
Key-Based Partitioned
Bit-Sliced Signature File

Pavel Zezula*

IEI-CNR Pisa
I ta ly

zezula@iei, pi. cnr. it

Paolo Ciaccia and Paolo Tiber io
DEIS- CIOC-CNR - University of Bologna

I ta ly
{pciaccia, pt iberio}©dei s. unibo, it

Abstract

A new signature file organization is proposed as a combination of two orthogonal
partitioning strategies, the key-based and the bit-sliced, respectively. The design re-
sults from theoretical analysis of these elementary approaches in which performance
is analytically studied respecting a simplified abstract storage structure model. The
new organization is able to achieve very high search performance for queries containing
arbitrary number of query terms - bit-sliced (key-based) organization is good only for
queries containing few (many) terms, quite bad performance is obtained in the other
cases. Update performance is also discussed and a generalization of the method, able
to adjust the trade-off between the search efficiency and the maintenance costs, is put
forward for consideration. The proposal is also compared with similar approaches in
the field of signature files.

1 I n t r o d u c t i o n

An understanding of the advantages and disadvantages of storage structures is an important
skill to know for everybody trying to develop or apply computer software aiming at pro-
cessing large collections of data. The reason is that there is not a single all-purpose storage
structure, and a unique situation requires application of a specific technique. The choice
of a proper s t ructure is particularly difficult when building general purpose systems (i.e.,
systems able to process da ta in many diverse ways), thus discovering new, more general,
and performance stable storage structures still remains as an important research challenge.
One way of approaching this problem is to combine two or more existing strategies into a
unique technique that would share advantages of its constituents.

Another fundamental concept of the information storage technology suggests to convert
unstructured, complex, or too bulky information into a form that is more readily processible
by computers. Retrieval is then done on the new (typically much shorter and bet ter struc-
tured) file, and in this way, improvements in performance are obtained. Typical storage
structure representatives of this kind are known as the Inverted File [1] and the Signature
File Access Method [4, 12, 13]. In the lat ter approach, da ta objects are converted into
bit vectors, signatures, and a collection of such vectors, called signature file, is used for
retrieval.

*On leave from the Technical University, Brno, Czech Republic.

20

http://crossmark.crossref.org/dialog/?doi=10.1145%2F219587.219593&domain=pdf&date_stamp=1995-09-01

Early signature file implementations, based on sequential organization, could not com-
pete in retrieval performance with inverted files; this was mainly true for large files [9].
Consequently, many new techniques have been developed for the implementation of sig-
nature files [4, 13], thus by applying the proper technique for a task at hand, required
performance can usually be achieved.

The number of suggested signature file implementations is really impressive - surveys
of the topic can be found in [4, 13]. Their performance significantly depends on the number
of conjunctive terms in a query. Usually, organizations working very well for queries with
few terms (i.e., low weight queries) are not suitable for queries containing many terms (i.e.,
high weight queries). This is also true in the opposite direction, thus organizations suitable
for executing queries of high weights do not perform well for low weight queries. Typical
representatives of signature file organizations possessing these properties, are the bit-sliced
[10] organization - files organized as bit slices achieve high performance for low weight
queries - and the key-based partitioned approach [5, 17], which is convenient to use when
high weight queries are processed.

In this paper, we propose to combine these two approaches in order to obtain a signature
file organization that is appropriate for any kind of query. We start in Section 2 by formally
defining partitioning schemes of a signature file and proceed by specifying different query
evaluation strategies in Section 3. In Section 4, we define an abstract storage system and
derive formulas able to determine retrieval costs of three well known storage organizations.
The proposal and performance evaluation of a new signature file organization is presented
in Section 5.

2 Background

Even though more than one signature extraction method have been proposed in literature,
superimposed coding, see e.g. [4], is by far the most frequent way of producing signatures -
due to its simple matrix structure, a file of superimposed signatures offers a lot of possibilities
for storage organization. Accordingly, whenever we talk in this article about a signature,
we mean a signature produced by the superimposed coding method.

A signature file S is a set of n signatures, where Si (i = 1 , . . . , n) is a binary string
of f bits representing the information content of data object 0~. Each object is supposed
to contain T indexable terms, such as attribute values or keywords, and signature Si is
produced by superimposing (i.e., inclusive OR-ing) T term signatures of Oi. The signature
of a term is simply obtained by hashing the term onto an f-bit zero valued vector so that
bits in v, not necessarily distinct, positions are set to "1".

