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Abstract  

A new signature file organization is proposed as a combination of two orthogonal 
partitioning strategies, the key-based and the bit-sliced, respectively. The design re- 
sults from theoretical analysis of these elementary approaches in which performance 
is analytically studied respecting a simplified abstract storage structure model. The 
new organization is able to achieve very high search performance for queries containing 
arbitrary number of query terms - bit-sliced (key-based) organization is good only for 
queries containing few (many) terms, quite bad performance is obtained in the other 
cases. Update performance is also discussed and a generalization of the method, able 
to adjust the trade-off between the search efficiency and the maintenance costs, is put 
forward for consideration. The proposal is also compared with similar approaches in 
the field of signature files. 

1 I n t r o d u c t i o n  

An understanding of the advantages and disadvantages of storage structures is an important  
skill to know for everybody trying to develop or apply computer  software aiming at pro- 
cessing large collections of data. The reason is that  there is not a single all-purpose storage 
structure,  and a unique situation requires application of a specific technique. The choice 
of a proper s t ructure is particularly difficult when building general purpose systems (i.e., 
systems able to process da ta  in many diverse ways), thus discovering new, more general, 
and performance stable storage structures still remains as an important  research challenge. 
One way of approaching this problem is to combine two or more existing strategies into a 
unique technique that  would share advantages of its constituents. 

Another  fundamental  concept of the information storage technology suggests to convert 
unstructured,  complex, or too bulky information into a form that  is more readily processible 
by computers.  Retrieval is then done on the new (typically much shorter and bet ter  struc- 
tured) file, and in this way, improvements in performance are obtained. Typical storage 
structure representatives of this kind are known as the Inverted File [1] and the Signature 
File Access Method [4, 12, 13]. In the lat ter  approach, da ta  objects are converted into 
bit vectors, signatures, and a collection of such vectors, called signature file, is used for 
retrieval. 
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Early signature file implementations, based on sequential organization, could not com- 
pete in retrieval performance with inverted files; this was mainly true for large files [9]. 
Consequently, many new techniques have been developed for the implementation of sig- 
nature files [4, 13], thus by applying the proper technique for a task at hand, required 
performance can usually be achieved. 

The number of suggested signature file implementations is really impressive - surveys 
of the topic can be found in [4, 13]. Their performance significantly depends on the number 
of conjunctive terms in a query. Usually, organizations working very well for queries with 
few terms (i.e., low weight queries) are not suitable for queries containing many terms (i.e., 
high weight queries). This is also true in the opposite direction, thus organizations suitable 
for executing queries of high weights do not perform well for low weight queries. Typical 
representatives of signature file organizations possessing these properties, are the bit-sliced 
[10] organization - files organized as bit slices achieve high performance for low weight 
queries - and the key-based partitioned approach [5, 17], which is convenient to use when 
high weight queries are processed. 

In this paper, we propose to combine these two approaches in order to obtain a signature 
file organization that  is appropriate for any kind of query. We start in Section 2 by formally 
defining partitioning schemes of a signature file and proceed by specifying different query 
evaluation strategies in Section 3. In Section 4, we define an abstract storage system and 
derive formulas able to determine retrieval costs of three well known storage organizations. 
The proposal and performance evaluation of a new signature file organization is presented 
in Section 5. 

2 Background 

Even though more than one signature extraction method have been proposed in literature, 
superimposed coding, see e.g. [4], is by far the most frequent way of producing signatures - 
due to its simple matrix structure, a file of superimposed signatures offers a lot of possibilities 
for storage organization. Accordingly, whenever we talk in this article about a signature, 
we mean a signature produced by the superimposed coding method. 

A signature file S is a set of n signatures, where Si (i = 1 , . . . ,  n) is a binary string 
of f bits representing the information content of data object 0~. Each object is supposed 
to contain T indexable terms, such as attribute values or keywords, and signature Si is 
produced by superimposing (i.e., inclusive OR-ing) T term signatures of Oi. The signature 
of a term is simply obtained by hashing the term onto an f-bit  zero valued vector so that  
bits in v, not necessarily distinct, positions are set to "1". 

