
ar
X

iv
:1

30
5.

04
53

v1
 [

cs
.C

C
]

 2
 M

ay
 2

01
3

COMPLEXITY THEORY FOR OPERATORS IN ANALYSIS

AKITOSHI KAWAMURA AND STEPHEN COOK

Abstract. We propose an extension of the framework for discussing the computational
complexity of problems involving uncountably many objects, such as real numbers, sets and
functions, that can be represented only through approximation. The key idea is to use
(a certain class of) string functions as names representing these objects. These are more
expressive than infinite sequences, which served as names in prior work that formulated
complexity in more restricted settings. An advantage of using string functions is that we
can define their size in the way inspired by higher-type complexity theory. This enables us
to talk about computation on string functions whose time or space is bounded polynomially
in the input size, giving rise to more general analogues of the classes P, NP, and PSPACE.
We also define NP- and PSPACE-completeness under suitable many-one reductions.

Because our framework separates machine computation and semantics, it can be applied
to problems on sets of interest in analysis once we specify a suitable representation (en-
coding). As prototype applications, we consider the complexity of functions (operators) on
real numbers, real sets, and real functions. For example, the task of numerical algorithms
for solving a certain class of differential equations is naturally viewed as an operator taking
real functions to real functions. As there was no complexity theory for operators, previous
results only stated how complex the solution can be. We now reformulate them and show
that the operator itself is polynomial-space complete.

1. Introduction

Computable Analysis [3, 24] studies problems involving real numbers from the viewpoint
of computability. Elements of uncountable sets (such as real numbers) are represented by
infinite sequences of approximations and processed by Turing machines. This framework is
applicable not only to the real numbers but also with great generality to other spaces arising
naturally in mathematical analysis. There is a unified way to discuss computability of real
functions, sets of real numbers, operators taking real functions as inputs, and so on.

In contrast, the application of this approach to computational complexity has been limited
in generality. For example, although there is a widely accepted notion of polynomial-time
computable real functions f : [0, 1] → R on the compact interval that has been studied
extensively [16], the same approach does not give a nice class of real functions on R. Most
of the complexity results in computable analysis to date (with a few exceptions [7, 21, 25])
are essentially limited to the complexity of either real functions with compact domain, or
of bounded subsets of R. They do not address the complexity of, say, an operator F that
takes real functions f : [0, 1] → R to another real function F (f). There are many positive
and negative results [14] about such operators, but typically they are stated in the form

if f is in the complexity class X , then F (f) is in complexity class Y , and
there is f in complexity class X such that F (f) is hard for Z.

More direct statements would be the “uniform” or “constructive” form

the operator F is in class Y , and
the operator F is Z-hard,

A short preliminary version of this work was presented at the 42nd ACM Symposium on Theory of
Computing (STOC 2010).

1

http://arxiv.org/abs/1305.0453v1

2 KAWAMURA AND COOK

where Y and Z are the “higher-order versions” of Y and Z. At the level of computability, it
is common to ask, as soon as we see a non-uniform result, whether it can be made uniform.
For complexity, we cannot even ask this question because we do not know how to formulate
Y and Z. This limitation has been widely recognized; see, for example, [14, pp. 57–58], [25],
and [3, p. 484].

To address this problem, we start with the observation (Section 2) that the aforementioned
limitation has to do with the fact that traditional formulations of computable analysis do
not take into account the “size” of the infinite sequences given to the machine as input. We
then propose (Section 3) an extension on the machine model by replacing infinite sequences
by what we call regular functions on strings. An advantage of using these functions is that
we can define their size in the way suggested by type-two complexity theory [9, 19]. This
enables us to measure the growth of running time (or space) in terms of the input size—
exactly what we do in the usual (type-one) complexity theory. We thus obtain the complexity
classes analogous to P, NP, PSPACE (and function classes FP and FPSPACE) by bounding
the time or space by second-order polynomials in the input size. Analogues of many-one
reductions and NP- and PSPACE-hardness will also be introduced.

We apply this framework to a few specific problems in analysis by using suitable representa-
tions of real numbers, real sets, and real functions (Section 4). For real numbers, the induced
complexity notions turn out to be equivalent to what has been studied by Ko–Friedman [12]
and Hoover [7]. For sets and functions, our approach seems to be the first to provide com-
plexity notions in a unified manner. This is of particular interest, because many numerical
problems in the real world are naturally formulated as operators taking sets or functions.
For example, consider the operator F that finds the solution F (f) of the differential equation
(of a certain class) given by a function f . As mentioned above, the existing non-uniform
results [10, 13] only tell us how complex the solution F (f) can be when f is easy ; precisely,
they say that if f is polynomial-time computable, F (f) is polynomial-space computable and
can be polynomial-space hard. But the practical concern for numerical analysis would be
how hard it is to compute F (i.e., to compute F (f) given f). We formulate and prove the
first result of this kind: F itself is a polynomial-space complete operator. Our contribution
is in introducing the framework making such formulations possible. The technically hard
parts of the proofs of the specific results are already done in the proofs of the non-uniform
versions, and all we need to do is to check that they uniformize in our sense. The original
non-uniform versions are now corollaries of the uniform statements.

Notation and terminology. A multi-valued function (or multi-function) F from a set X
to a set Y is formally a subset of X × Y . For x ∈ X , we write F [x] for the set of y ∈ Y
such that (x, y) belongs to this subset. These y are the “allowable outputs” on input x. We
denote by domF the set of x ∈ X for which F [x] is nonempty. When F [x] is a singleton,
its unique element is denoted by F (x), as usual. If F [x] is a singleton for all x ∈ domF ,
we say that F is a partial function. When in addition domF = X , we say that F is a total
function, or simply a function.

Like some authors [6, 22], we regard computational tasks (problems) as multi-functions.
The classes FP and FPSPACE consist of multi-functions from strings to strings computed
by a machine whose time/space is polynomially bounded. Here, computing a multi-function
is to be interpreted according to the “allowable outputs” semantics mentioned above: A
machine is said to compute F if, on any input x ∈ domF , it outputs some element of F [x].
The classes FP and FPSPACE that we will define later will also consist of multi-functions.

Note that we do not care what happens on inputs outside domF , unlike some authors
who require that such inputs be rejected explicitly. Thus a multi-function can be easy to

COMPLEXITY THEORY FOR OPERATORS IN ANALYSIS 3

compute while having a nasty domain. We also note, however, that allowing domF to be
smaller than X is not so important in the context of time- or space-bounded computation,
because a machine that runs past the bound for some inputs can be modified so that it keeps
track of the time and outputs an error message when it has run out of time or space.

Throughout the paper, Σ∗ denotes the set of finite strings over the alphabet Σ. We will
tacitly assume, depending on contexts, that Σ = {0, 1} or that Σ contains all symbols
appearing in the discussion.

Since our applications mainly involve real numbers, it will be convenient to fix a dense
subset of R and its encoding. For each n ∈ N, let Dn denote the set of strings of the form

(1) sx/100 . . . 0
︸ ︷︷ ︸

n

,

where s ∈ {+,−} and x ∈ {0, 1}∗. Let D =
⋃

n∈NDn. A string in D encodes a number
in the obvious sense—namely, read (1) as a fraction whose numerator and denominator are
integers written in binary with leading zeros allowed. We write JuK for the number encoded
by u ∈ D. The numbers that can be encoded in this way are called dyadic numbers.

2. Type-Two Theory of Effectivity

There are several equivalent formulations for Computable Analysis. One powerful frame-
work is Weihrauch’s Type-Two Theory of Effectivity (TTE) [3, 24]. In this section, we briefly
introduce the infinite sequence model of TTE and discuss some difficulties in dealing with
complexity, which motivate our modification in Section 3.

2.1. Computability. In the usual computability theory, we use some machine model that
computes functions from Σ∗ to Σ∗. To discuss computation on other sets X , we specify an
encoding of X—that is, a rule for interpreting an element of Σ∗ as an element of X .

But we want to deal with uncountable sets, such as the set R of real numbers. Since the
countable set Σ∗ cannot encode them, TTE uses the set ΣN of infinite sequences instead.

Computability of partial functions from ΣN to ΣN is defined using Turing machines. The
machine has an input tape, an output tape, and a work tape, each of which is infinite to
the right. We also assume that the output tape is one-way; that is, the only instruction for
the output tape is “write a ∈ Σ in the current cell and move the head to the right”. The
difference from the usual setting is in the convention by which the machine reads the input
and delivers the output. The input is now an infinite string a0a1 . . . ∈ ΣN, and is written on
the input tape before the computation starts (with the tape head at the leftmost cell). We
say the machine outputs an infinite string b0b1 . . . ∈ ΣN if it never halts and writes the string
indefinitely on the output tape (that is, for each n ∈ N, it eventually writes b0 . . . bn−1 into
the first n cells). This defines a class of (possibly partial) computable functions (without any
time or space bound) from ΣN to ΣN. The definition can be extended to multi-functions A:
we say that a machine M computes A if M , on any input ϕ ∈ domA, always outputs some
element of A[ϕ].

A representation γ of a set X is formally a partial function from ΣN to X which is
surjective—that is, for each x ∈ X , there is at least one ϕ ∈ ΣN with γ(ϕ) = x. We say
that ϕ is a γ-name of x. Computability of multi-functions on represented sets is defined as
follows.

Definition 2.1. Let γ and δ be representations of sets X and Y , respectively. We say that
a machine (γ, δ)-computes a multi-function A from X to Y if it computes the multi-function

4 KAWAMURA AND COOK

ΣN //

γ
��

ΣN

δ
��

X
A

// Y

Figure 1. (γ, δ)-computing a multi-function A.

