, since the cost function c is continuous in q:

lim
ǫ→0

π(q0 + ǫ) = lim
ǫ→0

(U(q0 + ǫ)− c(q0 + ǫ))

> U(q0)− c(q0).

But this means q0 cannot belong to the support of an equilibrium distri-
bution G, a contradiction. So G(q) is continuous on its support.

2. qmin = 0: Let qmin denote the infimum of the qualities in the support
of G. Since G contains no mass points as shown above, G(qmin) = 0.
Suppose, for a contradiction, that qmin > 0. But then, an agent can
profitably deviate by choosing qmin− ǫ instead of qmin: since G(qmin) = 0,
an agent choosing qmin will be ranked lowest among all agents who enter
anyway, i.e., U(qmin − ǫ) = U(qmin). But c(qmin) > c(qmin − ǫ) since
c(q) is strictly increasing, so π(qmin − ǫ) > π(qmin), yielding a profitable
deviation, contradicting qmin belonging to the support of an equilibrium
distribution. This argument holds for any quality strictly greater than the
lowest quality, which is 0. Therefore, any equilibrium distribution G must
have qmin = 0.

3. Interval support: Finally, we argue that the support of G(q) must be an
interval (i.e., the support contains no ‘holes’), or equivalently, G(q) is
strictly increasing between 0 and q̄, where G(q̄) = 1. Suppose not; then
there must exist some q1 < q2 such that G(q1) = G(q2) (recall that we
have already ruled out mass points, so specifically, there can be no mass
point at q2). But then U(q1) = U(q2), since the quality q affects the
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probability of being ranked in any particular position only via G(q) (see
(1)). So

π(q2) = U(q2)− c(q2) < U(q1)− c(q1) = π(q1)

since c(q1) < c(q2), a contradiction to q2 belonging to the support in
equilibrium. Therefore, there can be no such holes in the support of G,
i.e., the support is an interval.

The probability Pr(i|q) that an agent choosing quality q has the ith highest
quality when the remaining n− 1 agents play according to (p,G(q)) when G(q)
is continuous, is the probability that i − 1 other agents participate (each with
probability p) and choose quality greater than q (each with probability 1−G(q)),
and the remaining n − i agents either do not participate or choose quality less
than q, i.e.,

Pr(i|q) =

(

n− 1

i− 1

)

(p(1−G(q))i−1(1− p(1−G(q)))n−i.

Note that this expression is valid only because G has no mass points, since if
there is a mass point at q there is a positive probability of more than one agent
using the same quality, which leads to ties that are broken randomly.

Then, the benefit U =
∑n

i=1 aiPr(i|q) under a continuous CDF G is

U =

n−1
∑

i=0

ai+1

(

n− 1

i

)

(p(1−G(q))i(1− p(1−G(q)))n−1−i. (1)

Before proceeding with the construction of an equilibrium, we evaluate a
derivative which will be used repeatedly in our proofs in this section. Setting

x(q) = p(1−G(q)),

write

U(x) =

n−1
∑

i=0

ai+1

(

n− 1

i

)

xi(1− x)n−1−i. (2)

Then,

dU

dx
=

n−1
∑

i=0

ai+1

(

n− 1

i

)

ixi−1(1 − x)n−1−i −

n−1
∑

i=0

ai+1

(

n− 1

i

)

(n− 1− i)xi(1 − x)n−2−i

= (n− 1)

n−2
∑

i=0

ai+2

(

n− 2

i

)

xi(1− x)n−2−i − (n− 1)

n−2
∑

i=0

ai+1

(

n− 2

i

)

xi(1− x)n−2−i,

so that
dU

dx
= (n− 1)

n−2
∑

i=0

(ai+2 − ai+1)

(

n− 2

i

)

xi(1− x)n−2−i. (3)
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For a monotone mechanism, i.e., with ai ≥ ai+1 and at least one strict inequal-
ity, note that dU

dx > 0 for x ∈ (0, 1).
Now we will use Theorem 3.1 to construct, and therefore demonstrate the ex-

istence of a symmetric mixed strategy equilibrium (p,G(q)) in G(a1, a2, . . . , an).

Theorem 3.2 (Equilibrium Construction). There exists a symmetric mixed

strategy equilibrium (p,G(q)) to G(a1, a2, . . . , an) when ai ≥ ai+1 for all i; this
equilibrium is unique up to inclusion of the endpoints of the support.