Optimum signatures (i.e., signatures balancing the trade-off between the search efficiency 
and the space occupancy) [4], have 509~ of bits with value "1"and 50~0 of bits with value 
"0". The number of bits in signature Si is called the signature weight and is designated as 
w(S/). That  means that  the opt imum signatures have w(S/) = f /2 ,  on the average. 

In a formal way, a file of superimposed signatures, S, can be seen as a matrix of bits 

S = 

8 1 , 1 ,  81 ,2 ,  • . . S l , ]  

S2 ,1 ,  32 ,2 ,  . . . .  ~2 , f  

: : : : 

S n , l  ~ S n , 2  , . . .  S n , ]  
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where sl,j E {0,1) ,  for i E { 1 , 2 , . . . , n )  and j E { 1 , 2 , . . . , f } ,  are bits constituting a file of 
n signatures, where each signature has size f bits. 

There are several ways how a matr ix  can be split into its parts. Simple horizontal (i.e., 
the bit-string) and vertical (i.e., the bit-sliced) splitting strategies can be defined as follows. 
In this work we do not consider other partitioning strategies, such as the horizontal splitting 
method described in [11]. 

B i t - s t r i n g  s p l i t t i n g :  

S = ii $1 S2 

so 
where 

S 1 -~ [81,1, 81,2, . . -  S l , f ]  

S 2 : [82,1, 82,2, . . .  S2 , f ]  

S n : [Sn,1, Sn,2,  . . .  8n,ff] 

and Si is the i-th signature of the file S. In the following, whenever a confusion might occur, 
we call Si an object signature since it represents the content of the i-th da ta  object. 

B i t - s l i c e d  s p l i t t i n g :  

s = l l s l , s 2 , . . . , s f l l  where 

S 1 : [S1,1, 82,1, . . .  Sn,1] T 

s 2 = [81,2, s2,2,  . . .  s~ ,2]  T 

S f : [S l , f ,  S2 , f ,  . . .  Sn , f ]  T 

and sJ is the j - th  bit-slice (i.e., the j - t h  column) of the file S. 

F r a m e - s l i c e d  s p l i t t i n g :  

A more complicated way of splitting a signature file suggests grouping bit slices into separa- 
ble units to form the frame-sliced structure defined as follows. Let x > 0, called the frame- 
slice size, be the number of consecutive bit-slices forming a frame-slice, where x • y = f for 
a specific y C {1, 2 , . . . ,  f} .  The precise meaning of frame-sliced splitting can be stated as 

s = I I F 1 , F 2 , . . . , F Y / ~ I I  where 

F 1 = [S 1, S 2, . . .  S x] 

F 2 = [S x+l, SX+ 2, . . .  S 2x] 

F f / x  ._~ [S f - x + l ,  s f - x +  2, . . .  S f ]  

Observe that  our definition does not correspond to the Frame-Sliced Signature File orga- 
nization from [7], which uses a different method for generating signatures and processing 
queries. 

K e y - b a s e d  s p l i t t i n g :  

By considering parts of signatures as keys, signature Si can be split into its key part ,  Ki,  

and the body, SI b), containing the rest of the signature. Provided keys are defined as k-bit 
signature prefixes, we can view splitting of the signature Si as 

Si = Ki,  SI b) 

where Ki = [si,1, sl,2,..., si,k] and S! b) = [si,k+l, sl,k+2, • •. ,  s i j ]  for all i and k E {1, 2, . . . .  f} .  
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3 Querying in Signature Files 

Signature file queries, defined as conjunctions of terms, are t ransformed into a signature 
form as well. A query signature, Q, is then a row binary vector Q = [ql,q2 . . . .  ,q/], 
where qj E {0, 1} for j = 1 , 2 , . . . , f ,  and the first k bits form the query signature key, 
KQ. Obviously, the query signature weight, w(Q),  should not exceed the weight of object 
signatures, i.e. w(Si) _> w(Q),  and can become quite small, e.g. 8 or 10, compared to 
w(Si),  which is typically counted in hundreds. 

