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Targeting Online Communities to Maximise

Information Diffusion

Václav Belák, Samantha Lam, Conor Hayes

Abstract

In recent years, many companies have started to utilise online social
communities as a means of communicating with and targeting their em-
ployees and customers. Such online communities include discussion fora
which are driven by the conversational activity of users. For example,
users may respond to certain ideas as a result of the influence of their
neighbours in the underlying social network. We analyse such influence
to target communities rather than individual actors because information
is usually shared with the community and not just with individual users.
In this paper, we study information diffusion across communities and ar-
gue that some communities are more suitable for maximising spread than
others. In order to achieve this, we develop a set of novel measures for
cross-community influence, and show that it outperforms other targeting
strategies on 51 weeks of data of the largest Irish online discussion system,
Boards.ie.

1 Introduction

Online communities have become increasingly important in the context of many
services provided on the Internet. In particular, many companies have started
to utilise online social communities as a means of communicating and targeting
their customers and other partners. However, in order to exploit the full po-
tential the communities offer to their stakeholders, an efficient communication
strategy has to be employed, e.g. to promote awareness of company policy or
its products and services. It is not surprising to observe that if users are contin-
uously flooded by a torrent of new stimuli, they may become increasingly inert
to any further provocation. Thus, it is of utmost importance to carefully select
a strategy of who and how to approach such that the expected outcome of net-
work coverage is maximised. This maximisation problem is further compounded
by the fact that social networks and communities are inherently dynamic. As
a result the study of spreading behaviour across networks has garnered much
inter-disciplinary interest in recent years, from the spread of disease in a popu-
lation [9, 11] to the spread of influence through a social network [7].

In the case of discussion fora, the scenario is somewhat different to infor-
mation or action spreading from a set of seed actors, because they represent a
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Figure 1: Example of impact from forum A to B. Nodes are users connected
by links whose thickness reflects the number of replies. The shading expresses
community affiliations, such that the darker the node is, the more it is devoted
to forum A.

different setting; a message is shared with all participants in the forum (i.e. the
forum’s community). Thus, the problem becomes how to target a message to
engage a set of users rather than specific, individual users in a network, such
that the message reaches as many users in the network as possible.

• Our main hypothesis is that it is possible to efficiently engage or stim-
ulate a substantial part of the system by selectively targeting specific
communities.

• We define this engagement in terms of impact, which measures how likely
the average user in a given community would generate activity. We mea-
sure this activity in terms of replies.

• The main problem is then formulated as a prediction of the set of com-
munities to target such that the stimulation of the system is maximised
in the future.

To the best of our knowledge, our hypothesis and main problem has not yet
been addressed. We provide a framework to identify communities for this max-
imisation problem and show that overall, it achieves a better network spread
than other investigated targeting strategies.

1.1 Intuition of Impact

We are particularly interested in finding fora which have impact on other fora,
i.e. users from one forum, on average, stimulates another forum to have a high
number of replies (i.e. activity). For example, Figure 1 shows two discussion
communities, A = {a, b, c, d} and B = {b, c, d, e, f, g}, in which the nodes rep-
resent users connected by their replies. The thickness of the links reflect the
number of replies. A user is devoted to one forum if the majority of his posts
are to that forum. A user’s community affiliation is reflected in the shading,
such that the darker the node, the more a user is devoted to forum A, and the
lighter it is, the more it is devoted to forum B.
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In this idealised scenario, we see that users {e, f, g} in forum B reply fre-
quently to users {b, c}, who are mostly devoted to A. And so, while more devoted
members of forum A tend to converse amongst themselves, e.g. as {a, b, c} do,
they also receive a lot of replies from users of forum B. In short, users from
B react often to users who are more devoted to A than to B. We further note
that users {b, c} are central users in that they receive many replies in general.
So, not only are users {b, c} more devoted to A, they are also the most central
users of B. Our intuition is that even though community B has more members
than A, A has a high impact on B because the most central users of B are in
fact, more devoted to A.

We use the term impact as a means of quantifying the phenomenon of in-
fluence. We refer to information flow as the observed process of influence. In
particular, we note that although the notion of influence in the context of social
media analytics refer to the ability of an actor to change behaviour of its neigh-
bours [14], in this paper our definition of community influence is specifically tied
to the reply-to activity.

