
Computer journals and magazines are currently
filled with stories about object technology, just as they
were filled with stories about artificial intelligence
(AI) and expert systems in the early 1980s. The naive
reader might think that expert systems technology
had failed and that object-oriented technology was
the hot new software approach of the 1990s.

In fact, the story is quite a bit more complex than that. Commercial AI
hasn’t failed. Indeed, the observant reader of the computer press will notice
an increasing number of stories describing expert system applications, neur-
al net applications, natural language applications, etc. Most of the applica-
tions described in these articles are either standalone systems or major

components in an application. What is even more important is
the growing use of AI techniques in applications that no one
would normally call an AI application. Microsoft Windows, for
example, incorporates “Wizards” and has Inference’s CBR
engine embedded to provide user help. Intelligent Software Strate-
gies newsletter, which has been following the sale of AI products,
recently estimated that U.S. knowledge-based system tool ven-
dors sold products and services valued at $159 million dollars in
1994. Thus, although commercial AI is hardly dead, it has not

become the huge market some predicted it would in the early 1980s.
If we look beyond more or less pure AI applications, however, it’s easy to

argue that AI has played a major role in the development of object technolo-
gy—which is developing into a huge market—and that AI products are rapid-
ly evolving into a key ingredient in many object-oriented (OO) applications.

A Short History of Expert Systems
The first academic expert systems were developed in the late 1970s and the
first commercial expert systems were developed in the early 1980s. The first
expert systems (ES) were standalone systems designed to function like a
human expert—to solve a problem after its symptoms had been described to
the system. Expert system-building tools (or shells) were first introduced in
1983 and 1984. ES tools evolved rapidly and a review of the history of tool

80 November 1995/Vol. 38, No. 11 COMMUNICATIONS OF THE ACM

Object-Oriented AI:
A Commercial Perspective
Paul Harmon

The coevolution of commercial AI and

object-oriented technology are exam-

ined here, followed by a brief assess-

ment of future trends and implications.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F219717.219783&domain=pdf&date_stamp=1995-11-01

AIadvances in traditional AI

vendors provides a good overview of the commercial-
ization of AI in the 1980s [6].

To understand the evolution of expert system-build-
ing tools, one should recall what the world of comput-
ing was like in the early 1980s. Most computing
decisions were in the hands of centralized, corporate
database and information systems (IS) groups. These
groups relied on mainframes and networks of dumb
terminals. They ran applications written in Cobol that
were primarily designed to handle back-office, data-
base and transaction processing tasks (e.g., account-
ing, inventory). Corporate IS groups were under
pressure to produce more applications and to cope
with maintenance problems associated with the large
applications they had previously developed. They
wanted help with the tasks they already faced and were
reluctant to consider new technology. The IBM PC was
introduced in 1981, had very limited memory, and
only began to have a significant impact on corporate
computing architectures in the mid-1980s.

Most of the innovations that occurred in corporate
computing in the 1980s were driven by end users and
by departments (e.g., engineering, investment trad-
ing, manufacturing, sales) that wanted to solve spe-
cific problems and needed new applications
developed more quickly than the corporate IS
departments could deliver them. Departmental com-
puting groups explored the use of PCs, Fourth Gen-
eration Languages (4GLs) and relational databases to
create data-entry and report-generation applications.
They also tried expert system-building tools. In addi-
tion, end users were buying PCs to run spreadsheets
and handle word processing.

Many expert system tool companies sold systems to
departmental computing groups and proceeded to
help the groups to develop interesting systems. As the
tool vendors tried to move out of a single department
and sell their products to the corporate computing
organization, however, they typically ran into serious
resistance. Most corporate IS groups regarded AI
products with skepticism and, in any case, were not
prepared to consider technology that wouldn’t run in
the mainframe environments.

Changes were also under way in corporate com-
puting. Many corporate computing groups were mov-
ing to relational databases. They were also exploring
the possibility that structured software development
methodologies and CASE tools would increase their
productivity and reduce their maintenance prob-
lems. These new technologies, however, all fit within
the corporate mainframe architecture.

All of the vendors: relational database vendors,
CASE vendors, 4GL vendors and expert systems ven-
dors, were trying, each in their own way, to convince
IS groups that they should be more flexible. Each, in
turn, was faced with the demand that they modify
their products to accommodate themselves to the
centralized mainframe paradigm.