The task of a signature file query evaluation is to find all signatures in S which qualify 
for the query signature Q. Such set of signatures, designated as the query response, RQ, 
can be defined in several different manners.  

Response for query signature Q: 

RQ = {S/I(Si A N D  Q) = Q} (1) 

= {s i lv j  : qj = 1 ::v (si,j = 1)) (2) 

C {Sil(Ki A N D  KQ) = K Q )  (3) 

Notice that  A N D  in Equations 1 and 3 stands for the bitwise logical operator.  
Equations 1, 2, and 3 suggest three ways to identify RQ. The first of them, Equation 1, 

uses as a test the traditional inclusion condition in which a query signature is supposed to 
be included in a qualifying object signature. In other words, the signature Si qualifies if it 
contains ones in all positions in which the query signature Q contains bits with value "1". 

Equation 2 is based on a different strategy. It takes advantage of the fact that  bit 
positions determined in object signatures by " l" ' s  in the query signature are the only 
positions which must be considered in the query evaluation process - values of the remaining 
object signature bits are not able to influence the result of querying and need not be 
exphcitly tested (accessed) for qualification. 

Equation 3 is similar to Equation 1, but considers only key-parts of signatures, thus the 
response, as determined by Equation 3, forms in general a superset of the query response 
determined by Equations ] and 2. 

4 Signature File Organizations 

The performance of any secondary storage access structure is a complex function of (a) the 
way how the entire da ta  search space is allocated on the memory, (b) the search strategy 
used for retrieval, and (c) storage hardware parameters.  In order to get a unique platform 
for comparing query response costs of different signature file organizations, we define an 
abstract storage system and claim usual assumptions of similar analytical models. 

Let the storage system, Be = (b l ,b2 , . . . ,b~) ,  be formed by a set of m buckets, where 
the bucket bt, l = 1, 2, . . . ,  rn, is a directly accessible continuous disk memory  space of size 
c > f bits. Then, the query processing cost, CQ, is the cardinality of the subset of Be 
determined by buckets accessed while processing Q. Notice, that  we suppose no bucket to 
be accessed more than once. 

In the following, we define three well known signature file allocation strategies (organi- 
zations) and establish analytical formulas for estimating CQ. The formulas are based on 
the following assumptions: 
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Symbol]Descript ion 

Oi 
T 
S 
n 

Si 
w(si) 
f 
v 

Q 
k 
x 

sJ 
F j 
Ki 
KQ 
B~ 
m 
bl 
c 

x 

S S  
B S  
K B  
K S  
K S  ~ 
H S  

i-th object of the data file 
number of terms specifying a data object 
signature file 
signature file size (i.e., the number of signatures in S) 
i-th signature of S 
i-th signature weight 
signature size [bits] 
number of bits set to "1" for a term 
query signature 
signature key size [bits] 
frame-slice size [bits] 
j - th  bit-slice 
j - th  frame-slice 
i-th signature key 
query signature key 
system of storage buckets 
number of buckets in Bc 
l-th bucket of the storage system Bc 
storage bucket capacity [bits] 
bucket load ratio 
cost for processing Q in X X  organization 
sequential signature file organization 
bit-sliced organization 
key-based partitioned organization 
key-based bit-sliced organization 
key-based frame-sliced organization 
hierarchical signature file 

Table 1: Major symbols 

1. bits with value "1" are uniformly distributed in signatures, and 

2. signatures in S form random samples, i.e. they are independent of each other. 

It is interesting to observe that each of the considered organizations complies with a different 
query response evaluation strategy (see Equations 1, 2, and 3). For convenience, used 
symbols and their meanings are summarized in Table 1. 