1.2 Contributions

To define impact, we developed a novel framework for cross-community impact
analysis, which is based on purely structural features, derived from a dynamic
reply-to graph. Our framework is flexible and can be extended to exploit other
features such as content-based ones. However, in this paper, we do not con-
sider the content of the posts between individuals in communities. Using our
framework, we identify the most influential communities using an adaptation of
the well known notion of actor centrality. We compare the communities chosen
under this framework with those identified as ‘central’ groups as defined by [4].
We then target combinations of the most central/influential groups according
to these metrics and evaluate their spread on the largest Irish online discussion
system Boards.ie1 using an information diffusion model. For example, when we
used our proposed measures to target one initial community, we found that it
outperformed the other targeting strategies by up to a factor of 2 in overall
network spread.

In short, the main contributions of this paper are that we:

• Provide a framework for identifying influential communities in a social
network.

• Motivate and present a Community-Aware Independent Cascade Model
for study of information cascades in the context of discussion communities.

• Evaluate the spread of information using the modified model on the com-
munities chosen by our framework against communities chosen by other
baseline metrics on 51 weeks of data from Boards.ie.

1See http://www.boards.ie.
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The remainder of the paper is organised as follows. In the next section we
refer to the related work. The framework itself together with the data-set, its
preparation, and the diffusion model used for the evaluation are discussed in
Section 3. The experimental setup is clarified in Section 4 and the results of the
experiments are then presented in Section 5. The last section further discusses
the results, outlines potential applications and extensions of the framework, and
summarises our intended future work.

2 Related Work

In this section we first refer to the related research of information flow and
conversational dynamics in discussion fora. In the second part the models of
information diffusion are briefly discussed.

2.1 Information Flow in Discussion Fora

McGlohon and Hurst [8] examined the flow of information in USENET. A spe-
cific feature of USENET is that it is possible to send or forward a message to
multiple fora — to cross-post it. As a cross-posted message belongs to multi-
ple groups, they developed a thread-ownership model based on the notion of
author-group devotedness of the users measured by the distribution of their ac-
tivity. In our proposed framework, we draw upon their approach and measure
the devotedness in a similar manner. However, although there is no explicit
cross-posting in Boards.ie, its users can and do post in multiple fora which then
receive replies from members of other fora.

Wu et al. [16] modelled the flow of information in discussion fora using its
reply-to network as a proxy. The authors used a PageRank-inspired random
walk model to show how multiple topics flow across discussion threads, and to
predict future interests of the users based on their conversational activity. They
define a user as participating in a discussion if the user posts at least once in it,
and information ‘flows’ from the user being replied to. We also adopt this notion
of information flow, which is also similar to how Song et al. [13] define it for per-
sonalised recommendation. However, their approach assumes that information
‘dilutes’ as it flows in that it is not duplicated through propagation. Reply-to
relations were also found to have many similar properties to classic friendship
relations and could be used in the prediction of user grouping behaviour [12].

The problem of finding influential actors within a social network has been
intensively studied in social network analysis [15], although not so much on the
level of communities. For the individual actors, a classic approach is to use
a centrality measure like actors’ degree. Everett and Borgatti [4] generalised
several centrality measures to groups of actors. For instance, they defined group
degree centrality “as the number of non-group nodes that are connected to group
members”. Hence the group degree captures relation between a group of actors
and the rest of the network but not between two or more groups. Their measure
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thus extends the traditional actor degree heuristic to a community level by
simply aggregating the users’ degree into one actor.

In our previous paper [1] we presented an extensible framework for cross-
community influence. In the following, we briefly summarise the main concepts
of the framework and based on them we develop a technique for identifying
influential communities, through which the underlaying social network can be
efficiently stimulated.

2.2 Diffusion Models

Several models of how information or an action diffuses over a social network has
been proposed (see e.g. [14] for a recent survey). A problem of maximising the
spread of information or influence was introduced first by Kempe et al. [7], who
also generalised many previously defined models by the Independent Cascade
Model (ICM). We use this model in our analysis as a starting point to gain initial
insights into information cascades in the context of discussion communities.
Some possible extensions are further discussed in Section 6.