Proof. We will construct a candidate pair (p,G(q)) for which no agent can
benefit by changing p and no agent will want to deviate from G(q); to finish
the proof we verify that p and G(q) are indeed a valid probability and CDF,
respectively.

Before constructing the equilibrium, we note that if a1 ≤ c(0), i.e., the
maximum possible reward is less than the cost of producing the lowest pos-
sible quality, no agent can derive nonnegative utility from participating in
G(a1, a2, . . . , an) irrespective of the actions of other agents. In this case, the
only equilibrium is that no agents participate in G(a1, a2, . . . , an) (i.e., p = 0;
the choice of G(q) is meaningless), which is not very interesting. In what follows,
therefore, we will assume that a1 > c(0).

First, from Theorem 3.1, we know that a mixed strategy equilibrium
(p,G(q)), if one exists, has support on an interval [0, q̄] with G(0) = 0 and
G(q̄) = 1. Also, since G(q) is continuous, the payoff at quality q ∈ [0, q̄] is

π(q) = U(p(1−G(q))− c(q),

where U(x) is the function defined in (2).
Using the fact that 0 belongs to the support and G(0) = 0 (no mass points),

we can write the payoff at 0 as

π(0) = U(p)− c(0)

=

n−1
∑

i=0

ai+1

(

n− 1

i

)

(1− p)n−1−ipi − c(0).

If p = 1, U(p) = U(1) = an
2. Therefore, if p = 1, π(0) = an − c(0). But

for p to be an equilibrium probability of participation, we must have π(0) ≥ 0.
Therefore, p can be 1 only if an ≥ c(0), i.e., if an < c(0) then p < 1 in
equilibrium. Conversely, if an ≥ c(0), we must have p = 1 in equilibrium. At
p = 1, π(0) = an − c(0) ≥ 0. Since U(p) is a strictly decreasing function of p
on (0, 1), π(0) > 0 for any p < 1. But then if p < 1, an agent has an incentive
to deviate and increase the probability of participation since payoffs are strictly
positive, contradicting the fact that p is an equilibrium participation probability.
Therefore, p = 1 if and only if an ≥ c(0).

2This corresponds to the fact that when all agents participate (p=1), an agent choosing 0
quality comes in last (recall that there is no mass point at 0) and gets benefit an.
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For (p,G(q)) to be an equilibrium, we must have equal payoffs throughout
the support, i.e.,

π(q) = K

for all q ∈ [0, q̄]. Further, since (p,G(q)) is a free entry equilibrium, no agent
must have an incentive to change her decision to participate. This means that
if p < 1, we must have K = 0, i.e., equilibrium payoffs must be zero unless
p = 1. We now use this together with the previous argument to construct our
equilibrium.

1. an < c(0): If an < c(0), then set p to be the value that satisfies

n−1
∑

i=0

ai+1

(

n− 1

i

)

(1− p)n−1−ipi = c(0). (4)

Note that the left-hand side is a continuous, strictly decreasing function of
p on (0, 1), taking value a1 at p = 0 and an at p = 1. Therefore there is a
unique solution in (0, 1) to this equation when c(0) satisfies an < c(0) < a1,
i.e., there is a unique solution p which is a valid probability.

The distribution G(q) is the solution to

n−1
∑

i=0

ai+1

(

n− 1

i

)

(1− p(1−G(q)))n−1−i(p(1 −G(q))i = c(q).

for each q in [0, q̄], where q̄ is the unique solution (since c(q) is strictly
increasing) to

c(q̄) = a1.

Note that the value of q̄ is that which solves G(q̄) = 1 in the equation
above.

2. an ≥ c(0): If an ≥ c(0), set p = 1. The distribution G(q) has support on
the interval [0, q̄], where

c(q̄) = a1 − an + c(0),

and G(q) is given by the solution to

n−1
∑

i=0

ai+1

(

n− 1

i

)

(1− p(1−G(q)))n−1−i(p(1−G(q))i = c(q) + an − c(0)

for each q in [0, q̄]. Again, note that q̄ is obtained by setting G(q̄) = 1 in
the equation above.