δ−1 ◦ A ◦ γ given by

(2) (δ−1 ◦ A ◦ γ)[ϕ] =

{

{ψ ∈ dom δ : δ(ψ) ∈ A[γ(ϕ)] } if ϕ ∈ dom γ,

∅ otherwise.

In other words, whenever the machine is given a γ-name of an element x ∈ domA, it must
output some δ-name of some element of A[x] (Figure 1).

As an example, we define a representation ρR of the set R of real numbers by saying that
an infinite string ϕ ∈ ΣN is a ρR-name of x ∈ R if ϕ is of the form u0#u1#u2# . . . (where #
is a delimiter symbol not appearing in the ui) such that ui ∈ D and |JuiK−x| < 2−i for each
i ∈ N. Thus a real number is specified by a list of rational numbers converging to it. It turns
out that ρR is a natural representation with which to discuss computability of real functions.
In particular, ρR is admissible with respect to the usual topology of R [24, Lemma 4.1.6].

To deal with functions of two arguments, we define, for representations γ and δ of sets X
and Y , a representation [γ, δ] of X × Y by [γ, δ](a0b0a1b1 . . .) = (γ(a0a1 . . .), δ(b0b1 . . .)).

Example 2.2. Addition +: R×R→R is ([ρR, ρR], ρR)-computable. For suppose that we are
given names ϕ = u0#u1# . . . and ψ = v0#v1# . . . of real numbers s and t. An approximation
of s+ t with precision 2−m, for each m, is given by Jum+1K + Jvm+1K.

Example 2.3. Multiplication × : R× R→ R is ([ρR, ρR], ρR)-computable. Given names ϕ =
u0#u1# . . . and ψ = v0#v1# . . . of real numbers s and t, let k = max{|u0|, |v0|}. Since
Ju0K and Jv0K are near s and t, and it takes more than k digits to encode a number with
absolute value ≥ 2k, we have |s|, |t| < 2k. Hence, s× t is approximated with precision 2−m

by Jum+k+1K · Jvm+k+1K.

A good thing about the TTE formulation is that, by using suitable representations, we
can discuss computation on many other sets. There are often standard ways to obtain
representations of higher-type objects such as sets and functions. For example, since we
have agreed on the representations ρR of R, we can introduce a canonical representation of
the set C[R] of continuous real functions, and there are reasons to believe that this is the
“right” representation [24, Chapter 3].

2.2. Complexity. Now we start putting time bounds. This means requiring that the nth
prefix of the output be delivered within time bounded polynomially in n (and independently
of ϕ):

Definition 2.4. A machine M runs in polynomial time if there is a polynomial p such that
for all ϕ ∈ ΣN and n ∈ N, the machine M on input ϕ finishes writing the first n symbols of
the output within p(n) steps. Define polynomial space analogously by counting the number
of visited cells on all (input, work and output) tapes.

Can we use this notion to define polynomial-time computability of, say, a real function?

COMPLEXITY THEORY FOR OPERATORS IN ANALYSIS 5

2.2.1. Representations must be chosen carefully. A little thought shows that the simple com-
bination of Definition 2.4 and the representation ρR is useless [24, Examples 7.2.1, 7.2.3]. On
the one hand, the machine M could “cheat” by writing redundant ρR-names: By writing
+10000/100000 instead of +1/10 it gets more time to compute the next approximation. On
the other hand, the machine may suffer by receiving redundant names as input, such as the
one in which the first approximation is too long to even read in time.

This motivates the use of signed digit representation ρsd of R [24, Definition 7.2.4] defined
as follows, forbidding redundancy carefully: dom ρsd consists of sequences ϕ ∈ ΣN of form
ak . . . a1a0 • a−1a−2 . . . for some k, where each ai is either 0, 1 or −1, such that k = 0 or

(ak, ak−1) ∈ {(1, 0), (1, 1), (−1, 0), (−1,−1)}; if this is the case, set ρsd(ϕ) =
∑k

i=−∞ ai · 2
i.

Thus we read the digit sequence as a binary expansion of a real number (with decimal point
•) with digits 0, 1 and −1; we forbid certain patterns in the first two digits of the integer
part in order to exclude redundancy. (See [24, Example 2.1.4.7] for the reason why the usual
binary expansion without the “−1” symbol does not work.)

Let ρsd|
[0,1] denote the restriction of ρsd to (infinite sequences representing) real numbers

in [0, 1]. By Definition 2.4, we know what it means for a real function f : [0, 1] → R

to be polynomial-time (ρsd|
[0,1], ρsd)-computable. This notion turns out to be robust and

equivalent to the widely accepted polynomial-time computability of Ko and Friedman [12],
so we will drop the prefix “(ρsd|

[0,1], ρsd)” from now on. The same goes for polynomial-space
computability, and for functions on compact intervals or rectangles instead of [0, 1] (use
the pairing function as in Examples 2.2 and 2.3). It is routine to verify that, for example,
addition and multiplication +, × : [0, 1] × [0, 1]→ R are polynomial-time computable. For
more interesting results, see Ko’s book [14], survey [16] or Weihrauch’s book [24, Section 7.3].

2.2.2. Difficulties in generalizing to other spaces. Unfortunately, this approach does not ex-
tend much further. For example, a naive extension to real functions on R (instead of [0, 1])
does not work: polynomial-time (ρsd, ρsd)-computability tends to fail for trivial reasons.

Example 2.5. Addition on R (Example 2.2) is not polynomial-time ([ρsd, ρsd], ρsd)-computable.
For suppose that a machine ([ρsd, ρsd], ρsd)-computed it within a polynomial time bound p.
In particular, the machine has to write the first symbol of the output in t := p(1) steps or
fewer. Note that this first symbol must be 1 if the sum is greater than 1, and −1 if the sum
is less than −1. In particular, it must be 1 if the two summands are 2t+100 and −2t+50, and
−1 if they are 2t+50 and −2t+100. However, the machine cannot tell between these two cases,
because it can read at most t symbols of the input in time.

The trouble seems to be that the time bound is independent of the input. Compare
this with the addition of integers (written in binary) by the usual Turing machine. It is in
polynomial time, because a large summand would make the “input size” big and thereby
give the machine more time. For the same thing to happen for addition of the real numbers,
we would need to talk about the “size” of the input and a time bound “polynomial in” it,
but we do not have the notion of size for infinite sequences. We could simply require, as
Hoover [7] and Takeuti [21] did (see Section 4.1), that the time to output the ith bit below
the decimal point may depend polynomially in both i and the logarithm of the absolute value
of the input real number. This would have the same effect as our proposed extension of the
computation model, in this specific case of R—but our point is that we want a coherent
theory of computation that is applicable to other spaces by just switching representations.
There are many objects other than R that we want to give representations to. The objects for
which the infinite string model gives reasonable notions of complexity are limited, compared
to what we can do at the level of computability (see the discussions in Ko [14, pp. 57–58],
Weihrauch [25], and Brattka et al. [3, p. 484]). Because of this limitation, the complexity

6 KAWAMURA AND COOK

1
0

?

S

Figure 2. Computing a set S means that, given (u, v, 0n), one can tell whether the distance
of the point (JuK, JvK) from S is less than 2−n or more than 2 · 2−n.

of operators has been mostly formulated in non-uniform ways. We quote examples of such
theorems below. We will reformulate them uniformly later (Theorems 4.6 and 4.10).

2.2.3. Non-uniform results. The first pair of results are the positive and negative statements
about the operator of taking the convex hull CH (S) of a closed set S ⊆ [0, 1]2.

Polynomial-time computability of a set S ⊆ [0, 1]2 is defined as follows (see e.g. Braver-
man [5] for a discussion), using the usual complexity class P. We say that S is polynomial-time
computable if there is a function ϕ : Σ∗→{0, 1} in P such that, for any n ∈ N and u, v ∈ D,

• ϕ(u, v, 0n) = 1 if dist((JuK, JvK), S) < 2−n, and
• ϕ(u, v, 0n) = 0 if dist((JuK, JvK), S) > 2 · 2−n,

where dist(p, S) := infq∈S‖p − q‖ denotes the Euclidean distance of point p ∈ R
2 from S

(Figure 2). Likewise, S is said to be nondeterministic polynomial-time computable if there
is such a ϕ in NP (recall the asymmetry between the outcomes 1 and 0 in the definition of
NP: we require an easily verifiable certificate for (JuK, JvK) being close to S).

Ko and Yu [17] and Zhao and Müller [26] essentially proved1 the following non-uniform
theorems about the complexity of taking the convex hull of a set.

Theorem 2.6. If a closed set S ⊆ [0, 1]2 is polynomial-time computable, then its convex hull
CH (S) is nondeterministic polynomial-time computable.

Theorem 2.7. Unless P = NP, there exists a closed set S ⊆ [0, 1]2 which is polynomial-time
computable, but whose convex hull CH (S) is not.