The model considers a social network represented by a directed weighted
graph G = (V,E), where vertices V are the individual actors and a weighted
edge wi,j ∈ E ⊆ V ×V,∀j ∈ V :

∑
i∈V ∧i 6=j wij ≤ 1 expresses a probability of an

actor j to adopt a piece of information or an action from i. Each actor can be
either active or inactive and the simulation proceeds stochastically in discrete
steps where the activation spreads from the active nodes to the non-active ones
as follows. The diffusion process starts with a set of seed nodes and at each
iteration t, each node i that has been activated in a previous iteration t− 1 has
exactly one try to activate each of its non-active neighbours j, and it succeeds
with a probability wij . If multiple neighbors of j are activated in the previous
iteration, they attempt to activate it in a random order. Hence, the individual
attempts are independent of each other. If any of the j’s neighbors succeeds, it
becomes active in the next iteration t+ 1. The process stops when it converges
or when the maximum number of iterations has been reached.

3 Preliminaries

This section presents the framework we have developed for the measurement and
exploration of mutual impact of communities and the data we used to evaluated
it. First we describe Boards.ie, the data-set and system we analysed. Next, we
describe how we derived the information flow network we use for evaluation from
the reply-to network, as well as the diffusion model itself. Finally, we formally
define the notion of cross-community impact and other related measures. We
consider a general case of k overlapping fuzzy communities [6] and n users.
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3.1 Boards.ie

Boards.ie is structured according to themes into fora, optionally further into
their subfora, and finally into threads of posts centred around a particular con-
versation topic. Each post has an author, who can be either a registered user or
a guest. Since all the guests’ posts are stored with the same user identifier, we
omitted them from the analysis. A set of users who have posted at least once
to any forum within a certain time-period form a community of that forum in
the period. Threads have a tree-like structure as one post can be in reply to
another one. Even though there is no direct way to post a message into multiple
fora (i.e. to cross-post it), the users can and do participate in multiple fora and
thus information can spread from one fora into another.

The set of users linked by the who-replies-to-whom relation thus forms a
directed dynamic graph, as the reply relations change in time. The edges of the
graph are weighted by the number of replies from one user to another within a
given time period. Table 1 presents some basic statistics of the analysed data.

number of snapshots (t) 51
number of communities (k) 540
mean number of nodes per snapshot 5,298
mean number of edges per snapshot 26,484

Table 1: Elementary statistics about the analysed data-set.

Our problem is to predict which communities to target in the future based
on past/current observations. However, rather than aggregating the data up
until a specific time slice t− 1 and then evaluating on the final time slice t, we
aim to evaluate our targeting in a more robust manner and consider multiple
time snapshots. Thus, we segment the data into t snapshots using a sliding
time-window resulting in a sequence s1, . . . , st.

As our methods are based on cross-fora posting activity, the window length
should capture as much of that activity as possible, yet still fine enough to
uncover changes in users’ behaviour. Let τ(p) be a minimum time it took an
author of post p to contribute a message into another fora, i.e. a cross-fora
posting waiting time. If the author has not posted to any other fora, then
τ(p) =∞. In order to find out a suitable time-window size, we sampled 10,000
posts and investigated the distribution of τ(·). We found that in approximately
84% of the cases a user has posted into another fora within 7 days, while 14
days period covers 88%. This means that doubling the window size would lead
to an increase of only 4% in the coverage of cross-fora posting activity and so we
decided to choose a one-week window for our analysis. In order to investigate
how different targeting strategies affect the diffusion process, we took the last 51
weeks of the data between 19.2.2007 and 10.2.2008. This approximates the last
year of our data-set and therefore it is the most recent and reasonably stable
representation of the system we have.
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3.2 Inferring the Information Flow Network

We derive our information flow network from the reply-to network of Boards.ie
in a similar manner to [16] such that if j replies to i then there is information
‘flow’ from i to j. This is based on the intuition that if you reply to a message
then you would have read its content and therefore gained knowledge from it.
Thus, information flows from the person that has received a reply. The edges
are weighted by the likelihood of the flow of information from user i to j, wij ,
which is calculated as the number of replies from j to i, rji, normalised by the
total number of replies user j posts:

wij =
rji∑n
l=1 rjl

(1)

Figure 2 shows how the flow is reversed when an information flow graph is
derived the from the reply-to graph.

i j
replies to

information

flow wij
i j

rji

Figure 2: If j replies to i, it means that information has flowed from i to j. rji is the
number of replies from j to i, wij is the weight of information flow from i to j.

