
bits & bytes

78    acm Inroads    2012 June  •  Vol. 3  •  No.2

Living in a
Computing World:

A Step Towards Making Knowledge of
Computing Accessible to Every Student

 ■ Jody Paul ■

The new CS Principles course provides an opportunity
to advance the goal of making knowledge of computing
and computer science accessible to every student. A pilot
course used to inform the development of the CS Principles
curriculum framework enabled its instructor to explore
alternative pedagogical practices in pursuit of that goal. This
article presents observations and reflections of the instructor
with respect to these attempted practices.

1 Introduction
Living in a Computing World (LiaCW) was an early (Fall 2010) pilot
course offered at Metropolitan State College of Denver, supported
by a grant from the National Science Foundation,
and intended to inform the design and specification
of the CS Principles course. [1] It also afforded an
opportunity to try alternative pedagogical practices
in pursuit of the goal of making knowledge of com-
puting accessible to every student. What follows is
a collection of observations and reflections concern-
ing various attempted pedagogical practices in an
unrestricted open-enrollment environment with the
intent of improving engagement and learning.

Metropolitan State College of Denver (MSCD,
http://www.mscd.edu) is a public, open enroll-
ment, non-residential college attended by 24,000
undergraduate students, 94% of whom are from the
metropolitan Denver area. It is ranked in the top
100 schools in the USA for graduating Latino stu-
dents and students of color. MSCD has a statutory
mission that includes providing access for underserved
and low-income students. [2]

Enrollment for LiaCW was fully open, the only requirement was
that the students be college ready; that is, students had to be mini-
mally eligible to enroll in College Algebra 1 and English 1. LiaCW
did not satisfy any degree requirements other than college-residen-
cy units. The course thus had no prerequisite courses, co-requisite
courses, nor was it prerequisite to any other course.

2 A Student-driven Agenda and
Opportunistic Approach Engages
Students in Learning Fundamental CS
Concepts
The basic idea of student-centered learning was articulated in the
early 20th century by the likes of Dewey [3], Piaget [4], and Vy-
gotsky [5], and the subject of renewed attention in the past couple
of decades. [6, 7, 8, 9, 10], Yet it always seemed too daunting to put
into actual practice when there was limited time and a fixed curricu-
lum that must be covered. The pilot offering of LiaCW was a lower-
risk opportunity to venture into sharing responsibility with students
because LiaCW needed to satisfy no specific degree requirement and
was itself a prerequisite to no other course at MSCD.

Still, as an instructor saddled with over 30 years
of experience using primarily traditional practices,
the thought of adopting a student-centered agenda
and approach raised questions and insecurities.
Wasn’t I responsible for establishing what students
should know? Wasn’t I the expert on what students
should do and when they should do it? Wasn’t I sup-
posed to teach the information? Would I be helping
students learn if I wasn’t actively teaching? Truth be
told, by teach I really meant lecture.

During the first day of class and at several times
in the semester, students were prompted to provide
items of individual and collective interest. Typical
prompts included, “things you’ve wondered about,”
“what you’d like to know,” and “what you would like
to be able to do.” Students were initially hesitant
with this unfamiliar approach. They were unclear
as to the parameters, for example, asking, “Does it
have to be about computers?” (Short answer, “No.”

See later discussion about making connections between the world
and fundamentals of computer science.) They also seemed unsure
whether this was “for real” or just some teaching tactic.

As with many later class activities, the first few minutes were
devoted to individuals coming up with ideas on their own. Next,
they shared, refined, and created more items in pairs. Pairs were

As an instructor
saddled with over

30 years of
experience using

primarily traditional
practices, the

thought of
adopting a student-

centered agenda
and approach

raised questions
and insecurities.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2189835.2189860&domain=pdf&date_stamp=2012-06-01

2012 June  •  Vol. 3  •  No. 2    acm Inroads    79

bits & bytes

combined into larger groups with more sharing and discussion.
Finally, the groups shared their collections of items with everyone.
These items formed the surface agenda for the course, establishing
the domains and examples used to illustrate and explore the ideas
and practices from the CS Principles curriculum framework.

In addition, vigilance to happenstance and current events provided
numerous opportunities to leverage active interests and curiosity. Such
events permeate our lives and they were never in short supply. (One
particularly sad example was when a student’s laptop was stolen from
home. This proved to be of great interest and was a rich source for
addressing a wide range of concepts in the curriculum framework.)

With this student-driven and opportunistic approach, it was obvi-
ous to students that their interests were being directly addressed. Their
level of engagement was high as these were the very items in which
they had expressed intrinsic interest. As the semester progressed, stu-
dents became quite comfortable with adding, deleting, and tweaking
the list of items. They also readily expressed feelings as to whether a
topic needed additional treatment or had been adequately addressed.

