
Cardinal Directions between Complex Regions

MARKUS SCHNEIDER, TAO CHEN, GANESH VISWANATHAN, WENJIE YUAN

University of Florida

Besides topological relationships and approximate relationships, cardinal directions like north
and southwest have turned out to be an important class of qualitative spatial relationships. They

are of interdisciplinary interest in fields like cognitive science, robotics, artificial intelligence, and
qualitative spatial reasoning. In spatial databases and Geographic Information Systems (GIS)
they are frequently used as join and selection criteria in spatial queries. However, the available

computational models of cardinal directions suffer from a number of problems like the use of
too coarse approximations of the two spatial operand objects in terms of single representative
points or minimum bounding rectangles, the lacking property of converseness of the cardinal
directions computed, and the limited applicability to simple instead of complex regions only.

This article proposes and formally defines a novel two-phase model, called the Objects Interaction
Matrix (OIM ) model, that solves these problems, and determines cardinal directions for even
complex regions. The model consists of a tiling phase and an interpretation phase. In the tiling
phase, a tiling strategy first determines the zones belonging to the nine cardinal directions of

each individual region object and then intersects them. The result leads to a bounded grid
called objects interaction grid. For each grid cell the information about the region objects that
intersect it is stored in an objects interaction matrix. In the subsequent interpretation phase,
a well defined interpretation method is applied to such a matrix and determines the cardinal

direction. Spatial example queries illustrate our new cardinal direction concept that is embedded
in a spatial extension of SQL and provides user-defined cardinal direction predicates.

Categories and Subject Descriptors: H.2.8 [Database Management]: Spatial databases and
GIS; H.2.3 [Database Management]: Query languages

General Terms: Design, Languages, Management

Additional Key Words and Phrases: Cardinal direction, directional relationship, spatial database

1. INTRODUCTION

In recent years, the exploration of cardinal directions between objects in space has
turned out to be a multidisciplinary research issue involving disciplines like artificial
intelligence, cognitive science, geographic information science/systems (GIS), lin-
guistics, robotics, spatial analysis, spatial database systems, and qualitative spatial
reasoning. Cardinal directions are an important spatial concept and describe purely
qualitative properties that characterize the directional relationships of spatial ob-
jects to each other. More precisely, they represent absolute directional relationships
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like north and southwest with respect to a given reference or coordinate system in
contrast to relative directional relationships like in front and left. From a database
and GIS perspective, research efforts have been motivated by the necessity of com-
putational and formally defined models of directional predicates. These predicates
are employed as filter conditions for spatial selections and spatial joins in spatial
query languages and as a support for spatial data retrieval and analysis tasks, both
at the user level for reasons of conceptual clarity and at the query processing level
for reasons of efficiency. They enable the user, for example, to ask for all hurricanes
that have ever been west of Florida, the general direction of the whale routes in the
Gulf of St. Lawrence, or all land parcels that are located to the west of the parcels
of power stations. The background for the interest in latter query, for example,
could be that due to west winds these parcels are endangered by the hazardous in-
fluence of air pollution. Assuming a relation land parcel with attributes id of type
integer and parcel of type region as well as a relation power station with attributes
name of type string and loc of type region, we can express the query example,
which represents a directional join as a special case of a spatial join, in an SQL-like
style as follows:

SELECT id, name FROM land_parcel, power_station WHERE parcel west_of loc

In the literature, several approaches have been proposed to model cardinal di-
rections. The more expressive and more precise approaches have been exclusively
designed for region objects. As we will show in this article, unfortunately all of
them suffer from at least one of three main problems. First, some models do not
consider the shapes of the two operand objects of a cardinal direction relation but
use quite coarse approximations and simplifications in terms of single representa-
tive points or minimum bounding boxes (object shapes consideration requirement).
This leads to inaccurate results. Second, some models yield inconsistent results
for the cardinal direction dir(A,B) between two spatial objects A and B and its
converse cardinal direction dir(B ,A) in the sense that one result is not always
the inverse of the other (converseness requirement). That is, it should hold that
dir(B,A) = inv(dir(A,B)) and dir(A,B) = inv(dir(B,A)). For example, if a car-
dinal direction model ascertains that A is located to the west of B, then the model
should also correctly ascertain that B is located to the east of A, and vice versa.
For our query example, this means that the query

SELECT id, name FROM land_parcel, power_station WHERE loc east_of parcel

must always yield the same result as the query above. Third, some models only
work well if the region objects involved in direction computations have a simple
structure. This means that they only consist of one component, are connected,
and do not have holes. However, this is in contrast to the common consensus in
the spatial database community that simple geometric structures are inadequate
abstractions for real spatial applications since they are insufficient to cope with the
variety and complexity of geographic reality. Complex region objects are needed
that allow multiple components and may have holes. As a consequence, some
models can yield wrong or counterintuitive results for certain spatial scenarios that
involve complex region objects (support of complex objects requirement).
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The goal of this paper is to propose and design a computational model of cardinal
directions and directional predicates for complex regions that overcomes the lim-
itations of available approaches. This requires that the model takes better into
account the shape of the region operand objects, ensures the property of con-
verseness of cardinal directions (that is, for a directional relationship p holds that
A p B ⇔ B inv(p) A), accepts complexly structured region objects as operands,
and avoids the wrong results computed by some approaches.
Our solution consists in a novel two-phase method that includes a tiling phase

followed by an interpretation phase. In the first phase, we apply a tiling strategy
which first determines those zones that correspond to nine cardinal directions with
respect to each region object. The zones of both objects are then intersected.
The result leads to a closed grid that we call objects interaction grid (OIG). For
each grid cell we derive the information about the region objects that intersect it
and store this information in a so-called objects interaction matrix (OIM ). In the
second phase, we apply an interpretation method to such a matrix and determine
the cardinal direction. Query examples illustrate our concepts.
The remainder of this article is organized as follows: Section 2 discusses related

work. It sketches the spatial data type region as the operand type of cardinal direc-
tions and directional relationships, and in detail classifies, describes, and compares
the available cardinal direction models with respect to specified design criteria. Sec-
tion 3 provides a motivation and coarse overview of our own, two-phase method,
called Objects Interaction Matrix (OIM ) model, to this computational problem. Its
tiling phase is described in Section 4, and its interpretation phase is delineated in
Section 5. Section 6 analyzes the OIM model and compares it to past approaches.
Section 7 derives directional predicates from cardinal directions and shows how
these predicates can be used in spatial database queries. Finally, Section 8 draws
some conclusions and depicts future work.

2. RELATED WORK AND A COMPARATIVE STUDY OF CARDINAL DIRECTION
MODELS

In this section, we discuss the literature of cardinal direction models. Section 2.1
provides a brief overview of the spatial data type region which represents com-
plex region objects that are the operands of the cardinal directions and directional
predicates considered in this article. In Section 2.2, we pose essential design re-
quirements for cardinal directions that are partially taken from the literature and
partially derived from the weaknesses found in the existing cardinal direction mod-
els. In Section 2.3, we analyze the available cardinal direction models. Section 2.4
describes the few available designs of directional predicates in databases. Finally,
in Section 2.5, we give a summary of the limitations of the related work as well as
an overview of our novel contributions.

2.1 The Spatial Data Type region

In the spatial database and GIS communities, spatial data types like point, line,
or region (Figure 1) have found wide acceptance as fundamental abstractions for
modeling the structure of geometric entities, their relationships, properties, and
operations. In this article, we confine ourselves to region objects since only for
them (and for point objects) cardinal direction models have been proposed. The
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Fig. 1. Examples of a simple point object (a), a simple line object (b), a simple region object (c),

a complex point object (d), a complex line object (e), and a complex region object (f).

literature distinguishes simple region objects (simple spatial data types in general
[Egenhofer 1994; Güting 1988]) and complex region objects (complex spatial data
types in general [Clementini and Di Felice 1996; Schneider 1997; Schneider and Behr
2006; Worboys and Bofakos 1993]), depending on the spatial complexity they are
able to model. Simple regions (Figure 1(c)) represent areal, bounded, and connected
spatial objects. Complex regions (Figure 1(f)) allow multiple components, permit
holes, and are closed under the geometric set operations intersection, union, and
difference [Schneider 1997]. The capability of dealing with complex region objects
is an important requirement for any suitable cardinal direction model.

2.2 Design Requirements for Cardinal Direction Models

We now identify and formally define design criteria for cardinal direction models
and check these criteria in Sections 2.3 and 2.5 against the available models and
our new Objects Interaction Matrix model. The degree of fulfilment of each design
criterion is evaluated for each model by up to three different assessment values
named as full support, partial support, and no support. The literature [Abdelmoty
and Williams 1994; Frank 1996] postulates four general design criteria for a model
of binary qualitative spatial relationships: completeness, soundness, uniqueness,
and generality. In detail, they are specified as follows:

Completeness. A model must be able to determine the spatial (in our case: di-
rectional) relationship for any configuration of two spatial objects, that is, the
model must be exhaustive. Formally, let M be a cardinal direction model,
and let dirM (A,B) denote the function for M that yields the cardinal direc-
tion of two spatial objects A and B. Further, let CDM denote the set of
cardinal directions that M is supposed to distinguish. We say that M pro-
vides full support for the completeness requirement if the statement holds that
∀A,B ∈ region : dirM (A,B) ∈ CDM . If this is not the case, then M is said to
provide no support for the completeness requirement.

Soundness. Only correct and realizable qualitative relationships should be derived
from the model. For directional relationships this especially means that the result
comprises all existing basic cardinal directions. Let dirM also be applicable to any
two points p, q ∈ R2 and thus provide the precise and correct cardinal direction
between those points. We say that a model M provides full support for the
soundness requirement if dirM (A,B) =

∪
p∈A,q∈B dirM (p, q). M provides no

support for the soundness requirement if dirM (A,B)∩
∪

p∈A,q∈B dirM (p, q) = ∅.
Finally, M is said to provide partial support for the soundness requirement if
dirM (A,B) ∩

∪
p∈A,q∈B dirM (p, q) ̸= ∅ ∧ dirM (A,B) ̸=

∪
p∈A,q∈B dirM (p, q).

Uniqueness. All qualitative relationships between spatial objects should be uniquely
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distinguishable by the model, that is, the possible relationships should be mutu-
ally exclusive. For example, if the cardinal direction between two spatial objects
is north according to the model, then north must be the only true cardinal di-
rection between these objects. All other cardinal directions must then be false.
If this is the case, we say that a model offers full support for the uniqueness
requirement; otherwise, it offers no support.

Generality. A model must be able to determine the cardinal directions for spatial
objects of different shapes, that is, it must be applicable to all combinations of
the spatial data types point, line, and region. If this is the case, we say that a
model offers full support for the generality requirement; otherwise, it only offers
partial support.

In addition to the above requirements, we have identified three further design
criteria that are specific to cardinal directions and that result from the weaknesses
of the existing models described in Section 2.3. They include the object shapes
consideration, converseness, and the support of complex objects. In detail, they can
be characterized as follows:

Object shapes consideration. A model should be able to leverage the shape of the
interacting operand objects to increase the quality and precision of the deduced
cardinal directions. A model offers full support for the object shapes consideration
requirement if the cardinal direction is computed with respect to the exact shapes
of both operand objects. However, no existing model has this property since they
are all based on approximations of spatial objects. Different approximation levels
yield results with different precisions. We say a model provides no support for the
object shapes consideration requirement if the operand objects are approximated
with lower-dimensional objects (for example, centroids) that ignore the extent of
an operand object. A model provides partial support for this requirement if the
operand objects are represented by approximation objects of the same dimension
(for example, minimum bounding rectangles or circles).

Converseness. A model must ensure the converseness of cardinal directions. For
example, if a model M determines that a spatial object A is southeast of a
spatial object B, then M must also determine that B is northwest of A. For-
mally, this means that dirM (B,A) = inv(dirM (A,B)) must hold where inv(D) =
{inv(d) | d ∈ D} for D ⊆ CDM . Further, dirM (A,B) = inv(inv(dirM (A,B)))
must hold. If M fulfills these properties, it is said to offer full support for the
converseness requirement. Otherwise, M offers no support.

Support of complex objects. A model should not only be able to determine the car-
dinal direction of simple spatial objects but especially of complex spatial objects
(Section 2.1) since only the latter represent spatial reality and are included in
spatial data representation standards nowadays. If this is the case, the exact
set of cardinal directions between complex objects includes all possible cardinal
directions between each component pair of the interacting objects. We then say
that the model offers full support for the support of complex objects requirement.
If a model can implicitly support complex objects by simply applying it to them
but does not provide all valid cardinal directions, we say that it offers partial
support for this design criterion.
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2.3 Evaluation of Existing Cardinal Direction Models

Several models have been proposed to capture cardinal direction relations between
spatial objects as instances of spatial data types. These models can be broadly clas-
sified into tiling-based models (Section 2.3.1), interval-based models (Section 2.3.2),
and vector algebra-based models (Section 2.3.3).

2.3.1 Tiling-based Cardinal Direction Models. Tiling-based models define car-
dinal directions by using so-called partitioning lines that subdivide the plane into
semi-open tiles. The models can be further subdivided into projection-based models
and cone-shaped models. Projection-based models create partitioning lines parallel
to the coordinate axes while cone-shaped models partition the space into angular
zones. Depending on how objects are used to create the partitions, each tiling-
based model can be classified as either asymmetric tiling that uses only one object
for tiling, or as symmetric tiling which uses both objects for tiling.
Projection-based models define cardinal directions by using partitioning lines par-

allel to the coordinate axes. The early approaches degenerate one or both extended
spatial operand objects (that is, lines with their linear extent and regions with
their areal extent) to single representative points. One representative point plays
the role of a reference object, and the other representative point plays the role of
a target object. The tiling is here only performed with respect to the reference ob-
ject; hence, we call it asymmetric tiling. The cardinal direction is then determined
from the target object towards the reference object. Frank’s approach [Frank 1991;
1992; 1996] approximates spatial objects by their center points and defines cardinal
directions by using partitioning lines parallel to the coordinate axes. The space is
divided into four non-overlapping zones by the two partitioning lines that cross the
reference point. This model uses the composition of two adjacent basic cardinal
directions, that is, north, south, west, and east, in each zone to assign one of the
four pairwise opposite directions northwest, northeast, southeast, and southwest to
it. The direction is also determined by the zone in which the target point falls. The
point approximation suffers from the problem that the generalization step com-
pletely ignores the shape and the extent of the spatial operand objects and thus
leads to easy to use but rather inaccurate models since the operand objects can in-
tersect several zones while their reference points fall into a single and unique zone.
Thus the object shapes consideration requirement is not supported.
The Direction-Relation Matrix (DRM ) model [Goyal and Egenhofer 2000a; 1997;

Skiadopoulos and Koubarakis 2004] presents a major improvement of this approach.
In this model, the reference object is responsible for creating the partition zones.
The partitioning lines are given by the infinite extensions of the segments of its
minimum bounding rectangle. This leads to a tiling with the nine zones of north,
west, east, south, northwest, northeast, southwest, southeast as well as a central
zone named sameLocation and is given by the minimum bounding rectangle of
the reference object. The target object contributes with its exact shape, and a
Boolean direction-relation matrix stores for each tile whether it is intersected by
the target object (see Figure 2a). This model also employs the asymmetric tiling
strategy. In the DRM model, spatial operand objects are not simplified to point
objects. Further, the minimum bounding rectangle of the reference object is used
with the shape of the target object to determine the cardinal direction. Thus, this
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model better supports the object shapes consideration requirement. However, this
model can lead to counterintuitive computations of cardinal directions and prevent
us from consistently determining the converse cardinal direction. This violates the
converseness requirement. We give an example of these weaknesses of the DRM
model in our case study in Section 6. An extension of this model, called the Deep
Direction-Relation Matrix (DDRM ) model [Goyal and Egenhofer 2000b], is able to
also handle point and line features but has inherited the weaknesses of the DRM
model.