For A ⊆ R
d, let C[A] be the set of continuous functions from A to R. The second pair of

results concerns the initial value problem (IVP) of the differential equation

h(0) = 0, h′(t) = g
(
t, h(t)

)
,(3)

where g ∈ C[[0, 1] × R] is given and h ∈ C[0, 1] is the unknown. It is well known (see [10,
beginning of Section 3]) that the solution h exists and is unique if g is Lipschitz continuous
(in the second argument), that is,

(4) |g(t, y0)− g(t, y1)| ≤ L · |y0 − y1|

1Ko and Yu state both the positive and the negative results (Theorems 2.6 and 2.7) for polynomial-time
strong recognizability instead of our computability [17, Corollaries 4.3 and 4.6, respectively], but their proof
almost works for computability as well. For a discussion comparing the two notions, see Braverman [5],
where Ko’s strong recognizability is called weak computability. Zhao and Müller use the polynomial-time
computability equivalent to ours and prove Theorem 2.6 [26, Theorem 4.3]. For the positive part, in fact
they prove a uniform result essentially equivalent to the positive part of our Theorem 4.6 [26, Theorem 4.1].
Although they state the upper bound of “exponential time”, their proof contains the argument that is
necessary to derive the non-uniform NP upper bound (our Theorem 2.7) [26, Lemma 4.2].

COMPLEXITY THEORY FOR OPERATORS IN ANALYSIS 7

for some constant L independent of t, y0, y1. The following results state how complex h can
be, assuming that g is polynomial-time computable. Since polynomial-time computability is
defined only for functions with compact domain, we restrict g to the rectangle [0, 1]× [−1, 1].
If there is a solution h ∈ C[0, 1] whose values stay in [−1, 1] (in which case h is unique, as
mentioned above), we write LipIVP(g) for this h. Thus LipIVP is a partial function from
CL[[0, 1]× [−1, 1]] to C[0, 1], where the former set is the subset of C[[0, 1]× [−1, 1]] consisting
of Lipschitz continuous functions.

Theorem 2.8 ([13, Section 4]2). If g ∈ domLipIVP is polynomial-time computable, then
LipIVP(g) is polynomial-space computable.

Theorem 2.9 ([10, Theorem 3.2]). There is a polynomial-time computable function g ∈
domLipIVP such that LipIVP(g) is polynomial-space complete (in the sense defined in [15]
or [10]).

We can derive from Theorem 2.9 a statement of the form similar to Theorem 2.7:

Corollary 2.10 ([10, Corollary 3.3]). Unless P = PSPACE, there is a real function g ∈
domLipIVP which is polynomial-time computable but LipIVP(g) is not.

3. Using functions as names

We present the main definitions for our framework here.
As we have noticed, the limitations of the approach with the infinite sequences in ΣN have

to do with the fact that they do not carry enough information, and in particular their size is
not defined. We replace ΣN with Reg, a class of string functions which we will use as names
of real numbers, sets and functions3.

In Section 3.1, we introduce the class Reg of regular functions and define what it means
for a machine to compute a multi-function from Reg to Reg. Section 3.2 defines what
it means for such a machine to run in polynomial time or space, thus introducing several
complexity classes of multi-functions on Reg. In Section 3.3, we define reductions between
such multi-functions, and discuss the resulting notions of hardness. Section 3.4 extends this
theory of computation on Reg to that on other sets X by using representations of X by
Reg.

3.1. Computation on regular functions. We say that a (total) function ϕ : Σ∗ →Σ∗ is
regular 4 if it preserves relative lengths of strings in the sense that |ϕ(u)| ≤ |ϕ(v)| whenever
|u| ≤ |v|. We write Reg for the set of all regular functions. For the rest of this paper, we
will be discussing the complexity of multi-functions from Reg to Reg. The motivation for
considering regular functions (rather than all functions from Σ∗ to Σ∗) will be explained in
Section 3.2 where we define their lengths.

Now we begin replacing the role of ΣN (Section 2.1) by Reg. This is a generalization,
because an infinite string a0a1 . . . ∈ ΣN can be identified with a regular function ϕ ∈ Reg

that

(a) takes values of length 1, and
(b) depends only on the length of the argument,

2Ko [13] proved Theorems 2.8 and 2.9 with a condition slightly weaker than Lipschitz continuity. On the
other hand, Ota et al. [20] show that Theorem 2.9 can be strengthened to yield a continuously differentiable
function g.

3Ko’s formulation [14] already uses string functions instead of infinite strings, but it does not take full
advantage of this extension, because queries to these functions are mostly restricted to unary strings 0n.

4(Note added in May 2013) After the publication of this article in a journal, some authors started using
“length-monotone”, which is perhaps a more informative and better terminology.

8 KAWAMURA AND COOK

Machine

u ψ(u)

q ϕ(q)

Oracle

(for some ψ ∈ A[ϕ])

Figure 3. A deterministic machine computing a multi-function A from Reg to Reg.

by setting ϕ(0n) = an. In the following, observe that Definitions 3.1.1 and 3.2 extend their
counterparts in this sense.

It sometimes makes sense to stop the generalization halfway, removing (b) only and keeping
(a). Let Pred ⊆ Reg be the set of {0, 1}-valued regular functions.

Instead of the machine that worked on infinite strings, we use an oracle Turing machine
(henceforth just “machine”) to convert regular functions to regular functions (Figure 3):

Definition 3.1. (1) A deterministic machine M computes a multi-function A from Reg

to Reg if for any ϕ ∈ domA, there is ψ ∈ A[ϕ] such that M on oracle ϕ and any
string u outputs ψ(u).

(2) A nondeterministic machine M computes a multi-function A from Reg to Pred if
for any ϕ ∈ domA, there is ψ ∈ A[ϕ] such that ψ(u) = 1 if and only ifM on oracle ϕ
and string u has at least one accepting computation path.

For the precise conventions for issuing and answering queries, follow any of [9, 14, 19].

3.2. Polynomial time and space. Recall that regular functions are those that respect
lengths in the sense explained at the beginning of Section 3.1. In particular, they map
strings of equal length to strings of equal length. Therefore it makes sense to define the size
|ϕ| : N → N of a regular function ϕ by |ϕ|(|u|) = |ϕ(u)|. It is a non-decreasing function from
N to N.

Now we want to define what it means for a machine to run in polynomial time. Since |ϕ|
is a function, we begin by defining polynomials “in” a function, following the idea of Kapron
and Cook [9]. Second-order polynomials (in type-1 variable L and type-0 variable n) are
defined inductively as follows: a positive integer is a second-order polynomial; the variable n
is also a second-order polynomial; if P and Q are second-order polynomials, then so are
P +Q, P ·Q and L(P). An example is

(5) L
(
L(n · n)

)
+ L

(
L(n) · L(n)

)
+ L(n) + 4.

A second-order polynomial P specifies a function, which we also denote by P , that takes a
function L : N→ N to another function P (L) : N→ N in the obvious way. For example, if
P is the above second-order polynomial (5) and L(x) = x2, then P (L) is given by

(6) P (L)(x) =
(
(x · x)2

)2
+ (x2 · x2)2 + x2 + 4 = 2 · x8 + x2 + 4.

As in this example, P (L) is a (usual first-order) polynomial if L is.

Definition 3.2. A (deterministic or nondeterministic) machine M runs in (second-order)
polynomial time if there is a second-order polynomial P such that, given any ϕ ∈ Reg

as oracle and any u ∈ Σ∗ as input, M halts within P (|ϕ|)(|u|) steps (regardless of the
nondeterministic choices). Define polynomial space analogously by counting the number of
visited cells on all (input, work, output and query) tapes.

This extends Definition 2.4, because when ϕ satisfies (a) (of Section 3.1), the size |ϕ| is
constant, and the bound P (|ϕ|)(|u|) reduces to a (first-order) polynomial in |u|.

COMPLEXITY THEORY FOR OPERATORS IN ANALYSIS 9

Definition 3.3. (1) We write FP (resp. FPSPACE) for the class of multi-functions from
Reg to Reg computed by a deterministic machine that runs in second-order poly-
nomial time (resp. space).

(2) We write P (resp. NP) for the class of multi-functions from Reg to Pred computed
by a deterministic (resp. nondeterministic) machine M that runs in polynomial time.

Note that unlike the type-one counterparts, it is easy to separate FPSPACE from FP and
NP from P, because the former classes contain functions that depend on exponentially many
values of the given oracle.

It is also easy to see that these classes respect the corresponding type-one classes:

Lemma 3.4. (1) Functions in FP (resp. FPSPACE) map regular functions in FP into
FP (resp. FPSPACE into FPSPACE).

(2) Functions in P (resp. NP) map regular functions in FP into P (resp. NP).

Why we use only regular functions. The idea of using second-order polynomials as a bound
on time and space comes from Kapron and Cook’s characterization [9] of Mehlhorn’s class [19]
of polynomial-time computable operators5. This is a class of (total) functionals F : (Σ∗ →
Σ∗) × Σ∗ → Σ∗, but they can be regarded as F : (Σ∗ → Σ∗) → (Σ∗ → Σ∗) by writing
F (ϕ)(x) for F (ϕ, x). Kapron and Cook define the size of ϕ : Σ∗ →Σ∗ by

|ϕ|(n) = max
|u|≤n

|ϕ(u)|, n ∈ N.(7)

Note that our definition of size for regular ϕ is a special case of this. They then defined
the class of polynomial-time functionals in the same way as Definition 3.3.1. (We added
FPSPACE by analogy.)

We have restricted attention to regular functions. This is because, in order to obtain
reasonable complexity notions, it seems necessary for a machine to be able to tell when the
time bound is reached. Note that for usual (type-one) computation, it was easy to find |x|
given x, and thus to clock the machine with the time bound p(|x|) for a fixed polynomial p. In
contrast, finding the value (7) for a given ϕ in general requires exponentially many queries to
ϕ. For regular ϕ, we can easily find |ϕ|(n) for each n, and thus the second-order polynomial
P (|ϕ|)(|u|) is a bound “time-constructible” from ϕ and u.