4.1 Sequential File 

In the Sequential Signature file, SS ,  the (i + 1)-th element of the file S (i.e., the signature 
Si+1) is stored contiguous to and immediately after the i-th element of S. Respecting our 
storage system architecture, each bucket, except for the last one, is filled with [c/fJ signa- 
tures where i-th signature of S is stored in the bucket bt, l = [ i / [c / fJ] .  To avoid waste of 
space, c should be a multiple of f .  
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For each query (or a set of queries), signatures of S are accessed in their order of 
occurrence until  all signatures are processed, and the response for the query signature Q 
is determined according to Equat ion  1. The  query processing cost C ~  S is constant  for a 
specific file, because it does not depend on the query signature weight, and can be formalized 
a s  

s = r n / L c / f j ]  (4) 

4.2 Bit-Sl iced Organizat ion 

The Bit-Sliced, BS, signature file organization, proposed in [10], is a multiple sequential 
organization of the signature file bit-slices. Buckets contain parts  of these bit-slices, and 
a specific bucket never comprises da ta  of different slices. Each bucket,  except for the last 
one of each slice, is filled with c bits. One bit slice occupies In~c] buckets, and i-th bit of 
the j - t h  slice (i.e., the bit si,j) is stored in the bucket bz, l = (j  - 1) .  In~c] + [i/c]. BS 
organization adopts  for query evaluation the s t rategy defined by Equat ion 2, and the query 
processing cost, C~  S, can be determined as follows: 

C~ s = w ( q ) .  rn/el (s) 

Obviously, C~ s depends on query signature weight - bet ter  performance is obtained when 

w(Q) is low. Because C ~  S is only a function of w ( q ) ,  n, and c, the query processing cost 

of B S  is not directly dependent  on the signature size f ,  though,  for a specific query, w(Q) 
is a function of f .  

4.3 Key-Based  Part i t ioned Organization 

The Key-Based Partitioned, KB, organization stores in buckets signatures having identical 
keys [5] - key is defined as a par t  of a signature, e.g. its prefix or suffix. Since KB 
uses a hashing function to allocate signatures in buckets,  buckets are typically not filled 
entirely, and the ratio of the occupied da ta  space and the bucket capacity is, in general, 
expressed as a < 1. Some KB organizations, e.g. Quick Fi l ter  [17], are even able to 

manage dynamic files. Each bucket,  bl, l = 1 , 2 , . . . ,  m, is represented by a key KI B) of 
size k = log 2 r n / L a ,  clf]] and filled on average with La. c/fJ signatures from S, for which 

Ki = KI B). The  number  of buckets,  m,  depends on actual s ignature file size and can be 
determined as m = [nl [a. clf]]. 

Respecting the s t rategy suggested by Equat ion 3, the query processing cost of KB 
organization, C ~  "B, can be determined as follows: 

where 

n 

n = ILl. (' '°g:r l f ,, 

1 
2/ / 

( w(Q)'~ k 
= m .  1 2 f  ) (6) 

is a formula developed in [3] for es t imat ing the Bucket Activation Ratio (i.e., the ratio of 
accessed to existing buckets) obtained when processing the query signature Q. 

Similar to BS, the query processing cost of KB is also a function of w(Q) ,  but  the 
processing cost of KB decreases with increasing query signature weights. Notice tha t  
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Equation 6 is precisely valid for integer k (i.e., 2 k = m). However, it also gives good 
approximations in the other cases. 