Would this approach support covering the intended material?
Perhaps because the CS Principles concepts are indeed fundamen-
tal, it turned out that the everyday world in which we live—stu-
dents included — naturally provides vehicles for exploring and
exercising those fundamental computer science concepts. In fact,
there were always many CS concepts that could be associated.
There was no difficulty with identifying some appropriate linked
concept; rather, the chore was to determine which of the many
concepts best fit the particular context.

Having identified the concept to address, my role as instruc-
tor then involved (a) helping to bring the concepts to conscious
attention within the given context, (b) illuminating the connections
between those concepts and other aspects of the world, and (c)
providing the association of the concepts with the jargon that is the
hallmark of one knowledgeable in the field of computer science.

Preparation and lack thereof contributed most to successes and
failures in applying this student-driven and opportunistic approach.
Having prepared for the semester by collecting and creating a number
of ready-to-go activities, it was relatively straight-forward to connect
them with the current topic or tailor them to the current domain as
appropriate. This allowed the expressed interests and curiosities of
students to drive what was addressed. Coupled with opportunistic
spontaneity, this turns out to be a fine way to proceed… but only if
you have a large quantity of activities prepared in advance. Alas, the
amount of effort required to put together such activities was too great
to apply this approach to the extent desired. Sometimes I was simply
not up to that level of preparation and students found themselves
sitting through a lecture presentation. I think students found those
lectures to be relaxing, comfortable, and neither as engaging nor as
demanding on their attention as the active-learning experiences.

3 �Don’t Interfere with the Natural
Learning Process

Early on in the course, I discovered two sure ways to inhibit these
students’ receptiveness to learning some computer science concept.
The concept might be anything at all in the curriculum framework:
Boolean logic, programming, privacy, recursion, etc. The loss of
receptivity typically occurred in the first few seconds of the intro-
duction of a new topic. Phrased as lessons learned about avoiding
virtually guaranteed negative outcomes:

■	 Do not begin with a numeric example.
■	� Do not begin by naming the concept and stating that’s the next

item to be learned.

Body language and facial expressions were clear giveaways that
I had lost many, most, or all of the students. The triggers were
seemingly sufficient to establish the upcoming experience as less-
accessible (perhaps hard to learn or uninteresting).

If I began with a numeric example, a well-established anti-
receptiveness trigger was activated. This trigger was so strong and
deeply rooted that it had to be circumvented. Note that I had not
associated this trigger with our existing computer science majors
(all of whom are required to have math minors) and computer
science minors (most of whom are math majors) who already have
intrinsic interest in the field. The problem is not trivial to address
because the available materials and textbooks generally make exten-
sive use of numerically-based examples.

If I began by naming the concept to be learned, the discon-
nected setup appeared to be taken as an indication that something
difficult lay ahead. This also contradicted the intent to establish a
cognitive mode conducive to learning in that there was no prepara-
tion that would bring to consciousness some extant knowledge or a
memory with which to relate.

I began with such poorly chosen starts several times during the
semester (much to my chagrin). It appeared that once an anti-recep-
tiveness switch had been thrown, it was all but impossible to get back
on track in real time. Stoically pushing on and hoping for the best
did not address the problem and was an ineffective use of the time.

Fortunately, I also discovered a simple recovery mechanism:
abort the lesson as quickly and graciously as possible. For example,
if I had already started writing some numbers and then observed
the crumpling effect on students, briefly doing something else with
the numbers would bring rapid closure to the episode (much to the
relief of the students). Similarly, if I had ruined the environment by
providing the concept label before activating an internal context,
I could readily abort by saying, “on second thought let’s do that
another time” (again to the apparent relief of the students). Having
closed the negative session, it was now fine to start something new,
either a different topic entirely or by using an introductory example
that came from a student-centered domain.

Although I wanted to be the one to teach students new con-
cepts, it turned out that my overt attempts to do so really just got in
their way. One structural aspect of this I’ve already covered, naming
what they are expected to learn next. But there was an even more
important lesson for me in this context:

➜ Students already know many “computer science” concepts.

The computer science concepts in the CS Principles framework
[11] appear to be so fundamental that most people already know
them, albeit not in a CS context. Instances of the concepts them-
selves are everywhere to be found in the real world, presumably
because that is from whence they derive. There were no concepts
in the curriculum that were completely disconnected from students’
personal experiences and experiential knowledge.

Students generally did not realize these concepts explicitly.
Nor did they know the computer science jargon. So, an effective
approach was:

➜ Activate each concept prior to labeling or formalizing it.

80    acm Inroads    2012 June  •  Vol. 3  •  No.2

b i ts & bytes

That is, first providing students with triggers from real-world
situations that would remind them of the concepts. Once the
familiar concepts were thus activated, they could then be expressed
and demonstrated in computer science terms.