Figure 3 gives a concrete example of how a weighted information flow graph
is derived from a reply-to graph. Figure 3a shows the reply-to network, where
the number of replies is the weight of the closest edge, e.g. there are two replies
from user a to b. Figure 3b shows the induced information flow network, where
the weights are defined by Equation 1, e.g. the information flow from b to a is
the number of replies from a to b, 2, divided by the total number of replies out
of a, 3.
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(a) Original reply-to
network
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(b) Information flow
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Figure 3: An example reply-to graph and its induced influence graphs.

We note that there are alternative ways of inducing this network such as
taking into account the authority of the node, e.g. defining wij as a proportion
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of in- versus out-degree, which we discuss in Section 6. However, we chose this
normalising scheme as it is intuitive as a starting point.

3.3 Diffusion Starting From Communities

In the Independent Cascade Model (ICM) described in Section 2.2 the diffusion
process starts from the set of seed nodes and not communities. Therefore, it
is necessary to modify the model such that the process starts from a set of q
targeted communities. Since the communities group together multiple actors
and communities frequently share users in discussion fora, i.e. they overlap,
there are multiple possibilities of how to extend ICM to the community level.

For instance, if we stimulate a certain community, e.g. by posting into it,
should we assume that all users in this community become activated and then
the spreading process unfolds, or rather that only a subset of the community’s
members becomes activated? If we assume all users are activated, it positively
biases large communities over smaller ones regardless of the authority or partic-
ipation patterns of their members. Moreover, this contrasts with the intuition
that in a big community only a fraction of it is activated, because there is higher
likelihood that some stimuli would be missed by some members — e.g. those
ones who only occasionally participate in the community.

Therefore, since we do not know the likelihood that a user would respond to
a stimulus, we take a sample of size s in each targeted community to account for
as many cases as possible and let the diffusion spread from these users. Since
the communities may overlap, the samples from distinct targeted communities
may overlap as well. This corresponds to a scenario that the same user may be
stimulated in different communities.

The user sampling process itself can be either uniform or it can respect the
user’s activity in different fora. As we believe respecting the activity is more
realistic, we set the probability of a user i to be sampled from community j to

pij∑k
l=1 pil

, where pij is the total number of posts of user i in community j. If the

community size was smaller than s, we took all its users.
The modified Community-Aware Independent Cascade

Model (CAICM) therefore proceeds as follows:

1. Select set T of q targeted communities.

2. For each community C ∈ T , sample a set SC of s users.

3. Obtain a final actor seed set L = ∪C∈TSC . Note that |L| ≤ q× s, because
the samples of users may overlap.

4. Run the original Independent Cascade Model with L as a set of seed nodes.

The main parameters of CAICM are therefore the number of targeted commu-
nities q and the number of users sampled from each targeted communities s. In
our experiments, we investigated 1–5 targeted communities, i.e. q ∈ [1, 5], and
s ∈ [1, 50] users sampled from each targeted community.
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3.4 Mutual Influence of Fuzzy Communities

We want to characterise to what extent one community is influencing another
one as depicted in the ideal case in Figure 1. In that scenario, users mostly
devoted to B, {d, e, f, g}, reply mainly to its central users {b, c} who are mostly
devoted to A, and therefore A has an impact on B. Thus, we believe any
measure of impact between communities should take into account two factors:
the degree of membership of each user and its centrality within each community.
In this section we show how to express and combine these factors and how to
derive additional measures which are helpful in the interpretation of the cross-
community impact.

