
Scalable, Flexible and Generic Instant Overview Search

Pavlos Fafalios, Ioannis Kitsos and Yannis Tzitzikas
Institute of Computer Science, FORTH-ICS, GREECE, and

Computer Science Department, University of Crete, GREECE
{fafalios,kitsos,tzitzik}@ics.forth.gr

ABSTRACT
The last years there is an increasing interest on providing
the top search results while the user types a query letter by
letter. In this paper we present and demonstrate a family
of instant search applications which apart from showing in-
stantly only the top search results, they can show various
other kinds of precomputed aggregated information. This
paradigm is more helpful for the end user (in comparison
to the classic search-as-you-type), since it can combine au-
tocompletion, search-as-you-type, results clustering, faceted
search, entity mining, etc. Furthermore, apart from being
helpful for the end user, it is also beneficial for the server’s
side. However, the instant provision of such services for
large number of queries, big amounts of precomputed infor-
mation, and large number of concurrent users is challenging.
We demonstrate how this can be achieved using very modest
hardware. Our approach relies on (a) a partitioned trie-based
index that exploits the available main memory and disk, and
(b) dedicated caching techniques. We report performance re-
sults over a server running on a modest personal computer
(with 3 GB main memory) that provides instant services for
millions of distinct queries and terabytes of precomputed in-
formation. Furthermore these services are tolerant to user
typos and different word orders.

1. INTRODUCTION
Query autocompletion services help users in formulating

queries by exploiting past (and logged) queries. Instant
search (or search-as-you-type) is an enhancement which also
shows the first page of results of the top query suggestion as
the user types. We observe an increasing interest on provid-
ing such functionality evidenced by the emergence of several
systems: e.g. Google1 for plain web searching, Facebook2

for showing the more relative friends (pages, etc), IMDB3

for showing the more relevant movies (actors, etc) together
with a photo, and so on.
In general, such immediate feedback allows the user to

stop typing if the desired results have already been recom-
mended. If on the other hand the sought results are not
there, the user can continue typing or change what he has
typed so far. In general, we can say that the user adapts his
query on the fly until the results match what he wants.
Apart from showing instantly only the top hits of the

guessed query, [6] proposed showing several other kinds of

1http://www.google.com/instant/
2http://www.facebook.com/
3http://www.imdb.com/

supplementary information that provide the user with a bet-
ter overview of the search space (the term IOS, standing for
instant overview search, was introduced). Essentially that
work showed that with partitioned trie-based indexes we can
achieve instant responses even if the precomputed informa-
tion is too large to fit in main memory. Here we extend
these ideas and techniques, specifically: a) we introduce and
evaluate a caching scheme that apart from speeding up these
services it increases the throughput of the service provider,
b) we demonstrate the efficiency of the approach in sup-
porting much bigger number of queries and precomputed
information, c) we extend these services so that to be toler-
ant to user typos and independent of the typed word order,
and d) we demonstrate various novel applications of instant
overview search (notably one that enhances web searching
with entity mining).

The applications that will be demonstrated (most are al-
ready web accessible4) include:
1) a meta-search engine (MSE) over Google offering instant
clustering5 of results (see Fig.1c). The current deployment
contains precomputed information for 20,000 queries, at demo
we will use a deployment with over one million queries.
2) a standalone web search engine (WSE) offering instant
metadata-based groupings [10] of the results (see Fig.1b), and
3) a MSE offering instant entity mining over the top hits (see
Fig.1a). This system retrieves the top-50 hits from Google,
mines the content of each result (using the entity mining
tool Gate6) and presents to the user a categorized list with
the discovered entities. When the user clicks on an entity,
the results of the specific entity are loaded instantly. More-
over, the system mines the query string and ranks higher
the categories and the entities that are found in the query
string. Note that, without IOS functionality, this computa-
tion costs a lot both in time (about one minute) and in main
memory (500 MB in average) per query.

In all these applications, the user with a few keystrokes
gets quite informative overviews of the search space.

2. HOW IT WORKS
Figure 2 sketches the architecture, while the key issues are

described below.

4http://www.ics.forth.gr/isl/ios
5We adopt the clustering algorithm NM-STC [9]
6http://gate.ac.uk/ie/



Figure 1: IOS applications.

Partitioned Index
We index all distinct queries of the query log (or only the
more frequent ones) using a trie. For being able to accommo-
date very large number of queries we adopt the trie partition-
ing method proposed in [8]. According to that method, the
trie is partitioned to a number of subtries. For each query in
the trie (or subtries) we apply the preprocessing steps (e.g.
results clustering, metadata-based groupings, entity mining,
etc), and we save the results in one or more separate ran-
dom access files. Consequently, for each query entry the
subtrie keeps only three numbers: one for the file, one for
the bytes to skip and one for the bytes to read. Actually we
adopt the“PTIE”(Partitioned Trie with Indexes to External
files), which is the more scalable index from those proposed
and described at [6] (this index is sketched at Fig.3). In our
setting this means that for serving one request, at most one
“subtrie” has to be loaded in main memory, and one file to
be accessed. Another important point is that the indexes
are kept fresh using an incremental algorithm (note that the
trie-based indexes are very convenient for this task).