In successive, overlapping waves, expert system
tool vendors modified their products so they: (1)

would run on Unix workstations and PCs rather than
Lisp machines, (2) were written in conventional lan-
guages rather than in Lisp or Prolog, (3) could access
data stored in conventional and relational databases,
and (4) could run effectively on mainframes. By the
end of the 1980s the most successful expert system
tool vendors had largely accommodated themselves
to the centralized, mainframe paradigm. And then
the paradigm collapsed.

It’s amazing, in hindsight, how quickly the main-
frame paradigm crumbled. In 1990, CASE confer-
ences were dominated by IS people interested in
CASE products that would run on mainframes and
would promise to support IBM’s AD Cycle/Reposito-
ry. In 1991, attendees at the same conferences were
suddenly more interested in PC-based CASE tools
that would support client-server development and
they were beginning to talk about OO development.
Expert system tool vendors whose strength had been
in mainframe systems suddenly found themselves
shifting gears and trying to offer better PC and Unix
versions that would work with Unix database servers.
Other vendors who had been trying to develop main-
frame versions of their products suddenly de-empha-
sized their mainframe efforts and focused, instead,
on client-server versions of their tools. And all the
expert system vendors began to talk about the fact
that their tools could support OO development.

A Short History of Object-Oriented Technolgy
Everyone talks about object technology as if they
could easily define it. In fact, object technology is very
difficult to define because it involves a basic paradigm
shift in computing and is involved in almost all
aspects of computing. There are OO operating sys-
tems, OO middleware products, OO languages, OO
methodologies, OO CASE tools, OO 4GL tools and
OO databases. People talk about using objects to
develop basic definitions of numbers and strings and
they talk about encapsulating large Cobol applica-
tions as objects. Clearly this technology encompasses
a wide variety of different techniques.

M
ost of the popular accounts
of object technology that
appeared in the mid- to late-
1980s tended to stress the
OO language/interface tra-
dition. Object techniques,
according to this explana-
tion, were first used in the

Simula language and then were further developed by
Kay, Goldberg, Robson and others, at Xerox PARC.
The first well-known OO language was Smalltalk,
which was initially used at Xerox PARC to develop
graphical user interfaces [4]. (Early reports tended to
talk about Smalltalk as a language, and didn’t seem to
realize that it was a development environment with
extensive class libraries and often functioned as the
operating system, as well.)

COMMUNICATIONS OF THE ACM November 1995/Vol. 38, No. 11 81

The Apple Macintosh (developed in Object Pascal
by Larry Tesler and others who left Xerox PARC and
went to work for Apple) was one offshoot of the Xerox
PARC efforts [11]. Various windowing interfaces for
workstations were another result. At some point,
according to tradition, application developers realized
that modularity, in addition to facilitating interface
development, made it possible to reuse code, develop
applications faster and reduce maintenance problems.
Brad Cox probably did the most to promote this point
of view with his popular book Object-Oriented Program-
ming: An Evolutionary Approach [1]. In the mid-1980s
Bell Labs introduced C++ and Objective C and Eiffel
soon followed. Later Apple and then Borland made
OO versions of Pascal and C++ available. Objective C
was used by Next, Inc. to create the NextStep operat-
ing system to show what was possible beyond the Mac-
intosh. Microsoft’s introduction of Windows 3.0
increased general awareness of graphical operating sys-
tems and by 1990 the OO revolution was in full swing.

A less well-known account of the development of
object technology starts with Marvin Minsky’s work
on frames and goes through early OO enhancements

to Lisp, like Mixins and
LOOPS to early expert
system tools like KEE [2,
13]. (KEE, Version 1,
released in 1984, was a
pure OO development
tool written in Lisp. It
was probably the first
commercial OO develop-

ment tool.) Later versions of KEE added more AI and
non-OO features in an effort to make the tool more
commercially acceptable for the 1980s [8, 9].

The earliest accounts of expert systems stressed rules
and inferencing, but by the mid-1980s, all of the major
expert system-building products had incorporated
frames. These early expert system tools used frames in
two different ways: (1) to create interfaces and (2) to
structure and store knowledge. In addition to their
other problems, by the mid-1980s, expert system ven-
dors were trying to explain and sell products that sup-
ported inferencing, logic and constraint programming,
frame and object-oriented programming and client-
server techniques. Only the best programming groups
could begin to grasp all of the new technologies, let
alone figure out how to integrate them successfully.