Our Objects Interaction Matrix (OIM ) model also belongs to the projection-
based models. Its strategy and properties as well as its comparison to other models
will be given in detail in later sections. In [Chen et al. 2010] we have already given a
first introduction of this model. We describe the fundamental concepts of the two-
phase OIM model with its tiling phase and interpretation phase and sketch an SQL
query language extension with embedded directional predicates. In this article, we
elaborate and formalize the OIM concept, study its expressiveness by determining
the valid spatial scenarios of two complex region objects for which cardinal direc-
tions can be ascertained, formally define the semantics of the directional result
that the OIM model computes, systematically derive directional predicates from
the OIM model, design SQL data definition language constructs that enable the
user to specify user-defined and composite directional predicates, and demonstrate
the embedding of these predicates in SQL queries.

Cone-shaped models define directional relations by using angular zones. The
early approaches also generalize a reference object and a target object by point
objects. The first cone-shaped point approximation model attempting to derive the
cardinal direction between two spatial objects in a qualitative way is Haar’s cone-
shaped point model [Haar 1976]. It defines cardinal directions by using partitioning
lines with an angle of 45◦ through a reference point, which is the center point
of the reference object. The space is divided into four mutually exclusive zones
called north, south, west, and east. The cardinal direction between the two spatial
operand objects is determined by the zone in which the target point (the center of
the target object) falls. Since the subdivision into only four zones may lead to coarse
results, the approach in [Jing et al. 2005] provides a slight extension of the model
in [Haar 1976]. It subdivides each of the four zones of the cone-shaped model into
three smaller zones. Hence, we obtain twelve, more fine-grained directions, and the
cardinal direction between two spatial objects can be more accurately determined.

Peuquet & Zhang [Peuquet and Zhang 1987] point out that the choice of repre-
sentative points (like center points) can have a negative effect on the correctness of
the cardinal direction determined for two extended spatial objects since an extended
spatial target object can fall into several different zones while a representative point
always falls into one zone. They propose a method to choose the representative
point of the object by better considering the shapes of the objects. They first test
if the minimum bounding rectangle of the target object falls within a 90◦ triangular
area extended from the centroid of the reference object (See Figure 2b). Depending
on this, the vertex of the triangle is moved backward or forward to find the most
appropriate representative point for the reference object. The 90◦ triangles extend-
ing from the new representative point are used to determine the relative direction
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Fig. 2. The Direction-Relation Matrix model tiling with A as reference object (a), Peuquet’s
model (b), and the Cone-shaped Directional Relations model family with variable angles α (c)

between the two objects.
All approaches that generalize objects into points share the same problems and

violate the same requirements that we have discussed for the projection-based mod-
els. The Cone-shaped Directional Relations (CDR) model family [Skiadopoulos
et al. 2007] is an improvement of the model in [Haar 1976] and uses the minimum
bounding rectangle of the reference object to subdivide the space around it with
partitioning lines emanating from the corners of the rectangle with different an-
gles. That is, this model employs the asymmetric tiling strategy. By adjusting the
angles, an infinite number of models can be represented for different applications
(Figure 2c). The partitioning lines subdivide the space into five directional zones
called south, east, west, north, and center area. The cardinal direction is determined
by the zone in which the target object falls.
Abdelmoty & Williams [Abdelmoty and Williams 1994] present an intersection-

based extension to the cone-shaped approach in [Peuquet and Zhang 1987]. Their
extension applies a symmetric tiling strategy, approximates an object by its min-
imum bounding rectangle, and represents it in terms of its components, namely,
the interior, the exterior, and the boundary, by employing the triangular model.
Arbitrary objects are generally approximated by bounding boxes but point ab-
straction is also allowed. Angular extensions emanating from the corners of the
minimum bounding rectangle of an object enable the creation of four semi-infinite
areas around each of them. The boundary of each area is represented by two direc-
tion lines (for example, NW and NE for the northern direction) and a characteristic
point or a side of the minimum bounding rectangle (for example, the top of the
minimum bounding rectangle for the northern direction). The directional relation-
ship between two objects is then given as a result of the combinatorial intersection
of the components and evaluated using an intersection matrix. For example, A is
to the west of B if the boundary of the area representing the east of A has an
overlap with the boundary of the region representing the west of B. Thus, the
intersection-based methodology is used for the representation of cardinal directions
between objects of arbitrary shapes and sizes. However, no consideration is given
to intertwined objects with overlapping bounding boxes, thus the completeness re-
quirement is violated. Moreover, the model can yield incorrect results when the
extent of an object is disregarded due to the use of point abstraction.
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The model by Safar & Shahabi [Safar and Shahabi 1999] describes another tiling
approach to computing the cardinal directions between spatial objects. It uses
minimum bounding circles (MBC ) as object approximations for both region ob-
jects. This approach pursues an asymmetric tiling strategy and hence distinguishes
between a reference object and a target object. The plane is partitioned into five
zones by overlaying the cone-shaped directions of the reference object [Haar 1976;
Peuquet and Zhang 1987] with its minimum bounding circle called same level. The
cardinal direction of any target object with respect to the reference object is then
given by the zones in which the minimum bounding circle of the target object lies.
But due to the asymmetric tiling, this method does not provide converse directions.

2.3.2 Interval-based Cardinal Direction Models. Interval-based models make use
of the x-intervals and y-intervals of the minimum bounding rectangles of both
spatial operand objects, pairwise apply Allen’s thirteen interval relations [Allen
1983] to them, and then derive the cardinal direction from the result.
The 2D-string models [Chang and Li 1988; Chang 1989] use a pair of relationship

strings as a symbolic representation of the projections of two region objects in a
picture (image) onto the two coordinate axes. The cardinal directions are generated
relative to a predefined grid superimposed on the picture. An extension of this ap-
proach is based on 2D projection interval relationships (PIR) [Nabil et al. 1995]. It
uses a graph representation instead of a string for picture matching and spatial rea-
soning purposes and can determine both directional and topological relationships
between all possible spatial object pairs in a picture using Allen’s interval relation-
ships. The 2D+ string extension [Kim and Um 1999] uses metadata to describe
spatial relationships between objects in a picture. The model basically uses six basic
direction elements defined by using the extensions of the minimum bounding rect-
angle of an object A. A 2D+ string is formed by a pair of one-dimensional strings,
one string for each of the two axes. Both one-dimensional strings together permit
the inference of directional and topological relationships between spatial objects.
The 2D-PIR and 2D+ string models cannot handle all spatial scenarios, and hence
violate the completeness requirement. In the 2D-string model, the size of equal-
sized grid becomes very important; if it is too large, the model looses precision, and
if it is too small, an object gets subdivided into more cells than needed.
Papadias et al. propose another model [Papadias and Egenhofer 1997; Papadias

and Sellis 1994; Papadias and Theodoridis 1997] that also makes use of the min-
imum bounding rectangles of both operand objects and that also applies Allen’s
thirteen interval relations to the rectangle projections on the x-axis and the y-axis
respectively. A complete set of 13 × 13 = 169 possible configurations of two rect-
angles is obtained [Papadias et al. 1996], which is expressive enough to cover all
cardinal directions between two minimum bounding rectangles. But this model
can yield misleading and ambiguous cardinal directions if spatial objects are over-
lapping, intertwined, or horseshoe shaped. Thus, it does not support the object
shapes consideration requirement very well. Papadias’s model has an overlapping
set of of basic and higher level directional relations. Hence a directional relation-
ship provided does not imply the negation of the other directional relationships.
For example, the strong north and north relationships are not mutually exclusive.
Thus, it violates the uniqueness requirement.
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2.3.3 Vector Algebra-based Cardinal Direction Models. The authors in [Shekhar
et al. 1999] provide a conceptual model that is fundamentally different from all
the other models described so far in the sense that it models direction as a spatial
object and not as a relational predicate between spatial objects. This model uses
concepts such as vectors, points, and angles. The basic approach is to model
direction as a unit vector, which is a spatial object, and orientation as a set of
directions. This leads to a simple vector algebra that can also be used to perform
direction reasoning. However, this approach is restricted to point objects. Extended
objects are approximated by their centroids. Thus, the object shapes consideration
requirement is not supported, which leads to an inaccuracy of the model.

2.3.4 Ternary Projective Relations. All publications mentioned so far and also
the Objects Interaction Matrix model deal with absolute directional relationships
like north and southwest. They view spatial objects from a global perspective in
a given, fixed reference or coordinate system. Another important class of direc-
tional relationships are relative directional relationships like in front of, above, and
left of. They view spatial objects from a local perspective in a variable reference or
coordinate system. We do not cover them in this article since they require rather
different models and refer usually in applications to spatial objects in the three-
dimensional space. They require an observer who looks at a spatial scenario of
spatial objects and assesses the relative directional relationships between them by
projections. These relationships are therefore also called ternary projective relations
[Clementini and Billen 2006; Isli and Cohn 2000].

2.4 Directional Predicates for Querying in Spatial Databases

A cardinal direction model provides a method for the determination of the cardinal
direction between two spatial objects. However, in a database context, cardinal
directions are not directly applicable. Instead, in queries, directional relationships
are needed as Boolean predicates for the validation of cardinal directions between
two spatial objects. These predicates can be employed as filter conditions for spatial
selections and spatial joins in query languages, and as a support for spatial data
retrieval and analysis operations.
The model by Papadias (Section 2.3.2) has made some proposals for the defini-

tion and integration of directional predicates into database queries. This model
defines several groups of directional relationships for the user at two different
levels of precision. At a higher level of precision, nine mutually exclusive, com-
plete, and basic directional relationships are defined for any two points of two
spatial objects, namely, north west, restricted north, north east, restricted west,
same position, restricted east, south west, restricted south and south east. At
a lower level of precision, additional directional relationships are then spec-
ified as disjunctions of the basic nine relationships such as north (including
north west, restricted north, and north east) and correspondingly east, south, and
west. Further, two special directional relationships named same level (including
restricted west, same position, and restricted east) and same width (including re-
stricted north, same position, and restricted south) are defined. Using these def-
initions, a set of directional relationships between two spatial objects is defined
that considers different nuances of a particular cardinal direction. For exam-
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ple, for the northern cardinal direction, the model provides the directional re-
lationships strong north, weak north, strong bounded north, weak bounded north,
strong north west, weak north west, strong north east, weak north east, north, and
just north. Due to the minimum bounding rectangle approximation, this approach
can give coarse cardinal directions between spatial objects.
The authors in [Zhu et al. 2001] use a reference object/target object model similar

to the Direction-Relation Matrix Model (see Figure 2a) and propose three different
categories of directional relationships. They distinguish (i) uni-direction predicates
like NW and S if the target object is located in exactly one of the nine zones
(tiles), (ii) bi-direction predicates like NE-N, NE-E, SW-S, and SW-W if the target
object intersects two horizontally or vertically adjacent tiles, and (iii) tri-direction
predicates like weak-W and weak-E (corresponding to western and eastern) if the
target object intersects three horizontally or vertically adjacent tiles. Our OIM
model includes all these predicates.
In Section 7, we will show how directional predicates can be systematically defined

based on our OIM model and how they can be integrated into the database query
language SQL.

2.5 Summary of Related Work Limitations and Novel Contributions

Based on the general design criteria of completeness, soundness, uniqueness, and
generality identified in the literature for models of binary qualitative spatial rela-
tionships, the three further design requirements of objects shape consideration, con-
verseness, and support of complex objects in Section 2.2, and our discussion of the
available qualitative cardinal direction models and their drawbacks in Section 2.3,
Table I provides a summary of the available approaches and checks and compares
these models including our Objects Interaction Matrix model against these seven
design criteria. The table reveals that the available cardinal direction models fulfil
the design criteria of completeness, soundness, and uniqueness quite well while they
exhibit shortcomings with respect to the remaining criteria. The Objects Interac-
tion Matrix model, which we propose in this article, promises to fulfil most of the
design criteria with a good level of support for each of them. A case study that
further illustrates the weaknesses of available cardinal direction models and shows
how our OIM model overcomes them is given in Section 6.
Our novel contributions presented in this article can be summarized as follows:

(1) Formal definition of a new two-phase cardinal direction model that satisfies im-
portant and well accepted design criteria and separates between (i) a unique and
closed tiling strategy to capture the interaction of spatial objects and (ii) the
interpretation of the resulting objects interaction matrices to derive the com-
posite cardinal direction.

(2) Consistent results when computing the cardinal direction between two objects A
and B and between B and A due to the fulfillment of the converseness property.

(3) A higher level of precision in the resultant set of cardinal direction relations
compared to any other existing model due to an improved tiling strategy that
intersects the minimum bounding rectangles of both input region objects and
determines the interaction of each object with respect to the resulting grid.

(4) Consideration of complex region objects as they appear in spatial real world
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Complete- Sound- Unique- Gener- Shape Con- Converse- Complex
Models1

ness ness ness ality sideration ness Objects

Harr’s model X ± X ± − X ±
Peuquet’s model X ± X ± − X ±
Frank’s model X ± X ± − X ±
2D-string model − ± X ± − − ±
Papadias’s model X ± − ± ± − ±

CDR model X ± X ± ± − ±
Abdelmoty’s model X ± X ± − − ±

MBC model X ± X ± ± − ±
DRM model X ± X ±2 ± − ±

Shekhar’s model X ± X ± − X ±
OIM model X ± X ± ±3 X X

1 ‘X’ means the model offers full support for the requirement, ‘±’ indicates partial support,
and ‘−’ shows no support (see Section 2.2 for a definition of these terms for each design
criterion).

2 The DRM model has been extended with support for generality and called the DDRM model

(see Section 2.3.1).
3 Our OIM approach uses the shapes of both operand objects and their intersection with the
grid tiles to create the objects interaction matrix. Thus it provides a higher level of support
for shape consideration when compared to all other models.

Table I. Comparison of the available cardinal direction models including the OIM model against
the seven design criteria

scenarios and applications, which is in contrast to available models that are
only able to deal with simple region objects.

(5) An exhaustive evaluation of the valid and thus spatially realizable objects inter-
action matrices for two complex region objects and two simple region objects
respectively through a three-stage proof technique called proof-by-constraint-
grouping-drawing.

(6) Precise definition and description of cardinal direction predicates classified into
existential predicates and six categories of user-defined predicates

(7) Specification of user-defined cardinal direction predicates in SQL through a user-
friendly extension of the SQL Data Definition Language (DDL) as well as a
high-level embedding of these predicates into the SQL query language supporting
direction querying, enabled due to the integration of spatial data types (like
region) as abstract data types in a database schema, and illustrated by several
queries based on a real-world application.

