
Techniques of machine learning have been
successfully applied to various problems [1,
12]. Most of these applications rely on
attribute-based learning, exemplified by the
induction of decision trees as in the pro-
gram C4.5 [20]. Broadly speaking,
attribute-based learning also includes such
approaches to learning as neural networks
and nearest neighbor techniques. The
advantages of attribute-based learning are:
relative simplicity, efficiency, and existence
of effective techniques for handling noisy
data. However, attribute-based learning is
limited to non-relational descriptions of objects in the sense that the learned
descriptions do not specify relations among the objects’ parts. Attribute-based
learning thus has two strong limitations: 

• the background knowledge can be expressed in rather limited form, and
• the lack of relations makes the concept description language inappropri-

ate for some domains. 

Examples of such domains are presented in this article. 
An attempt to overcome the limitations of attribute-based learning has led

to recent development of a number of programs that learn at the level of first-
order predicate logic. These include FOIL [19], Golem [17], and Progol
[22], with Shapiro’s program MIS as one of their early predecessors [21]. This
has led to the inception of a new area of machine learning called Inductive
Logic Programming [13]. For recent developments see [14]. ILP benefits from
the solid theoretical framework provided by logic and logic programming. 

The learning problem in ILP is normally stated as follows: given back-
ground knowledge B, expressed as a set of predicate definitions, positive exam-
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ples E+ and negative examples E-, an ILP system will
construct a predicate logic formula H such that: 

• all the examples in E+ can be logically derived
from B ^ H, and 

• no negative example in E- can be logically derived
from B ^ H.

This definition is similar to the general problem of
inductive learning, but it insists on predicate logic
representation of B and H. Typically for ILP systems
B, H, E+ and E- will each be Prolog programs. B ^ H
is simply the Prolog program B extended by the Pro-
log program H. The use of Prolog throughout allows
for a highly versatile representation language for all
constituents of the problem. This versatility is reflect-
ed in the wide variety of ILP applications. ILP differs
from other machine learning approaches owing to its
insistence on a particular representation language.
This has advantages in integrating techniques and
theory with those inherited from the field of logic
programming. 

One of the main advantages of ILP over attribute-
based learning is ILP’s generality of representation
for background knowledge. This
enables the user to provide, in a
more natural way, domain-spe-
cific background knowledge to
be used in learning. The use of
background knowledge enables
the user both to develop a suit-
able problem representation
and to introduce problem-spe-
cific constraints into the learn-
ing process. By contrast,
attribute-based learners can typ-
ically accept background knowl-
edge in rather limited form
only. So in ILP, if the problem is
to learn to distinguish cyclic
from acyclic graphs, the graphs
can be introduced by represent-
ing their edges as background
knowledge. In addition, a recur-
sive definition of the notion of a
path within a graph can be provided. If the problem
is to learn about properties of chemical compounds,
the molecular structures can be introduced as back-
ground knowledge in terms of the atoms and bonds
between them. If the task is to automatically construct
a model of a physical system from the
observed behaviors, complete mathemati-
cal apparatus that is considered relevant to
the modeling domain is included in the
background knowledge. Application of
ILP involves development of a good repre-
sentation of the examples together with
relevant background knowledge. A gener-
al purpose ILP system is then applied.  

The ILP framework can also be applied

to automatic program synthesis from examples as fol-
lows. The existing, known predicates are introduced
to a general ILP system as background knowledge.
The target program is specified by examples of its
input/output vectors. A common ILP exercise of this
kind is the induction of the quick-sort program from
examples, saying for instance that the list [4,1,2]
sorts into [1,2,4]. Suitable background knowledge
contains the definition of the predicates for list con-
catenation, and for partitioning of a list, with respect
to some value, into the lists of “small’’ and “big’’ ele-
ments. Using this background knowledge and some
ten examples and counterexamples, a typical ILP sys-
tem will induce the known Prolog program for quick-
sort in a few seconds of CPU time. 

In the remainder of this article we describe select-
ed applications of ILP. We mainly chose those appli-
cations that specifically benefit from the ILP’s
predicate logic descriptions, and from the back-
ground facility in ILP. 

Finite Element Mesh Design
Finite element (FE) methods are used extensively by
engineers and modeling scientists to analyze stresses

in physical structures. Finite ele-
ment methods require that the
structures being modeled be
partitioned into a finite number
of elements, resulting in a finite
element mesh (Figure 1). In
order to design a numerical
model of a physical structure it is
necessary to decide the appro-
priate resolution of the mesh.
Considerable expertise is
required in choosing these reso-
lution values. Too fine a mesh
leads to unnecessary computa-
tional overheads when execut-
ing the model. Too coarse a
mesh produces intolerable
approximation errors. 