Optimum signatures (i.e., signatures balancing the trade-off between the search efficiency
and the space occupancy) [4], have 509~ of bits with value "1"and 50~0 of bits with value
"0". The number of bits in signature Si is called the signature weight and is designated as
w(S/). That means that the opt imum signatures have w(S/) = f /2 , on the average.

In a formal way, a file of superimposed signatures, S, can be seen as a matrix of bits

S =

8 1 , 1 , 81 ,2 , • . . S l ,]

S2 ,1 , 32 ,2 , ~2 , f

: : : :

S n , l ~ S n , 2 , . . . S n ,]

21

where sl,j E {0,1) , for i E { 1 , 2 , . . . , n) and j E { 1 , 2 , . . . , f } , are bits constituting a file of
n signatures, where each signature has size f bits.

There are several ways how a matr ix can be split into its parts. Simple horizontal (i.e.,
the bit-string) and vertical (i.e., the bit-sliced) splitting strategies can be defined as follows.
In this work we do not consider other partitioning strategies, such as the horizontal splitting
method described in [11].

B i t - s t r i n g s p l i t t i n g :

S = ii $1 S2

so
where

S 1 -~ [81,1, 81,2, . . - S l , f]

S 2 : [82,1, 82,2, . . . S2 , f]

S n : [Sn,1, Sn,2, . . . 8n,ff]

and Si is the i-th signature of the file S. In the following, whenever a confusion might occur,
we call Si an object signature since it represents the content of the i-th da ta object.

B i t - s l i c e d s p l i t t i n g :

s = l l s l , s 2 , . . . , s f l l where

S 1 : [S1,1, 82,1, . . . Sn,1] T

s 2 = [81,2, s2,2, . . . s~ ,2] T

S f : [S l , f , S2 , f , . . . Sn , f] T

and sJ is the j - th bit-slice (i.e., the j - t h column) of the file S.

F r a m e - s l i c e d s p l i t t i n g :

A more complicated way of splitting a signature file suggests grouping bit slices into separa-
ble units to form the frame-sliced structure defined as follows. Let x > 0, called the frame-
slice size, be the number of consecutive bit-slices forming a frame-slice, where x • y = f for
a specific y C {1, 2 , . . . , f} . The precise meaning of frame-sliced splitting can be stated as

s = I I F 1 , F 2 , . . . , F Y / ~ I I where

F 1 = [S 1, S 2, . . . S x]

F 2 = [S x+l, SX+ 2, . . . S 2x]

F f / x ._~ [S f - x + l , s f - x + 2, . . . S f]

Observe that our definition does not correspond to the Frame-Sliced Signature File orga-
nization from [7], which uses a different method for generating signatures and processing
queries.

K e y - b a s e d s p l i t t i n g :

By considering parts of signatures as keys, signature Si can be split into its key part , Ki,

and the body, SI b), containing the rest of the signature. Provided keys are defined as k-bit
signature prefixes, we can view splitting of the signature Si as

Si = Ki, SI b)

where Ki = [si,1, sl,2,..., si,k] and S! b) = [si,k+l, sl,k+2, • •. , s i j] for all i and k E {1, 2, f} .

22

3 Querying in Signature Files

Signature file queries, defined as conjunctions of terms, are t ransformed into a signature
form as well. A query signature, Q, is then a row binary vector Q = [ql,q2 ,q/],
where qj E {0, 1} for j = 1 , 2 , . . . , f , and the first k bits form the query signature key,
KQ. Obviously, the query signature weight, w(Q), should not exceed the weight of object
signatures, i.e. w(Si) _> w(Q), and can become quite small, e.g. 8 or 10, compared to
w(Si), which is typically counted in hundreds.

The task of a signature file query evaluation is to find all signatures in S which qualify
for the query signature Q. Such set of signatures, designated as the query response, RQ,
can be defined in several different manners.

Response for query signature Q:

RQ = {S/I(Si A N D Q) = Q} (1)

= {s i lv j : qj = 1 ::v (si,j = 1)) (2)

C {Sil(Ki A N D KQ) = K Q) (3)

Notice that A N D in Equations 1 and 3 stands for the bitwise logical operator.
Equations 1, 2, and 3 suggest three ways to identify RQ. The first of them, Equation 1,

uses as a test the traditional inclusion condition in which a query signature is supposed to
be included in a qualifying object signature. In other words, the signature Si qualifies if it
contains ones in all positions in which the query signature Q contains bits with value "1".