Imposing regularity is hardly a restriction for our purpose, because our intention is to use
these functions as names of real numbers, sets and functions, and we can simply require
that valid names are those that have been “padded” to be regular. More precisely, there
is an efficient machine that takes as oracles a possibly irregular function ϕ′ and a regular
function ψ dominating its length (i.e., |ϕ′(u)| ≤ |ψ|(|u|) for any string u), and delivers a
regular function ϕ such that |ϕ| = |ψ| and ϕ(u) = ϕ′(u)## . . .#. Thus we use ϕ, instead
of ϕ′, as the name. In many situations we can find such a dominating function ψ.

For later use we define the pairing function for regular functions as follows (we have been
and will be using the tupling functions for strings, which we do not write explicitly): for
ϕ, ψ ∈ Reg, define 〈ϕ, ψ〉 ∈ Reg by setting 〈ϕ, ψ〉(0u) = ϕ(u)10|ψ(u)| and 〈ϕ, ψ〉(1u) =
ψ(u)10|ϕ(u)| (we pad the strings to make 〈ϕ, ψ〉 regular). Let 〈ϕ, ψ, θ〉 = 〈〈ϕ, ψ〉, θ〉, etc.

3.3. Reduction and completeness. Here we define reductions between multi-functions on
Reg and discuss hardness with respect to these reductions.

5Kapron and Cook [9] call them Basic Feasible Functionals or Basic Polynomial-Time Functionals.

10 KAWAMURA AND COOK

B

A

t r

u some v ∈ A[u]

A ≤1
mF B

B

A

t

u some v ∈ A[u]

A ≤1
m B

B

A

r

u some v ∈ A[u]

A ≤1
T B

Figure 4. Reductions between multi-functions A, B on Σ∗.

3.3.1. Reductions. Recall that the usual many-one reduction between multi-functions A, B
from Σ∗ to Σ∗ is defined as follows: we say that A many-one reduces to B (written A ≤1

mF B)
if there are (total) functions r, t ∈ FP such that for any u ∈ domA, we have r(u, v) ∈ A[u]
whenever v ∈ B[t(u)]—that is, we have a function t that converts an input for A to an input
for B, and another function r that converts an output of B to an output of A (Figure 4,
left). The many-one reduction ≤1

m between predicates is defined as the special case where
we do not convert the output, i.e., r(u, v) = v (Figure 4, middle). Since multi-functions over
Reg also get a function as input, the analogous definition of reductions involves one more
converter s:

Definition 3.5. (1) Let A and B be multi-functions from Reg to Reg. We say that A
many-one reduces to B (written A ≤2

mF B) if there are functions r, s, t ∈ FP such
that for any ϕ ∈ domA, we have s(ϕ) ∈ domB and, for any θ ∈ B[s(ϕ)], the function
that maps each string x to r(ϕ)(x, θ(t(ϕ)(x))) is in A[ϕ] (Figure 5, top left).

(2) Let A and B be multi-functions from Reg to Pred. We write A ≤2
m B if there are

functions s, t ∈ FP such that for any ϕ ∈ domA, we have s(ϕ) ∈ domB and, for any
θ ∈ B[s(ϕ)], the function θ ◦ t(ϕ) is in A[ϕ] (Figure 5, top right).

The design of these reductions is somewhat arbitrary. We chose them simply because they
are strong enough for our hardness results (Theorems 4.6 and 4.10). What Beame et al. [2]
call the “many-one reduction” between type-two functions is slightly stronger than ours in
that it passes the string input u not only to t and r but also to s (Figure 5, bottom left).
See the comment after Lemma 3.6 for the reason we did not choose this definition.

Another reasonable notion of reduction is the one on the bottom right of Figure 5:

Definition 3.5 (continued). (3) Let A and B be multi-functions from Reg to Reg (or
to Pred). We say that A Weihrauch reduces to B (written A ≤2

W B) if there are
functions r, s ∈ FP such that for any ϕ ∈ domA, we have r(〈ϕ, ψ〉) ∈ A[ϕ] whenever
ψ ∈ B[s(ϕ)].

This is a polynomial-time version of the continuous reduction used by Weihrauch [23] to
compare the degrees of discontinuity of translators between real number representations (see
also Brattka and Gherardi [4]). Note that, while this reduction is somewhat analogous to the
type-one Turing reduction (Figure 4, right), it also formally resembles the definition of ≤1

mF.
The many-one reduction ≤2

mF is the special case of this reduction ≤2
W where r can query ψ

only once. Beame et al. [2] define an even stronger “Turing reduction”.
In this paper, we will formulate our hardness results mainly using ≤2

mF and ≤2
m because

they give stronger results than ≤2
W would. The advantage and disadvantage of this choice

will be discussed in Section 4.3 after Theorem 4.10 and Corollary 4.11.

COMPLEXITY THEORY FOR OPERATORS IN ANALYSIS 11

B

A

s

t r

(for some ψ ∈ A[ϕ])

y ϕ(y)

x ψ(x)

A ≤2
mF B

B

A

s

t

(for some ψ ∈ A[ϕ])

y ϕ(y)

x ψ(x)

A ≤2
m B

B

A

s

t r

(for some ψ ∈ A[ϕ])

y ϕ(y)

x ψ(x)

A many-one reduces to B

in the sense of [2]

B

A

r

s

(for some ψ ∈ A[ϕ])

y ϕ(y)

x ψ(x)

A ≤2
W B

Figure 5. Reductions between multi-functions on Reg.

3.3.2. Hardness. Now that we have the classes (Definition 3.3) and reductions (Definition
3.5), we can talk about hardness. A multi-function B from Reg to Reg is FPSPACE-≤2

mF-
hard if A ≤2

mF B for every A ∈ FPSPACE. It is said to be FPSPACE-≤2
mF-complete if

moreover it is in FPSPACE. We define NP-≤2
m-hardness of multi-functions from Reg to

Pred similarly (note that NP is not closed under ≤2
mF).

The following lemma states roughly that a C-≤2-hard multi-function B maps some function
ψ ∈ FP∩Reg to a C-≤1-hard function, where C and ≤1 are the type-one versions of the class
C and the reduction ≤2. But since B[ψ] may consist of more than one function, we need to
assert hardness for the multi-function

⋃
(B[ψ]) defined as follows: for a nonempty set F of

(single-valued total) functions from X to Y , we write
⋃
F to mean the multi-function from

X to Y defined by (
⋃
F)[x] = { f(x) : f ∈ F }. Saying that the multi-function

⋃
F is hard

is a stronger claim than saying that each of the functions in F is hard, because the former

12 KAWAMURA AND COOK

requires that one reduction work for all functions in F . We need to state the following lemma
in this stronger form in order to derive Lemma 3.12 later.

Lemma 3.6. (1) Let B be an FPSPACE-≤2
mF-complete multi-function from Reg to Reg.

Then there is ψ ∈ domB ∩ FP such that
⋃
(B[ψ]) is FPSPACE-≤1

mF-complete.
(2) Let B be an NP-≤2

m-complete multi-function from Reg to Pred. Then there is ψ ∈
domB ∩ FP such that

⋃
(B[ψ]) is NP-≤1

m-complete.

Proof. We only prove the first claim (the second claim is similar). There is a function
A ∈ FPSPACE that maps some function ϕ ∈ FP ∩ Reg to an FPSPACE-≤1

mF-complete
function. Since A ≤2

mF B, there are functions r, s, t ∈ FP as in Definition 3.5. By Lemma 3.4,
we have r(ϕ), s(ϕ), t(ϕ) ∈ FP. Let ψ = s(ϕ). Since r(ϕ) and t(ϕ) give a reduction
A(ϕ) ≤1

mF

⋃
(B[ψ]), and A(ϕ) is FPSPACE-≤1

mF-complete,
⋃
(B[ψ]) is also FPSPACE-≤1

mF-
complete. �

We note that Lemma 3.6 would not have been true, if in the definition of reductions we
had fed s with the string input as Beame et al. [2] do (see the comment after Definition 3.5).
For let ≤2

∗ be the reduction which is like ≤2 but feeds s with the string input, and let B be
a C-≤2-complete multi-function. Then the multi-function B′ defined by

domB′ = { 〈constu, ϕ〉 : u ∈ Σ∗, ϕ ∈ domB },(8)

B′[〈constu, ϕ〉] = { constψ(u) : ψ ∈ B[ϕ] },(9)

where constu ∈ Reg denotes the constant function with value u, is C-≤2
∗-complete by the

modified reduction where “s does the job that t used to do”. Yet each one of the values of
B′ is a constant function.

3.3.3. Some complete problems. Let PSPACE be the subclass of FPSPACE consisting of
multi-functions from Reg to Pred. Here we list some NP- and PSPACE-≤2

m-complete prob-
lems. Their completeness can be proved by relativizing the well-known NP- and PSPACE-
≤1

m-completeness in a straightforward way.
We begin with NP-≤2

m-complete problems. For a non-decreasing function µ : N→N, define
µ ∈ Reg by µ(u) = 0µ(|u|). A Boolean formula involving predicate symbol p is an expression
built up inductively from Boolean variables a1, a2, . . . using the connectives f1 ∧ f2, f1 ∨ f2,
¬f1 and p(f1, . . . , fn) (the arity n can vary) for any previously obtained formulas f1, f2,

Lemma 3.7. The following partial functions ntime2, exist2 and sat2 from Reg to Pred

are NP-≤2
m-complete:

• domntime2 consists of all triples 〈M,µ, ϕ〉 such that M is a (program of a) nonde-
terministic (oracle Turing) machine, µ : N→N is non-decreasing, ϕ ∈ Reg, and for
any string u, all computation paths of Mϕ(u) halt in time µ(|u|) (this M is a string,
so we encode it as the constant function taking this string as value). For any such
triple and a string u, we have ntime2(〈M,µ, ϕ〉)(u) = 1 if and only if Mϕ(u) has an
accepting path.