Caching
We have developed a hybrid caching mechanism, i.e. we keep
always in memory the subtries of the most frequent queries
based on past log analysis (static part), and anticipate an
amount of memory for loading subtries which are not cached
(dynamic part). We give 70% at the static and 30% at the
dynamic part of the cache, since (as we will see in Section
3) this is the best policy for speeding up the system and
increasing its throughput. If we have a request for a sub-
trie that is in the static or the dynamic part of the cache,
we serve it instantly, otherwise we first load the requested
subtrie at the dynamic part. In case we have a request that
cannot be served neither from the static nor from the dy-
namic part, and the dynamic part is full, we remove the less
frequent subtrie that is not in use from the dynamic part
and then load the new one.

Typos and Word Order
Typo-tolerant search. The system is able to load sug-
gestions whose string is “similar” to the query the user is

typing. To this end, it computes the Edit (Levenshtein) dis-
tance between user’s current input and each full query of
the trie that starts with the first character of user’s input.
If this number is lower than a threshold, the system adds
that query to the list of suggestions and the suggestion is
ranked as if no edit distance were employed.

Note that [5] and [3] study the problem of online spelling
correction for query completions and both propose a trie-
based approach and capture typos either via Edit distance
[3] or a n-gram transformation model [5]. However, instant
behavior is more challenging in our partitioned trie-based in-
dex because the system may have to access many subtries.
For instance, if we have created subtries each corresponding
to the first two characters and the user has typed “merilyn”,
then the system would have to access all subtries that corre-
spond to the character sequences “ma”, “mb”, “mc”, etc. For
this reason, we decided to check only the subtries that lie in
the cache and only in case we have no other suggestions to
prompt.
Word-order independent search. The system can also
load suggestions whose word order is different than that of
the user’s current input. Specifically, it checks for sugges-
tions that start from one of the user’s input words and con-
tain at least one word of the remaining ones. The more of
the remaining words a query contains, the higher score it re-
ceives. However, this aggravates the response time since the
system has to perform more trie traversals and may have to
access other subtries (especially if the user has typed many
words). For this reason this functionality is activated only
when there are no suggestions.

Benefits for the Service Provider
Apart from being useful for the end users, since without do-
ing anything else than typing they can get instantly various
useful information that assist them in expressing their infor-
mation need and inspecting the available resources, IOS is
beneficial also for the server’s side since it:
(a) reduces the number of incoming queries which are not
really useful for the end users, since it assists them in avoid-
ing wrongly typed queries (user adapts his query on the fly
until the results match what he wants),
(b) reduces the computational cost because the same pre-



CLIENT SERVER

(AJAX)WEB
APPLICATION

SUGGESTION
SYSTEM current input

RANKER

list of suggestions

CACHE

HARDDISK SUBTRIES
REPOSITORY

DATA
REPOSITORY

(random access files)

topsuggestion currentinput
currentinput

data
keystroke

current input

list of suggestions

MAIN MEMORY

- list of suggestions- data

QUERY
LOG

UPDATER

CRAWLER

SOURCE 1

SOURCE 2

SOURCE N

…

WWW

subtrie
queries

queries

data 
(supplementary
information) 

data
query

INCREMENTAL TOTAL

Figure 2: The architecture of IOS.

c a p

j
a m

o b

int: file
int: bytes to skip
int: bytes to readsub-trie1

sub-trie2

m a p
sub-trie3

int: file
int: bytes to skip
int: bytes to read
int: file
int: bytes to skip
int: bytes to read

int: file
int: bytes to skip
int: bytes to read HARD DISK

Hosted in 
main memory

(based on
requests 

and space)

Always in 
Hard Disk

Figure 3: The PTIE partitioned trie-based index.

computed information is exploited in several requests and
thus the engine has to evaluate less tasks at run time,
(c) reduces the monetary cost (at meta search level), i.e. if
the construction of the “overview of the results” requires
connecting to several external sources (e.g. web pages, LOD
SPARQL endpoints, search engine APIs etc), this approach
reduces the number of connections which are required. Fur-
thermore, since in many cases the underlying services are
not for free, i.e. billed according to the number of served
queries, this approach reduces the queries sent to the under-
lying engines and thus can save money.