Equation 2 is based on a different strategy. It takes advantage of the fact that bit
positions determined in object signatures by " l" ' s in the query signature are the only
positions which must be considered in the query evaluation process - values of the remaining
object signature bits are not able to influence the result of querying and need not be
exphcitly tested (accessed) for qualification.

Equation 3 is similar to Equation 1, but considers only key-parts of signatures, thus the
response, as determined by Equation 3, forms in general a superset of the query response
determined by Equations] and 2.

4 Signature File Organizations

The performance of any secondary storage access structure is a complex function of (a) the
way how the entire da ta search space is allocated on the memory, (b) the search strategy
used for retrieval, and (c) storage hardware parameters. In order to get a unique platform
for comparing query response costs of different signature file organizations, we define an
abstract storage system and claim usual assumptions of similar analytical models.

Let the storage system, Be = (b l ,b2 , . . . ,b~) , be formed by a set of m buckets, where
the bucket bt, l = 1, 2, . . . , rn, is a directly accessible continuous disk memory space of size
c > f bits. Then, the query processing cost, CQ, is the cardinality of the subset of Be
determined by buckets accessed while processing Q. Notice, that we suppose no bucket to
be accessed more than once.

In the following, we define three well known signature file allocation strategies (organi-
zations) and establish analytical formulas for estimating CQ. The formulas are based on
the following assumptions:

23

Symbol]Descript ion

Oi
T
S
n

Si
w(si)
f
v

Q
k
x

sJ
F j
Ki
KQ
B~
m
bl
c

x

S S
B S
K B
K S
K S ~
H S

i-th object of the data file
number of terms specifying a data object
signature file
signature file size (i.e., the number of signatures in S)
i-th signature of S
i-th signature weight
signature size [bits]
number of bits set to "1" for a term
query signature
signature key size [bits]
frame-slice size [bits]
j - th bit-slice
j - th frame-slice
i-th signature key
query signature key
system of storage buckets
number of buckets in Bc
l-th bucket of the storage system Bc
storage bucket capacity [bits]
bucket load ratio
cost for processing Q in X X organization
sequential signature file organization
bit-sliced organization
key-based partitioned organization
key-based bit-sliced organization
key-based frame-sliced organization
hierarchical signature file

Table 1: Major symbols

1. bits with value "1" are uniformly distributed in signatures, and

2. signatures in S form random samples, i.e. they are independent of each other.

It is interesting to observe that each of the considered organizations complies with a different
query response evaluation strategy (see Equations 1, 2, and 3). For convenience, used
symbols and their meanings are summarized in Table 1.

4.1 Sequential File

In the Sequential Signature file, SS , the (i + 1)-th element of the file S (i.e., the signature
Si+1) is stored contiguous to and immediately after the i-th element of S. Respecting our
storage system architecture, each bucket, except for the last one, is filled with [c/fJ signa-
tures where i-th signature of S is stored in the bucket bt, l = [i / [c / fJ] . To avoid waste of
space, c should be a multiple of f .

24

For each query (or a set of queries), signatures of S are accessed in their order of
occurrence until all signatures are processed, and the response for the query signature Q
is determined according to Equat ion 1. The query processing cost C ~ S is constant for a
specific file, because it does not depend on the query signature weight, and can be formalized
a s

s = r n / L c / f j] (4)

4.2 Bit-Sl iced Organizat ion

The Bit-Sliced, BS, signature file organization, proposed in [10], is a multiple sequential
organization of the signature file bit-slices. Buckets contain parts of these bit-slices, and
a specific bucket never comprises da ta of different slices. Each bucket, except for the last
one of each slice, is filled with c bits. One bit slice occupies In~c] buckets, and i-th bit of
the j - t h slice (i.e., the bit si,j) is stored in the bucket bz, l = (j - 1) . In~c] + [i/c]. BS
organization adopts for query evaluation the s t rategy defined by Equat ion 2, and the query
processing cost, C~ S, can be determined as follows:

C~ s = w (q) . rn/el (s)

Obviously, C~ s depends on query signature weight - bet ter performance is obtained when

w(Q) is low. Because C ~ S is only a function of w (q) , n, and c, the query processing cost

of B S is not directly dependent on the signature size f , though, for a specific query, w(Q)
is a function of f .