To verify that our construction is indeed an equilibrium, note that no agent
has an incentive to deviate and choose a different p: when p < 1, π(q) = 0
so there is no benefit from increasing or decreasing p, and π(q) ≥ 0 for p = 1
so no agent wants to decrease participation in this case. Also, no agent wants
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to deviate from G(q) conditional on participating: first, π(q) is equal for all
q ∈ [0, q̄], so an agent might only want to deviate by choosing quality greater
than q̄. But note that in both cases (p < 1 and p = 1), π(q) = U(q̄)−c(q) < π(q̄)
for any q > q̄, since an agent choosing q̄ is guaranteed to win the maximum
possible reward anyway (recall that G has no mass points, specifically at q̄). So
no agent wants to deviate from (p,G(q)).

We have already verified that the value of p lies between 0 and 1, i.e., it is a
valid probability. The last thing we need to verify is that the distribution G(q)
computed in both cases is indeed a CDF (note that the claimed properties of G,
namely continuity with support on [0, q̄] follow directly from the continuity of
U(x) in x and c(q), and by construction). To show this, we need to show that
that G is increasing on (0, q̄), i.e.,

∂G

∂q
=

(

∂U

∂q

)

/

(

∂U

∂G

)

is nonnegative on (0, q̄). Now, observe that in either case (an ≥ c(0) or an <
c(0)), G(q) can be written as the solution to

U(p(1−G(q))) = c(q) + max{an − c(0), 0},

where p is determined appropriately. Therefore, U(q) = c(q)+max{an−c(0), 0}
is a strictly increasing function of q, i.e., ∂U

∂q > 0. Also, with x = p(1−G),

∂U

∂G
=

∂U

∂x
·
∂x

∂G
= −p

∂U

∂x
.

Using the expression in (3), and the fact that ai ≥ ai+1 with strict inequality
for some i, ∂U

∂G > 0 on (0, q̄). So we have

∂G

∂q
=

(

∂U

∂q

)

/

(

−p
∂U

∂x

)

> 0

on (0, q̄) (recall that a1 > c(0) by assumption, so p > 0). By construction,
G(0) = 0 and G(q̄) = 1, so G(q) is increasing and lies in [0, 1] for q ∈ [0, q̄]. So
G(q) is a valid CDF.

The following two facts about the equilibrium are immediate from the proof
above.

Corollary 3.1. For any rewards (a1, . . . , an) such that ai ≥ ai+1 and at least

one inequality is strict,

1. The equilibrium participation probability p in G(a1, a2, . . . , an) is 1 if and

only if an ≥ c(0).

2. The maximum quality q̄ in the support of G is given by c(q̄) = a1 −
max{an − c(0), 0}.
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4 Increasing Attention Rewards

We begin with investigating the design of incentives in the context of attention
rewards. Such attention rewards arise, for example, in sites that are based on
user-generated content (UGC) such as Q&A forums like Quora or StackOver-
flow, or Amazon reviews. In these settings, there is some available amount of
attention reward for the top ‘spot’ or answer (derived from all the viewers who
read the contribution displayed first), a smaller amount for the second spot
(corresponding to the viewers that continue on to the second), and so on, i.e.,
some maximum possible rewards A1, A2, . . . , An that can be obtained by always
showing all available contributions for each position 1, . . . , n.

Attention rewards have an unusual constraint when contrasted with mone-
tary or virtual points rewards of the kind we discuss in §5: the total available
reward

∑n
i=1 Ai cannot be arbitrarily redistributed amongst agents since, to a

first approximation, attention to the second spot comes from a subset of viewers
providing attention to the first. Thus, while it is possible to freely increase or
decrease each of the rewards ai between 0 and Ai (subject, of course, to the
monotonicity constraint, i.e., ai ≥ ai+1), it is not easy to take away reward
from a2 and redistribute it to a1.

3

Now, a site featuring UGC could suppress some of the UGC, e.g. by only
showing the top-ranked content, or reducing the prominence of lesser ranked
content, i.e., the site could choose ai < Ai by not always (or never) displaying
the ith ranked contribution. Does this strategy improve the quality of the
best contribution supplied? On the one hand, equilibrium qualities should rise,
because the payoff to poor quality falls. However, the payoff to supplying any
content also falls, so participation falls as well. How do these two effects interact?