4 .4  D i s c u s s i o n  

If we try to compare performance of SS ,  BS ,  and K B  organizations (by applying Equations 
4, 5, and 6, respectively) considering specific S and implementation platform Be, we find 
out that  there is not a clear winner, provided query signatures with different weights can 
occur as requests for information from the file. For the clarity of exposition, we use query 
signature weights in the following figures to relate the performance and query complexity, 
even though users specify queries using a certain number, TQ, of terms. The reason is that  
queries with the same number of terms can result in query signatures with different weights. 
The expected value can be estimated as follows: 

As Figure 1 illustrates, the bit-sliced organization is very good for low weight queries, 

2000 ~ - ~ m  

1600 m-m-m-m-m-n m-m-m m-mm mm-m-mm-m-m-m-m 

12oo 

o 800 _, -~-~-~ 

400 

0 - ~ l  i i i i i i ! i i I i 

10 50 90 130 170 210 250 

- - m  . . . .  SS 

-IS B S  

¢----- KB 

query weight 

Figure 1: Performance comparison of SS ,  BS ,  and K B  organizations; n = 105, f = 512, 
c = 32768 (4 Kbytes), a = 0.75. 

but its performance for high weight queries is much worse. On the other hand, the key- 
based partit ioned method performs very well for high weight queries, though it is quite 
slow for queries resulting in signatures with low weights. The sequential organization has a 
stable performance (i.e., not dependent on specific query signature weight), but it may only 
be convenient for short files or in applications where high performance is not the primary 
concern. 

Recently, several successful a t tempts  have been made to improve search performance 
of signature files by exploiting parMlelism [2, 6, 8, 16]. All of them even claim (nearly) 
linear speedup - the linear speedup is achieved when an organization using twice as much 
processors can perform the same task two times faster - for most of conceivable queries. 
Notice that ,  when linear speedup is achieved for a given organization, it is the maximum 
which a parMlel architecture can provide to improve performance of a single processor 
organization at hand. 
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However, even such significant advancements in performance of signature file organiza- 
tions, caused by proper utilization of parallelism, cannot change the performance charac- 
teristics of these organizations, i.e. the way how the response time is changing in relation 
to the query signature weight. 

Provided queries of a specific application do not differ much in the query signature 
weight, choice of a convenient signature file organization is usually possible, see [12] for 
a guide. However, independent of the implementation environment, applications needing 
to process query signatures of very diverse weights find it difficult (or even impossible) to 
choose a convenient organization because they can always expect bad performance, at least 
for some queries. 

5 Key-Based Bit-Sliced Organization 

In order to overcome the above problem of performance instability in organizing and pro- 
cessing signature files, we conveniently combine the B S  and K B  approaches into a single 
design, capable of performing both high and low weight queries efficiently. The main idea 
is to group signatures with same keys, as it is done in the key-based partitioning. But, 
instead of putt ing all signatures of a group into a single bucket as in K B ,  f buckets are 
created, each of them filled just with a bit-slice of signatures from the group. We call the 
design the Key-Based Bit-Sliced organization, KS.  

Response for the query signature Q with the K S  organization can be formalized as 
follows: 

RQ = {Si[(K i A N D  KQ = KQ) A Vj:  qj = 1 ~ (si,j = 1)} (7) 

Obviously, by simultaneously pruning the signature file search space in its horizontal and 
vertical dimensions, the necessary number of tested bits is effectively reduced. Furthermore, 
whenever the efficiency of vertical pruning is decreasing due to increasing query signature 
weights, the horizontal pruning is automatically becoming more efficient for exactly the same 
reasons. By combining strategies offered by Equations 2 and 3, Equation 7 determines the 
same (i.e., the actual) response as Equations 1 and 2 do; notice that  Equation 3 determines 
just a superset of this. 

However, the power of horizontal pruning of K B  and K S  organizations is not the same 
due to the difference in signature key sizes which these organizations use - signature key sizes 
determine the power of horizontal pruning in query execution. Similar to K B  organization, 
signatures in K S  are also hashed into groups, thus buckets are only filled partially, which 
can also be expressed by the ratio c~. Provided the bucket capacity c and the ratio a are 
given, K B  and K S  organizations should store specific S in the same number of buckets 

- a signature file is determined by the number of signatures n and the signature size f .  
However, while each bucket of K B  organization is identified by a different key, f buckets 
share the same key in K S .  This implies that  the number of distinct key values in K B  is 
practically f times higher. 