4.3 Key-Based Part i t ioned Organization

The Key-Based Partitioned, KB, organization stores in buckets signatures having identical
keys [5] - key is defined as a par t of a signature, e.g. its prefix or suffix. Since KB
uses a hashing function to allocate signatures in buckets, buckets are typically not filled
entirely, and the ratio of the occupied da ta space and the bucket capacity is, in general,
expressed as a < 1. Some KB organizations, e.g. Quick Fi l ter [17], are even able to

manage dynamic files. Each bucket, bl, l = 1 , 2 , . . . , m, is represented by a key KI B) of
size k = log 2 r n / L a , clf]] and filled on average with La. c/fJ signatures from S, for which

Ki = KI B). The number of buckets, m, depends on actual s ignature file size and can be
determined as m = [nl [a. clf]].

Respecting the s t rategy suggested by Equat ion 3, the query processing cost of KB
organization, C ~ "B, can be determined as follows:

where

n

n = ILl. (' '°g:r l f ,,

1
2/ /

(w(Q)'~ k
= m . 1 2 f) (6)

is a formula developed in [3] for es t imat ing the Bucket Activation Ratio (i.e., the ratio of
accessed to existing buckets) obtained when processing the query signature Q.

Similar to BS, the query processing cost of KB is also a function of w(Q) , but the
processing cost of KB decreases with increasing query signature weights. Notice tha t

25

Equation 6 is precisely valid for integer k (i.e., 2 k = m). However, it also gives good
approximations in the other cases.

4 .4 D i s c u s s i o n

If we try to compare performance of SS , BS , and K B organizations (by applying Equations
4, 5, and 6, respectively) considering specific S and implementation platform Be, we find
out that there is not a clear winner, provided query signatures with different weights can
occur as requests for information from the file. For the clarity of exposition, we use query
signature weights in the following figures to relate the performance and query complexity,
even though users specify queries using a certain number, TQ, of terms. The reason is that
queries with the same number of terms can result in query signatures with different weights.
The expected value can be estimated as follows:

As Figure 1 illustrates, the bit-sliced organization is very good for low weight queries,

2000 ~ - ~ m

1600 m-m-m-m-m-n m-m-m m-mm mm-m-mm-m-m-m-m

12oo

o 800 _, -~-~-~

400

0 - ~ l i i i i i i ! i i I i

10 50 90 130 170 210 250

- - m SS

-IS B S

¢----- KB

query weight

Figure 1: Performance comparison of SS , BS , and K B organizations; n = 105, f = 512,
c = 32768 (4 Kbytes), a = 0.75.

but its performance for high weight queries is much worse. On the other hand, the key-
based partit ioned method performs very well for high weight queries, though it is quite
slow for queries resulting in signatures with low weights. The sequential organization has a
stable performance (i.e., not dependent on specific query signature weight), but it may only
be convenient for short files or in applications where high performance is not the primary
concern.

Recently, several successful a t tempts have been made to improve search performance
of signature files by exploiting parMlelism [2, 6, 8, 16]. All of them even claim (nearly)
linear speedup - the linear speedup is achieved when an organization using twice as much
processors can perform the same task two times faster - for most of conceivable queries.
Notice that , when linear speedup is achieved for a given organization, it is the maximum
which a parMlel architecture can provide to improve performance of a single processor
organization at hand.

25

However, even such significant advancements in performance of signature file organiza-
tions, caused by proper utilization of parallelism, cannot change the performance charac-
teristics of these organizations, i.e. the way how the response time is changing in relation
to the query signature weight.

Provided queries of a specific application do not differ much in the query signature
weight, choice of a convenient signature file organization is usually possible, see [12] for
a guide. However, independent of the implementation environment, applications needing
to process query signatures of very diverse weights find it difficult (or even impossible) to
choose a convenient organization because they can always expect bad performance, at least
for some queries.

5 Key-Based Bit-Sliced Organization

In order to overcome the above problem of performance instability in organizing and pro-
cessing signature files, we conveniently combine the B S and K B approaches into a single
design, capable of performing both high and low weight queries efficiently. The main idea
is to group signatures with same keys, as it is done in the key-based partitioning. But,
instead of putt ing all signatures of a group into a single bucket as in K B , f buckets are
created, each of them filled just with a bit-slice of signatures from the group. We call the
design the Key-Based Bit-Sliced organization, KS.