In order to represent to which communities and to what extent an actor
belongs to, let us define an n × k membership matrix M : mij ∈ [0, 1],∀ i :∑k
j=1mij = 1 representing the users’ affiliations. Columns of M are fuzzy sets

representing the individual communities. M can be known a priori e.g. from
an in-field survey, determined by a community detection algorithm [5], or from
activity traces of the users. In our analysis we defined mij =

pij∑k
l=1 pil

. Hence

we measure the level of devotedness of a user by its activity in a similar manner
to the work of McGlohon and Hurst [8].

An impact of any given user within its communities can be formalised as
an n × k centrality matrix C with elements cij representing an impact of
i-th user to the other users of j-th community. It can be obtained by some
centrality measure of a user, e.g. PageRank, in-degree, closeness, etc. We set
cij as the number of replies a user received in a community, which is an in-degree
of i-th user in a reply-to graph of j-th community. We chose in-degree for our
experiments because the reply behaviour is the cornerstone of the conversational
dynamics; it is a well-established heuristic for influence maximisation [7] and it
has a clear interpretation.

We are now able to formalise the intuition of cross-community impact as a
weighted sum of centralities of members of one community within another one:

Definition 1 We call an impact Jij of a community i on community j the
sum of centralities of the members of i within the community j, weighted by the
degrees of membership in i: Jij =

∑n
l=1(Mli ×Clj).

The k×k cross-community impact matrix J can then be obtained as a prod-
uct of the two matrices: J = MTC. However, social communities usually have
different sizes [10], which can bias the impact matrix. A very big community
can, from its raw size, accumulate high values in J despite the fact that its
members are not very devoted to it. Therefore we further divide the rows of the
impact matrix by the cardinalities [17] of the sets representing the communi-
ties — the sum of the columns of the membership matrix — in order to obtain
a normalised impact matrix:

Ĵij =
Jij∑n
l=1 Ml,i

(2)
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The normalised impact Ĵij then represents a weighted mean of centralities of

members of i-th community in j-th community. The diagonal of Ĵ contains
self-impact values, i.e. it measures to what extent the highly devoted members
of each community are also central in it. If we subtract the diagonal from Ĵ, we
can obtain a vector of communities’ total impact as row sums:

I(Ĵ) = Ĵ1− diag(Ĵ) (3)

where 1 is a column vector of ones of length k.
While some communities may have impact to a relatively small circle of other

communities, others may be broadly influential. For instance, a community of
system administrators may have an impact to the whole system. Such feature
of a community’s influence can be characterised as an entropy of the respective
row of Ĵ. Because some elements of Ĵ may be 0, let us first define a function
ρ(i, Ĵ) = {l : l ∈ [1, k] ∧ Ĵil > 0}, that returns a vector of column indices of
non-zero elements of i-th row of Ĵ. It is further necessary to normalise the
rows of the matrix in order to obtain probability distributions of impact, i.e.
ĴNi,j = Ĵi,j/

∑k
l=1 Ĵi,l. The normalised impact entropy of i-th community is

then defined as

HI(i, Ĵ) = −
∑
m∈ρ(i,Ĵ) ĴNim log2 ĴNim

log2 |ρ(i, Ĵ)|
(4)

The entropy has range within [0, 1]. The more the impact of i-th community
is equally distributed, the more the entropy value is close to 1. We note that
in the case of entropy we include the diagonal elements (self-impact), because
in such case it differentiates whether the most of the community’s impact is
concentrated within that community or not.

In order to find communities highly influencing many other communities, we
propose to take a product of the total impact (Eq. 3) and its entropy (Eq. 4).
While the total impact measures how much is one community capable, on av-
erage, of stimulating the other communities, its entropy captures how many
distinct communities the community influences. We refer to the strategy of
targeting communities by means of the product of their total impact and its
entropy as impact focus.

4 Experimental Setup

The main purpose of our experiments was to investigate information cascades
with respect to three factors:

1. Number of targeted communities (q).

2. Number of users sampled from each targeted community for initial acti-
vation (s).

3. The capability of different heuristics to predict which communities to tar-
get in future such that as many nodes as possible are active at the end of
the spreading process.