What if we were interested in a different metric of performance, and not
just in the best contribution— for example, do the qualities of the average
contribution, or the quality of the second best or third best contribution behave
the same way as the quality of the best contribution as a function of ai, or
do they behave differently? Intuitively, it seems plausible that the solution for
maximizing the quality of the best contribution may differ from what maximizes
the quality of an average contribution, since lower rewards for non-winning
contributions should increase the incentive to be best, but higher rewards for
non-winning contributions may increase the average quality.

The following theorem says that the entire distribution of equilibrium quali-
ties (accounting for the fact that agents participate probabilistically), and there-
fore every increasing statistic, improves when the rewards for achieving any of
the the first through last-but-one ranks increases (this uniform improvement is
in contrast to the case with redistribution, as we will see in §5). Therefore, it is
optimal to increase each of the a1, a2, . . . , an−1 to the maximum extent possi-
ble. However, the situation is somewhat more subtle for an, the subsidy to the

3We note that randomizing between displaying q1 and q2 in the first and second spot can
achieve the opposite redistribution, namely increase a2 at the expense of a1, but we do not
consider this here since it adversely affects the user experience. The analysis in §5 addresses
this issue.

13



contributor with the lowest possible rank: if the current value of an < c(0) then
increasing an improves quality, but if an is fairly large already, i.e., an > c(0)
then a decrease in an improves quality.

Lemma 4.1. The derivative of the probability with which an agent chooses

quality greater than q in equilibrium with respect to ai,
d(p(1−G))

dai
, is positive for

i = 1, . . . , n− 1 for all q ∈ (0, q̄). The derivative with respect to an,
d(p(1−G))

dan
is

positive when an < c(0) but negative for an > c(0) for all q ∈ (0, q̄).

Proof. We have from the equilibrium construction that

H(p(1−G), a) ≡ U(p(1−G(q)) − c(q)−max{an − c(0), 0} = 0, (5)

where U(x) is the benefit function defined in (1).
Differentiating (5) gives us

d(p(1−G))

dai
= −

∂H
∂ai

∂H
∂p(1−G)

.

We use the derivative ∂U
∂x calculated in (3) for the denominator, with x =

p(1−G):

∂H

∂x
= (n− 1)

n−2
∑

i=0

(ai+2 − ai+1)

(

n− 2

i

)

xi(1 − x)n−2−i

< 0

for x ∈ (0, 1), since ai ≤ ai+1 with at least one strict inequality. For a1, . . . , an−1,

∂H

∂ai
=

(

n− 1

i− 1

)

(p(1−G))i−1(1 − p(1−G))n−i > 0

for q ∈ (0, q̄). Therefore, d(p(1−G))
dai

> 0 everywhere, i.e., increasing the rewards
for each of the first through n− 1th positions always improves the equilibrium
distribution.

For an, when an < c(0) or equivalently p < 1,

∂U

∂an
= (p(1−G))n−1 > 0,

on (0, q̄), but when an ≥ c(0) (so that p = 1),

∂U

∂an
= (p(1 −G))n−1 − 1 < 0.

Therefore, d(p(1−G))
dan

> 0 for an < c(0) but d(p(1−G))
dan

< 0 for an ≥ c(0). Thus,
the reward for the last position behaves differently— increasing an until it equals
c(0) improves equilibrium qualities, but when an ≥ c(0), increasing an further
make the equilibrium qualities worse.
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Recall also from Corollary 3.1 that c(q̄) = a1 − max{an − c(0), 0}, so that
the maximum quality in the support decreases linearly with an when an ≥ c(0).

This immediately gives us the following result.

Theorem 4.1. Suppose each of the rewards ai is constrained to lie below some

maximum value Ai, 0 ≤ ai ≤ Ai, where A1 ≥ . . . ≥ An. Then, the choice

of rewards (a1, . . . , an) that optimizes the equilibrium distribution of qualities,

and therefore the expected value of any increasing function of the contributed

qualities, is

ai = Ai, i = 1, . . . , n− 1;

an = min(An, c(0)).

5 Redistribution of Rewards

We now address the question of how to optimally redistribute reward amongst
agents to improve equilibrium quality. This question arises in settings where
there is some total available reward that can be distributed in any arbitrary
way amongst agents, as in the case of crowdsourcing contests such as TopCoder,
or even contests with virtual points, where points have value only relative to
the total number of points in the system, so that effectively there is a fixed
budget of available reward. We note that this setting is the one that has been
studied widely in the contest design literature in economics, and in the growing
literature on the design of crowdsourcing contests, unlike the setting in §4; the
key difference, as discussed in the section on related work, is that our model
allows for endogenous entry. Which value of (a1, . . . , an) leads to the ‘best’
equilibrium outcome amongst all mechanisms G(a1, a2, . . . , an) with the same
expected payout?