Normally some regions of the
object require a denser mesh
whereas in other regions a coars-

er mesh still suffices for good approximation. There
is no known general method that would enable auto-
matic determination of optimal, or even reasonably
good meshes. However, many examples of successful
meshes for particular objects have been accumulated

in the practice of FE computations. These
meshes can be used as sources of examples
for learning about the construction of
good meshes. 

In general the mesh depends on the
geometric properties of the object, the
forces acting on it, and the relations
between different components of the
object. The mesh density in a region of the
object depends also on the adjacent
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regions. Because of these relational dependences, the
ILP approach most naturally applies to the mesh
design problem.  

In the application of ILP to this problem [7], a
structure to be partitioned is represented as (1) a set
of edges, (2) the properties of the edges, and (3) rela-
tions among the edges. These properties and rela-
tions are represented as part of background
knowledge by predicates, such as: short(Edge),
loaded(Edge), two_side_fixed(Edge),  neigh-
bor_xy(Edge1,Edge2), etc. In experiments to learn
a characterization of the density of a mesh in terms of
these relations, ten meshes known to be numerically
adequate have been used as sources of examples for
learning. The target relation to be learned is:
mesh(Edge,N) where Edge is the name of an edge
in the structure, and N is the recommended number
of finite elements along this edge. The available
meshes comprise several hundreds of edges. Each
edge is used as an example for learning, and typically
some additional positive examples are derived from
the meshes. The typical number of examples is
between 300 and 600. Negative examples are gener-
ated by a form of closed-world assumption which
gives rise to several thousands of negative examples. 

Several relational learning algorithms were tried
on this data including Golem [17], FOIL [19] and
CLAUDIEN [6]. The resulting set of rules were of
interest to expert users of the finite element meth-
ods. According to their comments, these rules
reveal interesting relational dependences that the
experts had not been aware of. Here we give an
example of such a rule (in Prolog syntax as output
by Golem, except that the variables were mnemoni-
cally renamed). 

mesh( Edge, 7) :- 
usual_length( Edge),
neighbor_xy( Edge, EdgeY),
two_side_fixed( EdgeY),
neighbor_zx( EdgeZ, Edge),
not_loaded( EdgeZ). 

This rule says that partitioning Edge into 7 ele-
ments is appropriate if Edge has “usual length’’, and
has a neighbor EdgeY in the xy-plane so that EdgeY
is fixed at both ends, and Edge has another neighbor
EdgeZ in the xz-plane so that EdgeZ is not loaded.
The following recursive rule was also generated by
Golem. 

mesh( Edge, N) :-
equal( Edge, Edge2),
mesh( Edge2, N).

This rule is interesting as it expresses, by recursion,
a recurrent pattern in the structure. The rule
observes that an edge’s partition can be determined
by looking for an edge of the same length and shape
positioned symmetrically in the same object. In other

words, this can be viewed as Golem’s discovery that an
edge may inherit a suitable partition from similar
edges in the structure. Of course, for this rule to be
computationally useful, at least some of the equiva-
lent edges must have their partitions determined by
some other rule. 

The accuracy of the induced rule sets was investi-
gated in detail in [7]. One method for estimating
accuracy is cross-validation whereby a subset, say 90%,
of all the available examples (edges) are used for
learning, and the remaining examples are used for
testing. Using this method, the test set accuracy of the
rules induced by Golem was (on average) found to be
as follows: the rules suggested correct partition of an
edge into finite elements in 78% of all test cases,
incorrect in 2% of the cases, and 20% of the test
edges remained undecided (not covered by the
induced clauses). Although the proportion of unde-
cided edges here seems rather high, it is within an
acceptable range for the practice of mesh design.
Because of some general local consistency constraints
used in mesh generators, many of the omissions can
be automatically recovered by post-processing of the
results generated by the ILP system. 

Predicting the Mutagenicity of
Chemical Compounds
The construction of new scientific knowledge from
real-world data remains an active focus for machine
learning. One such problem is the Structure/Activity
Relationships (SAR) of chemical compounds. This
forms the basis of rational drug design. One widely
used method of SAR stems from the work of Hansch
[10] and uses regression/discrimination to predict
activity from molecular properties such as hydropho-
bicity, sigma effect, molar reflectivity and LUMO (the
energy of the Lowest Unoccupied Molecular
Orbital). This and many other traditional approach-
es are limited in their representation of molecular
connectivity and structure. They take into account
the global attributes of a molecule, but do not com-
prehensively consider the structural relationships in the
molecule. Thus some possibly important informa-
tion, comprised as patterns in the molecular struc-
ture, may remain unexploited. 