Two things that particularly hindered the early
expert system tool vendors were (1) a lack of stan-
dardization regarding how to represent rules and
frames and (2) a lack of a standardized methodology
for developing expert systems. The best effort to
develop a standardized methodology was undertaken
by the European Community (ESPRIT) and resulted
in KADS. The first version of KADS, which came out
in the mid-1980s, stressed designing systems to solve
specific types of decision-making tasks and stressed
rules and inferencing. KADS 2, which came out
toward the end of the 1980s, was enhanced to incor-
porate OO techniques [12].

During the same period, Lisp was standardized as
Common Lisp and then evolved into CLOS (Common
Lisp Object System), which has played a minor, but

82 November 1995/Vol. 38, No. 11 COMMUNICATIONS OF THE ACM

Figure 1.
A matrix comparing
OO products based
on abstraction and
distribution

Domain
Classes and
Products with
Rules and
Inferencing

Object-
Oriented
Products

Object-
Based
Products

3 and 4GL
Products

Advanced OO, C/S
Application

Development Tools • ART* Enterprise
• Aion DS
• Kappa
• CS Elements
• Object IQ
• ILog

Object-Oriented
Client/Server Application

Development Tools

• VisualWorks
• PARTS Workbench
• Enfin
• ObjectPro
• VisualAge

Object-Based
Client/Server Application

Development Tools

• SQL/Windows
• PowerBuilder
• ObjectViewSimple C/S

Tools
• Visual Basic

Server-Based or
Standalone

Applications

Client/Server Products that
link to relational databases but

don't support multiple joins

Client/Server Products that
support team development

and multiple joins

Distributed Products
that support team
development and

CORBA distribution

O
b

je
ct

 a
n

d
 F

u
n

ct
io

n
a
l

A
b

st
ra

ct
io

n

Client/Server and Distribution

AIadvances in traditional AI

important role in the OO language market. Expert sys-
tem tools and languages, in turn, led to the develop-
ment of the first OO databases, (i.e., G-Base) designed
to facilitate the storage of knowledge objects. In the
1990s, as OO development became more strongly asso-
ciated with OO languages, the OO database vendors
shifted their emphasis and modified their products to
work with C++ or Smalltalk. This is interesting, since
neither of those OO languages supports persistent
instances, which most expert system tools have relied
on since the mid-1980s. Thus, although the AI-derived
branch of object technology initially received less atten-
tion, recent accounts are beginning to pay more atten-
tion to it and a synthesis between the two object
traditions is now well under way. In the late 1980s and
at the beginning of the 1990s, OO conferences were
mostly focused on OO languages and databases. In
1994, most of the shows were focused on OO 4GL
client/server tools and OO CASE tools and all the con-
ferences displayed OO products developed by former
expert system vendors. Moreover, most recent accounts
of the OO market have at least mentioned expert sys-
tem tools as one way to approach OO development.

To illustrate how AI vendors are selling at the high
end of each OO niche, consider Figure 1, an analysis
of OO 4GL client/server tools that first appeared in
the Object-Oriented Strategies newsletter [5]. This analy-
sis emphasizes that tools with inferencing and rules
are especially good for logic-intensive, enterprise-
wide OO applications. It also emphasizes that few of
the current tools support true distributed develop-
ment or the Object Management Group’s Common
Object Request Broker Architecture (CORBA). It
does not emphasize the difference between objects
and frames, which will be considered later.

Developers and companies have been cautious in
their adoption of object technology. Most companies
began by acquiring object-based products. (Object-
based products provide some object components, but
lack the full complement of features that most people
associate with object-oriented products. Most object-
based products, for example, don’t support class hier-
archies that developers can access or subclass.) In the
past two years, as they have learned more about OO
technology, many companies have upgraded to true
OO products. The advanced OO products will prob-
ably remain a small part of the overall OO 4GL niche,
however, because most of the products are written in
their own internal languages. The OO C/S tools tend
to be written in Smalltalk or C++ and make it possible
for companies to move classes developed in one tool
to other tools or to use them with OO languages. The
development of an OO repository might make the

advanced OO tools more popular, but this remains to
be seen. In the meantime, the emphasis on open sys-
tems is definitely limiting the market for most of the
advanced OO products.

The OO Language Tradition vs. The OO AI Tradition
Smalltalk and C++ object models have been consis-
tently simpler than the frame-based models. The
hierarchies of classes are only used to facilitate the
generation of instances and the instances are tran-
sient. Multiple inheritance mechanisms are so limit-
ed that most OO developers avoid using them. Great
stress has been placed on encapsulation.