What do we mean by ‘best’ outcome, i.e., what is the objective to optimize?
As we will see, unlike in the previous section with attention rewards, not all
increasing statistics of the quality distribution need be optimized by the same
allocation of rewards. We will focus largely on the expected quality of the
best contribution, since this is the objective of interest in many settings like
crowdsourcing contests with an arbitrarily redistributable total reward, and
finally briefly address the expected total quality, which is potentially relevant
in settings like Q&A forums such as Y! Answers.

We first write the budget constraint that says we are restricted to redis-
tributing rewards, i.e., the total expected payout to contestants must remain
the same. Since entry is endogenous, the number of participants in equilibrium
is a random variable when p < 1, so not all prizes ai are always paid out. The
expected payment to the winners in equilibrium is

B =

n
∑

j=1

(

n

j

)

pj(1− p)n−j

j
∑

k=1

ak
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since the payment when j contributors enter, which happens with probability
(

n
j

)

pj(1−p)n−j where p is the equilibrium participation probability, is
∑j

k=1 ak.
Rearranging, we have

B =
n
∑

k=1

ak

n
∑

j=k

(

n

j

)

pj(1− p)n−j . (6)

Note that when p = 1, B =
∑n

i=1 ai.
Before deriving our results for the maximum quality, we state a couple of

technical lemmas. The proof of the first proposition below is obtained easily by
integrating by parts.

Proposition 5.1. For any k ≤ n, and p ≥ 0,

n
∑

j=k

(

n

j

)

pj(1 − p)n−j = n

(

n− 1

k − 1

)
∫ p

0

xk−1(1 − x)n−kdx.

We introduce some notation before our next lemma.

Definition 5.1 (Bk(q),W(k)). Consider n agents playing according to the sym-

metric mixed strategy (p,G(q)). We define

Bk(q) =

(

n− 1

k − 1

)

(p(1−G(q)))k−1(1− p(1−G(q)))n−k;

Bk(q) is the probability that an agent entering and choosing quality q is ranked

at position k. We also define

W(k) =

∫ q̄

0

Bk(q)pG
′(q)dq.

W(k) is the probability that a particular one of the n agents who enter with

probability p and choose quality from the distribution G(q) is ranked in the kth
position.

The proof of the following proposition uses the identity in Proposition 5.1:

Proposition 5.2. For any index s ≤ n,

(1− (1− p)n) ·

(

n− 1

s− 1

)

ps−1(1− p)1−s ≥

n
∑

j=s

(

n

j

)

pj(1− p)n−j .

The following technical lemma uses Proposition 5.2 above, and is central to
the proof of the main lemma.

Lemma 5.1. Suppose an < c(0), i.e., p < 1, and we vary the reward as for

some rank s and change a1 to keep the budget B unchanged.

da1
das

∣

∣

∣

∣

B

≤ −
W(s)

W(1)
.
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Proof.
da1
das

∣

∣

∣

∣

B

= −
∂B

∂as
/
∂B

∂a1
.

We first evaluate the quantity ∂B
∂as

when p < 1:

∂B

∂as

=

n
∑

j=s

(

n

i

)

p
i(1− p)n−j +

n
∑

k=1

ak

n
∑

j=k

(

n

i

)

(

jp
j−1(1− p)n−j

− (n− j)pi(1− p)n−j−1

) dp

das

=

n
∑

j=s

(

n

i

)

p
i(1− p)n−j + n

n
∑

k=1

(

n− 1

k − 1

)

p
k−1(1− p)n−k dp

das

,

which, using (4), gives us

∂B

∂as
=

n
∑

j=s

(

n

i

)

pi(1− p)n−j + nc(0)
dp

das
. (7)

Now, note that

dp

das
=

(

n−1
s−1

)

ps−1(1− p)n−s

(n− 1)
∑n−2

i=0 (ai+2 − ai+1)
(

n−2
i

)

pi(1 − p)n−2−i
.

Using both of these, together with the inequality in Proposition 5.2 and the
definition of W(k), and rearranging, gives the result.