As a result, the key size of K S ,  denoted k(1), is constrained by k(1) = l o g 2 [ n / [ a ,  cJ], 
compared to k = log 2 In~ [a. c / fJ] ,  which is true for the K B  organization. Fortunately, the 
key of K S  is obviously not f times shorter, because of the logarithmic dependence of the key 
size on the number of distinct key value. This is very important  considering performance, 
because the key size has the primary effect on the bucket activation ratio. 

On the other hand, the cost, which K S  is forced to pay by decreased performance due 
to the shorter size of its signature key, is much compensated by using the bit-sliced access 
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strategy in the activated groups• The actual performance for a query signature Q can be 
estimated as follows: 

[ ' ] (  ( C~ s = w(Q)-  ~ 1 w(Q)~ ' ° g ~ [ ~ ]  w(Q)~ k(~) 
• 2 f  J = w ( Q ) . m ( 1 ) .  1 2 f  J (8) 

where m(1) = I n / [ a .  c J] is the number of distinct key values in the KS organization. Note 
that  access to t~.e buckets storing bit-slices which are part of the key is not necessary. For 
simplicity, this effect is ignored in the above formula. This does not introduce significant 
errors since the ,'fize of the key is typically is much lower than the signature size. 

5.1 E v a l u a t i o n  o f  r e t r i e v a l  p e r f o r m a n c e  

Similar to KB organization, performance of KS is a function of the signature and the 
signature file sizes, bucket capacity and its load ratio, and the query signature weight. Before 
presenting results obtained from the analysis of Equation 8, defining retrieval performance 
of KS organization, we first provide some illustrative examples concerning the general 
behavior of KS. 

Figure 2 shows the behavior of KS in relation to BS  and KB organizations considering 
the same environment as in the previous section, see Figure 1. We can observe that  K S  
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Figure 2: Performance comparison o fBS ,  KB, and KS organizations; n = 105, f = 512, c = 
32768, a = 0.75. 

is practically always able to outperform KB, considering the number of accessed buckets 
for any kind of a query, but the improvements are not uniform. From what we have seen, 
KS can be considered as a more efficient version of KB, retaining the excellent perfor- 
mance when processing low weight query signatures and achieving a gradually improved 
performance of processing query signatures with higher weights• 

Now, let's try to see the performance in case of a 10 times larger file, i.e. a file containing 
n -=- 10  6 signatures, see Figure 3. As expected, performance of KS shows to be better and 
is practically constant,  except for query signatures with very low weights, where, however, 
the performance is even better• 

The last experiment we do concerns a file of 10 6 shorter signatures, i.e. signatures 256 
bits long. Figure 4 shows performance of such file provided BS, KB,  and KS organizations 
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Figure 3: Performance comparison ofBS, KB, and KS organizations; n = 10 6, f = 512, c = 
32768, a = 0.75. 
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Figure 4: Performance comparison o f B S ,  KB, and KS organizations; n = 10 6, f = 256, c = 
32768, a = 0.75. 

are used. Apparently, the performance of KS is not influenced at all by the length of 
signatures. 

In order to gain more insights into the behavior of KS, we consider how the retrieval 
cost, expressed in Equation 8, depends on the query signature weight. To this end we 
differentiate C~ "s with respect to w(Q),  from which it is derived (for brevity we omit 

intermediate steps) that  the derivative is proportional (cx) to: 

OC~ s 1 
0 w ( q )  cx 1 - w ( q ) .  k(1) .  2 f -  w ( q )  (9) 

which equals 0 when the query signature weight has value: 

2 f  _ 2 f  (10) 

w ( Q ) - k ( X ) +  1 1og2 [ [ ~ . c j ]  + 1  
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In correspondence of this value the retrieval cost is maximum. Since the weight of query 
signatures does not exceed f /2 ,  the maximum is actually reached only if 