(8) Extensive analysis of the shortcomings of the available cardinal direction models
as well as a detailed comparison of the available cardinal direction models to our
Objects Interaction Matrix model in a case study.

3. OVERVIEW OF THE OBJECTS INTERACTION MATRIX (OIM) MODEL

In this section, we give a brief overview of our novel cardinal direction model, called
the Objects Interaction Matrix (OIM ) model. We emphasize its main features and
sketch how it overcomes the weaknesses of current models and how it satisfies the
requirements established in Section 2.2. The OIM model belongs to the tiling-based
models and here especially to the projection-based models. However, it is important
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OIG

Generation

OIM

Generation
OIG OIM Interpretation

Phase

Tiling Phase

dir(A,B)

dir(B,A)

A

B

Fig. 3. Overview of the two phases of the Objects Interaction Matrix (OIM) model

to understand that it rather differs from the Direction-Relation Matrix (DRM)
model and is thus not its extension. For example, the DRM model subdivides the
entire unbounded Euclidean space around a reference object, while the OIM model
subdivides a closed subspace enclosing both operand objects. Figure 3 shows its
two-phase strategy for calculating the cardinal direction between two spatial objects
A and B. In the following, we assume that A and B are non-empty values of the
complex spatial data type region [Schneider 1997].
In the first phase, called the tiling phase, we first determine the nine directional

zones that belong to region object A (an example is given in Figure 2a) and then
the nine directional zones that belong to region object B. We obtain two partitions
of the Euclidean plane, and the simple but fundamental, new idea is now that
both partitions are overlaid so that the region objects A and B interact with each
other in the tiling process. The partition overlay generates a grid called objects
interaction grid (OIG) (Figure 4a). In contrast to all other tiling-based models
which have unbounded zones except for the central zone, our grid is closed and
bounded. We achieve this by omitting all peripheral, unbounded zones. Regarding
our example, a 3× 3-grid is generated (see the continuous segments in Figure 4a).
The surrounding 16 unbounded grid cells (indicated by the dashed segments in
Figure 4a) are irrelevant since neither A nor B can intersect them. More precisely,
the area covered by the objects interaction grid, called objects interaction grid space
(OIG space), is given by the minimum and maximum x- and y-coordinates of the
minimum bounding rectangles of A and B. We will later see that also all the other
n×m-grids are possible with 1 ≤ n,m ≤ 3.
The partition overlay caters for an equal and symmetric treatment of the operand

objects A and B. Concepts like reference object and target object do not exist in
our model. An objects interaction grid provides us with the valuable information
which object intersects which grid cell. This means that a grid cell or tile may be
intersected by no region (coded by 0), by region A only (coded by 1), by region B
only (coded by 2), or by both regions A and B (coded by 3). For each grid cell
ti,j in the ith row and jth column (1 ≤ i, j ≤ 3) we store the coded information
about the regions that intersect it in an objects interaction matrix (OIM ) M in
cell Mi,j . That is, we abstract from the geometry of the OIG space and only keep
the information which region intersects which tile. We can do this since cardinal
directions have a qualitative and not a quantitative nature. In our example, we
obtain a 3× 3-objects interaction matrix (Figure 4b).
In the second phase, called the interpretation phase, we leverage the objects

interaction matrix to derive the cardinal direction between A and B. We call this
step interpretation since such a matrix can be mapped to different models of basic
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OIG(A,B) =

B

BA OIM (A,B) =

 2 0 0
0 1 2
0 1 0



(a) (b)

Fig. 4. The objects interaction grid OIG(A,B) for the two complex region objects A and B in
Figure 2a (a) and the derived objects interaction matrix OIM (A,B) (b)

cardinal directions, that is, it can be interpreted in different ways. In this article,
we have already seen three different models and thus three different interpretations
of basic cardinal directions, namely the four cardinal directions north, east, south,
and west) [Haar 1976], the four cardinal directions northwest, northeast, southwest,
southeast [Frank 1996], and the nine cardinal directions north, east, south, west,
northwest, northeast, southwest, southeast, and origin [Goyal and Egenhofer 1997;
Skiadopoulos and Koubarakis 2004]. We will in this article confine ourselves to the
latter cardinal direction model due to its popularity and large detailedness, and in
order to make our approach comparable to the Direction-Relation Matrix model.
We distinguish two steps in the interpretation phase. In the first step, we use an

index pair (i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ n to represent the location of the
elementMi,j in the m×n objects interaction matrixM . We apply a function loc to
each region andM in order to determine at which locations we can find components
of each region. For our example in Figure 4 we obtain loc(A,M) = {(2, 2), (3, 2)}
and loc(B,M) = {(1, 1), (2, 3)}. In the second step, we use a function dir to
determine the composite cardinal direction between A and B. We form all pairs
of elements of loc(A,M) and loc(B,M) and determine the basic cardinal direction
for each pair by applying a corresponding interpretation function. The composite
cardinal direction between A and B is then equal to the union of all determined
basic cardinal directions. The interpretation function determines the basic cardinal
direction between any two object components on the basis of their (i, j)-locations in
the objects interaction matrix. The values of the interpretation function are stored
in an interpretation table for a lookup in constant time. For our example in Figure 4,
let us consider (3, 2) ∈ loc(A,M) and (2, 3) ∈ loc(B,M). The fact that a component
of A is located in the cell (3, 2) and a component of B is located in the cell (2, 3)
implies that the component of Amust be southwest of the component of B. Overall,
we obtain dir(A,B) = {SW,W,SE} and, similarly, dir(B,A) = {NE,E,NW}.
Reviewing the goals formulated in the Introduction and in Section 2.2, we see

that the shapes of both region objects are taken into account. Further, both region
objects are treated as equal partners. To a large extent, this coequal treatment
contributes to assuring the property of converseness of cardinal directions in our
approach. For two region objects A and B, we can use the same approach to
compute dir(A,B) and dir(B,A). Further, we obtain the consistent result that
dir(A,B) is the inverse of dir(B,A), and vice versa. If we have either dir(A,B)
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or dir(B,A), we can derive the inverse composite cardinal direction immediately
in constant time as the union of the inverse basic cardinal directions. That is,
if we know dir(A,B), for example, we can immediately determine dir(B,A) as
dir(B,A) = {inv(d) | d ∈ dir(A,B)} where the function inv determines the inverse
of each basic cardinal direction (for example, inv(W) = E, inv(NW) = SE).

4. THE TILING PHASE OF THE OIM MODEL

In this section, we focus on the tiling phase, which is the first phase of our OIM
model (see Figure 3). Section 4.1 details our novel tiling strategy that produces
objects interaction grids of different size depending on the spatial constellation of
the operand region objects. In Section 4.2, we show how objects interaction grids
are represented by objects interaction matrices and which matrices are valid.

4.1 The Objects Interaction Grid: Capturing the Interaction of Objects

The general idea of our tiling strategy is to superimpose a grid called objects inter-
action grid (OIG) on a configuration of two complex region objects. Such a grid
is determined by the two vertical and the two horizontal partitioning lines of each
object. The two vertical (two horizontal) partitioning lines of an object are given
as infinite extensions of the two vertical (two horizontal) segments of an object’s
minimum bounding rectangle. The four partitioning lines of an object create a
partition of the Euclidean plane consisting of nine mutually exclusive, directional
tiles or zones from which the center tile is bounded and the eight surrounding tiles
are unbounded (Figure 2a). Further, these lines partition any other object into
non-overlapping components such that each component is located in a different
tile.
This essentially describes the tiling strategy of the Direction-Relation Matrix

model. However, the fundamental difference and improvement of our model is that
we apply this tiling strategy to both spatial operand objects, thus obtain two sepa-
rate grid partitions, and then overlay both partitions (Figure 4a). This leads to an
entirely novel cardinal direction model. The overlay achieves a coequal interaction
and symmetric treatment of both objects. In the most general case, all partitioning
lines are different from each other, and we obtain an overlay partition with 9 central,
bounded tiles (indicated by the continuous segments in Figure 4a) and 16 surround-
ing, unbounded tiles (indicated by the dashed segments). The unbounded tiles are
irrelevant for our further considerations since they do not interact with both ob-
jects. Hence, we exclude them and obtain a grid space for two region objects A and
B that is bounded by the minimum bounding rectangle of the minimum bounding
rectangles of A and B (Definition 4.1). This is in contrast to the partitions of all
other tiling-based models that are unbounded and subdivide R2 completely.

Definition 4.1. Let A,B ∈ region with A ̸= ∅ and B ̸= ∅, and let minr
x =

min{x | (x, y) ∈ r}, max r
x = max{x | (x, y) ∈ r}, minr

y = min{y | (x, y) ∈ r}, and
max r

y = max{y | (x, y) ∈ r} for r ∈ {A,B}. Then the objects interaction grid space
(OIGS ) of A and B is given as

OIGS(A,B) = {(x, y) ∈ R2 |min(minA
x ,minB

x ) ≤ x ≤ max(maxA
x ,maxB

x ) ∧
min(minA

y ,minB
y ) ≤ y ≤ max(maxA

y ,maxB
y )}
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(a) 3× 3-OIG (b) 3× 2-OIG (c) 3× 1-OIG

(d) 2× 3-OIG (e) 2× 2 OIG (f) 2× 1-OIG

(g) 1× 3-OIG (h) 1× 2-OIG (i) 1× 1-OIG

Fig. 5. Examples of the nine possible sizes of objects interaction grids (a)-(i)

Definition 4.2 determines the bounded grid formed as a part of the partitioning
lines and superimposed on OIGS (A,B).

Definition 4.2. Let minx = min(minA
x ,minB

x ), maxx = max(maxA
x ,maxB

x ),
miny = min(minA

y ,minB
y ), and maxy = max(maxA

y ,maxB
y ). Let further seg

be a function that constructs a segment between any two given points p, q ∈
R2, that is, seg(p, q) = {t | t = (1 − λ)p + λq, 0 ≤ λ ≤ 1}. We define
Hr = {seg((minx,minr

y), (maxx,minr
y)), seg((minx,max r

y), (maxx,max r
y))} and

Vr = {seg((minr
x,miny), (minr

x,maxy)), seg((max r
x,miny), (max r

x,maxy))} for r ∈
{A,B}. We call the elements of HA, HB , VA, and VB objects interaction grid
segments. Then the objects interaction grid (OIG) for A and B is given as

OIG(A,B) = HA ∪ VA ∪HB ∪ VB .

This definition implicitly comprises the specification of all grids that can arise.
In the most general case, if HA ∩HB = ∅ and VA ∩ VB = ∅, we obtain a bounded
3×3-grid. Special cases arise if HA∩HB ̸= ∅ and/or VA∩VB ̸= ∅. Then equal grid
segments coincide in the union of all grid segments. As a result, depending on the
relative position of two region objects to each other, objects interaction grids can be
of different size. However, due to the non-empty property of a region object, not all
grid segments can coincide. This means that at least two horizontal grid segments
and at least two vertical grid segments from two region objects must be maintained.
Figure 5 shows examples for all nine possible sizes of objects interaction grids, and
Definition 4.3 gives a corresponding formal characterization.

Definition 4.3. An objects interaction grid OIG(A,B) is of size m × n, with
m,n ∈ {1, 2, 3}, if |HA ∩HB | = 3−m and |VA ∩ VB | = 3− n.

An objects interaction grid OIG(A,B) of size m × n, with m,n ∈ {1, 2, 3}, has
m+ n+ 2 objects interaction grid segments. Further, (4 ≤ m+ n+ 2 ≤ 8) ⇔ (2 ≤
ACM Transactions on Database Systems, Vol. V, No. N, October 2011.
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m+ n ≤ 6) holds.
Anm×n-objects interaction grid partitions the objects interaction grid space into

m · n objects interaction grid tiles (zones, cells) ti,j with 1 ≤ i ≤ m and 1 ≤ j ≤ n.
That is, ti,j is the tile at the ith row and j th column of the grid OIG(A,B). All tiles
are bounded, and two adjacent tiles share a common boundary. Let OIGT(A,B)
be the set of all tiles ti,j imposed by OIG(A,B) on OIGS(A,B).

4.2 The Objects Interaction Matrix: Representing the Interaction of Objects

By applying our tiling strategy, an objects interaction grid can be generated for any
two complex (and therefore also for any two simple) region objects A and B. Such a
grid provides us with the valuable information which region object intersects which
tile. In Section 4.2.1, we first introduce a so-called objects interaction function that
determines the interaction of each object with each tile of an objects interaction
grid. The complete interaction of A and B with their objects interaction grid
is then summarized in an objects interaction matrix. Since not all matrices are
realizable for two complex region objects, Section 4.2.2 determines the valid objects
interaction matrices for them. Section 4.2.3 performs the same task for two simple
region objects. Cardinal directions only make sense if they are determined for valid
objects interaction matrices.

4.2.1 Objects Interaction Function and Objects Interaction Matrix. Definition 4.4
provides us with a function that determines the interaction of A and B with a par-
ticular tile.

Definition 4.4. Given A,B ∈ region with A ̸= ∅ and B ̸= ∅ and OIGT(A,B).
Let ι be the objects interaction function that encodes the interaction of A and B
with a tile ti,j ∈ OIGT(A,B) and checks whether no region, A only, B only, or
both regions intersect a tile. We define this function as

ι(A,B, ti,j) =


0 if A◦ ∩ t◦i,j = ∅ ∧ B◦ ∩ t◦i,j = ∅
1 if A◦ ∩ t◦i,j ̸= ∅ ∧ B◦ ∩ t◦i,j = ∅
2 if A◦ ∩ t◦i,j = ∅ ∧ B◦ ∩ t◦i,j ̸= ∅
3 if A◦ ∩ t◦i,j ̸= ∅ ∧ B◦ ∩ t◦i,j ̸= ∅

The operator ◦ denotes the point-set topological interior operator and yields a
region without its boundary. For each grid cell ti,j in the ith row and jth column of
an m×n-grid with 1 ≤ i ≤ m and 1 ≤ j ≤ n, we store the coded information in an
objects interaction matrix (OIM ) in cell OIM (A,B)i,j . We thus abstract from the
geometry of the objects interaction grid space and only keep the information which
region intersects which tile. We can do this since directional relationships have a
qualitative and not a quantitative or metric nature. Figure 6 shows the objects
interaction matrix for m = n = 3 as an example.