We now state and prove the main lemma in this section, which will im-
mediately give us the theorem on maximizing the expected quality of the best
contribution.

Lemma 5.2. Suppose the cost function c is such that c′(q)/c(q) is non-

increasing in q. Then, for any monotone nonnegative contests G(a1, a2, . . . , an),
redistributing reward away from the winner to any lower rank s > 1 locally de-

creases the expected quality of the best contribution in equilibrium, i.e.,

dEqmax

das

∣

∣

∣

∣

B,a1

≤ 0.

Proof. The expected value of the highest quality contribution obtained in an
equilibrium of G(a1, a2, . . . , an), counting the utility from receiving no contribu-
tions as the same as from a zero quality contribution, is

Eqmax =

∫ q̄

0

1− (1− p(1−G(q)))ndq.

We are interested in the effect of shifting reward from the winner to some lower
rank s on the expected highest quality contribution in equilibrium, i.e., the
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effect of changing as when a1 is adjusted so as to preserve the expected payout
on Eqmax:

dEqmax

das

∣

∣

∣

∣

B,a1

=
d

das

∫ q̄

0

1− (1− p(1−G(q)))ndq

∣

∣

∣

∣

B,a1

=

∫ q̄

0

np(1− p+ pG(q)))n−1

{

dp(1 −G(q))

das
+

da1
das

∣

∣

∣

∣

B

dp(1−G(q))

da1

}

dq.

Recall the equilibrium condition from (5):

H(p(1−G), a) = U(p(1−G(q)) − c(q)−max{an − c(0), 0} = 0.

Differentiating, we have

∂H

∂p(1−G)
pG′(q) = −c′(q). (8)

Therefore,

dp(1−G(q))

dak
= −

∂H
∂ai

∂H
∂p(1−G)

=
Bk(q)pG

′(q)

c′(q)
, (9)

where Bk(q) is as in Definition 5.1.
Case 1: an < c(0), or p < 1. Using the inequality bounding da1

das

from
Lemma 5.1, we have

dEqmax

das

∣

∣

∣

∣

B,a1

≤

∫ q̄

0

np(1− p+ pG(q)))n−1

{

Bs(q)−
W(s)

W(1)
B1(q)

}

pG′(q)

c′(q)
dq

= nW(s)

∫ q̄

0

(1− p+ pG(q)))n−1

c′(q)

{

Bs(q)pG
′(q)

W(s)
−

B1(q)pG
′(q)

W(1)

}

dq.

Now, recall that each term multiplying (1−p+pG(q)))n−1

c′(q) in this difference is a

density:

fk(q) =
Bk(q)pG

′(q)

W(k)
=

Bk(q)pG
′(q)

∫ q̄

0
Bk(q)pG′(q)dq

.

Therefore, the term within the parentheses is the difference between two den-
sities fs(q) and f1(q), with the property that the first density (corresponding
to s) puts less weight on higher values of q (formally, it is easy to verify that
the two distributions f1 and fs satisfy the MLRP property if s > 1, which
implies first order stochastic dominance). Therefore, the right-hand side is the

difference between the expected value of the function (1−p+pG(q)))n−1

c′(q) computed

with respect to the densities fs(q) and f1(q). Therefore,
dEqmax

das

is non-positive if
(1−p+pG(q)))n−1

c′(q) is an increasing function of q or equivalently that c′(q)
(1−p+pG(q)))n−1
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is decreasing. Recall that this derivative being non-positive implies that in-
creasing the reward a1, while decreasing as in such a way as to hold the budget
constant, improves the expected highest quality.

We now show that a sufficient condition for this is that c′(q)
c(q) is non-increasing

in q. The equilibrium condition gives us:

1

c(q)

n−1
∑

j=0

(

n− 1

j

)

(p(1−G(q)))j(1− p(1−G(q)))n−j−1aj+1 = 1.

Using this, we have

c′(q)

(1− p+ pG(q)))n−1
=

c′(q)

c(q)

n−1
∑

j=0

(

n− 1

j

)

p(1−G(q))

(1− p(1−G(q)))

j

aj+1.

Since
(

p(1−G(q))
(1−p(1−G(q)))

)j

is decreasing in q for every j and each aj+1 ≥ 0 by

assumption, we have that if c′(q)
c(q) is decreasing in q, then c′(q)

(1−p+pG(q)))n−1 is

decreasing in q as well, completing the proof.