By contrast, frames were originally conceived as a
way to structure knowledge. Thus, frames at any level
in a hierarchy may be accessed for information. It’s
common, for example, for an AI system to begin with
a lower-level frame (i.e., an instance), find that it lacks
sufficient information, and then move to a higher-level
frame and reason on an abstract level. Knowing that a
bird is an animal, for example, allows us to assume that
it breathes air. The fact that frame systems keep useful
knowledge at many levels in their systems has led to
more complex inheritance mechanisms and to pro-
gramming techniques that allow developers to direct
messages to frames at various levels in a hierarchy. The
original frame systems lacked methods and relied on
demons and rules and an inference engine that could
operate across all the frames in the systems. Demons
were linked to specific target frames. Thus, the use of
rules and demons violated encapsulation. (Some early
expert system tool vendors tried to encapsulate rules
within specific frames and found the process too con-
fusing and inefficient and abandoned it [3].)

In the late 1980s, as companies began to become
interested in OO technology, most of the major
expert system tool vendors added some kind of meth-
ods to their frame systems, making them more like
objects in Smalltalk, but rules continued to remain
outside the frames. By creating a dual way of han-
dling procedural information, the expert system ven-
dors made their products more complex and
developers were faced with still another considera-
tion: when to use methods and message passing and
when to rely on rules and inferencing. In addition,
the high-end AI-derived products support greater
dynamics than languages and tools based on
Smalltalk. Thus, most AI tools can dynamically create
new classes and new methods when necessary.

In spite of the emphasis that Smalltalk and C++
vendors have put on encapsulation, it has never been
considered a defining characteristic of object-orien-
tation. Peter Wegner, in his popular discrimination

COMMUNICATIONS OF THE ACM November 1995/Vol. 38, No. 11 83

Most recent accounts of the OO market

have at least mentioned expert system tools as one way to
approach OO development.

between OO languages and object-based languages
omits encapsulation and includes CLOS among the
OO languages [14]. In effect, frames are considered
a type of object, and methods can either be encapsu-
lated, or in the environment, as they are in CLOS. At
this point, most OO theorists ignore frames and sim-
ply stress that AI-derived tools, like CLOS, are simply
more complex than most other OO products.

Most corporate OO developers started out in C++ or
Smalltalk and are a bit overwhelmed by the complexi-
ties of the more sophisticated AI-derived OO tools. As
more complex OO applications are developed, howev-
er, the more sophisticated OO developers are increas-
ingly looking to AI techniques to help them model
problems that are more complex than those common-
ly discussed in introductory C++ courses. AI developers

introduced rules and inferencing, after all, to modular-
ize complex chains of procedural logic. Many OO
developers begin by assuming that they are modulariz-
ing procedural code when they break a conventional
application into methods and associate different meth-
ods with different objects. They are modularizing it, of
course, but as they move from applications that pri-
marily involve manipulating data to those involving
large amounts of knowledge and complex decisions,
they find that even methods can get complex. CLOS
offers developers the option of using methods with
associated pre-conditions and post-conditions to han-
dle more complex situations. At some point, however,
it becomes easier to conceptualize the logic as rules and
let an inference engine handle the search. In fact, it is
only when a developer uses both objects and produc-

84 November 1995/Vol. 38, No. 11 COMMUNICATIONS OF THE ACM

OO Operating Systems

OO Languages and Class
Libraries

OO Networks and
Middleware

Components and
Frameworks

OO Application Develop-
ment Environments
and Tools for Rapid
Prototyping

Application Development
Environments and Tools
for OO CASE

OO Methodologies

OO Databases

OO Tools for special
types of applications

Business Objects and
OO Applications

OO operating systems are incorporating
intelligent agents and smart checking and
indexing components.

Neither CLOS nor Object Prolog are very
popular OOLs, but they provide features
that other OOL vendors are incorporating.

The CLOS and AI-based development
tools support CORBA and have provided
some important early examples of
enterprise-level distributed systems.

Several AI vendors offer frameworks for
generic KBS system and domain-specific
system development.

Several KBS tool vendors have repositioned
their tools for OO C/S development or
created new tools for this niche.

KBS tools have proved good platforms for
OO CASE products. Most OO CASE
vendors are considering incorporating
business rules and inferencing.

OO methodologies have also incorporated
business rules and one OO methodology
is derived from KBS development.