This is but another side of the same coin of not labeling or at-
tempting to formalize a concept before its recollection or acquisi-
tion. Concept activation refers here to engaging in an activity that
results in related information being transferred from long-term
memory to consciousness. Such activation appeared to be the key
to the acquisition of the intended curriculum framework content.

Although introducing concepts by thought experiments some-
times works, they were not the most reliable or effective. Rather,

➜ �Tangible self-directed discovery experiences work well for
introducing CS concepts.

The greatest successes resulted from activities that leveraged curios-
ity in tangible contexts. An example was the “learning” of programming
concepts without any explicit instruction through the use of LightBot
(a software game in which the player solves a series of puzzles by in-

structing a virtual robot). Pairs
of students worked together
to play the game and clearly
demonstrated that they already
possessed the ability to write,
test, and debug programs that
used logic, sequences, function
calls, recursion, and more; all
without any specific prepara-

tion and without intervention by the instructor. The game play served
to activate the concepts. During the activity and in the associated
reflective period, the appropriate computer science terminology was first
casually introduced to label the associated concepts, then formalized.

4 �Successful Group-work Arises
from Modeling and Facilitation

Effective group-work was one of the six computational thinking
practices in the CS Principles curriculum framework in the fall of
2010 (subsequently that thinking practice became Collaborating).

Students cringed and exhibited other displays of distaste when I
first stated that there would be a much group-work associated with
the class. Indeed, students consistently report that although they
had classes (K-16) in which they were required to work in groups
they had received no instruction with respect to how to work in
groups. Apparently, group-work techniques and skills had been
treated as though they were innate or would be acquired through
non-directed experiences. From their previous experiences, most
students appeared to have learned that they intensely dislike work-
ing in groups.

As with the inappropriate use of numeric examples, this pre-
existing negative trigger needed to be circumvented and hopefully
attenuated. A first step was to offer an alternative interpretation to
students: that they simply had never had the opportunity for posi-
tive group-work experiences.

The intent of LiaCW included helping students achieve the
ability to engage in productive group-work themselves. Here again,
rather than treating this as a subject of theoretical study or lecture
presentation, we used active learning experiences. These included
modeling, simple instruction, and short duration participatory ac-
tivities. Modeling the intended behaviors and actively participating
in a group activity with clear expectations and instruction always
came prior to explanation or labeling. This is consistent with the
learning approach adopted for the other aspects of the course and
seemed to stimulate the natural curiosity and explanation ability of
students. The result was that students appeared very engaged in the
learning of teamwork practices.

As with all activities, after engaging in an experience, students
were given the opportunity and requirement to reflect on what had
just happened and share the observations and insights explicitly.
With respect to teamwork practices in particular, they were asked
to identify what worked well and what didn’t work so well. These
were often couched in terms of identifying for a future project or
event “what was useful and we should do again”, “what should we
do more of ”, and “what should we change.”

We commonly followed the following sequential progression:
solo-preparation, pair-work, quad-work, and group-share. Note
that including pair-share virtually ensured that every student was
engaged. When working singly, a student could easily disengage
from the current task. When working in groups of three or more, a
student could also adopt a non-participatory role. However, when
the situation involved interacting with just one other person, it
was difficult and uncomfortable not to be involved. Thus includ-
ing pair-work in the process ensured that the level of engagement
would be high. (Of course, it was still possible for both students to
be off-task.)

Well before the middle of the semester, students not only
accepted the prevalent practice
of group-work but also indicated
that they looked forward to it. It
became the norm and a comfort-
able expectation. Since the size
of the class was small and there
were three facilitators (instructor
and two community assistants),
there was ample opportunity for
real-time assessment and cogni-
tive coaching.

Figure 1: Students demonstrated pre-existing knowledge of advanced
concepts and algorithms when activated and addressed in familiar real-
world contexts, such as minimal spanning trees and Kruskal’s algorithm
situated within this “muddy town” activity from CS Unplugged

Figure 3: Most class time was
devoted to small-group activities.

Figure 2:
Tangible
manipulatives
(such as these
building blocks)
supported concept
activation.

2012 June  •  Vol. 3  •  No. 2    acm Inroads    81

bits & bytes

5 Reflection Helped Everyone
Students were required to reflect explicitly on each activity and to
report observations, insights, and key ideas. Reflections were oral,
written, or both for the same event and might occur immediately
following the experience, as an assignment for that same evening,
several days after the experience, or a combination of these times.

Expressing the thoughts resulting from cognitive reflection
worked well to help students recognize that they had learned some-
thing that they themselves valued. The acts of reflection and explicit
expression may have also added to the learning itself. In addition,
such expressions helped instructors identify what students knew and
believed with respect to the course content and logistics, and to gain
better understanding of the students’ experiences and concerns.