OIM (A,B) =

 ι(A,B, t1,1) ι(A,B, t1,2) ι(A,B, t1,3)
ι(A,B, t2,1) ι(A,B, t2,2) ι(A,B, t2,3)

ι(A,B, t3,1) ι(A,B, t3,2) ι(A,B, t3,3)



Fig. 6. The Objects Interaction Matrix of a 3×3-Objects Interaction Grid (ι(A,B, ti,j) computes
the interaction of A and B with tile ti,j
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−→

 1 1 0
1 3 2
0 2 2

 −→
(

1 1
0 2

)

(a) (b)

Fig. 7. Examples of mapping objects interaction grids to objects interaction matrices

Since we have nine possible m × n-configurations for objects interaction grids
(m,n ∈ {1, 2, 3}), we have nine possible m×n-configurations for objects interaction
matrices as well. Figure 7 shows two examples of mapping objects interaction grids
to objects interaction matrices. For any two region objects in the plane, we can
generate a unique objects interaction matrix to represent their interaction scenario.
Since each matrix element may have one of the four possible values 0, 1, 2, and 3,
an m×n-objects interaction matrix has 4mn possible different instances. Figure 9a
gives an overview of the potential numbers of matrices depending on the grid size.
The total sum of matrices is

m∑
i=1

n∑
j=1

4ij = 270756

However, not all matrices represent valid interaction scenarios. We call an objects
interaction matrix valid if, and only if, it can be derived from an objects interaction
grid. This encoding ensures the existence of a valid interaction scenario described
by the matrix. For instance, any matrix with a value 0 in all cells (Figure 8a)
is invalid because both operand objects are assumed to be non-empty. Another
example of an invalid matrix is any m×n matrix with n > 1 where the first column
has the value 0 in all its cells (Figure 8b). The reason is that our tiling strategy
would never produce the partitioning lines bounding the first “empty” column but
let them collapse. Hence, the number of columns would decrease by one.
Open questions are now (i) which and how many matrices represent valid ob-

jects interaction matrices for two complex region objects (see Section 4.2.2), and
(ii) which and how many matrices represent valid objects interaction matrices for
two simple region objects (see Section 4.2.3). These two questions are important for
four main reasons. First, we would like to get an indication of the expressiveness of
our tiling strategy and OIM concept. At this point we know that 270756 matrices
can be formed. But we do not know the possible topological structures of two com-
plex/simple regions that represent valid spatial configurations. Second, we would

 0 0 0

0 0 0
0 0 0

 (
0 1

0 3

)
−→

(
1

3

)

(a) (b)

Fig. 8. Examples of invalid matrices
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like to compare the number of valid objects interaction matrices with the number
of valid direction-relation matrices from [Goyal and Egenhofer 2000a]. The DRM
model can represent 218 valid spatial configurations for two simple regions that are
represented by 218 valid direction-relation matrices which are directly mapped to
218 corresponding composite cardinal directions. Third, the interpretation function
should only be applied to valid object interactions matrices that represent existing
spatial real world scenarios. For invalid matrices, the interpretation function also
computes a cardinal direction as a result. But this result is meaningless if the input
is meaningless. This is comparable to an operation that expects correct argument
objects in order to produce meaningful result objects. Incorrect argument objects
would lead to incorrect results. Hence, the interpretation function can check itself
(for example in an implementation) whether its input objects interaction matrix is
valid. Fourth, seeing the problems of directional reasoning with the DRM model
[Goyal and Egenhofer 2000a; Skiadopoulos and Koubarakis 2004], we hope that
the knowledge about the valid objects interaction matrices will lead to a better
understanding of directional reasoning.

4.2.2 Determining the Valid Objects Interaction Matrices for Two Complex Re-
gions. For this purpose, we employ a three-stage proof technique called proof-by-
constraint-grouping-drawing. In a first stage, we determine and prove the correct-
ness of a collection of consistency constraints that can be used to filter out all
impossible matrices that do hence not represent valid objects interaction matrices.
We first specify some general constraints that are independent of any matrix size
and then some special constraints that depend on the matrix size. In a second stage,
we classify the obtained matrices from the first stage into different groups such that,
within each group, matrices can be derived from other matrices in the same group
by applying any combination of the following operations: rotation, flipping, and
role exchange. Further, we prove that if one matrix in a group is valid, then all
matrices in the same group are valid. In a third stage, we verify the correctness
of all matrices by drawing prototypical spatial configurations in R2 only for the
representative matrix selected from each group.

The first stage: filtering out the invalid matrices. We begin with the first
stage, that is, the specification of the general constraints. Let M be a matrix of
size m×n where m,n ∈ {1, 2, 3}. We assume that for any element Mi,j of M , with
1 ≤ i ≤ m and 1 ≤ j ≤ n, we have Mi,j ∈ {0, 1, 2, 3}. If M is a valid m× n-objects
interaction matrix for two complex region objects A and B, it must satisfy the
general constraints specified in Lemmas 4.5 to 4.8.

Lemma 4.5. At least one matrix element of M must carry the value 3, or, al-
ternatively, at least two matrix elements of M must carry the values 1 and 2, that
is,

(∃ 1 ≤ i ≤ m ∃ 1 ≤ j ≤ n :Mi,j = 3) ∨
(∃ (i, j), (i′, j′) ∈ {1, . . . ,m} × {1, . . . , n}, (i, j) ̸= (i′, j′) :

Mi,j = 1 ∧ Mi′,j′ = 2)

Proof. Since A ̸= ∅ and B ̸= ∅ holds, both region objects must intersect at least
one grid cell (tile) and thus be mapped to at least one matrix element. Either they
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intersect the same grid cell reflected by the value 3 in the corresponding matrix
element, or they intersect two different grid cells reflected by the values 1 and 2,
respectively, in the corresponding different matrix elements. 2

Lemma 4.6. The matrix elements of the boundary columns and the boundary
rows of M are not allowed to all carry the value 0, that is,

(∃ 1 ≤ i ≤ m ∃ 1 ≤ j ≤ n :Mi,1 ̸= 0 ∧ M1,j ̸= 0) ∧
(∃ 1 ≤ i ≤ m ∃ 1 ≤ j ≤ n :Mi,n ̸= 0 ∧ Mm,j ̸= 0)

Proof. We assume that M is a valid objects interaction matrix and show the proof
for the left boundary column of M (that is, j = 1). Partitioning lines are defined
as extensions of the minimum bounding rectangle segments of A and B. This, in
particular, implies that each partitioning line and thus each grid segment touches
A and/or B in at least one point. Let us assume that the matrix elements of the
left boundary column of M all carry the value 0. This means that in the objects
interaction grid that has been mapped to M neither A nor B intersect any of the
pertaining boundary grid cells. Consequently, the left vertical grid segment v1 of
the left boundary grid column touches neither A nor B. This is a contradiction
to the definition of a partitioning line and grid segment and violates our tiling
strategy. Hence, such an objects interaction grid cannot exist, and M cannot be a
valid objects interaction matrix. The proofs for the right boundary column as well
as for the boundary rows are similar. 2

Lemma 4.7. No two adjacent columns or two adjacent rows are identical in M ,
that is,

(∀ 1 ≤ i ≤ m− 1 ∃ 1 ≤ j ≤ n :Mi,j ̸=Mi+1,j) ∧
(∀ 1 ≤ j ≤ n− 1 ∃ 1 ≤ i ≤ m :Mi,j ̸=Mi,j+1)

Proof. If there are two identical adjacent columns in M , we have to distinguish
two main cases. The first case is that all matrix elements of both columns are
equal to 0. But then at least one of the columns must be a boundary column since
the matrices have at most three columns, and according to Lemma 4.6 at least
one matrix element of a boundary column must be different from 0. The second,
general case implies that, depending on the number of rows, there are at least one
and at most three pairs of horizontally adjacent matrix elements with the same
value unequal to 0. For each such pair, the objects on the left side and the right
side of the shared and crossing partitioning line of both corresponding adjacent grid
columns are the same. This contradicts to the definition of a partitioning line that
the region object providing it must be located completely at either side of it. The
argumentation for adjacent rows is similar. 2

The following lemmas require three auxiliary functions. The function row(M, i) =
{Mi,1, . . . ,Mi,n} with 1 ≤ i ≤ m returns a set that contains all elements in row i
of M . The function col(M, j) = {M1,j , . . . ,Mm,j} with 1 ≤ j ≤ n returns a set
that contains all elements in column j of M . The boundary rows for the m × n-
matrix M can thus be defined as row(M, i) with i ∈ {1,m}, and the boundary
columns can be defined as col(M, j) with j ∈ {1, n}. The function cbo, which
stands for “contains both objects”, is a predicate that tests whether a row, or
a column, contains parts from both objects. Let S ⊆ {0, 1, 2, 3} be a set, then
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cbo(S) ⇔ 3 ∈ S ∨ 1, 2 ∈ S. Hence, the predicate cbo(row(M, i)) returns true if the
ith row contains the value 3 or, if this is not the case, both values 1 and 2. Thus,
for example, cbo({1, 2, 3}) = true and cbo({1, 0, 3}) = true. The same applies to
columns.

Lemma 4.8. Two adjacent columns or two adjacent rows in M that each have
at least one matrix element unequal to 0 must contain a matrix element with value
3 or, if this is not the case, two matrix elements with the values 1 and 2, that is,

(∀ 1 ≤ i ≤ m− 1 : (∃ 1 ≤ k, l ≤ n :Mi,k ̸= 0 ∧ Mi+1,l ̸= 0)
⇒ cbo(row(M, i) ∪ row(M, i+ 1))) ∧

(∀ 1 ≤ j ≤ n− 1 : (∃ 1 ≤ k, l ≤ m :Mk,j ̸= 0 ∧ Ml,j+1 ̸= 0)
⇒ cbo(col(M, j) ∪ col(M, j + 1)))

Proof. We assume two adjacent columns in M that both have at least one matrix
element with a value unequal to 0. Further, we assume that the constraints of the
lemma do not hold, that is, the two columns do neither contain a matrix element
with the value 3 nor two matrix elements with the values 1 and 2. Then we can
distinguish two cases. The first case is that the two adjacent columns only contain
matrix elements with the values 1 or 0. This implies that no components of B lie
in the two adjacent columns. Thus the partitioning line shared by the two adjacent
columns does not belong to B but to A. Since each of the two adjacent columns has
at least one matrix element unequal to 0, A lies on the both sides of the partitioning
line. This contradicts to the definition of a partitioning line. The second case is
that the two adjacent columns only contain matrix elements with the values 2 or
0. The proof is similar as before. Similarly, we can show the proof for two adjacent
rows. 2

In the following Lemmas 4.9 to 4.13, we identify additional matrix-size specific
constraints for m × n-objects interaction matrices of different size. We skip the
formulation of constraints for 3× 2-, 3× 1-, and 2× 1-objects interaction matrices
and consider their symmetric counterparts only. The reason is that for proving their
correctness we can always first determine the transpose of each of these matrices
and then check the transpose against one of the following matrix-specific lemmas.
If the transpose fulfils (fails) the respective lemma, the original matrix fulfils (fails)
it too. In case of the 1×1-objects interaction matrix, which represents the situation
that the minimum bounding rectangles of A and B are identical, the matrix element
can only carry the value 3 to represent both objects. The values 0, 1, and 2 are not
allowed. But this constraint is already covered by Lemma 4.5.

Lemma 4.9. If M is a 3 × 3-objects interaction matrix, the matrix elements of
each boundary column and each boundary row may neither carry the value 3 nor
the two values 1 and 2, that is,

(∀ i ∈ {1,m} : ¬cbo(row(M, i)) ∧ (∀ j ∈ {1, n} : ¬cbo(col(M, j))

Proof. Assuming that a matrix element of a boundary column ofM has the value 3,
this means that a tile of the corresponding boundary grid column is intersected by
both A and B. Since the tile is part of the boundary grid column, A and B would
share a common partitioning line (v1 for the left and v4 for the right boundary
grid column) and thus a common grid segment. But this is in contradiction to the
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fact that a 3 × 3-objects interaction matrix does not have coinciding partitioning
lines. The argumentation is the same if two different matrix elements of a boundary
column have the values 1 and 2 respectively. The proof is similar for boundary rows.

2

Lemma 4.10. If M is a 2× 3-objects interaction matrix, the matrix elements of
each boundary column may neither carry the value 3 nor the two values 1 and 2,
and at most one boundary row may contain a matrix element with the value 3 or,
if this is not the case, two matrix elements with the values 1 and 2, that is,

(∀ j ∈ {1, n} : ¬cbo(col(M, j))) ∧ (∃ i ∈ {1,m} : ¬cbo(row(M, i)))

Proof. The first part follows immediately from Lemma 4.9 since both matrices have
the same number of columns. For the second part we assume that each of the two
(boundary) rows has a matrix element with the value 3 (in the middle column),
or, if this is not the case for a row, two matrix elements with the values 1 and 2.
Hence, each row in the matrix contains both objects A and B. In other words,
both A and B lie on both sides of the horizontal partitioning line h2. This leads to
a contradiction since h2 must be the partitioning line of either A or B. Thus, the
object providing h2 must be completely located at either side of it. 2

Lemma 4.11. If M is a 1× 3-objects interaction matrix, the matrix elements of
the boundary columns may not carry the value 3, that is,

M1,1 ̸= 3 ∧ M1,3 ̸= 3

Proof. This follows immediately from Lemma 4.9 since both matrices have the
same number of columns. 2

Lemma 4.12. If M is a 2× 2-objects interaction matrix, at most one boundary
row and at most one boundary column may contain a matrix element with the value
3 or, if this is not the case, two matrix elements with the values 1 and 2, that is,

(∃ i ∈ {1,m} : ¬cbo(row(M, i))) ∧ (∃ j ∈ {1, n} : ¬cbo(col(M, j)))

Proof. If M contains more than one matrix element with the value 3, then either
both columns contain a matrix element with the value 3, or both rows contain a
matrix element with the value 3. This means that A and B lie on both sides of
the vertical partitioning line v2 shared by both columns, or on both sides of the
horizontal partitioning line h2 shared by both rows. This contradicts the definition
of a partitioning line since v2 and h2 respectively can be a partitioning line of
neither A nor B. 2

Lemma 4.13. If M is a 1 × 2-objects interaction matrix, at most one matrix
element may carry the value 3, that is,

M1,1 ̸= 3 ∨ M1,2 ̸= 3

Proof. The argument is the same as in Lemma 4.12 with respect to columns. 2

So far, in this first stage, we have defined a number of consistency constraints for
removing invalid m× n-matrices that cannot be valid objects interaction matrices
for two complex region objects. In particular, we have shown the soundness and
correctness of these constraints. We have developed a simple program that checks
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n
× 1 2 3
1 4 16 64

m 2 16 256 4096
3 64 4096 262144

n
× 1 2 3
1 1/1 6/6 8/6

m 2 6/6 84/68 216/124
3 8/6 216/124 1132/464

Total: 270756 Total: 1677/805

(a) (b)

Matrices of Size(s) # Matrix Groups

1× 1 1/1
1× 2 and 2× 1 2/2
1× 3 and 3× 1 4/3

2× 2 9/7
2× 3 and 3× 2 34/20

3× 3 115/49

Total: 165/82

(c)

Fig. 9. Numbers of possible m × n-matrices in general (a), numbers of valid objects interaction

matrices for two complex/simple region objects (b), and numbers of matrix groups with respect
to validity testing for two complex/simple region objects (c) depending on the grid/matrix size
and in total

the validity of all 270756 m×n-matrices (see Figure 9a) with respect to the general
and special constraints of the Lemmas 4.5 to 4.13. The result is shown in Figure 9b
and indicates the large reduction of the number of matrices to 1677. But still, due
to space limitations, we cannot show these matrices. We order them so that each
matrix obtains a unique matrix number. The order is given by the matrix size (first
row, then column) and within each size by the increasing 9-digit number to the base
4 obtained as the concatenation of the rows and possibly filled up with zeros at the
beginning. This leads to one 1× 1-matrix with matrix number 1, 6 1× 2-matrices
with the matrix numbers 2 to 7, 8 1 × 3-matrices with the matrix numbers 8 to
15, 6 2× 1-matrices with the matrix numbers 16 to 21, 84 2× 2-matrices with the
matrix numbers 22 to 105, 216 2× 3-matrices with the matrix numbers 106 to 321,
8 3× 1-matrices with the matrix numbers 322 to 329, 216 3× 2-matrices with the
matrix numbers 330 to 545, and 1132 3× 3-matrices with the matrix numbers 546
to 1677.