Case 2: an ≥ c(0), or p = 1. In this case, all agents always participate,
and the budget constraint simplifies to B =

∑n
i=1 ai. Therefore,

da1
das

∣

∣

∣

∣

B

= −1.

Also, since p = 1, we have

dEqmax

das

∣

∣

∣

∣

B,a1

= −
d

das

∫ q̄

0

1−G(q)ndq

∣

∣

∣

∣

B,a1

=

∫ q̄

0

nG(q)n−1

{

dG(q)

das
+

da1
das

dG(q)

da1

}

dq

=

∫ q̄

0

nG(q)n−1

{

dG(q)

das
−

dG(q)

da1

}

dq.

Using (8) with p = 1, and noting that ∂H
∂ak

= Bk(q) for k = 1, . . . , n− 1, we have
as before

dG(q)

dak
=

Bk(q)G
′(q)

c′(q)
,

for k = 1, . . . , n− 1. We substitute this to obtain for any s < n:

dEqmax

das

∣

∣

∣

∣

B,a1

=

∫ q̄

0

G(q)n−1

c′(q)
(nBs(q)G

′(q) − nB1(q)G
′(q)) dq.

Now, nBk(q)G
′(q), which is equal to n

(

n−1
k−1

)

(1−G(q))k−1G(q))n−kG′(q) is pos-
itive and integrates out to 1, so it is a density. Moreover, it puts more weight
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on higher q for lower k. Therefore, if G(q)n−1

c′(q) is increasing, dEqmax

das

∣

∣

∣

B,a1

will be

negative since s > 1. As before, we substitute

an − c(0) +

n−1
∑

j=0

(

n− 1

j

)

(1 −G(q)))jG(q))n−j−1aj+1 = c(q)

to obtain

c′(q)

G(q)n−1
=

c′(q)

c(q)





c(0)

G(q)n−1
+

n−2
∑

j=0

(

n− 1

j

)

(1−G(q))j

G(q)j
aj+1



 .

Again, the term within parentheses is decreasing in q, so if c′(q)
c(q) is decreasing,

then G(q)n−1

c′(q) is increasing, and the derivative dEqmax

das

∣

∣

∣

B,a1

is nonpositive.

Finally, note that when s = n, dG(q)
das

= Bk(q)− 1 ≤ 0, so that derivative can
be immediately seen to be negative. Together, we have the result for the case
an ≥ c(0).

This lemma immediately gives us the two main theorems. The first result
states that if we are restricted to nonnegative rewards ai, i.e., charging for entry
is not feasible, then a winner-take-all contest maximizes the expected quality of
the best contribution in equilibrium amongst all possible monotone, nonnegative
allocations of the total budget amongst participants. This result agrees with the
results from the literature on contest design and crowdsourcing contests which
do not model endogenous entry (eg [1, 3]).

Theorem 5.1. Suppose the cost function c is such that c′(q)/c(q) is non-

increasing in q. Then, the expected quality of the best contribution obtained

in equilibrium among all monotone nonnegative contests G(a1, a2, . . . , an) that

have the same total expected payout, is maximized by a winner-take-all contest,

i.e., at (a∗1, 0, . . . , 0).

The second result states that free entry does not lead to the optimum level
of quality for the best contribution, and in fact restricting entry by taxation can
improve the maximum equilibrium quality.

Theorem 5.2. Consider a winner-take-all contest with rewards (A, 0, . . . , 0),
and suppose c(0) > 0. If the cost c is such that c′(q)/c(q) is decreasing in q,
then taxing entry locally improves the expected quality of the best contribution

in equilibrium.

Theorem 5.2 shows that it is advantageous to tax participants and use the
proceeds to subsidize the best quality result, in order to maximize the best
quality result. In models where participation is exogenous, the desirability of a
tax would not be surprising, because some additional profits can be extracted
with no loss of participation. In contrast, with endogenous entry, a tax will
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drive down participation, which means we choose the maximum from a smaller
number of random variables, potentially leading to a poorer outcome. It is
therefore not surprising that the theorem on the optimality of a tax requires a
condition on the cost function, although we note that this condition is satisfied
by linear costs which are typically used in the crowdsourcing contest design
literature [4, 1, 3], as well as exponential and other cost functions. What this
condition accomplishes is to insure that the gain from improving the distribution
of quality of participants will dominate the loss of participation from a small
tax.