10



2 4 6 8 10 14

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

targeted communities q=1

user sample size (s)

m
ea

n 
ac

tiv
at

io
n 

fr
ac

tio
n 

(a
)

IF
GI
R

2 4 6 8 10 14

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

targeted communities q=2

user sample size (s)
m

ea
n 

ac
tiv

at
io

n 
fr

ac
tio

n 
(a

)

IF
GI
R

2 4 6 8 10 14

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

targeted communities q=3

user sample size (s)

m
ea

n 
ac

tiv
at

io
n 

fr
ac

tio
n 

(a
)

IF
GI
R

2 4 6 8 10 14

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

targeted communities q=4

user sample size (s)

m
ea

n 
ac

tiv
at

io
n 

fr
ac

tio
n 

(a
)

IF
GI
R

2 4 6 8 10 14

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

targeted communities q=5

user sample size (s)

m
ea

n 
ac

tiv
at

io
n 

fr
ac

tio
n 

(a
)

IF
GI
R

Figure 4: Average activation fraction (a) for different sizes of user samples s and number

of targeted communities q. Since the saturation point was reached at approximately s = 10,

only the values up to s = 15 are displayed for the sake of brevity.

In order to take the time into account, we considered pairs of consecutive
snapshots of the reply-to network. Each snapshot was one week long. Using our
three targeting strategies (given below), we selected target communities from
the first snapshot, and then simulated the diffusion on the second snapshot us-
ing CAICM (see Section 3.3). This simulates a scenario of a stakeholder who
uses knowledge of the current state of the system to select certain communities
and then attempts to spread information through the system by posting into
the targeted communities. Since the seed actors were sampled from the targeted
communities, we repeated the simulation l times for different samples. Thus, we
considered the mean value of the number of activated nodes at the end of each
simulation for comparison. The simulation ended when it converged or when
the maximum number of iterations, 500, has been reached. In fact, we observed
that the diffusion process usually converged in ≈ 20 iterations.

In total, we evaluated three targeting strategies:

(a) Impact focus (IF) targets communities highly influencing many other com-
munities (see Section 3.4).

(b) Group in-degree (GI) was considered as a reasonably well-established cen-
trality measure of communities. It is defined as the number of replies the
members of a community received from the non-members [4]. Intuitively, it
measures how much the community in total stimulates other communities.
We chose group in-degree, because it is a generalisation of node degree,
which has been widely used as a heuristic for influence maximization when
targeting individual actors [7, 14]. Please note that the group in-degree,
however, was not originally motivated by the influence maximization prob-
lem and here it is used to represent an intuitive and simple heuristic only.

(c) Random (R) was used as a baseline, and simply means a uniformly ran-
dom choice of the communities to be targeted. For each combination of the
number of targeted communities q and sampled users s, we repeated the sim-
ulation for a different sample of targeted communities l times, and averaged
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the results. Random targeting, especially in combination with high num-
ber of initially activated users may be viewed as a spam targetting strategy.
Therefore, the point at which its information spread converges suggests that
it may be the same point at which the stimulation may become inefficient,
because it starts to be ignored by the users. I.e. if a heuristic for targeting
a certain number of communities and users is performing no better than
randomly targeting the same number of communities and users, then it is
likely to be a ‘saturation’ point of targeting communities and users.

Since some of the snapshots were relatively large (see Table 1), we set the
number of repetitions l to 30 for the sake of computational tractability. Namely
for the random baseline every combination of the number of targeted communi-
ties and user sample is repeated l2 times.2 This is done because both the target
communities and the users within the communities were sampled.

As outlined in the previous paragraphs, we organised the experiment into
50 pairs of consecutive weeks, i.e. the targeted communities were chosen based
on the activity in week t, and the simulation was run on the snapshot of the
information diffusion network in the following week, t + 1. For each week, we
thus obtained three values of the number of the activated users at the end of
the diffusion process — one for each targeting strategy. A number of activated
users at the end of the simulation was further normalised by the total number of
users at each week t+1. This activation fraction, a, thus represents the fraction
of all the users that have been activated during the diffusion process.

Since our main interest was in the differences of activation fractions achieved
by impact focus and group in-degree, we analysed three types of paired samples:
(IF,GI), (IF,R), and (GI,R). Each of the types represents a group of paired
samples obtained as follows. For each combination of q and s two activation
fractions were computed for two targeting strategies, e.g. (IF,GI), in each week.
Since the simulation was run on 50 weeks, the size of each paired sample was
100 (e.g. 50 activation fractions for IF and 50 for GI). In total, we had 250
(s× q) samples for each type (IF,GI), (IF,R), and (GI,R).