The second stage: classifying the remaining matrices. Our remaining task is
to show the completeness of the constraints (that is, no further constraint is missing)
and the correctness of the remaining matrices (that is, the remaining matrices
are valid). For this purpose, the general idea of the proof-by-constraint-grouping-
drawing technique is to show for each remaining matrix that a spatial configuration
of two spatial objects A and B together with their corresponding objects interaction
grid exists which represents a real world scenario and can be mapped to the matrix
under consideration. However, the creation of spatial configuration drawings for all
1677 matrices is a tedious effort. Hence, we perform a preprocessing step before and,
in a second stage, classify the remaining matrices into different groups (equivalence
classes) such that, within each group, all matrices can be derived from the other
matrices in the same group by applying any combination of the operations rotation,
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horizontal flipping, vertical flipping, and role exchange. We formally define these
four operations and then prove for each operation that its application to a valid
matrix results in a new valid matrix. A recursive application of these operations
then means that if one matrix in a group is valid, then all matrices in the same
group are valid. Finally, we provide an algorithm that is based on the recursive
application of these four operations and partitions all 1677 matrices into groups.
The advantage of this preprocessing step is that in the third stage discussed below
we only have to draw a spatial configuration and an objects interaction grid for one
selected representative of each group. This leads to a large reduction of drawings,
as we will see.
Definition 4.14 specifies the operation rota that rotates any m×n-matrix by 90◦

around its right lowermost matrix element. Figure 10a shows an illustration of this
operation; the rotation matrix element is v9. Note that for m ̸= n the matrix size
changes. For example, a 1× 3-matrix is rotated into a 3× 1-matrix.

Definition 4.14. Let M be an m × n-matrix and M ′ be the n ×m-matrix that
we obtain by a clockwise rotation of M by 90◦. The rotation operation rota is then
defined as follows:

M ′ = rota(M)
def⇔ ∀ 1 ≤ i ≤ m ∀ 1 ≤ j ≤ n :M ′

j,m+1−i =Mi,j

While Definition 4.14 holds for arbitrary matrices, Lemma 4.15 shows that the
application of the rotation operation to a valid objects interaction matrix amounts
to a new valid objects interaction matrix.

Lemma 4.15. Let M be a valid objects interaction matrix. Then the matrix M ′

obtained by applying the operation rota to M is also a valid objects interaction
matrix.

Proof. Since, according to our assumption, M is a valid objects interaction matrix
of size m × n, two region objects A and B and their objects interaction grid G =
OIG(A,B) of size m× n must exist such that M = OIM(A,B) is their pertaining
objects interaction matrix. A rotation is an isometry or congruence mapping of the
plane, that is, a linear transformation which preserves length, distance, shape, and
size of spatial objects. Hence, if we rotate A and B clockwise by 90◦, we obtain
congruent region objects A′ and B′ respectively, and their objects interaction grid
G′ = OIG(A′, B′) is congruent to G, obtained by a clockwise rotation of G by 90◦,
and of size n×m. This means that for all 1 ≤ i ≤ m and for all 1 ≤ j ≤ n each tile
ti,j ∈ OIGT(A,B) with the corresponding object parts of A and B is rotated and
mapped to a tile tj,m+1−i ∈ OIGT(A′, B′) with the corresponding rotated object
parts of A′ and B′. This rotated spatial configuration exists and can therefore be
mapped to a valid objects interaction matrix M ′ by a clockwise rotation of M by
90◦. This clockwise rotation is obtained by the assignment that ι(A′, B′, tj,m+1−i)
is set to ι(A,B, ti,j), that is, a matrix rotation is ι-preserving. 2

Definition 4.16 defines the two operations hflip for horizontal flipping and vflip
for vertical flipping that mirror any matrix along a vertical axis and a horizontal
axis respectively. Figures 10b and 10c illustrate both operations.

Definition 4.16. Let M be an m×n-matrix and M ′ and M ′′ be m×n-matrices
that we obtain by flippingM with respect to its vertical axis and horizontal axis re-
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 v1 v2 v3
v4 v5 v6
v7 v8 v9

 rotation−−−−−→

 v7 v4 v1
v8 v5 v2
v9 v6 v3

  v1 v2 v3
v4 v5 v6
v7 v8 v9

 horizontal−−−−−−→
flipping

 v3 v2 v1
v6 v5 v4
v9 v8 v7


(a) (b) v1 v2 v3

v4 v5 v6
v7 v8 v9

 vertical−−−−−→
flipping

 v7 v8 v9
v4 v5 v6
v1 v2 v3

  v1 v2 v3
v4 v5 v6
v7 v8 v9

 role−−−−−−→
exchange

 v1 v2 v3
v4 v5 v6
v7 v8 v9


(c) (d)

Fig. 10. The operations rotation (a), horizontal flipping (b), vertical flipping (c), and role-
exchange (vi = if vi ∈ {0, 3} then vi else if vi = 1 then 2 else 1) (d).

spectively. The operations hflip for horizontal flipping and vflip for vertical flipping
are then defined as follows:

M ′ = hflip(M)
def⇔ ∀ 1 ≤ i ≤ m ∀ 1 ≤ j ≤ n :M ′

i,n+1−j =Mi,j

M ′′ = vflip(M)
def⇔ ∀ 1 ≤ i ≤ m ∀ 1 ≤ j ≤ n :M ′′

m+1−i,j =Mi,j

Lemma 4.17 shows that both flipping operations map a valid objects interaction
matrix into a new valid objects interaction matrix.

Lemma 4.17. Let M be a valid objects interaction matrix. Then the matrices
M ′ and M ′′ obtained by applying the operations hflip and vflip respectively to M
are also valid objects interaction matrices.

Proof. The argumentation is very similar to the proof of Lemma 4.15 since horizon-
tal flipping and vertical flipping are also isometries, that is, congruence mappings,
in the plane. The main differences consist in the preservation of the matrix size
of m × n and in the manner how tiles are exchanged. For horizontal (vertical)
flipping, for all 1 ≤ i ≤ m and for all 1 ≤ j ≤ n, a tile ti,j ∈ OIGT(A,B) with the
corresponding object parts of A and B is flipped to a tile ti,n+1−j ∈ OIGT(A′, B′)
(tm+1−i,j ∈ OIGT(A′, B′)) with the corresponding flipped object parts of A′ and
B′. Thus, the horizontally and vertically flipped spatial configurations exist and
can be mapped to valid objects interaction matrices M ′ and M ′′ respectively that
are obtained by horizontal flipping and vertical flipping ofM . The horizontal (verti-
cal) flipping ofM toM ′ (M ′′) is obtained by the assignment that ι(A′, B′, ti,n+1−j)
(ι(A′, B′, tm+1−i,j)) is set to ι(A,B, ti,j). Hence, flipping is ι-preserving too. 2

Definition 4.18 specifies the operation role ex that swaps the spatial object names
A and B and thus their encodings 1 and 2 and is applied to one of the remaining
1677 matrices. Figure 10d illustrates this operation.

Definition 4.18. LetM be one of the 1677 m×n-matrices andM ′ be the m×n-
matrix that we obtain by changing the roles of the two interacting spatial objects
A and B in M . The operation role ex is then defined as follows:

M ′ = role ex (M)
def⇔ ∀ 1 ≤ i ≤ m ∀ 1 ≤ j ≤ n :M ′

i,j =


0 if Mi,j = 0

1 if Mi,j = 2

2 if Mi,j = 1

3 if Mi,j = 3
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Lemma 4.19 shows that swapping the roles of A and B in a valid objects inter-
action matrix results in a new valid objects interaction matrix.

Lemma 4.19. Let M be a valid objects interaction matrix. Then the matrix M ′

obtained by applying the operation role ex to M is also a valid objects interaction
matrix.

Proof. Since M is a valid objects interaction matrix, two region objects A and
B and their objects interaction grid G = OIG(A,B) must exist such that M =
OIM(A,B) is their objects interaction matrix. The role-exchange operation does
not change or even invalidate a spatial configuration since only region object names
are exchanged while the geometries remain unaltered. Due to the preservation of
the object geometries, a role exchange does also not have influence on the objects
interaction grid which remains the same. Thus, the spatial configuration after a
role exchange exists and can therefore be mapped to a valid objects interaction
matrix M ′ by exchanging the matrix values 1 (encoding for A) and 2 (encoding for
B) in M . The matrix elements 0 and 3 remain unaltered. 2

In summary, we have shown in Lemmas 4.15 to 4.19 that the application of one
of the operations rota, hflip, vflip, and role ex to a valid objects interaction matrix
yields a new valid objects interaction matrix. Lemma 4.20 makes the conclusion
that any composition (iterative application) of these operations with respect to a
valid objects interaction matrix leads to a valid objects interaction matrix.

Lemma 4.20. Let M be a valid objects interaction matrix. The composition
of the operations rota, hflip, vflip, and role ex to M in any order and with any
quantity yields a valid objects interaction matrix M ′.

Proof. Let n ∈ N be an arbitrary natural number, and let ω1, ω2, . . . , ωn ∈
{rota, hflip, vflip, role ex}. Further, let M ′ = ωn(ωn−1(. . . (ω2(ω1(M))) . . .)) be the
(function) composition of ω1, ω2, . . . , ωn applied to any valid objects interaction ma-
trix M . This means we obtain intermediate matrices Mα1 ,Mα2 , . . . ,Mαn−1 with
α1, . . . , αn−1 ∈ {1, . . . , 1677} as follows:

M
ω1−→Mα1

ω2−→Mα2

ω3−→ . . .
ωn−1−−−→Mαn−1

ωn−−→M ′

According to the Lemmas 4.15 to 4.19, Mα1
must be a valid objects interaction

matrix. But if Mα1 is a valid objects interaction matrix, then, due to the same
lemmas, Mα2 must be a valid objects interaction matrix too, and so forth. That
is, all matrices Mα1 ,Mα2 , . . . ,Mαn−1 and finally the target M ′ are valid objects
interaction matrices. 2

Lemma 4.21 forms the basis for our algorithm below to partition all 1677 matrices
into disjoint groups.

Lemma 4.21. The recursive application of the operations rota, hflip, vflip, and
role ex to all 1677 remaining matrices generates an exhaustive and finite partition
of these matrices into disjoint, finite objects interaction matrix groups.

Proof. Our argumentation is constructive: We take repeatedly one of the still
unconsidered 1677 matrices and apply the four operations rota, hflip, vflip, and
role ex to it. For each new matrix obtained we first check whether this matrix has
already been generated before and thus already belongs to a matrix group. If this
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M595 =

 0 0 1
1 3 1
1 0 0

 M694 =

 0 0 2
2 3 2
2 0 0

 M833 =

 0 1 1
0 3 0
1 1 0

 M1039 =

 0 2 2
0 3 0
2 2 0



M1168 =

 1 0 0
1 3 1

0 0 1

 M1266 =

 1 1 0
0 3 0

0 1 1

 M1460 =

 2 0 0
2 3 2

0 0 2

 M1553 =

 2 2 0
0 3 0

0 2 2


Fig. 11. An example of an objects interaction matrix group (subscripts are matrix numbers)

is the case, the recursion for this matrix and search path ends here. Otherwise,
we assign this matrix to the group under construction and recursively repeat this
process and apply the four operations and the matrix checks again. At some point,
this whole recursive process will terminate and lead to a group with finitely many
matrices since the total number of matrices is bounded by 1677. If a group has been
determined, the recursive process is repeatedly applied to another unconsidered
matrix. In total, we obtain a finite number of matrix groups due to the finite
number of available matrices. Further, all matrices are considered since the method
takes into account all 1677 matrices and is thus exhaustive. Different matrix groups
contain different matrices and are thus disjoint. Assume that this is not the case
and that two different groups share exactly one matrix. Then the shared matrix
would generate the matrices of both groups so that both groups would have to
be merged into one group. But this is a contradiction to our assumption of two
different groups. 2

An example of an objects interaction matrix group that consists of eight matrices
is shown in Figure 11. Beginning with any of these eight matrices and by recursively
applying the four operations rota, hflip, vflip, and role ex, we can generate the other
seven matrices in the matrix group. Other matrices cannot be generated. For
instance, beginning with matrix M595, the other seven matrices can be generated
as follows:

M694 = role ex(M595) M833 = hflip(rota(M595))
M1039 = role ex(hflip(rota(M595))) M1168 = hflip(M595)
M1266 = rota(M595) M1460 = rota(hflip(rota(M595)))
M1553 = role ex(rota(M595))

We now present an algorithm (Algorithm 1) that according to Lemma 4.21 par-
titions the 1677 matrices for two complex region objects into matrix groups and
that determines a representative matrix for each group. The algorithm takes an
array ML as input which keeps 1677 records and whose index range represents the
matrix numbers 1 to 1677 (line 1). Each record, called matrix description, stores
an objects interaction matrix oim, an identifier groupid of the group to which the
matrix belongs, a Boolean flag repr that indicates whether the matrix oim is a
representative of a matrix group, and the size of the matrix which is not needed
in the algorithm but later used in Figure 9c to distinguish the matrix groups by
matrix sizes. At the beginning, in all matrix descriptions, the group identifiers
are initialized with 0 indicating that no group has been assigned so far, and the
Boolean flags repr are initialized with false (line 2). A FIFO queue MQ is used as
the underlying data structure to hold all matrices that need to be further examined.
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Algorithm 1: Computation of the objects interaction matrix groups and their
representative matrices
Input: An array ML of 1677 records. Each index between 1 and 1677 is a matrix number.