2f < -f k(1) > 3 
+ 1 - 2 

In other terms, if the key size is 3 or more, the graph showing performance of KS exhibits 
a peak value, after which retrieval costs decrease, otherwise the cost monotonically grows 
with w(Q). Indeed, Figure 3 refers to a case where the maximum is reached, according to 
Equation 10, when w(Q) ~ 161, which is within the range of admissible weight values. On 
the other hand, Figure 2 shows a different behavior since the maximum would be reached 
for w(Q) ,~ 308., which is well beyond f / 2  = 256. 

The peak vMues observed in Figures 3 and 4 can analytically be evaluated by substituting 
into Equation 8 the value of the weight computed from Equation 10. After simplification, 
and with the advice that re(l)  = In~ La. cJ] is the number of distinct key values, we obtain: 

max{C~S}= 2f.m(1) { k(1) k(1) 
k(i)T1 "\k(1)+l) (11) 

which is valid when k(1) > 3. 
organization, the quantity 

Since f • re(l)  is the total number of bucket in a KS 

2 . { _ k ( 1 )  
(12) 

k ( 1 ) + 1  \ k ( 1 ) + 1  J 
defines the maximum value of the Bucket Activation Ratio (BAR) for KS,  that is, the 
maximum fraction of buckets that have to be accessed to process a signature query. 

Figure 5 summarizes above analysis by showing how the maximum BAR depends on the 
size of the key, k(1). Also shown is the value of the ratio w ( Q ) / f  for which the maximum 
BAR is obtained, as derived from Equation 10. For instance, when k(1) = 6, the maximum 
BAR is about 0.11, which is obtained if w ( Q ) / f  ~ 0.285. This precisely means that,  when 
the size of the key is 6, about 11 percent of the buckets have to be accessed in the worst 
case, and this occurs in case of medium weight queries, setting about 28.5 percent bits at 

5.2 G e n e r a l i z a t i o n  

As the performance section above indicates, the proposed combination of the key-based 
and the bit-sliced approaches to a signature file organization is able to provide substantial 

• increase in retrieval performance in comparison to performance of its constituent strategies 
(i.e., K B  and BS organizations). However, K S  also inherits properties concerning updates. 
In this respect, KS is able to deal with dynamic files, provided the group splitting strategy 
of Quick Filter is adopted - see [17] for details. But, because a group in KS  contains f 
buckets, all of these buckets must be accessed to insert a signature (or must be split during 
a file expansion), thus modifications certainly are a matter  of concern 1 - expensive update 
is a well known property of files with the BS organization. 

In this respect, KS is more convenient for static (e.g., archive like) files where no or 
very few updates are required. In case of highly dynamic files, K B  organization seems to 

1Contrary to BS, K S  can allocate groups of f buckets as contiguous buckets on disk. In this way random 
reads (writes) can be substituted by sequential ones, which alleviates the update problem. However, this 
violates our assumption about the uniform cost of accessing a bucket. 
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Figure 5: Maximum Bucket Activation Ratio (BAR) of the KS organization, and fraction 
of bits in the query signature (w(Q)/ f )  for which such maximum occurs. 

be more convenient. This has lead us to propose a generalization of KS, designated KS x, 
which sacrifices some of the retrieval efficiency of KS in order to increase update  efficiency. 
By vertically splitting the signature file into frame-slices FJ, ra ther  than bit-slices, buckets 
of KS ~ can be filled by parts of these frame-slices and the file organized as follows. 

A group of signatures in the KS x organization, identified by a specific signature key, 
contains f / x  buckets, and, compared to KS (or equivalently KS1), the signature key size 
k(x) = log2[n/La, c/xJ] is gaining a bit in its length - depending on the value of x - 
which implies a bet ter  bucket activation ratio. On the other hand, accessed buckets can 
contain data  (i.e., signature bit-slices) which need not be searched, causing additional access 
overhead resulting in an increase of the retrieval response time. 