Response for the query signature Q with the K S organization can be formalized as
follows:

RQ = {Si[(K i A N D KQ = KQ) A Vj: qj = 1 ~ (si,j = 1)} (7)

Obviously, by simultaneously pruning the signature file search space in its horizontal and
vertical dimensions, the necessary number of tested bits is effectively reduced. Furthermore,
whenever the efficiency of vertical pruning is decreasing due to increasing query signature
weights, the horizontal pruning is automatically becoming more efficient for exactly the same
reasons. By combining strategies offered by Equations 2 and 3, Equation 7 determines the
same (i.e., the actual) response as Equations 1 and 2 do; notice that Equation 3 determines
just a superset of this.

However, the power of horizontal pruning of K B and K S organizations is not the same
due to the difference in signature key sizes which these organizations use - signature key sizes
determine the power of horizontal pruning in query execution. Similar to K B organization,
signatures in K S are also hashed into groups, thus buckets are only filled partially, which
can also be expressed by the ratio c~. Provided the bucket capacity c and the ratio a are
given, K B and K S organizations should store specific S in the same number of buckets

- a signature file is determined by the number of signatures n and the signature size f .
However, while each bucket of K B organization is identified by a different key, f buckets
share the same key in K S . This implies that the number of distinct key values in K B is
practically f times higher.

As a result, the key size of K S , denoted k(1), is constrained by k(1) = l o g 2 [n / [a , cJ],
compared to k = log 2 In~ [a. c / fJ] , which is true for the K B organization. Fortunately, the
key of K S is obviously not f times shorter, because of the logarithmic dependence of the key
size on the number of distinct key value. This is very important considering performance,
because the key size has the primary effect on the bucket activation ratio.

On the other hand, the cost, which K S is forced to pay by decreased performance due
to the shorter size of its signature key, is much compensated by using the bit-sliced access

27

strategy in the activated groups• The actual performance for a query signature Q can be
estimated as follows:

['] ((C~ s = w(Q)- ~ 1 w(Q)~ ' ° g ~ [~] w(Q)~ k(~)
• 2 f J = w (Q) . m (1) . 1 2 f J (8)

where m(1) = I n / [a . c J] is the number of distinct key values in the KS organization. Note
that access to t~.e buckets storing bit-slices which are part of the key is not necessary. For
simplicity, this effect is ignored in the above formula. This does not introduce significant
errors since the ,'fize of the key is typically is much lower than the signature size.

5.1 E v a l u a t i o n o f r e t r i e v a l p e r f o r m a n c e

Similar to KB organization, performance of KS is a function of the signature and the
signature file sizes, bucket capacity and its load ratio, and the query signature weight. Before
presenting results obtained from the analysis of Equation 8, defining retrieval performance
of KS organization, we first provide some illustrative examples concerning the general
behavior of KS.

Figure 2 shows the behavior of KS in relation to BS and KB organizations considering
the same environment as in the previous section, see Figure 1. We can observe that K S

1600

~ 1200

8oo

400

0

2000 X_

____m__ll_. l i - -~ -
___i__ll--~ -

_ ~zw- l~ - - l l ' - - l l ' - -__m.4~~__-~ ~ ~ - ' - ' - "

, . - , 4 4 r " '

10 50 90 130 170 210 250

- - - R - - - - B S

KB

- - ¢ KS

query weight

Figure 2: Performance comparison o fBS , KB, and KS organizations; n = 105, f = 512, c =
32768, a = 0.75.

is practically always able to outperform KB, considering the number of accessed buckets
for any kind of a query, but the improvements are not uniform. From what we have seen,
KS can be considered as a more efficient version of KB, retaining the excellent perfor-
mance when processing low weight query signatures and achieving a gradually improved
performance of processing query signatures with higher weights•

Now, let's try to see the performance in case of a 10 times larger file, i.e. a file containing
n -=- 10 6 signatures, see Figure 3. As expected, performance of KS shows to be better and
is practically constant, except for query signatures with very low weights, where, however,
the performance is even better•

The last experiment we do concerns a file of 10 6 shorter signatures, i.e. signatures 256
bits long. Figure 4 shows performance of such file provided BS, KB, and KS organizations

28

~2 12000

"~ 8000

4000

20000 1

16000 ~

-~'-~c,-.f~ _ . r_ l lm~l- - -n

__.411_.ll--ll--II~--v-~- I±~ '~- -~_~-~_L~ ~ -
0

l0 50 90 130 170 210 250

. B - - - - B S

~ - - - KB

• K S

query weight

Figure 3: Performance comparison ofBS, KB, and KS organizations; n = 10 6, f = 512, c =
32768, a = 0.75.