5 Results

In this section we report on the experiments we conducted in order to evalu-
ate the three different strategies for targeting the communities. We used the
Community-Aware Independent Cascade Model to simulate the information cas-
cades over the information flow network. First, we show that the activation frac-
tions achieved by each targeting strategy differed. Then we investigate which
combination of factors induced one targeting strategy to have higher diffusion
performance than the others.

2The computation of the random baseline for one snapshot took for parameters q ∈
[1, 5], s ∈ [1, 50], l = 30 approximately 7 hours using 2 Intel Xeon CPUs.
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5.1 Overall Maximum Spread Differences

The first question we addressed was whether there is a difference between the av-
erage activation fractions achieved by the different targeting strategies. There-
fore, for each targetting strategy at different values (q), we plotted the mean
value of the activation fractions (a) as a function of the number of sampled
users (s) (See Figure 4). We found that for q = 1 and s ∈ [1, 10] the impact
focus achieved a higher activation fraction than the other two strategies. How-
ever, we found that the higher q and s were, the smaller the difference between
the activation fractions. Furthermore, we see that for each number of targeted
communities, the diffusion process became saturated at approximately 60% of
users activated (on average). This observation of diminishing returns suggests
that by selectively targeting only one community, it is possible to efficiently
penetrate a large part of the system, while the gain in spread from increasing
the size of the target set became gradually smaller.

To confirm the hypothesis that there indeed is a difference between the
strategies, we performed a three-way ANOVA to investigate the interplay be-
tween all three main factors of the experiment. According to the results we
accepted the alternative that there was a significant difference between the av-
erage activation fractions achieved by each strategy (p-value 2.2× 10−16).

5.2 Does IF Achieve Better Spread than GI, R?

The second natural step was to find which combinations of the factors caused
the difference. In particular, we hypothesised that the impact focus (IF) lead
to activation of a larger fraction of the system in comparison to both the group
in-degree (GI) and random baseline (R). First, we tested on each of the 250
samples whether IF achieved higher activation fractions than GI:

H0 (null): The median difference of activation fractions achieved using impact
focus (IF) and group in-degree (GI) was lower or equal than 0, in short IF ≤ GI.

H1 (alternative): The median difference of activation fractions achieved us-
ing impact focus (IF) and group in-degree (GI) was strictly higher than 0, i.e.
IF > GI.

Second, we tested a similar hypothesis with the alternative that impact fo-
cus lead to higher activation fractions than the random baseline, i.e. IF > R.
Third, we evaluated the final hypothesis that the impact focus lead to higher
activation fractions than the other strategies, i.e. IF > GI,R. We tested the
hypotheses by the Wilcoxon signed rank test and adjusted the obtained p-values
using the Bonferroni correction. Analogously, we also performed another set of
tests with alternative hypotheses that the group in-degree led to higher activa-
tion fractions than the impact focus, and random baseline, i.e. GI > IF,R.

Table 2 lists the cases when the alternative hypothesis was accepted under
the significance level α = 0.01. We see that our initial observation, that the
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impact focus achieved higher activation fractions than the other strategies for
smaller target sizes and user sample sizes, was confirmed. Namely for q = 1
the impact focus lead to significantly higher activation fractions than the group
in-degree up to s = 12. As seen in Figure 5a, the median fraction of activated
users for q = 1 and s = 1 was twice as high for the impact focus (0.38) than for
the group in-degree (0.19). That means that in the strictest scenario where only
one community was stimulated and only one user responded to that stimulation,
a substantial part of the system was still penetrated — as opposed to the case
when the group in-degree was used. It is also apparent that this difference was
getting smaller with the rising s until it became non-significant, as depicted by
the boxplot of the last significant case for user sample size s = 12 in the right
part of Figure 5a.

target size (q) IF > GI,R GI > IF,R
1 1–9, 12 -
2 1–5 -
3 1–3 -
4 1–2 -
5 1–2 35–37, 39, 45, 47–50

Table 2: Number of sampled users (s) for each number of targeted communities (q) for
which either impact focus (IF) led to higher activation fractions than group in-degree (GI)
and random baseline, i.e. IF > GI,R, or conversely for which GI > IF,R.