The trade-off between these two trends, respecting a specific value of the frame-shce size 
x, can be formalized as follows: 

n 

n 

where E( f , x ,w(Q))  is the expected value of the number of frames containing at least 
one hit bit-slice (i.e., a bit-sfice which must be searched), provided the signature size, the 
frame size, and the query signature weight are f ,  x, and w(Q),  respectively. A solution to 
this classical probabilistic problem can be found in [15] by considering the case of random 
selection of elements from groups, without replacement - bit positions in a query signature 
are generated by a random function, but w(Q) is the actual number of different positions 
set to "1". Accordingly, the expected number of hit frames can be determined as 

~(q) ) 
E(f ,  x, w(Q))  = ~ .  1 - i=iH f f - -  i-~ 1 -  x - i + 1 (14) 

A computationally more suitable, approximate,  formula for exactly the same purpose is 
proposed in [14]. 

Notice, that  for x -= 1, E(f ,  x, w(Q))  = w ( q ) ,  while for x = f ,  E(f ,  x, w ( q ) )  = 1, thus, 
CC~ s' = C~ "s and C~ s, = C~ "B, which can easily be proved. 
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Figure 6: Performance comparison of B S ,  K B ,  and K S  x organizations; n = 10 6, f = 
256, c = 32768, a = 0.75, x = 1, 2, 4, 8. 

Figure 6 demonstrates  K S  performance deterioration for the frame-slice sizes of 2,4, 
and 8. In fact, larger slices are probably not even convenient since the performance is 
becoming increasingly dependent on weights of query signatures - performance is much 
worse for low-weight queries - which implies to use K B  organization where the expensive 
update  problem does not exist at all. 

6 Concluding  remarks 

Storage structures are typically designed to deal with particular query types (e.g., exact 
match,  partial match,  or range queries), but  even queries of a type  can differ significantly. 
Variability in the size of range or the number of terms specifying a partial match query 
usually results in substantially diverse processing costs of a give organization. In general, 
specific structures are known to be more convenient for some queries rather  than for the 
others. 

In the field of signature files - signature files are storage structures for partial match 
queries - some organizations are more convenient for queries containing just  few terms 
(e.g., bit-sliced organization) while others perform very well for queries containing many 
terms (e.g., key-based parti t ioned organizations). Trends of performance characteristics of 
these organizations can be modelled considering a simple storage s tructure abstract  view 
consisting of a set of buckets. Provided these storage buckets are accessed independently 
while executing a query, simple formulas for query processing cost est imation can be derived, 
and in this way a significant difference in performance of queries with different complexities 
can be demonstrated.  Such situation suggests combining these approaches into a unified 
design which, presuming the parts are combined properly, would inherit positive properties 
of both  approaches. This facts form the basic ideas of the key-based bit-sliced organization 
proposed in this article. 

As our simulation results demonstrate ,  the search performance is indeed very good and 
quite stable for any kind of query, but  due to the bit-sliced approach to storing signatures, 
the update  performance can become quite high. For this reason, we further propose a 
generalization of K S  in which frames of bit slices, rather than individual bit slices, are 
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stored together. In this way, the trade-off between the search efficiency and the update 
costs can be adjusted. 

The aim of this article was to show how existing organizations can conveniently be com- 
bined to obtain a new quality. In order to make things manageable (i.e., systematically 
explaining concepts and the design), we have simplified the implementation environment. 
We are aware of the fact that mainly the assumption about the uniform cost for accessing 
a bucket is not correct for all storage environments and that retrieval of consecutive buck- 
ets can change the presented figures. However, such situation is very difficult to manage 
analytically and is now a subject of our experimental research. Future research plans also 
consider parallel storage environments, with an expectation to improve performance even 
further and solve the problem of expensive updates. 
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