Each record stores an objects interaction matrix oim, a so far non-assigned groupid

to which the matrix belongs, and a so far non-assigned Boolean value repr marking
this matrix as a representative of a matrix group

Output: The array ML with groupid and repr values for each matrix record determined by
a breadth-first-search (BFS) strategy. As a side-effect, the total number of matrix

groups as well as the representative matrix of each matrix group are printed out.
1 i← 1; n← 1677; gid ← 0;
2 foreach i in 1 . . . n do ML[i].groupid ← 0; ML[i].repr ← false;

3 while i ≤ n do
4 if ML[i].groupid = 0 then // A new matrix group with the representative matrix i
5 gid ← gid + 1; ML[i].groupid ← gid ; ML[i].repr ← true;
6 MQ ← empty(); MQ ← enqueue(MQ ,ML[i].oim);

7 while not isempty(MQ) do // Apply a BFS strategy beginning with matrix i
8 m← dequeue(MQ);
9 mrota ← rota(m); mhflip ← hflip(m); mvflip ← vflip(m); mrole ex ← role ex(m);

10 if unconsidered(ML,mrota ,matrix num) then

11 ML[matrix num].groupid ← gid ; MQ ← enqueue(MQ ,mrota );

12 if unconsidered(ML,mhflip ,matrix num) then
13 ML[matrix num].groupid ← gid ; MQ ← enqueue(MQ ,mhflip);

14 if unconsidered(ML,mvflip ,matrix num) then

15 ML[matrix num].groupid ← gid ; MQ ← enqueue(MQ ,mvflip);

16 if unconsidered(ML,mrole ex ,matrix num) then
17 ML[matrix num].groupid ← gid ; MQ ← enqueue(MQ ,mrole ex );

18 i← i+ 1;

19 println(gid ; “ matrix groups have been identified.”);
20 foreach i in 1 . . . n do
21 if ML[i].repr then

22 println(“Matrix no. ”; i; “ is the representative of matrix group ”; ML[i].groupid);

23 return ML;

It offers the operations empty to create a new queue, enqueue to append a matrix
to the queue, dequeue to access and remove the first matrix of a queue, and isempty
to test whether a queue is empty.
Our algorithm consecutively considers all 1677 matrices (lines 3 and 18). If a

group identifier has already been assigned to the matrix description ML[i], this ma-
trix description is skipped, and the next matrix description ML[i+1] is considered.
Otherwise, if a group identifier has not yet been assigned to this matrix description,
that is, the current group identifier is 0 (line 4), we have found the representative
matrix of a new matrix group to be determined. The reason is that we select that
matrix of a matrix group as the representative matrix for this group that has the
lowest matrix number. Therefore, we increment our currently highest matrix group
number gid, assign the updated group number to the matrix description ML[i], and
mark this matrix as a representative matrix by setting its Boolean value repr to
true (line 5). Next, we have to find all matrices that belong to the same group as
the matrix oim of ML[i]. We first create a new FIFO queue MQ and initialize it
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with the matrix oim of ML[i] (line 6). Afterwards we apply a breadth-first search
(BFS) as our algorithmic strategy (lines 7 to 17). As long as the queue MQ is
not empty, we remove a matrix from its beginning (line 8), apply the four opera-
tions rota, hflip, vflip and role ex to this matrix, and obtain the generated matrices
mrota , mhflip , mvflip , and mrole ex (line 9). For all four matrices we perform the
same actions. The Boolean predicate unconsidered checks for each matrix whether
it has already been considered before and thus already belongs to the same group
(lines 10, 12, 14, 16). If this is the case, the predicate yields false, and this search
path is pruned. Otherwise, as a side-effect, the predicate returns the corresponding
matrix number in the variable matrix num, and the matrix with this matrix num-
ber obtains the current group identifier gid. In addition, this matrix is appended to
MQ for further exploration (lines 11, 13, 15, 17). Finally, for each representative
matrix of a group we have performed a breadth-first search. The termination of
each search is indicated by an empty queue MQ. At the end of the algorithm we
have determined all matrix groups by labeling each matrix accordingly. Besides
returning the updated array ML of matrix descriptions (line 23), as a side effect
of the algorithm, we print out the number of matrix groups found (line 19) and
further output which matrix is the representative matrix of which matrix group
(lines 20 to 22).
For reasons of clarity and simplicity, we have omitted the presentation of a num-

ber of consistency checks. These consistency checks test, for example, whether a
matrix generated by the four operations rota, hflip, vflip and role ex can be actu-
ally found in ML. We did not find any generated matrix outside of ML. Further,
another consistency check tests whether a generated matrix that is found in ML
with a group identifier unequal to 0 has a group identifier that is also unequal to
the current group identifier gid. This would mean that a matrix belongs to two
different groups. But this is excluded by Lemma 4.21. Indeed, we did not find any
generated matrix assigned to two or more matrix groups.
The application of this algorithm leads to the result presented in Figure 9c for

the different matrix sizes. We observe that several matrix groups contain matrices
of different matrix size. The reason is the rotation operation that transforms an
m × n-matrix into an n ×m-matrix. This means that for m ̸= n the matrix size
changes. Further, for all matrix groups that contain m × n-matrices and n ×m-
matrices with m < n, the representation matrix is always an m × n-matrix since
m× n-matrices have a smaller order than n×m-matrices. In total, we obtain 165
matrix groups for the case of two complex region objects.

The third stage: verifying the correctness of the remaining matrices. In
the third and last stage of our proof-by-constraint-grouping-drawing technique, we
have to show the completeness of the constraints and the correctness of the remain-
ing 1677 objects interaction matrices. We perform the validation of all matrices by
drawing prototypical spatial configurations in R2 only for the representative ma-
trices selected from the 165 matrix groups. If we can show that the representative
matrix of a given matrix group is valid, that is, if we can show that a realistic
spatial configuration with two region objects A and B as well as a corresponding
objects interaction grid exists that can be mapped to the objects interaction ma-
trix under consideration, we know that all matrices of this group are valid. This

ACM Transactions on Database Systems, Vol. V, No. N, October 2011.



30 · Markus Schneider, Tao Chen, Ganesh Viswanathan, Hechen Liu

follows from the Lemmas 4.20 and 4.21. In the electronic online appendix, we show
representative objects interaction matrices and prototypical spatial configurations
with their objects interaction grids for all 165 matrix groups. For each represen-
tative matrix, we provide its matrix number, the identifier of the group to which
the matrix belongs, the total number of matrices that belong to this matrix group,
and whether the matrix is only valid for complex regions or also valid for simple
regions. We finally obtain the following result in Theorem 4.22:

Theorem 4.22. A matrixM is a valid objects interaction matrix of two complex
region objects A and B if, and only if, all general constraints of the Lemmas 4.5 to
4.8 and all special constraints of the Lemmas 4.9 to 4.13 are fulfilled by M .

4.2.3 Determining the Valid Objects Interaction Matrices for Two Simple Re-
gions. Due to their simple structure, simple region objects have always attracted
particular interest among researchers in spatial information science. As we have
seen in Section 2, most available cardinal direction models are based on simple
spatial objects. Although our model is more general, we now consider the case of
simple regions as a special case of complex regions in order to be able to compare
our approach to others.
Beside the constraints in Lemmas 4.5 to 4.13, an additional constraint identifies

those matrices among the 1677 objects interaction matrices for two complex region
objects that are also valid for two simple region objects. A simple region object
(see Figure 1c) is defined as a bounded, regular closed set homeomorphic (that is,
topologically equivalent) to a closed disc in R2 [Schneider and Behr 2006]. This,
in particular, means that it has a connected interior, a connected boundary, and a
connected exterior. Hence, it is not allowed to consist of several components, and
it must not have holes.
The added constraint is given by the additional characteristic property of a simple

region object that it is 4-connected in an objects interaction grid. Intuitively, this
means that it can only intersect grid cells that are horizontally or vertically adjacent
to at least one other grid cell that it intersects. Transferred to a corresponding
objects interaction matrix, this means that for a simple region object A (B), each
matrix element with a value 1 (2) or 3 can only have horizontally or vertically
adjacent matrix elements with the value 1 (2) or 3. Definition 4.23 defines the
concept of 4-connectedness in an m× n-matrix.

Definition 4.23. Let M be an m×n-objects interaction matrix for two complex
region objects A and B, and let CM = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. We call
the values of CM matrix element positions. Two matrix element positions (i, j)
and (k, l) are 4-adjacent with respect to A (B) if, and only if, ((k = i ∧ |l − j| =
1) ∨ (|k − i| = 1 ∧ l = j)) ∧ Mi,j ,Mk,l ∈ {1, 3} ({2, 3}). A 4-path in CM

with respect to A (B) is a sequence of matrix element positions m1, . . . ,mk with
2 ≤ k ≤ mn such that mi and mi+1 are 4-adjacent with respect to A (B) for all
1 ≤ i < k. A set C ⊆ CM is 4-connected with respect to A (B) if for every pair
mp,mq of matrix element positions in C there is a 4-path from mp to mq in C with
respect to A (B).

Lemma 4.24 applies Definition 4.23 to identify those objects interaction matrices
that are also valid for two simple region objects.
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Lemma 4.24. Let M be one of the 1677 m × n-objects interaction matrices for
two complex region objects A and B. Further, let CA = {(i, j) | 1 ≤ i ≤ m, 1 ≤
j ≤ n,Mi,j = 1 ∨ Mi,j = 3} and CB = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n,Mi,j =
2 ∨ Mi,j = 3}. If A and B are simple region objects, then CA must be 4-connected
with respect to A, and CB must be 4-connected with respect to B.

Proof. If CA is not a 4-connected set, it must contain two matrix element positions
that do not have a 4-path connecting them. Two cases are possible. The first case
is that there is not any path at all that connects the two positions. This indicates
that A has a disconnected interior and a disconnected boundary, which contradicts
the definition of a simple region object. The second case is that there is a path
connecting the two matrix element positions but the path involves two consecutive
positions that are diagonally adjacent. This implies that the two positions are
connected at a common corner point only. But this means that A’s interior is
disconnected and contains two components that share exactly one common single
point. This also contradicts the definition of a simple region object. Hence, CA

must be 4-connected with respect to A. The proof for CB is similar. 2

We finally obtain the following result in Theorem 4.25:

Theorem 4.25. A matrix M is a valid objects interaction matrix of two simple
region objects A and B if, and only if, M is a valid objects interaction matrix of
two complex regions and M also satisfies Lemma 4.24.

The numbers right of the slashes in Figure 9b reflect the effect of applying the
two additional constraints of connected interiors, connected boundaries, and con-
nected exteriors as well as 4-connectedness to the 1677 objects interaction matrices
for two complex region objects. The total number of valid objects interaction ma-
trices for two simple region objects is 805, which is a reduction of more than 50%.
Figure 9c shows that the number of matrix groups for two simple region objects is
82, which is also a reduction of more than 50%. In the electronic online appendix,
all representative matrices that are valid for two simple region objects are marked
with a flag s. A comparison of the 805 valid objects interaction matrices with the
218 valid direction-relation matrices [Goyal and Egenhofer 2000a] for two simple
region objects is problematic since the underlying tiling strategies and the underly-
ing semantics of the two kinds of matrices are different. However, we can say that
the OIM model provides a much more fine-grained and complete identification of
the possible valid spatial configurations between two simple regions than the DRM
model.

5. THE INTERPRETATION PHASE OF THE OIM MODEL

The second phase of the OIM model is the interpretation phase (see Figure 3). This
phase takes an objects interaction matrix obtained as the result of the tiling phase
as input and uses it to generate a set of basic cardinal directions as output. This
is achieved by separately identifying the locations of both objects in the objects
interaction matrix and by pairwise interpreting these locations in terms of basic
cardinal directions. The union of all these basic cardinal directions is the result.
In a first step, we define a function loc (see Definition 5.1) that acts on one of the

region objects A or B and their common objects interaction matrix OIM (A,B) and
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determines all locations of components of each object in the matrix. Let Im,n =
{(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. We use an index pair (i, j) ∈ Im,n to represent
the location of the element Mi,j ∈ {0, 1, 2, 3} and thus the location of an object
component from A or B in an m× n-objects interaction matrix.

Definition 5.1. Let M = OIM (A,B) be the m×n-objects interaction matrix of
two region objects A and B. Then the function loc is defined as:

loc(A,M) = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n,Mi,j = 1 ∨ Mi,j = 3}
loc(B,M) = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n,Mi,j = 2 ∨ Mi,j = 3}

For example, in Figure 4b, object A occupies the locations (2,2) and (3,2), and
object B occupies the locations (1,1) and (2,3) in the objects interaction ma-
trix OIM (A,B). Therefore, we obtain loc(A,OIM (A,B)) = {(2, 2), (3, 2)} and
loc(B,OIM (A,B)) = {(1, 1), (2, 3)}.
In a second step, we define an interpretation function ψ to determine the cardinal

direction between any two object components of A and B on the basis of their loca-
tions in the objects interaction matrix. We use a popular model with the nine basic
cardinal directions north (N ), northwest (NW ), west (W ), southwest (SW ), south
(S ), southeast (SE ), east (E ), northeast (NE ), and origin (O) to symbolize the pos-
sible cardinal directions between object components. In summary, we obtain the set
CD = {N,NW,W,SW,S,SE,E,NE,O} of basic cardinal directions. Definition 5.2
provides the interpretation function ψ with the signature ψ : Im,n × Im,n → CD .

Definition 5.2. Given (i, j), (i′, j′) ∈ Im,n, the interpretation function ψ on the
basis of the set CD = {N,NW, W,SW, S,SE,E,NE,O} of basic cardinal directions
is defined as

ψ((i, j), (i′, j′)) =



N if i < i′ ∧ j = j′

NW if i < i′ ∧ j < j′

W if i = i′ ∧ j < j′

SW if i > i′ ∧ j < j′

S if i > i′ ∧ j = j′

SE if i > i′ ∧ j > j′

E if i = i′ ∧ j > j′

NE if i < i′ ∧ j > j′

O if i = i′ ∧ j = j′

For example, in Figure 4b, we obtain that ψ((3, 2), (1, 1)) = SE and ψ((2, 2),
(2, 3)) = W where holds that (2, 2), (3, 2) ∈ loc(A,OIM (A,B)) and (1, 1), (2, 3) ∈
loc(B,OIM (A,B)). Table II called interpretation table shows the possible results
of the interpretation function for all index pairs. We observe two fundamental
properties in this table:

∀ (i, j), (i′, j′) ∈ Im,n : (a) (i, j) = (i′, j′) ⇒ ψ((i, j), (i′, j′)) = O
(b) ψ((i, j), (i′, j′)) = inv(ψ((i′, j′), (i, j)))

The first property maps the cardinal direction of object components of A and
B that are located in the same tile to the origin direction. The second property
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XXXXXXXX(i, j)
(i′, j′)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) O W W N NW NW N NW NW
(1,2) E O W NE N NW NE N NW
(1,3) E E O NE NE N NE NE N
(2,1) S SW SW O W W N NW NW
(2,2) SE S SW E O W NE N NW
(2,3) SE SE S E E O NE NE N
(3,1) S SW SW S SW SW O W W
(3,2) SE S SW SE S SW E O W
(3,3) SE SE S SE SE S E E O

Table II. Interpretation table for the interpretation function ψ

makes use of a converseness function inv : CD → CD and reflects the converseness
of each basic cardinal direction (for example, inv(W) = E, inv(NW) = SE).
In a third and final step, we specify a cardinal direction function named dir which

determines the composite cardinal direction for two region objects A and B. This
function has the signature dir : region × region → 2CD and yields a set of basic
cardinal directions as its result. In order to be able to define the function dir, we first
generalize the signature of our interpretation function ψ to ψ : 2Im,n ×2Im,n → 2CD

such that for any two sets X,Y ⊆ Im,n holds: ψ(X,Y ) = {ψ((i, j), (i′, j′)) | (i, j) ∈
X, (i′, j′) ∈ Y }. We are now able to specify the cardinal direction function dir in
Definition 5.3.

Definition 5.3. Let A,B ∈ region. Then the cardinal direction function dir is
defined as

dir(A,B) = ψ(loc(A,OIM (A,B)), loc(B,OIM (A,B)))

We apply this definition to our example in Figure 4. With loc(A,OIM (A,B)) =
{(2, 2), (3, 2)} and loc(B,OIM (A,B)) = {(1, 1), (2, 3)} we obtain

dir(A,B) = ψ({(2, 2), (3, 2)}, {(1, 1), (2, 3)})
= {ψ((2, 2), (1, 1)), ψ((2, 2), (2, 3)), ψ((3, 2), (1, 1)), ψ((3, 2), (2, 3))}
= {SE,W,SW}

Syntactically, the function dir yields a set of basic cardinal directions. Defini-
tion 5.4 specifies the semantics of the function result (⊗ : region× region → region
denotes the geometric intersection operation between two region objects).