• domexist2 = Pred. For any p ∈ Pred, u ∈ Σ∗ and n ∈ N, we have exist2(p)(u,
0n) = 1 if and only if there is a string v of length n with p(u, v) = 1.

• dom sat2 = Pred. For any p ∈ Pred and any string u, we have sat2(p)(u) = 1
if and only if u is a Boolean formula involving a predicate symbol p and it is made
satisfiable when p is interpreted as p.

If ϕ is a Boolean formula involving predicate symbol p, then an expression of the form

(10) Q1a1. Q2a2. Q3a3 . . . Qkak. ϕ(a1, . . . , ak),

COMPLEXITY THEORY FOR OPERATORS IN ANALYSIS 13

where each Qi is either ∀ or ∃, is called a quantified Boolean formula involving predicate
symbol p. Its truth value is determined in the obvious way relative to the predicate to be
substituted into p.

Lemma 3.8. The following partial functions space2, power2, qbf2 from Reg to Pred are
PSPACE-≤2

m-complete:

• dom space2 consists of all triples 〈M,µ, ϕ〉 such that M is a (program of a) deter-
ministic (oracle Turing) machine, µ : N→N is non-decreasing, ϕ ∈ Reg, and for any
string u, the computation Mϕ(u) uses no more than µ(|u|) tape cells and either ac-
cepts or rejects (thisM is a string, so we encode it as the constant function taking this
string as value). For any such triple and a string u, we have space2(〈M,µ, ϕ〉)(u) = 1
if and only if Mϕ(u) accepts.

• dompower2 consists of all f ∈ Reg that are length-preserving (i.e., |f | = id). For

any such f and a string u, we have power2(f)(u) = 1 if and only if f 2|u|(u) = 0|u|,
where we write fk for f iterated k times.

• domqbf2 = Pred. For any p ∈ Pred and any string u, we have qbf2(p)(u) = 1 if
and only if u is a quantified Boolean formula involving a predicate symbol and it is
made true by p.

3.4. Representations. As we replaced ΣN by Reg, we extend the notion of representations
accordingly: a representation γ of a set X is a surjective partial function from Reg to X .
Computation relative to representations is again formulated by Definition 2.1. This defines
what it means for a multi-function F from X to Y , where X and Y are sets equipped with
representations γ and δ, respectively, to be in (γ, δ)-C, where C is one of the classes we have
defined, such as FP and FPSPACE. This C can be P or NP if dom δ ⊆ Pred. Also, we say
that F is (γ, δ)-C-≤-hard/complete (for C = FPSPACE, NP) if δ−1 ◦F ◦γ (see Definition 2.1)
is C-≤-hard/complete.

3.4.1. Translation and equivalence. Here we discuss how the class (γ, δ)-C and (γ, δ)-C-≤-
hardness depend on the choice of representations γ and δ. For two representations δ and δ′

of the same set, we write δ ≤ δ′ if there is a function F ∈ FP that translates δ to δ′ in the
sense that for all ϕ ∈ dom δ, we have F (ϕ) ∈ dom δ′ and δ(ϕ) = δ′(F (ϕ)). Thus δ is “more
informative” or “less generic” than δ′. It is easy to see the following.

Lemma 3.9. Let C be either FP or FPSPACE. Let γ and γ′ be representations of a set A,
and δ and δ′ be representations of a set B. If γ′ ≤ γ and δ ≤ δ′, then (γ, δ)-C ⊆ (γ′, δ′)-C.

We write γ ≡ γ′ if γ ≤ γ′ and γ′ ≤ γ. Lemma 3.9 implies that the class (γ, δ)-FP is
invariant under replacing γ or δ with ≡-equivalent representations.

By reversing the directions of the translations between γ, γ′ and δ, δ′ in the assumption,
we get the implication between hardness results under different representations:

Lemma 3.10. Let γ and γ′ be representations of a set A, and δ and δ′ be representations
of a set B. If γ ≤ γ′ and δ′ ≤ δ, then a (γ, δ)-FPSPACE-≤2

W-hard multi-function is (γ′, δ′)-
FPSPACE-≤2

W-hard.

Here, ≤2
W is the stronger reduction in Definition 3.5.3 (note that ≤2

mF would not work).

3.4.2. Uniform and non-uniform statements. We say that an element x ∈ X is in γ-C (where
C is a usual complexity class of string functions, such as FP and FPSPACE) if it has a γ-name
in C. It is γ-C-≤-complete (where ≤ is either ≤1

mF, ≤
1
m or ≤1

T) if
⋃
(γ−1[x]) (where ·−1 is the

inverse image, and
⋃

is defined before Lemma 3.6) is C-≤-complete. Lemmas 3.4 and 3.6
yield the following.

14 KAWAMURA AND COOK

Lemma 3.11. Let γ and δ be representations of sets X and Y , respectively.

(1) A partial function F ∈ (γ, δ)-FP maps elements of γ-FP∩domF into δ-FP. Similarly
for FPSPACE and FPSPACE replacing FP and FP.

(2) Suppose that dom δ ⊆ Pred. Then a partial function F ∈ (γ, δ)-P maps elements of
γ-FP ∩ domF into δ-P. Similarly for NP and NP replacing P and P.

Lemma 3.12. Let γ and δ be representations of sets X and Y , respectively.

(1) A (γ, δ)-FPSPACE-≤2
mF-complete partial function F maps some element of γ-FP ∩

domF to a δ-FPSPACE-≤1
mF-complete element of Y .

(2) Suppose that dom δ ⊆ Pred. Then a (γ, δ)-NP-≤2
m-complete partial function F maps

some element of γ-FP ∩ domF to a δ-NP-≤1
m-complete element of Y .

These lemmas will be used in Sections 4.2 and 4.3 to derive the non-uniform theorems
from their uniform counterparts.

4. Applications

As noted in Section 3.1, our formulation can be viewed as a generalization of TTE achieved
by removing the restrictions (a) and (b) on the oracle used as names. In the following three
subsections, we will apply our theory to real numbers, real sets and real functions through
representations ρR, ψ⊚, and δ�, which exploit the removal of (a), (b), and both, respectively.

For representations γ0 and γ1 of X0 and X1, respectively, we can define the representation
[γ0, γ1] of the Cartesian product X0 ×X1 by [γ0, γ1](〈ϕ0, ϕ1〉) = (γ0(ϕ0), γ1(ϕ1)).

4.1. Computation on real numbers. Recall the representation ρR of R by infinite se-
quences (Section 2.1) where a ρR-name of a real number x was a list u0#u1# . . . of rational
numbers JuiK with |JuiK−x| < 2−i. We adopt this in a straightforward way to define a repre-
sentation ρR that encodes real numbers by regular functions (we keep writing ρR by abuse of
notation): we say that ϕ ∈ Reg is a ρR-name of x ∈ R if ϕ(0i) ∈ D and |Jϕ(0i)K − x| < 2−i

for each i ∈ N. Thus we encode the same list in the values ϕ(0i).
We write ρR|

[0,1] for the restriction of ρR to (names of) real numbers in the interval [0, 1]. It
is easy to see that the class (ρR|

[0,1], ρR)-FP coincides with the polynomial-time computability
that was defined in Section 2.2.1 using the signed digit representation ρsd. Recall that in the
definition of ρsd, we needed to forbid redundancy carefully. Now we do not have to worry
too much about defining concise representations.

Moreover, we obtain a reasonable notion of polynomial-time computability of real func-
tions f on R (not just [0, 1]) without additional work: (ρR, ρR)-FP turns out to be a reasonable
class that coincides with the one by Hoover [7], who required that the 2−m-approximation of
the value f(t) should be delivered within time polynomial in m and log|t| (this equivalence
has been essentially observed by Lambov [18]). Another equivalent definition appears in
Takeuti [21], inspired by Pour-El’s approach to computable analysis.

Example 4.1. It is easy to see that binary addition and multiplication on R are in ([ρR, ρR],
ρR)-FP by the algorithms suggested by Examples 2.2 and 2.3.

Example 4.2. The exponential function exp : R→R restricted to [0, 1] is in (ρR|
[0,1], ρR)-FP,

because exp t can be written as the sum of a series which is known to converge fast on [0, 1]
(that is, given a desired precision, the machine can tell how many initial terms it needs to
compute). However, exp on the whole real line R is not in (ρR, ρR)-FP, because it grows too
fast.

COMPLEXITY THEORY FOR OPERATORS IN ANALYSIS 15

Figure 6. The trisector curves between two points.

Example 4.3. The sine function sin : R→R is in (ρR, ρR)-FP. To see this, note that just like
exp in the previous example, sin is polynomial-time computable if restricted to, say, [−4, 4].
It is also possible, given t ∈ R and a desired precision, to find efficiently a number in [−4, 4]
which is close enough to t modulo 2π. We can compute sin t by combining these algorithms.

Example 4.4. A function can belong to (ρR, ρR)-FP without even an explicit description
known. The trisector curves (Figure 6) between the points (0, 1) and (0,−1) in the plane
are the pair of sets C1, C2 ⊆ R

2 such that C1 is the set of points equidistant from (0, 1)
and C2, and C2 is the set of points equidistant from (0,−1) and C1. Asano, Matoušek
and Tokuyama [1] proved that such a pair (C1, C2) exists and is unique (see [8] and [11]
for simpler and more general proofs). They also showed that C1 (as well as C2, which is its
mirror image) is a graph of a function f : R → R which is, in our terminology, in (ρR, ρR)-FP.
They conjecture that these curves are different from any curve that was previously known.