As part of the process, I also reflected on each activity and each
day of class. These were shared with the community assistants (who
likewise shared their observations and insights with me) and in an
abbreviated form with the students. Such reflection and sharing
was very useful in planning and conducting later activities, although
especially humbling in those cases where my perception was at odds
with that of everyone else who had participated in an experience.

6 Lessons Learned
Here are nuggets that summarize what the experience with Living
in a Computing World taught me.

■	� A student-centered approach and agenda really does engage students.
Let students determine the surface agenda (domains for the
examples).

■	� Use examples from domains that promote students’ receptiveness.
Learn and avoid using what alienates and hinders the receptive-
ness of the group of students (e.g., numeric-based first examples).

■	� Employ engaging modes of self-expression.
Provide opportunities to create web-accessible artifacts (e.g.,
Xtranormal, Scratch).

■	� Students already know many “computer science” concepts.
Reacquaint them with the concepts from life in the real-world.

■	 �Activate each concept prior to labeling or formalizing it.
Provide the activation experience first; afterwards express it in
computer science terms.

■	� Tangible experiences and self-directed discovery work best for
introducing concepts.
This even works for programming as evidenced by using Light-
Bot and Scratch.

■	� Model, mentor, and facilitate collaborative group-work.
There is a body of knowledge that supports successful team-
work practices.

■	� Reflection helps everyone: students and instructor.

The process of reflection, coupled with explication and sharing,
benefits all learners in the environment — including students
and instructors.

■	� Use existing lessons & materials.
See the list of sources below. Especially useful for LiaCW was
Computer Science Unplugged.

References

	[1]	 �See http://csprinciples.org
	[2]	 �Colorado Department of Higher Education. (2011) FY 2012-13 Joint

Budget Committee Hearing, 19 December 2011. http://www.state.
co.us/gov_dir/leg_dir/jbc/2011-12/hedhrg.pdf

	[3]	 �Dewey, J. (1916) Democracy and Education: An Introduction to the
Philosophy of Education, New York: Macmillan.

	[4]	 �Piaget, J. (1926) The language and thought of the child. London:
Routledge & Kegan.

	[5]	 �Vygotsky, L. S. (1977, originally published 1926) Educational Psychol-
ogy. Boca Raton: St. Lucie Press.

	[6]	 �Rogers, C. R. & Freiberg, H. J. (1994) Freedom to Learn, 3rd edition.
Upper Saddle River: Prentice Hall.

	[7]	 �Barr, R. B., & Tagg, J. (1995) “From Teaching to Learning — A New
Paradigm for Undergraduate Education.” Change, 27(6), 12–25.

	[8]	 �McCombs, B., & Whistler, J. S. (1997) The Learner-Centered Classroom
and School: Strategies for Increasing Student Motivation and Achieve-
ment. San Francisco: Jossey-Bass Publishers.

	[9]	 �Pedersen, S. & Liu, M. (2003) “Teachers’ Beliefs About Issues in the
Implementation of a Student-Centered Learning Environment.” Edu-
cational Technology, Research and Development, 51(2), pp. 57-74.

	[10]	�Estes, C. (2004) “Promoting Student-Centered Learning in Experiential
Education.” Journal of Experiential Education, 27(2), pp. 141-161.

	[11]	�The College Board. (2011) Computer Science: Principles; Computa-
tional Thinking Practices; Big Ideas, Key Concepts, and Supporting
Concepts. See http://www.csprinciples.org/home/about-the-project

Jody Paul
Department of Mathematical and Computer Sciences
Metropolitan State College of Denver, Denver, Colorado 80204 USA

jody@acm.org

Categories and Subject Descriptors: K.3.2 [Computers and
Education]: Computer and Information Science Education – Computer
science education, Curriculum
General Terms: Experimentation, Human Factors, Design, Management,
Measurement
Keywords: Computer science education, pedagogy, CS Principles

DOI: 10.1145/2189835.2189860� © 2012 ACM 2153-2184/12/06 $10.00

Sources for Information,
Materials, and Tools
The following are links to sources used for
the LiaCW course pilot.
Computer Science: Principles

http://csprinciples.org/
Computer Science Unplugged

http://csunplugged.org/
Exploring Computer Science

http://www.exploringcs.org/

Computer Science for Fun
http://www.cs4fn.org/

Computer Science Teachers Association
http://www.csta.acm.org/

Xtranormal
http://www.xtranormal.com/

Kompozer
http://kompozer.net/

Scratch
http://scratch.mit.edu/

LightBot
http://chat.kongregate.com/	
 gamez/0002/2915/live/BillBotKong.swf
http://chat.kongregate.com/gamez/0008/	
 3984/live/Lightbot2.0Kong.swf

Can Animals and Machines Be Persons?
http://amzn.to/yABPTw

The Five Dysfunctions of a Team
http://www.tablegroup.com/books/	
 dysfunctions/