Definition 5.4. Let A,B ∈ region, IAm,n = loc(A,OIM (A,B)), and IBm,n =
loc(B,OIM (A,B)). Then dir(A,B) = {d1, . . . , dk} if the following conditions hold:

(i) k ∈ N, 1 ≤ k ≤ 9
(ii) ∀ 1 ≤ i ≤ k : di ∈ CD
(iii) ∀ 1 ≤ l ≤ k ∃ (i1, j1) ∈ IAm,n ∃ (i2, j2) ∈ IBm,n ∃ r1, r2 ∈ region

∃ ti1,j1 , ti2,j2 ∈ OIGT (A,B) : r1 = A⊗ ti1,j1 ∧ r1 ̸= ∅ ∧
r2 = B ⊗ ti2,j2 ∧ r2 ̸= ∅ ∧ ψ((i1, j1), (i2, j2)) = dl

(iv) ∀ (i1, j1) ∈ IAm,n ∀ (i2, j2) ∈ IBm,n ∃ r1, r2 ∈ region
∃ ti1,j1 , ti2,j2 ∈ OIGT (A,B) : r1 = A⊗ ti1,j1 ∧ r1 ̸= ∅ ∧
r2 = B ⊗ ti2,j2 ∧ r2 ̸= ∅ ∧ ψ((i1, j1), (i2, j2)) ∈ dir(A,B)
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Condition (iii) requires that for all basic cardinal directions dl of the result at
least one region component r1 of A and at least one region component r2 of B exist
that are located in possibly different tiles of the objects interaction grid, are non-
empty, and have the basic cardinal direction dl towards each other. Condition (iv)
ensures that the basic cardinal directions between all region components r1 of A
and r2 of B are contained in the result set. Using the result from dir(A,B), we can
say regarding Figure 4 that “Object A is partly southeast, partly west, and partly
southwest of object B”.
In the same manner, we can also determine the inverse cardinal direction, that

is, the cardinal direction between B and A, for the example above:

dir(B,A) = ψ({(1, 1), (2, 3)}, {(2, 2), (3, 2)})
= {ψ((1, 1), (2, 2)), ψ((1, 1), (3, 2)), ψ((2, 3), (2, 2)), ψ((2, 3), (3, 2))}
= {NW,E,NE}

Similarly, we derive from dir(B,A) that “Object B is partly northwest, partly
east, and partly northeast of object A”. We can see that the results of dir(A,B)
and dir(B,A) are consistent with the converseness property of cardinal directions.
This is an important feature of the objects interaction matrix model.
The following Lemma 5.5 shows that our model satisfies the property of con-

verseness.

Lemma 5.5. Let A,B ∈ region. Then dir(A,B) = inv(dir(B,A)).

Proof. Let dir(B,A) = {inv(d1), . . . , inv(dk)} with dl ∈ CD for all 1 ≤ l ≤ k.
Then there are elements (i′, j′) ∈ IBm,n and (i, j) ∈ IAm,n for all 1 ≤ l ≤ k such that
ψ((i′, j′), (i, j)) = inv(dl). This means inv(ψ((i′, j′), (i, j))) = inv(inv(dl)) = dl
for all 1 ≤ l ≤ k. Using the second property of the interpretation table, we
obtain that ψ((i, j), (i′, j′)) = dl for all 1 ≤ l ≤ k. Since (i, j) ∈ IAm,n is the

first argument and (i′, j′) ∈ IBm,n is the second argument of ψ, this means that
dl ∈ dir(A,B) for all 1 ≤ l ≤ k. It follows that dir(A,B) = inv(dir(B,A)) and
that dir(A,B) = {d1, . . . , dk}. 2

6. COMPARISON OF THE OIM MODEL TO PAST APPROACHES

We now review some of the problems raised in the Sections 1 and 2 and show that
our OIM model overcomes them. As a case study, we take the scenario of the two
countries Argentina and Brazil in Figure 12 and compare the cardinal directions
between them as they result from the different cardinal direction models discussed
in Section 2.
The first problem is the problem of object shapes consideration that leads to mis-

leading and cognitively unexpected results. Models that capture directions between
region objects have evolved from reducing these objects to points, to the use of min-
imum bounding rectangles to approximate their extent, and ultimately to the final
goal of considering their shapes. The point approximation models approximate
spatial objects into points and determine the cardinal direction relations according
to their locations. Table III shows the cardinal directions between Argentina and
Brazil on the basis of different cardinal direction models. While a main part of
Argentina is located southwest of a main part of Brazil, other parts of Argentina
and Brazil are in a different directional relationship to each other. This shows that

ACM Transactions on Database Systems, Vol. V, No. N, October 2011.



Cardinal Directions between Complex Regions · 35

Fig. 12. Determining the cardinal direction between Argentina and Brazil

the cardinal directions derived from point approximation models are too coarse
to represent the spatial reality. In the group of MBR approximation models, the
Directional-Relation Matrix (DRM) model is superior to Papadias’s model due to
the fact that it captures the shape of the target object. However, it only represents
an intermediate step between the MBR model and our final goal of full shape con-
sideration because only the shape of one object is considered and the shape of the
other object does not contribute at all. The OIM model that we propose in this
paper is the first model that considers the shapes of both region objects.
Unlike in Papadias’s model and in the 2D string model in which both region ob-

jects play the same role, in the CDR model, the DRM model, Safar’s model as well
as all point approximation models, a target object is tested for intersection against
the tiles created by and around a reference object. As a result, components of the
target object inside different tiles contribute to the final cardinal directions while
the reference object contributes as a whole object. This treatment causes impreci-
sion. Taking the DRM model as an example, let dirDRM (A,B) be the function that
determines the cardinal direction for two simple regions A and B in the DRM model
where A is the target object and B is the reference object. Then the cardinal direc-
tion between Argentina (A) and Brazil (B) is dirDRM (A,B) = {sameLocation, S}.
This is imprecise because for the major part of Brazil, Argentina lies to the south-
west, and it also lies to the west of some part of Brazil. In our OIM model, both

Model α dirα(A,B) dirα(B,A)

Point approximation

Haar {S} {N}
Peuquet {S} {N}
Frank {SW } {NE}

MBR approximation

Papadias {weak bounded south} {weak north}
DRM {sL†, S} {sL†,NW , N,NE , E}
CDR {sL†, S} {sL†,N , E}

2D-string {S} {NW , N,NE}
Abdelmoty {sL†, S} {sL†,N , E}

OIM {S,W,SW , O,SE} {N,E,NE , O,NW }
MBC approximation Safar {sL†, S,W} {sL†,N , E}
† sL means sameLocation (corresponds to the origin (O) in the OIM model)

Table III. Cardinal directions between Argentina (A) and Brazil (B) in Figure 12, as they are
derived from different models
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objects are considered, and thus both contribute to the final cardinal direction.
Our model yields the result dirOIM (A,B) = {SE , S,SW ,W,O}, which captures
the cardinal directions precisely in the sense of Definition 5.4.
The converseness problem is a common problem shared by most of the MBR

approximation models. It means that the models generate inconsistent results
when swapping their operand objects. Table III reveals that Papadias’s model,
the DRM model, the CDR model, the 2D-string model, and Abdelmoty’s model do
not maintain the converseness property, that is, dirα(A,B) ̸= inv(dirα(B,A)) for
α ∈ {Papadias,DRM,CDR, 2D-string,Abdelmoty}. Only the OIM model supports
converseness, that is, dirOIM (A,B) = inv(dirOIM (B,A)). Hence, by applying the
OIM model, we obtain consistent results that correspond to human intuition.
Last but not least, we consider the problem of complex objects support. Most

of the MBR approximation models have originally been designed for simple re-
gions only. Since all these models are based on the minimum bounding rectangle
approximation of at least one object, an extension to complex regions and their
minimum bounding rectangles is feasible without difficulty. However, this proce-
dure usually generates rather poor results. For example, in Figure 4a, if we take
the minimum bounding rectangle of the entire object B, then object A is to the
weak bounded south of object B according to Papadias’s model, and object A is
to the sameLocation and south of object B according to the DRM model. Both
results are imprecise since the western direction of A to one component of B is not
captured. Although variants exist for the models to handle complex objects more
precisely, considerable efforts are required. Our model natively supports complex
objects and is able to yield much more precise results. For the same example in Fig-
ure 4a, our model generates the result dir(A,B) = {SE ,W,SW }, which describes
object A to be partly southeast, partly west, and partly southwest of object B.

7. DIRECTIONAL PREDICATES FOR QUERYING BASED ON THE OIM MODEL

Using the Objects Interaction Matrix model with its tiling phase and its interpreta-
tion phase described in the previous sections, we can identify the cardinal directions
between any two given complex region objects. However, cardinal directions are
not predicates with the signature region × region → bool . To integrate cardinal
directions into spatial databases as selection and join conditions in spatial queries,
directional predicates are needed and have to be formally defined. For example, a
query like “Find all states that are strictly north of Florida” requires a directional
predicate like strictly north of as a selection condition of a spatial join. Assuming
a relation states with attributes sname of type string and loc of type region, we
can express the query in an SQL-like style as follows:

SELECT s1.sname FROM states s1, states s2

WHERE s2.sname = ‘Florida’ and s1.loc strictly_north_of s2.loc;

The dir function, which produces the final cardinal directions between any two
complex region objects A and B, yields a subset of the set CD = {N,NW,W,SW,
S,SE,E,NE,O} of basic cardinal directions. As a result, a total number of 29−1 =
511 cardinal directions can be identified. Therefore, a maximum of 511 directional
predicates can be defined to provide an exclusive and complete coverage of all pos-
sible directional relationships. However, we can assume that users will not be inter-
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ested in such a large, overwhelming, and predefined collection of detailed predicates
since they will find it difficult to distinguish, remember, and handle them. Instead,
a reduced and manageable set of predicates will be preferred. Such a set should
be user-defined and/or application specific since different applications may have
different criteria for the distinction of directional relationships. For example, one
application could require a clear distinction between the cardinal directions north,
northeast, and northwest, whereas another application could abandon a distinction
between the three predicates and regard them all as northern. Thus, flexibility is
needed to enable users to define their own set of directional predicates and select
their own names for these predicates. For this purpose, we provide two levels of
directional predicates. Level 1 comprises so-called existential directional predicates,
and Level 2 contains so-called derived directional predicates. The predicates of
the higher level are derived and built from the predicates of the lower level. All
predicates ease the task of formulating complex direction queries.
Level 1 comprises nine predefined existential directional predicates that we spec-

ify in Definition 7.1 and that ensure the existence of a particular basic cardinal
direction between at least one part of a region object A and at least one part of
a region object B. These predicates provide an interface for users to define their
own derived directional predicates at Level 2. Therefore, we assume that the im-
plementation of the nine existential directional predicates is provided in a spatial
type system (spatial algebra, spatial extension package) and that these predicates
can be embedded into spatial SQL queries.

Definition 7.1. Let A,B ∈ region. Then the existential directional predicates are
defined as

A north of B
def⇔ N ∈ dir(A,B)

A west of B
def⇔ W ∈ dir(A,B)

A south of B
def⇔ S ∈ dir(A,B)

A east of B
def⇔ E ∈ dir(A,B)

A origin with B
def⇔ O ∈ dir(A,B)

A northwest of B
def⇔ NW ∈ dir(A,B)

A southwest of B
def⇔ SW ∈ dir(A,B)

A northeast of B
def⇔ NE ∈ dir(A,B)

A southeast of B
def⇔ SE ∈ dir(A,B)

For example, A north of B returns true if a part of A is located to the north of
a part of B; this does not exclude the existence of other basic cardinal directions
between other parts of A and B. Hence, we have an existential viewpoint.
Lemma 7.2 shows that by using the existential directional predicates and the

logical operators ¬, ∨, and ∧, we can obtain a complete coverage and mutual
distinction of all possible 511 basic and composite cardinal directions from the OIM
model based on the set CD. This will enable users to define any set of composite
directional predicates for their own needs and applications.

Lemma 7.2. Let ⟨d1, d2, d3, d4, d5, d6, d7, d8, d9⟩ = ⟨N ,W ,S ,E ,O ,NW ,SW ,NE ,
SE ⟩ be the list of basic cardinal directions, and let ⟨p1, p2, p3, p4, p5, p6, p7, p8, p9⟩ =
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⟨north of, west of, south of, east of, origin with, northwest of, southwest of, north-
east of, southeast of⟩ be the list of existential directional predicates. Let further
A,B ∈ region. Then for any basic or composite cardinal direction provided by
dir(A,B), the following Boolean expression returns true:∧

1≤i≤9
di∈dir(A,B)

pi ∧
∧

1≤j≤9
dj∈CD−dir(A,B)

¬pj

Proof. The set dir(A,B) contains all basic cardinal directions that hold between
parts of A and parts of B. Hence, for each such basic cardinal direction, the pertain-
ing unique existential directional predicate must hold according to Definition 7.1.
This is stated in the first operand of the Boolean expression. Since the valid exis-
tential directional predicates do not exclude the remaining ones, which correspond
to the basic cardinal directions that are in the set CD but not in the set dir(A,B),
this exclusion has to be explicitly expressed by negating the remaining existential
directional predicates. This is stated by the second operand. 2

For example, if dir(A,B) = {W,NW , N}, this corresponds to the unique Boolean
expression

A west of B ∧ A northwest of B ∧ A north of B ∧
¬(A northeast of B) ∧ ¬(A east of B) ∧ ¬(A southeast of B) ∧
¬(A south of B) ∧ ¬(A southwest of B) ∧ ¬(A origin with B)

Hence, each of the 29 − 1 possible sets that dir(A,B) can produce corresponds
to a unique Boolean expression containing the nine either non-negated or negated
existential directional predicates. At least one existential directional predicate must
be non-negated.
Based on the nine existential predicates from Level 1, users can specify their

own derived directional predicates at Level 2. Derived directional predicates are
composite directional predicates that are built using one or more of the existen-
tial directional predicates and other already defined derived directional predicates.
As examples, we provide six categories of derived directional predicates, namely
similarly-oriented directional predicates, capped directional predicates, strict direc-
tional predicates, strict similarly-oriented directional predicates, strict capped di-
rectional predicates, and surround directional predicates. These categories are de-
scribed in the following.

Similarly-oriented directional predicates. The first category comprises derived di-
rectional predicates that contain three existential directional predicates with a sim-
ilar general orientation as well as possibly other basic cardinal directions. Ori-
entation refers to a combination of one primary basic cardinal direction from
{north, south,west, east} and two “adjacent” secondary basic cardinal directions
from {northwest,northeast, southwest, southeast}. This leads to the four similarly-
oriented directional predicates northern of, southern of, western of, and eastern of.
Definition 7.3 shows the specification of the predicate northern.