10000

8OOO

E 6000

o 4000

2000

Om

10 30 50 70 90 110 130

- - I I B S

- - ~ - - - - - K B

. ¢ - - - - K S

query weight

Figure 4: Performance comparison o f B S , KB, and KS organizations; n = 10 6, f = 256, c =
32768, a = 0.75.

are used. Apparently, the performance of KS is not influenced at all by the length of
signatures.

In order to gain more insights into the behavior of KS, we consider how the retrieval
cost, expressed in Equation 8, depends on the query signature weight. To this end we
differentiate C~ "s with respect to w(Q), from which it is derived (for brevity we omit

intermediate steps) that the derivative is proportional (cx) to:

OC~ s 1
0 w (q) cx 1 - w (q) . k(1) . 2 f - w (q) (9)

which equals 0 when the query signature weight has value:

2 f _ 2 f (10)

w (Q) - k (X) + 1 1og2 [[~ . c j] + 1

29

In correspondence of this value the retrieval cost is maximum. Since the weight of query
signatures does not exceed f /2 , the maximum is actually reached only if

2f < -f k(1) > 3
+ 1 - 2

In other terms, if the key size is 3 or more, the graph showing performance of KS exhibits
a peak value, after which retrieval costs decrease, otherwise the cost monotonically grows
with w(Q). Indeed, Figure 3 refers to a case where the maximum is reached, according to
Equation 10, when w(Q) ~ 161, which is within the range of admissible weight values. On
the other hand, Figure 2 shows a different behavior since the maximum would be reached
for w(Q) ,~ 308., which is well beyond f / 2 = 256.

The peak vMues observed in Figures 3 and 4 can analytically be evaluated by substituting
into Equation 8 the value of the weight computed from Equation 10. After simplification,
and with the advice that re(l) = In~ La. cJ] is the number of distinct key values, we obtain:

max{C~S}= 2f.m(1) { k(1) k(1)
k(i)T1 "\k(1)+l) (11)

which is valid when k(1) > 3.
organization, the quantity

Since f • re(l) is the total number of bucket in a KS

2 . { _ k (1)
(12)

k (1) + 1 \ k (1) + 1 J
defines the maximum value of the Bucket Activation Ratio (BAR) for KS, that is, the
maximum fraction of buckets that have to be accessed to process a signature query.

Figure 5 summarizes above analysis by showing how the maximum BAR depends on the
size of the key, k(1). Also shown is the value of the ratio w (Q) / f for which the maximum
BAR is obtained, as derived from Equation 10. For instance, when k(1) = 6, the maximum
BAR is about 0.11, which is obtained if w (Q) / f ~ 0.285. This precisely means that, when
the size of the key is 6, about 11 percent of the buckets have to be accessed in the worst
case, and this occurs in case of medium weight queries, setting about 28.5 percent bits at

5.2 G e n e r a l i z a t i o n

As the performance section above indicates, the proposed combination of the key-based
and the bit-sliced approaches to a signature file organization is able to provide substantial

• increase in retrieval performance in comparison to performance of its constituent strategies
(i.e., K B and BS organizations). However, K S also inherits properties concerning updates.
In this respect, KS is able to deal with dynamic files, provided the group splitting strategy
of Quick Filter is adopted - see [17] for details. But, because a group in KS contains f
buckets, all of these buckets must be accessed to insert a signature (or must be split during
a file expansion), thus modifications certainly are a matter of concern 1 - expensive update
is a well known property of files with the BS organization.

In this respect, KS is more convenient for static (e.g., archive like) files where no or
very few updates are required. In case of highly dynamic files, K B organization seems to

1Contrary to BS, K S can allocate groups of f buckets as contiguous buckets on disk. In this way random
reads (writes) can be substituted by sequential ones, which alleviates the update problem. However, this
violates our assumption about the uniform cost of accessing a bucket.