Average or total quality. What if we are interested in the average, or total,
quality instead of the maximum quality? The average quality is simply the
expected value of q drawn according to the CDF 1 − p(1 − G(q)), where as
before, we count nonparticipation, or no contribution, as producing the same
utility as a contribution with quality 0: Eqavg =

∫ q̄

0
1 − (1 − p(1 −G(q)))dq =

∫ q̄

0 p(1−G(q))dq. The total quality is n times this average quality.
Here, unlike the case with attention rewards, we will see that the mechanism

that is best for maximum quality need not be the best for average quality. We
state the following two theorems.

Theorem 5.3. Suppose c′(q) = 1, and let denote the expected total quality.

Consider the winner-take-all contest G(a, 0, . . . , 0). Then
dEqavg
das

∣

∣

∣

B,a1

≤ 0 at

G(a, 0, . . . , 0).

Proof. Since an = 0, and we have assumed that participation incurs a nonzero
cost, i.e., c(0) > 0, we have p < 1. Then, the zero payoff equilibrium condition
is

c(q) = a1(1− p(1−G(q)))n−1.

(Recall that we are considering winner-take-all contests.) Differentiating, and
using the assumption of linear cost functions, we have

c′(q) = a1(n− 1)(1− p(1−G(q)))n−2pG′(q). (10)

We have

dEqavg
das

∣

∣

∣

∣

B,a1
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Using (9) and setting a2 = . . . = an = 0, we have
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(p(1 −G(q)))s−1(1 − p(1−G(q)))n−s

a1(n− 1)(1− p(1−G(q)))n−2
.
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Using the calculations in the proof of Lemma 5.1, and again using a2 = . . . =
an = 0, we get
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≤ 0,

where the final inequality follows from applying Proposition 5.2.

This theorem says that for linear cost functions, the equilibrium expected
total quality is increased by increasing the reward to the highest rank at the
expense of any lower rank at the winner-take-all contest (a, 0, . . . , 0). Here,
there is too much entry for the average or total quality objective as well, and
taxation, or charging entrants a small fee that is rebated to the winner, locally
improves total quality.

Next, we consider exponential cost functions, c(q) = ekq (k > 0)— here,
whether the average quality improves with taxes or subsidies depends on the
size of the available reward B.

Theorem 5.4. Suppose c′(q)/c(q) = k, where k > 0 is independent of q. Con-

sider the winner-take-all contest G(a, 0, . . . , 0). Then
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Proof. Using the zero profit equilibrium condition and (10), we have

k =
c′(q)

c(q)
=

(n− 1)pG′(q)

(1 − p(1−G(q)))
.

We have
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Now let
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and observe that f(p) is positive for large p and negative for small p (recall
s > 1). To see that f(p) is negative for small p, first note that f(0) = 0. Also,
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p→0

f ′(p)

ps−1
=

(

n− 1

s− 1

)

−
n

n−1

(

n−1
s−1

)

n
n−1

−
n

n−1

(

n−1
s−1

)

(s− 1)
n

n−1

= −

(

n− 1

s− 1

)

(s− 1)

< 0.

Therefore f(p) is negative for small p, and
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for p near zero, corresponding to a small B. For large p,

f(p) ≥

∫ p
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n
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since for s ≥ 2 (recall x < 1),
∫ p

0
xs−1(1 − x)1−sdx ≥
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( x
1−x )dx → − ln(1 −

p) → ∞ as p → 1. Therefore,
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when p is large, corresponding to large B, for exponential costs.

This theorem says that for exponential costs, the effect on the expected
average quality of increasing a1 while decreasing as to maintain the budget
for any s > 1, depends on the value of B: when B is small, taxing entry
improves average quality, but when B is large, the average quality is increased
by subsidizing entry. Recall that our results on the expected maximum quality
do apply to exponential costs, and suggest that taxing entry is optimal for
maximizing the expected quality of the best contribution. Thus, when the
available reward B is large, the mechanisms to maximize the quality of the best
and average contributions need not be the same — taxing entry improves the
best contribution’s quality, whereas subsidizing entry is what improves the total
quality of contributions produced over a winner-take-all contest for exponential
cost functions and large B.
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