Definition 7.3. Let A,B ∈ region. Then the similarly-oriented directional pred-
icate northern is defined as:
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A northern of B
def⇔ A north of B ∨ A northwest of B ∨

A northeast of B

The other three similarly-oriented directional predicates are defined in an anal-
ogous manner. Note again that other possible basic cardinal directions are not
excluded since no statement is made about them. The disjunction of the three ex-
istential directional predicates allows several possible cardinal directions in north-
ern direction. This can be expressed by the following equivalent definition of the
predicate northern of :

A northern of B
def⇔ ∃C ∈ {{N}, {NW}, {NE}, {N,NW}, {N,NE},

{NW,NE}, {N,NW,NE}} : C ⊆ dir(A,B)

Capped directional predicates. The second category includes the derived directional
predicates north cap of, south cap of, west cap of, and east cap of. They contain a
set of “adjacent” existential directional predicates which form the shape of a “cap”
such that a region object A half surrounds a region object B. Definition 7.4 shows
the specification of the predicate north cap of. The other three capped directional
predicates are defined in an analogous manner.

Definition 7.4. Let A,B ∈ region. Then the capped directional predicate
north cap of is defined as:

A north cap of B
def⇔ A west of B ∧ A northwest of B ∧ A north of B ∧

A northeast of B ∧ A east of B

Strict directional predicates. The third category comprises derived directional
predicates that are stricter than the other predicates since two region ob-
jects A and B may only be in one basic cardinal direction to each other.
Definition 7.5 shows the specification of the predicate strictly north of. The
other strict directional predicates strictly south of, strictly east of, strictly west of,
strictly origin with, strictly northeast of, strictly northwest of, strictly southeast of,
and strictly southwest of are defined in an analogous manner.

Definition 7.5. Let A,B ∈ region. Then the strict directional predicate
strictly north of is defined as:

A strictly north of B
def⇔ A north of B ∧

¬(A south of B) ∧ ¬(A west of B) ∧
¬(A east of B) ∧ ¬(A northwest of B) ∧
¬(A northeast of B) ∧ ¬(A southwest of B) ∧
¬(A southeast of B) ∧ ¬(A origin with B)

Strict similarly-oriented directional predicates. The fourth category comprises de-
rived directional predicates that are the strict versions of the similarly-oriented
directional predicates in the first category. This means that two region objects A
and B are arranged in exactly one general orientation. Definition 7.6 shows the
specification of the strict similarly-oriented directional predicate strictly northern.
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Definition 7.6. Let A,B ∈ region. Then the strict similarly-oriented directional
predicate strictly northern of is defined as:

A strictly northern of B
def⇔ A northern of B ∧

¬(A west of B) ∧ ¬(A southwest of B) ∧
¬(A south of B) ∧ ¬(A east of B) ∧
¬(A southeast of B) ∧ ¬(A origin with B)

In other words, if A is strictly northern of B, then we obtain dir(A,B) ∈ {{N},
{NW}, {NE}, {N,NW}, {N,NE}, {NW,NE}, {N,NW,NE}}. The remaining direc-
tional predicates strictly eastern of, strictly western of, and strictly southern of are
defined in an analogous manner.

Strict capped directional predicates. The fifth category comprises derived directional
predicates that are the strict versions of the capped directional predicates in the
second category. This means that two region objects A and B are in exactly
one “capped” orientation with respect to each other. Definition 7.7 shows the
specification of the strict capped directional predicate strictly north cap of. The
other strict capped directional predicates strictly east cap of, strictly west cap of,
and strictly south cap of are defined in an analogous manner.

Definition 7.7. Let A,B ∈ region. Then the strict capped directional predicate
strictly north cap of is defined as:

A strictly north cap of B
def⇔ A north cap of B ∧

¬(A origin with B) ∧ ¬(A southwest of B) ∧
¬(A south of B) ∧ ¬(A southeast of B)

Surround Directional Predicates. The sixth and final category of directional predi-
cates contains the single predicate surrounds. Its meaning is that two region objects
A and B are in multiple cardinal direction relations to each other, with one object
totally enveloping the other.

Definition 7.8. Let A,B ∈ region. Then the directional predicate surround is
defined as:

A surrounds B
def⇔A north of B ∧ A northeast of B ∧ A east of B ∧
A southeast of B ∧ A south of B ∧ A southwest of B ∧
A west of B ∧ A northwest of B ∧ A origin with B

As we have seen, all derived directional predicates are defined on the basis of
the existential directional predicates given in Definition 7.1. We have proposed
the derived directional predicates here only as examples. It is up to the users to
define their own predicates and to select their own predicate names according to
their needs and their applications. But for this purpose, they need data definition
language (DDL) support in SQL in order to be able to specify their own directional
predicates and then to use them in SQL queries. We propose a new CREATE DIRPRED

clause that enables users to syntactically specify derived directional predicates in
an easy manner. For this, we employ the logical operators &, |, and ~ for the logical
conjunction, disjunction, and negation of parameterless Boolean functions. Since
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all directional predicates are binary predicates, we omit their arguments for reasons
of simplicity and better readability. As examples we show the SQL specification of
the directional predicates northern of, strictly northern of, and strictly surrounds.
The latter predicate has not been defined before and is the strict version of the
predicate surrounds with the difference that the first operand region may not be
located within the origin.

CREATE DIRPRED northern_of

(north_of | northwest_of | northeast_of)

CREATE DIRPRED strictly_northern_of

(northern_of & ~west_of & ~southwest_of & ~south_of &

~east_of & ~southeast_of & ~origin_with)

CREATE DIRPRED strictly_surrounds

(north_of & northeast_of & east_of & southeast_of & south_of &

southwest_of & west_of & northwest_of & ~origin_with)

We have not used the logical operators AND, OR, and NOT provided by SQL for the
specification of CREATE DIRPRED clauses since they apply to parameterized Boolean
expressions. We show the relationship between the logical operators &, |, and ~ and
the logical SQL operators AND, OR, and NOT for the first clause with A,B ∈ region:

(north of | northwest of | northeast of)(A,B) ⇔
(north of(A,B) OR northwest of(A,B) OR northeast of(A,B))

The use of the directional predicates in SQL queries is quite standard and there-
fore familiar to the user. However, the semantics that can be expressed by these
predicates can be quite different and powerful. We show this expressiveness in a
scenario of the states and national parks in the U.S. and use the relation tables

states(sname:string, area:region)

national_parks(pname:string, area:region)

The schemas make use of the spatial data type region. This scenario also demon-
strates that our OIM model cannot only be based on a Cartesian coordinate system
but also on a geographic coordinate system representing coordinates by means of
latitudes and longitudes. In our scenario, we consider the latitude lines and lon-
gitude lines along the earth surface as the reference horizontal and vertical lines
to compute the partitioning lines for the objects interaction grid. We pose the
following queries:

Q1: Determine the states that are western of the state of Wyoming.

SELECT S2.sname FROM states S1, states S2

WHERE S1.sname = ‘Wyoming’ AND S2.area western_of S1.area

Q2: Determine the states that are located exclusively western of the state of Wyoming.

SELECT S2.sname FROM states S1, states S2

WHERE S1.sname = ‘Wyoming’ AND S2.area strictly_western_of S1.area

Q3: Determine the states that are both western of and southern of the state of
Wyoming.

ACM Transactions on Database Systems, Vol. V, No. N, October 2011.



42 · Markus Schneider, Tao Chen, Ganesh Viswanathan, Hechen Liu

(a) (b)

(c) (d)

Fig. 13. Results for the queries Q1 (a), Q2 (b), Q3 (c), and Q4 (d).

SELECT S2.sname FROM states S1, states S2

WHERE S1.sname = ‘Wyoming’ AND

S2.area western_of S1.area AND S2.area southern_of S1.area

Q4: Determine the states that are partly to the west of and partly to the south of
the state of Wyoming.

SELECT S2.sname FROM states S1, states S2

WHERE S1.sname = ‘Wyoming’ AND

S2.area west_of S1.area AND S2.area south_of S1.area

Q5: Determine the national parks that are at least northern or eastern of Tennessee.

SELECT P.pname FROM national_parks P, states S

WHERE S.sname = ‘Tennessee’ AND

(P.area northern_of S.area OR P.area eastern_of S.area)

Q6: Determine the national parks that are only northern or eastern of Tennessee.

SELECT P.pname FROM national_parks P, states S

WHERE S.sname = ‘Tennessee’ AND

(P.area strictly_northern_of S.area OR

P.area strictly_eastern_of S.area)

Q7: Determine the national parks that surround Tennessee.

SELECT P.pname FROM national_parks P, states S

WHERE S.sname = ‘Tennessee’ AND P.area surrounds S.area

The first four queries are illustrated in Figure 13. Q1 returns the eight states
WA, MT, OR, ID, CA, NV, UT, and AZ (Figure 13a). Due to the existential
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character of the western of predicate, a state can also be in another directional
relationship to Wyoming. For example, MT is also north of WY. Q2 has the more
restricted query condition strictly western of ; thus, the three states MT, UT, and
AZ are excluded because they have parts that are either north of state WY, south
of state WY, or together with a part of state WY in the origin O (Figure 13b).
The state ID, however, shares the border with WY that is defined by the longitude
line between them. Hence, the directional relationship strictly western of holds
for them. The result of Q3 shows that only UT, AZ, CA, and NV are to the
western and to the southern of WY (Figure 13c). Q4 finds out that only UT is to
the west and to the south of WY (Figure 13d). Q5 requires the existence of any
northern or southern direction so that a national park is located in that direction
to Tennessee. This query admits other directional relationships too. Q6 looks
exclusively for a northern or eastern direction of a national park to Tennessee.
Q7 asks for surrounding national parks. It is possible that a national park and
Tennessee share the origin O. The use of the predicate strictly surrounds would
prevent this.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have laid the foundation of a novel concept, called Objects Inter-
action Matrix (OIM), for determining cardinal directions between complex region
objects. After a discussion of the available cardinal direction models and a deter-
mination of their weaknesses, we have introduced and formally defined our OIM
model that consists of a tiling phase and an interpretation phase and solves all the
identified problems of previous approaches. We have shown how different kinds of
directional predicates can be derived from this model and how these predicates can
be employed in spatial queries in an SQL-like query language.
In the future, we plan to extend our approach to handle two complex point

objects, two complex line objects, and all mixed combinations of spatial data types.
As long as complex point objects and complex line objects as operand objects have
a two-dimensional extent and thus non-degenerate minimum bounding rectangles,
the concepts presented in this article can be applied to them. However, special cases
like horizontal and vertical line objects as well as complex point objects whose points
are collinear on a horizontal or vertical line cannot be handled by the OIM model.
A further important research issue refers to the design of efficient algorithms for
the directional predicates based on the OIM model.
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Appendix: Representative OIM Matrices and Prototypical Spatial Configurations

In this appendix, we show the representative objects interaction matrices and proto-
typical spatial configurations with their objects interaction grids for all 165 matrix
groups representing 1677 objects interaction matrices. For each representative ma-
trix, we provide its matrix number (in italics), the identifier of the group to which
the matrix belongs (in bold), the total number of matrices that belong to this
matrix group (in parentheses), and whether the matrix is only valid for complex
regions (c) or also for simple regions (s).
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) 104(16) c 607(
0 0 1

2 2 0
0 1 1

) 105(16) c 608(
0 0 1

2 2 1
0 1 0

)

106(16) s 609(
0 0 1
2 2 1

0 1 1

) 107(8) c 610(
0 0 1
2 3 0

0 0 1

) 108(16) c 612(
0 0 1
2 3 0

0 1 1

) 109(8) c 613(
0 0 1
2 3 0

0 2 0

) 110(8) c 615(
0 0 1
2 3 0

2 2 0

)

111(8) s 616(
0 0 1
2 3 1

0 0 1

) 112(16) s 617(
0 0 1
2 3 1

0 1 0

) 113(16) s 618(
0 0 1
2 3 1

0 1 1

) 114(16) s 619(
0 0 1
2 3 1

0 2 0

) 115(8) s 620(
0 0 1
2 3 1

2 0 0

)

116(16) s 621(
0 0 1
2 3 1
2 2 0

) 117(4) c 730(
0 1 0
1 0 2
0 2 0

) 118(8) c 731(
0 1 0
1 0 2
0 2 2

) 119(8) c 732(
0 1 0
1 1 2
0 2 0

) 120(8) s 733(
0 1 0
1 1 2
0 2 2

)
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121(2) c 741(
0 1 0

1 2 1
0 1 0

) 122(8) c 742(
0 1 0

1 2 1
0 1 1

) 123(8) c 743(
0 1 0

1 2 1
0 2 0

) 124(8) c 745(
0 1 0

1 2 1
1 0 1

) 125(8) c 747(
0 1 0

1 2 1
1 1 1

)

126(8) c 751(
0 1 0

1 2 2
0 2 2

) 127(16) c 753(
0 1 0

1 2 2
1 1 0

) 128(2) s 761(
0 1 0

1 3 1
0 1 0

) 129(8) s 762(
0 1 0

1 3 1
0 1 1

) 130(8) s 763(
0 1 0

1 3 1
0 2 0

)

131(8) s 765(
0 1 0
1 3 1

1 0 1

) 132(8) s 767(
0 1 0
1 3 1

1 1 1

) 133(4) s 770(
0 1 0
1 3 2

0 2 0

) 134(8) s 771(
0 1 0
1 3 2

0 2 2

) 135(16) s 773(
0 1 0
1 3 2

1 1 0

)

136(2) c 776(
0 1 0
2 0 2

0 1 0

) 137(4) c 784(
0 1 0
2 1 2

0 1 0

) 138(8) c 788(
0 1 0
2 1 2

2 0 2

) 139(8) s 790(
0 1 0
2 1 2

2 2 2

) 140(2) s 813(
0 1 0
2 3 2

0 1 0

)

141(8) s 817(
0 1 0
2 3 2
2 0 2

) 142(8) s 819(
0 1 0
2 3 2
2 2 2

) 143(8) c 848(
0 1 1
1 2 0
1 0 1

) 144(16) c 850(
0 1 1
1 2 0
1 1 1

) 145(4) c 857(
0 1 1
1 2 1
1 1 0

)
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146(8) s 858(
0 1 1

1 2 1
1 1 1

) 147(8) c 864(
0 1 1

1 3 0
1 0 1

) 148(16) s 866(
0 1 1

1 3 0
1 1 1

) 149(4) s 873(
0 1 1

1 3 1
1 1 0

) 150(8) s 874(
0 1 1

1 3 1
1 1 1

)

151(4) s 876(
0 1 1

2 0 1
2 2 0

) 152(8) s 880(
0 1 1

2 1 1
2 2 0

) 153(4) s 901(
0 1 1

2 3 1
2 2 0

) 154(2) c 1187(
1 0 1

0 2 0
1 0 1

) 155(8) c 1189(
1 0 1

0 2 0
1 1 1

)

156(8) c 1197(
1 0 1
0 2 1

1 1 1

) 157(2) c 1203(
1 0 1
0 3 0

1 0 1

) 158(8) c 1205(
1 0 1
0 3 0

1 1 1

) 159(8) c 1213(
1 0 1
0 3 1

1 1 1

) 160(4) c 1227(
1 0 1
1 2 1

1 0 1

)

161(8) s 1229(
1 0 1
1 2 1

1 1 1

) 162(4) s 1243(
1 0 1
1 3 1

1 0 1

) 163(8) s 1245(
1 0 1
1 3 1

1 1 1

) 164(2) s 1375(
1 1 1
1 2 1

1 1 1

) 165(2) s 1391(
1 1 1
1 3 1

1 1 1

)