4.2. Computation on real sets.

4.2.1. Representation of real sets. Let A be the set of closed subsets of [0, 1]2. Define the
representation ψ⊚ of A as follows: let ϕ ∈ Pred be a ψ⊚-name of S ∈ A if it satisfies the
two itemized conditions in Section 2.2.3. Note that this representation is more succinct than
the one that we would be able to define using infinite sequences [25, Example 6.9].

Since domψ⊚ ⊆ Pred, it makes sense to talk about ψ⊚-NP and (ψ⊚, ψ⊚)-NP (Section
3.4.2). The following is immediate from the definition of polynomial-time computability in
Section 2.2.3.

Lemma 4.5. A set in A is (nondeterministic) polynomial-time computable if and only if it
is in ψ⊚-P (ψ⊚-NP).

4.2.2. Complexity of the convex hull operator. The operator CH taking convex hulls (Section
2.2.3) is a function from A to A. We can state and prove the following uniform version of
Theorems 2.6 and 2.7. As corollaries to this, we get Theorem 2.6 by Lemmas 3.11.2 and 4.5,
and Theorem 2.7 by Lemmas 3.12.2 and 4.5.

Theorem 4.6. CH is (ψ⊚, ψ⊚)-NP-≤2
m-complete.

Proof. The main technical ideas are already in Ko and Yu’s proof of the non-uniform versions
(Theorems 2.6 and 2.7), so we will only sketch the proof.

That CH belongs to (ψ⊚, ψ⊚)-NP is no surprise: A point p belongs to CH (S) if there are
two points p′ and p′′ in S such that p is on the line segment p′p′′. All we have to do is to
guess p′ and p′′ nondeterministically, with appropriate consideration of precision.

16 KAWAMURA AND COOK

.
Yw

S

?

.
Yw

S

Figure 7. Widget for reducing NP to CH . We have Yw ∈ CH (S) if and only if there is u
such that the slot for (w, u) has a bump. In Ko and Yu’s construction of S, the bumps can
be high (left), and there can be a query that requires the knowledge of B(w, u) for many
u. We make the bumps low (right) in order to make S polynomial-time computable in our
sense.

For hardness, we need to modify the proof slightly, because, as we noted earlier, Ko and
Yu’s original results were about a weaker notion of computability: our computability of sets
demands more in the sense that on query (u, v, 0n), where u, v ∈ D and n ∈ N, if (JuK, JvK)
is within distance 2−n from the set, then we must say 1 (see the definition before Theorems
2.6 and 2.7), whereas for weak computability both 0 or 1 are allowed in this case.

We assume that the reader has Ko and Yu’s proof [17, Corollary 4.6] at hand. The proof
of their Lemma 4.4 begins by taking an arbitrary set A ∈ NP and noting that there are
B ∈ P and a polynomial p such that w ∈ A if and only if (w, u) ∈ B for some string u of
length exactly p(|w|). Relativizing this, we take A ∈ NP, and note that there are B ∈ P and
a second-order polynomial P such that A(ϕ)(w) = 1 if and only if B(ϕ)(w, u) = 1 for some
string u of length P (|ϕ|)(|w|).

We need to provide s and t of Definition 3.5 which reduce A to ψ−1
⊚ ◦CH ◦ ψ⊚. We define

s by describing the set S = ψ⊚(s(ϕ)) for a given ϕ ∈ Reg. The construction is similar to
the original proof, replacing p(n) by P (|ϕ|)(n) and B by B(ϕ).

The original proof constructs, for each string w, the widget in Figure 7 left (or Figure 2
of [17]). In each of the left and right halves, there are exponentially many slots, one for
each u, that have a bump if and only if (w, u) is in B (or B(ϕ) for us). The point of this
construction is that, while the set S is easy to compute, CH (S) is hard in the sense that we
can tell if w is in A (or A(ϕ)) by checking whether the middle point Yw belongs to CH (S).
But this S is not easy in our sense, because in order to answer the query shown in Figure 7,
we need to know B(ϕ)(w, u) for exponentially many u. To avoid this, we make the bumps
low, so they make an angle of at most 45◦ (Figure 7 right). This ensures that any one query
to the ψ⊚-name of S can be answered by checking B(ϕ)(w, u) for at most one (w, u), making
s computable in polynomial time.

The function t queries whether the point Yw is in CH (S) with appropriate precision. Note
that t needs access to ϕ in order to find the location of Yw and the necessary precision. �

4.3. Computation on real functions.

4.3.1. Representation of real functions. We say that a non-decreasing function µ : N → N

is a modulus of continuity of a function f ∈ C[0, 1] if for all n ∈ N and t, t′ ∈ [0, 1] such
that |t − t′| ≤ 2−µ(n), we have |f(t) − f(t′)| ≤ 2−n (Figure 8). Note that any f ∈ C[0, 1] is
uniformly continuous and thus has a modulus of continuity.

COMPLEXITY THEORY FOR OPERATORS IN ANALYSIS 17

2−µ(n)

2−n

1 t

y

y =
f(
t)

Figure 8. Modulus of continuity µ of a real function f ∈ C[0, 1].

Define the representation δ� of C[0, 1] as follows (see Lemmas 4.7 and 4.9 below for the
reasons why we believe δ� to be a natural representation): for µ : N→ N and ϕ ∈ Reg, we
set δ�(〈µ, ϕ〉) = f if and only if µ is a modulus of continuity of f and for every n ∈ N and
u ∈ D, we have v := ϕ(0n, u) ∈ D and |f(JuK)− JvK| < 2−n (the string v may have to have
leading 0s padded in order to make ϕ regular—but this need for padding is inconsequential,
see the penultimate paragraph of Section 3.2; in what follows, we omit this padding in
the description of algorithms). To see that δ�(ϕ) is well-defined, suppose that the above
condition holds for two real functions f and f ′. Let t ∈ [0, 1] be arbitrary. Then for each
n ∈ N, there is u ∈ D with |t− JuK| ≤ 2−µ(n) and thus

|f(t)− f ′(t)| ≤ |f(t)− f(JuK)|+ |f(JuK)− Jϕ(0n, u)K|(11)

+ |f ′(JuK)− Jϕ(0n, u)K|+ |f ′(t)− f ′(JuK)|

≤ 2−n + 2−n + 2−n + 2−n = 2−n+2.

Since n ∈ N was arbitrary, f(t) = f ′(t). Since t ∈ [0, 1] was arbitrary, f = f ′.
Recall that the only reason that a real number can require long ρR-names was having

a large absolute value. In contrast, functions in C[0, 1] may have long δ�-names for two
possible reasons: having big values, and having a big modulus of continuity.

The following lemma says that the complexity of δ�-names of f ∈ C[0, 1] matches the
complexity of f that was discussed in Section 4.1 using the representation ρR:

Lemma 4.7 ([14, Corollary 2.21]). A function in C[0, 1] is polynomial-time (resp. polynomial-
space) computable if and only if it is in δ�-FP (resp. δ�-FPSPACE).

Lemma 4.8. A function in C[0, 1] is PSPACE-complete in the sense of [10, Section 2.2] if
it is δ�-FPSPACE-≤1

mF-complete and has a polynomial modulus of continuity.

Proof. Suppose that f ∈ C[0, 1] is δ�-FPSPACE-≤1
mF-complete and has a polynomial modulus

of continuity µ. Then for any A ∈ PSPACE there are polynomial-time functions t and r that
satisfy the first picture of Figure 4 for any B ∈ δ−1

�
[f]—and thus for any B of the form 〈µ, ϕ〉

(that is, those with this particular polynomial µ in the first component). A query to B can
ask either a value of µ or a value of ϕ, but µ is just a polynomial, so we may assume that t
only asks a query of form “ϕ(0n, v)?”. Thus, given u, an answer in A[u] can be computed by
r from u and a 2−n-approximation of f(JvK). This implies that f is PSPACE-complete. �

The representation δ� of C[0, 1] may look somewhat arbitrary at first sight. Here we
present a property of δ� that seems to make it a “natural” representation. Define the
function Apply : C[0, 1]× [0, 1]→ R by Apply(f, x) = f(x). The following lemma says that
(the ≡-equivalence class of) the representation δ� is the least informative representation of

18 KAWAMURA AND COOK

C[0, 1] that makes Apply efficiently computable (see Section 3.4.1 for the definitions of ≤
and ≡). The proof will appear in a forthcoming paper.

Lemma 4.9. Let δ be any representation of C[0, 1]. Then Apply ∈ ([δ, ρR|
[0,1]], ρR)-FP if and

only if δ ≤ δ�.

The above definitions and lemmas extend to some well-behaved compact domains other
than [0, 1] (we keep writing δ� by abuse of notation). To discuss the complexity of the
operator LipIVP (Section 2.2.3), we define a representation δ�L of the space CL[[0, 1]×[−1, 1]]
of Lipschitz continuous functions by setting δ�L(〈ϕ, 0

L〉) = g if and only if ϕ is a δ�-name of
g and L ∈ N satisfies (4) (regard the string 0L as the constant function whose value is 0L).

4.3.2. Complexity of the operator that solves differential equations. Now we can formulate
the uniform version of Theorems 2.8 and 2.9 as follows (a proof will be given shortly).

Theorem 4.10. LipIVP is (δ�L, δ�)-FPSPACE-≤2
mF-complete.