30

0.5

0.4

0.3

0.2

0.1

0

E ~ . ~ _ w(Q)/f

max{BAR} - n _ ~ u •
. . . . R- - • • •

2 3 4 5 6 7 8 9 10 11 12

key size

Figure 5: Maximum Bucket Activation Ratio (BAR) of the KS organization, and fraction
of bits in the query signature (w(Q)/ f) for which such maximum occurs.

be more convenient. This has lead us to propose a generalization of KS, designated KS x,
which sacrifices some of the retrieval efficiency of KS in order to increase update efficiency.
By vertically splitting the signature file into frame-slices FJ, ra ther than bit-slices, buckets
of KS ~ can be filled by parts of these frame-slices and the file organized as follows.

A group of signatures in the KS x organization, identified by a specific signature key,
contains f / x buckets, and, compared to KS (or equivalently KS1), the signature key size
k(x) = log2[n/La, c/xJ] is gaining a bit in its length - depending on the value of x -
which implies a bet ter bucket activation ratio. On the other hand, accessed buckets can
contain data (i.e., signature bit-slices) which need not be searched, causing additional access
overhead resulting in an increase of the retrieval response time.

The trade-off between these two trends, respecting a specific value of the frame-shce size
x, can be formalized as follows:

n

n

where E(f , x ,w(Q)) is the expected value of the number of frames containing at least
one hit bit-slice (i.e., a bit-sfice which must be searched), provided the signature size, the
frame size, and the query signature weight are f , x, and w(Q), respectively. A solution to
this classical probabilistic problem can be found in [15] by considering the case of random
selection of elements from groups, without replacement - bit positions in a query signature
are generated by a random function, but w(Q) is the actual number of different positions
set to "1". Accordingly, the expected number of hit frames can be determined as

~(q))
E(f , x, w(Q)) = ~ . 1 - i=iH f f - - i-~ 1 - x - i + 1 (14)

A computationally more suitable, approximate, formula for exactly the same purpose is
proposed in [14].

Notice, that for x -= 1, E(f , x, w(Q)) = w (q) , while for x = f , E(f , x, w (q)) = 1, thus,
CC~ s' = C~ "s and C~ s, = C~ "B, which can easily be proved.

31

10000

8OOO

6000

4000

2000

0

" \ \ \
W~

~ - ~----_ - ~ _ .

10 30 50 70 90 110 130

q u e r y weight

r -

-m BS

. { ~ } - K B

- - - ¢ " K S

2
. ~- KS

4
- - - - A - - - - K S

8
kq----- KS

Figure 6: Performance comparison of B S , K B , and K S x organizations; n = 10 6, f =
256, c = 32768, a = 0.75, x = 1, 2, 4, 8.

Figure 6 demonstrates K S performance deterioration for the frame-slice sizes of 2,4,
and 8. In fact, larger slices are probably not even convenient since the performance is
becoming increasingly dependent on weights of query signatures - performance is much
worse for low-weight queries - which implies to use K B organization where the expensive
update problem does not exist at all.

6 Concluding remarks

Storage structures are typically designed to deal with particular query types (e.g., exact
match, partial match, or range queries), but even queries of a type can differ significantly.
Variability in the size of range or the number of terms specifying a partial match query
usually results in substantially diverse processing costs of a give organization. In general,
specific structures are known to be more convenient for some queries rather than for the
others.

In the field of signature files - signature files are storage structures for partial match
queries - some organizations are more convenient for queries containing just few terms
(e.g., bit-sliced organization) while others perform very well for queries containing many
terms (e.g., key-based parti t ioned organizations). Trends of performance characteristics of
these organizations can be modelled considering a simple storage s tructure abstract view
consisting of a set of buckets. Provided these storage buckets are accessed independently
while executing a query, simple formulas for query processing cost est imation can be derived,
and in this way a significant difference in performance of queries with different complexities
can be demonstrated. Such situation suggests combining these approaches into a unified
design which, presuming the parts are combined properly, would inherit positive properties
of both approaches. This facts form the basic ideas of the key-based bit-sliced organization
proposed in this article.

As our simulation results demonstrate , the search performance is indeed very good and
quite stable for any kind of query, but due to the bit-sliced approach to storing signatures,
the update performance can become quite high. For this reason, we further propose a
generalization of K S in which frames of bit slices, rather than individual bit slices, are

32

stored together. In this way, the trade-off between the search efficiency and the update
costs can be adjusted.