Related Work
There are several works describing letter-by-letter search-
ing for various kinds of sources (e.g. textual or structured).
To cope with the efficiency problem, most either need a high
amount of main memory in order to load the indexing struc-
tures, or use disk-based compressed formats like [2]. The
only work that does not load everything in main memory is
the semantic search engine CompleteSearch7 [1] which dur-
ing user typing it finds on-the-fly and presents precomputed
records and semantic classes that match these keywords. To
tackle the efficiency challenge, the authors introduce a in-
dexing data structure, called “HYB”, which relies on com-
pressed precomputed inverted lists for union of words (the
union of all lists for an arbitrary word range). This index
is not loaded in main memory but is stored in a single file
with the individual lists concatenated and an array of list
offsets at the end. The vocabulary is stored in a separate
file. That work differs from ours in the following aspects: (1)
CompleteSearch is not a generic search engine, but is based

7http://search.mpi-inf.mpg.de

on specific known datasets (like Wikipedia and DBLP) with
predefined semantic categories, (2) its suggestion system is
word-based, not query-based, i.e. it suggests only words that
match user’s current input, not whole queries, (3) it focuses
on compression of index structures, especially in disk-based
settings, while IOS uses partial in-memory indexes, (4) in
general CompleteSearch helps users to formulate a good se-
mantic query while IOS helps users to locate directly and
fast what they are looking for.

3. EXPERIMENTAL RESULTS
We have conducted experiments using a very large query

log and large amounts of precomputed information. We used
a synthetic query log of one million distinct queries and syn-
thetic precomputed information for each query. Regarding
trie partitioning, we created subtries each corresponding to
the first two characters. This partitioning yields subtries
whose sizes are very close [8]. Moreover, we chose to store
at least 1,000 queries in each subtrie and 1,000 entries in
each random access file (an entry represents the top hits and
the supplementary information of a query). PTIE created
344 subtries of 615 MB in total and 992 random access files
of about 1 terabyte in total. All experiments were carried
out in an ordinary laptop with processor Intel Core 2 Duo
P7370 @ 2.00Ghz CPU, 3GB RAM and running Windows 7
(64 bit). The implementation of the system was in Java 1.6
(J2EE platform), using Apache Tomcat 6 (2GB of RAM)
and Ajax JSP Tag Library.
Average Retrieval Time. We measure the average time
for retrieving the suggestions, the results and the clusters
for a random input string without using any cache (this does
not contain the network’s delay time and the javascript run-
ning time). We sequentially select 10,000 random queries
from the query log, and for each one of them we take its
first three characters, we find the subtrie that corresponds
to this character sequence, we load it and traverse it to find
all suggestions for that string. For the top suggestion, we
access the corresponding random access file and retrieve its
first page of results and its cluster label tree. The average
retrieval time was about 135 ms, proving that IOS is very
efficient even for very large query logs and precomputed in-
formation.

Based on the experimental results of [6], we argue that
the other indexing approaches (SET, PET, STIE) cannot
be used in such a big number of queries and precomputed
information. PTIE is scalable because the data that it has
to load at request time has small size and its main memory
cost is low.
Caching. To evaluate the benefits of caching we performed
a comparative evaluation of the following policies: (1) full
static cache, (2) full dynamic cache, (3) hybrid cache with
30% static and 70% dynamic, (4) hybrid cache with 50%
static and 50% dynamic, (5) hybrid cache with 70% static
and 30% dynamic, and (6) no cache. In a loop without any
“sleep” period, we run 10,000 random queries, selected from
the log file. The query rate was about 8 queries per second.
We chose to set the memory capacity to 60 subtries, i.e.
17.44% of all subtries can fit in main memory at the same
time. The time threshold that a subtrie is considered in use
(and thus it cannot be removed) was set to 10 seconds, i.e.
this demands the ability to serve about 10 ∗ 8 = 80 queries
simultaneously.
Served Queries. Fig. 4 reports (a) the percentage of



0
20
40
60
80

100

DYNAMIC 30% stat.
70% dyn.

50% stat.
50% dyn.

70% stat.
30% dyn.

STATICQu
eri

es 
(%

) 

Memory partition policy

FAST WITH DELAY NO SERVE

Figure 4: Percentage of queries that were served
from the cache fast, with delay and that were not
served, for various memory partition policies.

0
20
40
60
80

100
120
140

DYNAMIC 30% stat.
70% dyn.

50% stat.
50% dyn.

70% stat.
30% dyn.