The results were similar for all other target sizes except for the target size
q = 5. In that case for smaller s impact focus again led to higher activation
fractions than the group in-degree and the random baseline, but for higher s
the group in-degree achieved higher a than the impact focus. This is further
illustrated by Figure 5b, from which it can be seen that for the case q = 5, s = 1
the impact focus lead to significantly higher activation fractions than the group
in-degree. On the other hand, the group in-degree led to higher activation of
the actors for q = 5 and very high s. However, we also see that the activa-
tion fractions achieved by the impact focus were more stable for s = 1 as the
corresponding standard deviation is lower for the IF (0.031) than GI (0.057) or
random baseline (0.096). Finally, the difference in activation fractions for higher
s is again relatively low — the median activation fraction for s = 50 was 0.642
for impact focus while for group in-degree and random baseline it was 0.645 and
0.636 respectively.

6 Discussion

The results have shown that by the careful choice of the strategy it is possible
to efficiently predict which communities to target in the close future such that
a substantial part of the system becomes stimulated. In particular, we showed
that the introduced measures of cross-community impact and its entropy led
to higher spreads of stimulated users than the intuitive approach of targeting
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communities by the total number of replies their members received from the rest
of the system — the group in-degree. This was especially true for small numbers
of targeted communities and small number of users initially activated in those
communities. Even though this paper presents first insights and progress in the
novel problem of targeting communities for maximising information diffusion,
there are multiple interesting motifs for future research and in the rest of this
section we highlight the most important ones.

Since we do not know how many users become initially activated, it remains
an open question as to which concrete combination of factors are realistic for a
given system. An interesting perspective is to estimate these parameters directly
from the previous actions of the users where such information is available [2].
However, in the omnipresence of information overload, it is natural to assume
that the more a chosen targeting strategy is efficient for small initial adoption
likelihoods (while it remains stable for the higher probabilities), the more the
strategy is a good heuristic whenever the exact information about the adoption
probabilities is lacking. The impact focus proved to be particularly suitable for
such cases.

The relatively fast convergence of the used model could be caused by the
way the weights in the information flow network were obtained. While the
presented weights are based on the likelihood of an information flow from one
user to another, they do not take into account the node’s authority. It is possible
to hypothesise that the higher authority the node has (measured e.g. by its in-
degree), the less likely it is to respond to an incoming stimulus. What is the
best way to model the information flow network thus remains an important
open question and again one interesting perspective is to directly exploit the
past activity traces of the users [2].

Although communities are seen as a natural barrier for information dif-
fusion [3][p. 506], we have observed that high spreads of information can be
achieved by selectively targeting communities whose members are influential
within many other communities. However, we also observed diminishing returns
with targeting additional communities, which suggests that the targeted com-
munities chosen by the impact focus, and group in-degree, were highly overlap-
ping. This problem can be solved by greedy influence maximization approaches
based on iterative estimates of spread gains, by means of Monte Carlo simu-
lation [7]. However, this may become increasingly computationally intractable
with a growing network size. An alternative and highly scalable approach to
discriminate overlap between targeted communities is thus an avenue opened
by the presented work.

Other interesting directions for future research opened by this paper are
community-aware diffusion models of concrete, perhaps even conflicting, ideas
or themes [2]. In the discussed cross-community scenario we assumed the infor-
mation or stimulus is relevant to the system’s user-base in general. However, in
the case of when the aim is to address only the actors who are likely to be inter-
ested in specific information, such as a specific topic like sports say, it may be
more efficient to amend the community targeting strategy adequately. There-
fore, we aim to extend the presented framework with topic modelling, which
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in turn would enable investigation of how one community influences another
one with respect to a given topic, and which communities to target in order to
engage or stimulate only actors who are more likely to, in the future, respond
to a given stimulus. Finally, in addition to the spread of information over the
individual actors, we aim to investigate diffusion over communities.
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