As corollaries, we have Theorem 2.8 by Lemmas 3.11.1 and 4.7, and Theorem 2.9 by
Lemmas 3.12.1 and 4.8.

The following weaker version of Theorem 4.10, stated with the stronger reduction ≤2
W

from Definition 3.5.3, is slightly easier to prove (see the end of the section):

Corollary 4.11. LipIVP is (δ�L, δ�)-FPSPACE-≤2
W-complete.

As we noted in Lemma 3.10, this is a more robust result in the sense that it is invariant
under replacing representations to ≡-equivalent ones. A drawback is that Corollary 4.11 does
not directly yield Theorem 2.9, because Lemma 4.8 requires FPSPACE-≤1

mF-completeness,
whereas replacing ≤2

mF by ≤2
W in the assumption of 3.12.1 also changes ≤1

mF to ≤1
T in the

conclusion. We can still obtain Corollary 2.10.
The rest of the section is devoted to the proof of Theorem 4.10. The positive part

(LipIVP ∈ (δ�L, δ�)-FPSPACE) will be verified by checking that the proof of Theorem 2.8
can be made uniform. For the hardness, we need to modify slightly the construction in the
original proof of Theorem 2.9 (this modification is not needed if we only want Corollary 4.11).

Proof of Theorem 4.10, computability. Given a δ�L-name 〈µ, ϕ, 0L〉 of g, we need to find a
δ�-name 〈ν, ψ〉 of h = LipIVP(g). Recall that µ is a modulus of continuity of g, and
|Jϕ(0q, u, v)K− f(JuK, JvK)| < 2−q for each u, v ∈ D (such that (JuK, JvK) ∈ [0, 1]× [−1, 1]).

It is easy to find a modulus of continuity ν of h: let ν(n) = n + M , where M ∈ N

is any number such that the values of g always stay in [−2M , 2M]. For example, M =
⌈log2(|Jϕ(ε,+0/1,+0/1)K|+ 1 + 2µ(0))⌉.

To obtain ψ, we apply the forward Euler method with step size 2−p to the approximation
of g with precision 2−q (we will specify p and q shortly). That is, we define an approximation

h̃p,q ∈ C[0, 1] of h by letting h̃p,q(0) = 0 and then defining h̃p,q on [2−pT, 2−p(T + 1)], for
each T = 0, . . . , 2p − 1 inductively, to be linear with slope approximately g(2−pT, h(2−pT)):
formally,

(12) h̃p,q(2
−pT +∆t) = h̃p,q(2

−pT) +∆tJϕ(0q, u, v)K, 0 ≤ ∆t ≤ 2−p,

for some u, v ∈ D with JuK = 2−pT and JvK = h̃p,q(2
−pT). Obviously, we can compute such

a function h̃p,q in space polynomial in p and q in the sense that there is Euler ∈ FPSPACE
such that JEuler (ϕ)(0p, 0q, u)K = h̃p,q(JuK) for every u ∈ D.

Let ψ(0n, u) = Euler(ϕ)(0p, 0q, u), where p = max{µ(n+8L), n+8L+M} and q = n+8L.
We claim that 〈ν, ψ〉 is a δ�-name of h (this proves the desired FPSPACE-computability, since

COMPLEXITY THEORY FOR OPERATORS IN ANALYSIS 19

p and q are bounded polynomially in |ϕ|, µ and n, L). This means that |h̃p,q(t)−h(t)| ≤ 2−n

for any t ∈ [0, 1]. More strongly, we prove, by induction on T = 0, . . . , 2p − 1, that

(13) |h̃p,q(t)− h(t)| ≤ 2−ne4L(t−1)

for all t ∈ [2−pT, 2−p(T +1)]. We may assume (13) for t = 2−pT as the induction hypothesis.

The approximate value h̃p,q(2
−pT+∆t) is defined by (12), whereas the true solution h satisfies

(14) h(2−pT +∆t) = h(2−pT) +

∫ 2−pT+∆t

2−pT

g
(
τ, h(τ)

)
dτ.

The error added by this approximation is

(15)

∣
∣
∣
∣
∆tJϕ(0q, u, v)K−

∫ 2−pT+∆t

2−pT

g
(
τ, h(τ)

)
dτ

∣
∣
∣
∣
≤ 4L2−ne4L(2

−pT−1)∆t,

because
∣
∣Jϕ(0q, u, v)K − g

(
τ, h(τ)

)∣
∣(16)

≤
∣
∣Jϕ(0q, u, v)K− g(JuK, JvK)

∣
∣+

∣
∣g(JuK, JvK)− g(τ, JvK)

∣
∣+

∣
∣g(τ, JvK)− g

(
τ, h(τ)

)∣
∣

≤ 2−q + 2−n−8L + L|JvK − h(τ)|

≤ 2−n−8L + 2−n−8L + L
(
|JvK − h(2−pT)|+ |h(2−pT)− h(τ)|

)

≤ 2−n−8L + 2−n−8L + L
(
2−ne4L(2

−pT−1) + 2−p2M
)

≤ L
(
2−n−8L + 2−n−8L + 2−ne4L(2

−pT−1) + 2−n−8L
)
≤ 4L2−ne4L(2

−pT−1),

where the second, third and fifth inequalities come from p ≥ µ(n + 8L), q ≥ n + 8L,
p ≥ M + n + 8L, respectively. Using (15) and the induction hypothesis, we compare (12)
and (14) to obtain

(17)
∣
∣h̃p,q(2

−pT +∆t)− h(2−pT +∆t)
∣
∣ ≤ 2−ne4L(2

−pT−1) + 4L2−ne4L(2
−pT−1)∆t

= 2−ne4L(2
−pT−1)(1 + 4L∆t) ≤ 2−ne4L(2

−pT−1)e4L∆t = 2−ne4L(2
−pT−1+∆t),

as desired. �

For the hardness, the core part of the proof can be done by relativizing the argument
for the non-uniform version [10]. Since the proof was by reduction from the problem qbf,
we use the relativized version qbf2 from Lemma 3.8. Starting from qbf2, we follow the
construction in [10, Lemma 4.1], which uniformizes and yields the following. Let ιΣ∗ be the
representation of Σ∗ which encodes a finite string u by the constant function with value u.
Let Λ be the set of non-decreasing functions from N to N, and let ιΛ be its representation
defined by ιΛ(ϕ) = ϕ.

Lemma 4.12. Let L ∈ PSPACE. Then there are a second-order polynomial P and a function
G ∈ ([id, ιΛ, ιΣ∗ , ρR|

[0,1], ρR|
[−1,1]], ρR)-FP such that for each ϕ ∈ domL, λ ∈ Λ and u ∈ Σ∗,

the function gϕ,λu : [0, 1]× [−1, 1]→ R defined by gϕ,λu (t, y) = G(ϕ, λ, u, t, y) satisfies

(1) gϕ,λu (0, y) = gϕ,λu (1, y) = 0 for all y ∈ [−1, 1];
(2)

∣
∣gϕ,λu (t, y0)− gϕ,λu (t, y1)

∣
∣ ≤ 2−λ(|u|)|y0 − y1| for any t ∈ [0, 1] and y0, y1 ∈ [−1, 1];

(3) gϕ,λu (t, y) ∈ domLipIVP, and hϕ,λu := LipIVP
(
gϕ,λu

)
satisfies hϕ,λu (1) = 2−P (|ϕ|,λ)(|u|) ·

L(ϕ)(u).

Proof of Theorem 4.10, hardness. Let F ∈ FPSPACE. We need to show that F ≤2
mF δ

−1
�

◦
LipIVP ◦ δ�L. We may assume that F is a total function and that there is a second-
order polynomial Q such that F (ϕ)(v) has length exactly Q(|ϕ|)(|v|) for all ϕ ∈ Reg and

20 KAWAMURA AND COOK

lv,0 lv,1 lv,2 cv

. . .

. . .

copy of g〈v,0〉 copies of g〈v,1〉

Figure 9. Widget for reducing FPSPACE to LipIVP .

v ∈ Σ∗. There is L ∈ PSPACE such that L(ϕ)(v, 0i) equals the ith symbol of F (ϕ)(v) for
any ϕ ∈ Reg, v ∈ Σ∗ and i ∈ {0, 1, . . . , Q(|ϕ|)(|v|) − 1}. Apply Lemma 4.12 to this L to
obtain the P and G, and let gϕ,λu and hϕ,λu be as in the Lemma.

We define s (of Definition 3.5) by describing the real function g = δ�L(s(ϕ)) ∈ CL[[0, 1]×
[−1, 1]] for a given ϕ. It has Lipschitz constant 1. It will be straightforward to check that a
δ�-name (and hence a δ�L-name) of g can be FP-computed from ϕ. We write gu and hu for
the gϕ,λu and hϕ,λu corresponding to this given ϕ and λ(k) = 3k + 2.