STATIC NO CACHEAv
era

ge
 Re

tri
ev

al 
Tim

e (
ms

)

Memory partition policy
Figure 5: Average response time of various caching
policies.

queries that were served from the cache without delay, (b)
the percentage of queries that were served from the cache
with delay (because the less frequent subtrie has to be re-
moved and the requested one to be loaded), and (c) the
percentage of queries that could not be served (because of
memory overloading). We observe that as the cache becomes
more static, more queries are served fast and less are served
with delay. However, in a full static cache, almost half of the
queries cannot be served. On the contrary, this percentage
is very low in the other policies (lower than 5%).
Response Time (using Caching). Fig. 5 illustrates the
average response times for all approaches. We notice that
as the cache becomes more static, the average response time
gets faster, since more queries can be served instantly from
the static cache. In case we do not use any cache policy,
i.e. the system loads the requested subtrie in each user’s
request (keystroke) and removes it when the user has been
served, the average response time is slightly higher than that
of a dynamic cache. However, if many users request a sub-
trie simultaneously, the system can easily get overloaded.
Specifically, in our experiments the main memory capacity
is set to 60 subtries, i.e. the system can serve at most 60
queries simultaneously. Thus, since we have 80 queries that
have to be served together, 20 of them will not be served
(25%).
From the above results it seems that the best caching pol-

icy is the hybrid with 70% static and 30% dynamic cache,
as it combines low percentage of requests that cannot be
served, high percentage of requests that are served fast and
low average response time. Over the setting of the aforemen-
tioned experiment, the above caching scheme offered about
80% better throughput (since less than 5% of the queries
could not be served, contrary to the 25% of no-cache case),
and about 25% speedup for queries that lie in the index.
Finally, we should clarify that the above results concern

the case where each user requests only one subtrie, the sub-
trie that contains the randomly selected query. The results
do not take into account the common scenario where the
user continues typing a query and he is served instantly by
the same subtrie. For this reason in realistic workloads the

results are expected to be better.

4. CONCLUSION
We have described a generic method for enabling the in-

stant provision of various enhanced search services in a cost-
effective manner. This method is independent of the kind
of precomputed information, hence it can be adopted for a
plethora of applications (results clustering, metadata-based
grouping, entity mining, query recommendations, semantic-
based enhancements, etc). By exploiting this method sys-
tems like [4] and [12] could instantly present to the user
relevant content for the most frequent queries, [11] could
instantly suggest generalized links for each result of the fre-
quent queries, while Blognoon [7] could offer instant search
results and query recommendations for the most frequent
queries.

We should clarify that the overall effectiveness of the pro-
vided functionality, apart from its efficiency, depends on the
quality of the precomputed information. However we should
stress that the proposed index structure and caching mecha-
nism can be used with any autocompletion, ranking or clus-
tering algorithm. Also note that its performance is indepen-
dent of the size of the underlying corpus. It depends only
on the number of distinct queries that we want to serve and
the size of the precomputed information per query. A direc-
tion for further research is to measure the effect of IOS to
user satisfaction and for this purpose we already gather user
feedback by keeping a detailed log.

Acknowledgements
This work was partially supported by the EU project iMa-
rine (FP7-283644).

5. REFERENCES
[1] H. Bast, A. Chitea, F. Suchanek, and I. Weber. ESTER:

efficient search on text, entities, and relations. SIGIR, 2007.
[2] H. Bast and I. Weber. Type less, find more: fast

autocompletion search with a succinct index. SIGIR, 2006.
[3] S. Chaudhuri and R. Kaushik. Extending autocompletion

to tolerate errors. SIGMOD, 2009.
[4] L. Chilton and J. Teevan. Addressing people’s information

needs directly in a web search result page. WWW, 2011.
[5] H. Duan and B. Hsu. Online spelling correction for query

completion. WWW, 2011.
[6] P. Fafalios and Y. Tzitzikas. Exploiting Available Memory

and Disk for Scalable Instant Overview Search. WISE,
2011.

[7] M. Grineva, M. Grinev, D. Lizorkin, A. Boldakov,
D. Turdakov, A. Sysoev, and A. Kiyko. Blognoon:
exploring a topic in the blogosphere. WWW, 2011.

[8] D. Kastrinakis and Y. Tzitzikas. Advancing Search Query
Autocompletion Services with More and Better
Suggestions. ICWE, 2010.

[9] S. Kopidaki, P. Papadakos, and Y. Tzitzikas. STC+ and
NM-STC: Two novel online results clustering methods for
web searching. WISE, 2009.

[10] P. Papadakos, N. Armenatzoglou, S. Kopidaki, and
Y. Tzitzikas. On exploiting static and dynamically mined
metadata for exploratory web searching. J.KAIS, 30(3),
2012.

[11] J. Seo, F. Diaz, E. Gabrilovich, V. Josifovski, and B. Pang.
Generalized link suggestions via web site clustering.
WWW, 2011.

[12] X. Yin, W. Tan, and C. Liu. FACTO: a fact lookup engine
based on web tables. WWW, 2011.