The ILP approach allows, however, the complete
structural information to be taken into account. An
ILP system Progol has been applied to the problem of
identifying Ames test mutagenicity within a series of
heteroaromatic nitro compounds [15, 22]. Hansch
and coworkers have studied 230 compounds using
classical regression [5]. For 188 compounds, they
successfully obtained a linear regression function
using hydrophobicity, LUMO and two handcrafted
binary attributes indicative of some structural prop-
erties. This regression formula predicts high muta-
genicity with very acceptable accuracy. However the
remaining 42 compounds could not be successfully
modeled by regression and no structural principles
were proposed. This subset of 42 compounds will be
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therefore referred to as “regression unfriendly.” Pro-
gol was applied to this mutagenicity data using the
split of the compounds into those with high muta-
genicity and the rest as suggested by Hansch and
coworkers. All the compounds were represented
relationally in terms of atoms, bonds and their par-
tial charge. This information was automatically gen-
erated by the modeling program QUANTA, and was
represented as about 18300 Prolog facts (unit Horn
clauses) for the entire set of 230 compounds. For the
188 compounds found to be amenable to regression,
the additional Hansch attributes of LUMO and
hydrophobicity were also provided. All this was sup-
plied to Progol as background knowledge for learn-
ing. For these compounds, Progol constructed the
following theory. A compound is highly mutagenic if
it has (1) a LUMO value ≤ -1.937; or (2) a LUMO
value ≤ -1.570 and a carbon atom merging six-mem-
bered aromatic rings; or (3) a LUMO value ≤ -1.176
and an aryl-aryl bond between benzene rings; or (4)
an aliphatic carbon with partial charge ≤ -0.022. The
theory has an estimated accuracy of 89%. This
matches the accuracy of both the regression analysis
of Hansch and coworkers, and a more recent effort
using neural networks [24]. It should be noted, how-
ever, that Progol’s theory is easier to comprehend and
was generated automatically, without access to any
structural indicator variables handcrafted by experts
specifically for this problem. 

The advantage of ILP, however, became particular-

ly clear on the remaining subset of the 42 “regression
unfriendly” compounds. For these, Progol derived a
single rule with an accuracy of 88% estimated from a
leave-one-out validation (Figure 2). This is significant
at P < 0.001. In contrast, linear regression and linear
discrimination on the parameters used by Hansch and
coworkers yield theories with accuracies estimated at
69% and 62%, which are no better than random
guesses supplied with the default accuracy of 69%.
Perhaps even more important than the predictive
accuracy, Progol’s rule provides the new chemical
insight that the presence of a five-membered aromat-
ic carbon ring with a nitrogen atom linked by a single
bond followed by a double bond indicates mutagenic-
ity. Progol has therefore identified a new structural fea-
ture that is an alert for mutagenicity. 

Some Other Applications of ILP 
Biological classification of river water quality. River
water quality can be monitored and assessed by
observing various biological species present in the
river. In particular, the riverbed macro-invertebrates
are considered to be suitable indicators of the quality
of water. Different species have different sensitivity to
pollutants, and therefore the structure of the macro-
invertebrate community in a river is well correlated
with the degree and type of pollution. Dzeroski et al.
[8] used ILP to analyze the relation between the sam-
ples of macro-invertebrates and the quality class of
water. For learning, they used 292 field samples of
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Figure 2. 
“Regression unfriendly’’ com-
pounds and the structural fea-
ture found by Progol 
(A) Some of the compounds
found not to be amenable to
analysis by statistical methods of
regression or discrimination. No
structural rules/alerts have pre-
viously been proposed for muta-
genesis in these compounds. (B)
Progol identified the alert of a
double bond conjugated to a
five-membered aromatic ring via
a carbon atom. The atoms U–Z
do not necessarily have to be
carbon atoms. This is the most
compressive explanation for
mutagenesis for the 42 com-
pounds possible within the
hypothesis language used by
Progol. The alert is present in
the two high mutagenic com-
pounds shown in (A) and not
present in the two low muta-
genic compounds.
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benthic communities taken from British Midlands
rivers, classified by an expert river ecologist into five
water-quality classes. They constructed a relational
representation of these samples and used the ILP sys-
tems Golem [17] and CLAUDIEN [6] for inducing
logic clauses from the data. The induced clauses were
judged by experts to be intuitively appealing and
largely consistent with their knowledge. In particular,
the experts appreciated the symbolic explicitness of
the generated descriptions. They considered this as a
major advantage over neural net learning that was
also applied to the same data. 