The aim of this article was to show how existing organizations can conveniently be com-
bined to obtain a new quality. In order to make things manageable (i.e., systematically
explaining concepts and the design), we have simplified the implementation environment.
We are aware of the fact that mainly the assumption about the uniform cost for accessing
a bucket is not correct for all storage environments and that retrieval of consecutive buck-
ets can change the presented figures. However, such situation is very difficult to manage
analytically and is now a subject of our experimental research. Future research plans also
consider parallel storage environments, with an expectation to improve performance even
further and solve the problem of expensive updates.

A c k n o w l e d g e m e n t s

We would like to thank the anonymous referees who gave relevant suggestions to improve
the quality of the paper.

The research was partially funded by the ESPRIT Long Term Research program, project
no. 9141, HERMES (Foundations of High Performance Multimedia Information Manage-
ment Systems), and by Italian CNR, under contract no. 94.00388.CT12.

R e f e r e n c e s

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Is]

[9]

Cardenas, A.F., Analysis and Performance of Inverted Data Base Structures. Com-
munications of the ACM, 1975, 18(5):253-263.

Ciaccia, P., Tiberio, P., and Zezula, P. Declustering of Key-Based Partitioned Signature
Files. Accepted for A C M Transactions on Database Systems.

Ciaccia, P. and Zezula, P., Estimating Accesses in Partitioned Signature File Organi-
zations. ACM Transactions on Information Systems, 1993, 11(2):133-142.

Faloutsos, C., Signature Files. In: Information Retrieval: Data Structures and Algo-
rithms, W. B. Frakes, R. Baeza-Yates (eds.), Prentice-Hall, 1992, pp 44-65.

Lee, D.L. and Leng, C.-W., Partitioned Signature Files: Design Issues and Performance
Evaluation. A CM Transactions on OJfice Information Systems, 1989, 7(2):158-180.

Lin, Z., Concurrent Frame Signature Files. Distributed and Parallel Databases, 1993,
1(3):231-249.

Lin, Z. and Faloutsos, C., Frame-Sliced Signature Files. IEEE Transactions on
Database Systems, 1992, 4(3):281-289.

Panagopoulos, G. and Faloutsos, C., Bit-Sliced Signature Files for Very Large Text
Databases on a Parallel Machine Architecture. Lecture Notes in Computer Science, No.
779, M. Jarke, J. Bubenko, and K. Jeffery (eds.). Proceedings of EDBT'94, Cambridge,
United Kingdom, 1994, Springer-Verlag, pp. 379-392.

Rabitti, F. and Zizka, J., Evaluation of Access Methods to Text Documents in Of-
fice Systems. Proceedings of the 3rd Joint ACM-BCS Symposium on Research and
Development in Information Retrieval, Cambridge, United Kingdom, 1984, pp. 21-40.

33

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Roberts, C.S., Partial Match Retrieval via the Method of the Superimposed Codes.
Proceedings of the IEEE, 1979, 67(12):1624-1642.

Sacks-Davis, R., Kent A., and Ramamohanarao, K.
on Descriptors Superimposed Coding Techniques.
Systems, 1987, 12(4):655-696.

Multikey Access Method Based
ACM Transactions on Database

Tiberio, P. and Zezula, P., Selecting Signature Files for Specific Applications. Infor-
mation Processing and Management, 1993, 29(4):487-496.

Tiberio, P. and Zezula, P., Signature File Access. Encyclopedia of Microcomputers,
Kent, A. and Williams, J.G. (eds.), Marcel Dekker, Inc., New York, 1995, Vol. 16:377-
403.

Whang, K.-Y., Wiederhold, G., and Sagalowicz, D. Estimating Block Accesses in
Database Organizations: A Closed Noniterative Formula. Communications of the
ACM, 1983., 26(11):940-944.

Yao, S.B., Approximating Block Accesses in Database Organizations. Communications
of the ACM, 1977, 20(4):260-261.

Zezula, P., Ciaccia, P., and Tiberio, P., Hamming filter: A Dynamic Signature File
Organization for Parallel Stores. Proceedings of the 19th International Conference on
VLDB, Dublin, Ireland, 1993, pp. 314-327.

Zezula, P., Rabitti, F.~ and Tiberio, P., Dynamic Partitioning of Signature Files. ACM
Transactions on Information Systems, 1991, 9(4):336-369.

34