For each binary string v, let

cv = 1−
1

2|v|
+

2v + 1

22|v|+2
, l∓v = cv ∓

1

22|v|+2
,(18)

where v ∈ {0, . . . , 2|v|−1} means v interpreted as an integer in binary notation. This divides
[0, 1) into intervals [l−v , l

+
v] indexed by v ∈ {0, 1}∗. We further divide the left half [l−v , cv] into

Q(|ϕ|)(|v|) + 1 subintervals [lv,0, lv,1], [lv,1, lv,2], . . . , [lv,Q(|ϕ|)(|v|)−1, lQ(|ϕ|)(|v|)], [lv,Q(|ϕ|)(|v|), cv],
where

lv,i = cv −
1

22|v|+22i
, i = 0, 1, . . . , Q(|ϕ|)(|v|).(19)

On each strip [lv,i, lv,i+1]× [−1, 1], we define g by putting the copies of g(v,0i) as in Figure 9.
Precisely,

(20) g

(

lv,i +
t

22|v|+22i+1
,
2m+ (−1)my

2γ(|v|,i)

)

=
22|v|+22i+1

2γ(|v|,i)
g(v,0i)(t, y)

for each t ∈ [0, 1] and m ∈ N, y ∈ [−1, 1], where the polynomial γ is defined by γ(|v|, 0) =
2|v|+3 and γ(|v|, i+1) = γ(|v|, i)+P (|ϕ|, λ)(|(v, 0i)|)+2. On the last strip [lv,Q(|ϕ|)(|v|), cv]×
[−1, 1], we define g to be constantly 0. On the right half [cv, l

+
v], we define g symmetrically:

g(l+ − t, y) = −g(l− + t, y) for 0 ≤ t ≤ 1/22|v|+2. Because of this symmetry, the function
h := LipIVP(g) takes value 0 at each l∓v , and it can be verified, using (3) of Lemma 4.12,
that for i = 0, . . . , Q(|ϕ|)(|v|) inductively,

h(lv,i) =
i−1∑

j=0

h(v,0j)(1)

2γ(|v|,j)
=

i−1∑

j=0

L(ϕ)(v, 0j)

2γ(|v|,j)2P (|ϕ|,λ)(|(v,0i)|)
=

i−1∑

j=0

4L(ϕ)(v, 0j)

2γ(|v|,j+1)
.

In particular, the number h(cv) = h(lv,Q(|ϕ|)(|v|)) =
∑Q(|ϕ|)(|v|)−1

j=0 4L(ϕ)(v, 0j)/2γ(|v|,j+1) con-

tains the values L(ϕ)(v, 0j) for all j < Q(|ϕ|)(|v|), from which we can recover F (ϕ)(v).
The reducing functions r and t (of Definition 3.5) perform this lookup. That is, t(ϕ)(v) =

COMPLEXITY THEORY FOR OPERATORS IN ANALYSIS 21

(0γ(|v|,Q(|ϕ|)(|v|)), w) with JwK = cv, and r(ϕ) is the function that, given the encoding of (an
approximation of) h(cv), extracts the value F (ϕ)(v). �

In [10, Theorem 3.2], the non-uniform version of Lemma 4.12 was used to construct a
function that proved Theorem 2.9. We needed a different construction, because for our
Theorem 4.10 (with the reduction ≤2

mF), we needed to get the values L(ϕ)(v, 0j) for all
j < Q(|ϕ|)(|v|) in one query. For Corollary 4.11 (with the reduction ≤2

W), we are allowed
to make many queries, so the straightforward uniformization (without stacking the copies of
g(v,0i) vertically) would have worked.

5. Summary and future work

• To discuss computational complexity in the framework of TTE, we replace ΣN, the
infinite strings, by Reg, a class of functions from strings to strings. This is a gen-
eralization in two ways: these functions (a) can have values of arbitrary length, and
(b) take string arguments, rather than just unary strings.

• For time and space bounds we use second-order polynomials in the input size, which
are defined in the way suggested by type-two complexity theory. We defined classes
P, NP and FP, FPSPACE. With a suitable notion of polynomial-time reductions, we
can also define NP- and FPSPACE-completeness. Formulating other classes is left for
future work.

• To apply this to problems involving real numbers, we introduced representations ρR,
ψ⊚ and δ� of real numbers, sets and functions. Both aspects (a) and (b) of our gen-
eralization were useful. With respect to these representations, we showed that taking
the convex hull of a set is NP-complete, and that solving a Lipschitz continuous ordi-
nary differential equation is FPSPACE-complete. These are uniform versions of what
have been known non-uniformly, and tell us more about the hardness of numerical
problems in practice. An interesting direction for further investigation is to ask which
other known non-uniform results about operators do (or do not) uniformize. One can
also look at known computability results and ask whether analogous statements hold
true for time- or space-bounded classes.

Acknowledgements

We thank Vasco Brattka, Kaveh Ghasemloo, Ken Jackson, Toni Pitassi, Bill Weiss and anony-
mous referees for comments on this and related manuscripts which helped improve the presentation.
We also thank Keiko Imai and Yu Muramatsu for providing the image of the trisector curves (Fig-
ure 6). During this research, the first author was supported by the Nakajima Foundation and by
the Grant-in-Aid for Scientific Research (Kakenhi) 23700009; both authors were supported by the
Natural Sciences and Engineering Research Council of Canada.

References

[1] T. Asano, J. Matoušek, and T. Tokuyama. The distance trisector curve. Adv. Math.,
212(1):338–360, 2007.

[2] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi. The relative complexity of
NP search problems. J. Comput. Syst. Sci., 57(1):3–19, 1998.

[3] V. Brattka, P. Hertling, and K. Weihrauch. A tutorial on computable analysis. In S. B. Cooper,
B. Löwe, and A. Sorbi, editors, New Computational Paradigms: Changing Conceptions of What

is Computable, pages 425–491. Springer, 2008.
[4] V. Brattka and G. Gherardi. Weihrauch Degrees, Omniscience Principles and Weak Com-

putability. J. Symbolic Logic, 76(1):143–176, 2011.

22 KAWAMURA AND COOK

[5] M. Braverman. On the complexity of real functions. In Proc. 46th Annual IEEE Symposium

on Foundations of Computer Science, pages 155–164, 2005.
[6] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University

Press, 2008.
[7] H. J. Hoover. Feasible real functions and arithmetic circuits. SIAM J. Comput., 19(1):182–204,

1990.
[8] K. Imai, A. Kawamura, J. Matoušek, D. Reem, and T. Tokuyama. Distance k-sectors exist.

Comput. Geom., 43(9):713–720, 2010.
[9] B.M. Kapron and S.A. Cook. A new characterization of type-2 feasibility. SIAM J. Comput.,

25(1):117–132, 1996.
[10] A. Kawamura. Lipschitz continuous ordinary differential equations are polynomial-space com-

plete. Comput. Complexity, 19(2):305–332, 2010.
[11] A. Kawamura, J. Matoušek, and T. Tokuyama. Zone diagrams in Euclidean spaces and in

other normed spaces. Math. Annal., in press.
[12] K. Ko and H. Friedman. Computational complexity of real functions. Theoret. Comput. Sci.,

20(3):323–352, 1982.
[13] K. Ko. On the computational complexity of ordinary differential equations. Inform. Contr.,

58:157–194, 1983.
[14] K. Ko. Complexity Theory of Real Functions. Birkhäuser Boston, 1991.
[15] K. Ko. On the computational complexity of integral equations. Ann. Pure Appl. Log.,

58(3):201–228, 1992.
[16] K. Ko. Polynomial-time computability in analysis. In I. L. Ershov et al., editors, Handbook of

Recursive Mathematics: Volume 2: Recursive Algebra, Analysis and Combinatorics, vol. 139 of
Studies in Logic and the Foundations of Mathematics, pages 1271–1317. North-Holland, 1998.

[17] K. Ko and F. Yu. On the complexity of convex hulls of subsets of the two-dimensional plane.
In Proc. 4th International Conference on Computability and Complexity in Analysis, vol. 202
of Electronic Notes in Theoretical Computer Science, pages 121–135, 2008.

[18] B. Lambov. The basic feasible functionals in computable analysis. J. Complexity, 22(6):909–
917, 2006.

[19] K. Mehlhorn. Polynomial and abstract subrecursive classes. J. Comput. Syst. Sci., 12(2):147–
178, 1976.

[20] H. Ota, A. Kawamura, M. Ziegler, and C. Rösnick. Complexity of smooth ordinary differential
equations. Presented at the 10th EATCS/LA Workshop on Theoretical Computer Science. In
Japanese.

[21] I. Takeuti. Effective fixed point theorem over a non-computably separable metric space. In
J. Blanck, V. Brattka, and P. Hertling, editors, Computability and Complexity in Analysis,
vol. 2064 of Lecture Notes in Computer Science, pages 310–322, 2001.

[22] I. Wegener. Komplexitätstheorie: Grenzen der Effizienz von Algorithmen. Springer, 2003. In
German.

[23] K. Weihrauch. The degrees of discontinuity of some translators between representations of
the real numbers. Technical Report TR-92-050, International Computer Science Institute,
Berkeley, 1992.

[24] K. Weihrauch. Computable Analysis: An Introduction. Texts in Theoretical Computer Science.
Springer, 2000.

[25] K. Weihrauch. Computational complexity on computable metric spaces. Math. Log. Q.,
49(1):3–21, 2003.

[26] X. Zhao and N. Müller. Complexity of operators on compact sets. In Proc. 4th Interna-

tional Conference on Computability and Complexity in Analysis, vol. 202 of Electronic Notes

in Theoretical Computer Science, pages 101–119, 2008.

(Kawamura) Department of Computer Science, University of Tokyo

(Cook) Department of Computer Science, University of Toronto

	1. Introduction
	Notation and terminology

	2. Type-Two Theory of Effectivity
	2.1. Computability
	2.2. Complexity

	3. Using functions as names
	3.1. Computation on regular functions
	3.2. Polynomial time and space
	3.3. Reduction and completeness
	3.4. Representations

	4. Applications
	4.1. Computation on real numbers
	4.2. Computation on real sets
	4.3. Computation on real functions

	5. Summary and future work
	Acknowledgements
	References