Biomolecular modeling. ILP applications in biomol-
ecular modeling aim to improve the understanding of
the inter-relationships of chemical formula, three-
dimensional structure, and function of molecules of bio-
logical importance. An overview of such applications of
ILP can be found in [23]. These ILP applications
involved applying Golem [17] to protein secondary
structure prediction [14], prediction of ß-sheet topolo-
gy and modeling the structure activity relationship
(QSAR) of a series of drugs [11]. For secondary struc-
ture prediction Golem yielded predictive accuracies well
in excess of any other contemporary approach. In the
case of QSAR, predictive accuracies were not signifi-
cantly higher than those produced by linear regression.
However, in all three studies Golem discovered rules
that provided insight into the stereochemistry of the sys-
tem. Statistical techniques and neural networks are infe-
rior in this aspect of comprehensibility, and are thus
impaired for scientific discovery problems. 

Inducing program invariants with ILP. In formally
proving the correctness of procedural programs, one
needs to find suitable conditions that always hold at
given points in the program. Such a precondition has
to be sufficiently strong to imply the postcondition of
the program. Of particular interest is the problem of
finding suitable conditions that are true inside pro-
gram loops, called loop invariants. In general, the
construction of loop invariants is considered difficult,
and is usually done simply by guessing. Bratko and
Grobelnik [3] explored the idea that ILP techniques
can be used for automatically constructing loop
invariants. A program that is to be proved correct can
be executed, and the resulting execution traces can
be used as learning examples for an ILP system. The
states of the program variables at a given point in the
program represent positive examples for the condi-
tion associated with that point in the program. Nega-
tive examples can be generated by employing a kind
of “controlled closed-world assumption.’’ Suitable
loop invariants were straightforwardly induced for
simple programs that are used in typical correctness
proof exercises in [3]. The automatic induction of an
invariant for a parallel program was also demonstrat-
ed. The scaling up of this approach to larger pro-
grams has not been investigated yet. 

Data refinement in program design. In program
construction from higher order specification, functions
in the specification language (higher level) are to be

implemented in the target language (lower level).
Thereby abstract data types at the higher level are to be
refined into concrete data types at the target language
level. For example, sets can be reified into lists. In [3]
this refinement problem is formulated in the ILP
framework. As an illustration, the general ILP program
Markus [9] was used to implement by induction the set
union operation from abstract, high-level specification. 

Innovative design from first principles. Bratko [2]
formulated an approach to innovative design as an
ILP problem. The design process is viewed as the
process of structuring available elementary compo-
nents in such a way that they together realize some
specified target behavior. The approach addresses
the design from “first principles” in the sense that the
functional behavior of an artifact is derived from the
physics of the elementary components available to the
designer. The approach involves: specification of the
target artifact by examples of its intended behavior,
qualitative physics definition of the behavior of the ele-
mentary components available, and ILP as the mech-
anism for conceptually constructing the device. As an
illustration, the Markus program [9] was applied to
constructing simple electric circuits from examples of
their intended behavior and the qualitative physics of
some simple electrical components. 

Qualitative system identification. A fundamental
problem in the theory of dynamic systems is system
identification. This can be defined as follows: given
examples of the behavior of a dynamic system, find a
model that explains these examples. Motivated by the
hypothesis that it should be easier to learn qualitative
than quantitative models, Bratko et al. [4] formulat-
ed the qualitative identification problem as an ILP
problem. In their work, models are sets of Qualitative
Differential Equations (QDEs) that constrain the val-
ues of the system variables. A Prolog implementation
of QDE constraints normally used in qualitative
physics is provided as background knowledge for
learning. Example behaviors of the modeled system
are used as positive training examples, while negative
examples are generated as near misses. Models of
simple dynamical systems have been induced using
general ILP systems. 

Conclusion 
ILP has been applied to difficult, industrially or sci-
entifically relevant and not yet satisfactorily solved
problems. In the major applications described (mesh
design, mutagenicity, river water quality), the results
obtained with ILP using real industrial or environ-
mental data are better than with any other known
approach, with or without ML. Mesh design and
mutagenicity are good examples of problems where
relational background knowledge is most natural,
and converting this into attribute-value form would
be, if possible, awkward at best. In many of these
applications, the users—domain specialists—are
becoming increasingly interested in the understand-
ability of the induced concept descriptions. This
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helps them to obtain new insights in their problem
domains. The representational flexibility in ILP helps
the issue of understandability. 

In all applications, general purpose ILP systems were
used. Accordingly, a typical ILP application amounts to
designing a good relational representation of the prob-
lem, including the definition of relevant background
knowledge. A major strength of ILP systems, compared
with other machine learning approaches, is that they
accept background knowledge in forms as general as
Prolog programs. This often completely changes the
nature of representational engineering, which is essen-
tial part of machine learning applications as observed
by Langley and Simon [12].

On the other hand, a major obstacle to more effec-
tive use of ILP at present is the relative inefficiency of
the existing ILP systems, and their rather limited
facilities for handling numerical data. Therefore, in
problems for which attribute-value representation is
adequate, attribute-based learning is more practical
simply for efficiency reasons. 
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