Early OO databases were developed to
support KBS development and some still
include support for rules and will soon
incorporate smart search techniques.

In addition to expert system development,
OO tools with large AI components include
Real Time Simulation Tools, CAD tools,
and OO BPR tools.

Some of the best examples of enterprise-
wide OO applications that incorporate
business object models of the corporation
were developed by KBS vendors.

Microsoft's Wizards and
their use of Inference's
CBR technology

Franz, Harliquin, Gold Hill,
BIM, Quintus, LPA

Expersoft's XShell (CORBA)

ILOG's Scheduler
Kestrel Institute's work
on semantic components

Inference's ART*Enterprise
Neuron Data's Smart Elements
Trinzic's ObjectPro
Hitachi's ObjectIQ

IntelliCorp's Object
Management Workbench
(OMW)

Martin/Odell's OOIE
methodology
ILOG's KDSs methodology

Itasca's Itasca ODB
Deductive ODBs

AutoCAD,
Gensym's G2 and ReThink,
Carnegie Group's TestBench

Boeing's Product Knowledge
Manager (Built in KEE. An
Object Management Group
award winner.)

Most large applications that
have won IAAI awards.

OO Market Niche General Comments Examples of AI Players

Table 1. How AI Techniques Are Being Used In Several OO Market Niches.

AIadvances in traditional AI

tion rules that he or she has really modularized an
application in the most systematic manner.

Expert System Vendor Responses to Interest in OO
In the early 1990s, as interest in new expert system-
building tools declined and companies became
enthusiastic about objects, expert system tool vendors
began to reposition themselves. There have been at
least four responses:

• Expert system tools as flexible interface develop-
ment tools (e.g., Neuron Data’s Smart Elements)

• Expert system tools as OO 4GL development tools
(e.g., Inference’s ART*Enterprise)

• Expert system tools as a foundation for OO CASE
tools (e.g., IntelliCorp’s Kappa)

• Expert system tools as domain specific OO devel-
opment environments (e.g., Gensym’s G2 and
ReThink)

It’s a bit premature to speculate on how all of these
strategies will work out. To date, the domain-specific
strategy has been the most successful. Most of the ven-
dors who have chosen to position themselves as pur-
veyors of OO 4GL tools have encountered difficulty.
First, they have relied on proprietary Prolog or Lisp-
like internal scripting languages. These languages give
the tools their power and flexibility, but are not stan-
dard OO languages. Second, the tools still contain AI
features that make them more complex than the
other OO 4GL vendors. These two things combine to
make it hard to reuse classes developed in an AI-
derived product in other OO contexts. In spite of
problems, however, expert system companies have
made some progress toward getting themselves recog-
nized as providers of high-end OO development tools.

One of the more interesting developments in OO
and CASE is the number of OO CASE vendors who are
incorporating some kind of inferencing and rules to
allow developers to incorporate “business rules” in
applications. The best example of this trend is Object
Management Workbench (OMW), an OO CASE prod-
uct with business rules and an interpreted development
environment that is sold by IntelliCorp and James Mar-
tin Associates. OMW sits on top of IntelliCorp’s
ProKappa product [10]. In effect, the power of the AI
environment is hidden from the user who develops
object models using standard object-diagramming con-
ventions. Production rules are called “business rules”
and specified independent of the object model. The
power of the AI environment is apparent to users
because they can execute diagrams at any time and edit
diagrams while they are being executed. To the devel-
oper, however, this is simply a nice feature and does not
raise the implementation issues that occur when one
attempts to field an application developed using some
of the advanced OO C/S development tools.

One way to assess the success of ES vendors’ efforts
to position themselves as OO vendors is to consider
how products with both OO and AI characteristics have

performed in the contests sponsored by the Object
Management Group (OMG) and Computerworld at
three past ObjectWorld shows in San Francisco. Each
year there have been five winners, and each year one of
the five winners was developed using an expert system-
building tool (i.e., KEE and KappaPC) [14].

As companies move from smaller OO applications
to more sophisticated systems, we expect that devel-
opers who have used ES tools in the 1980s will
encourage their companies to use OO AI tools for
tasks involving complex logic.

Other AI Technologies Being Used in OO Products
Those who follow the commercial neural network mar-
ket, the natural language market, the robotics market
or the imaging market are aware that OO techniques
have been used in these AI markets and that they are
playing roles in various specialized OO markets similar
to the role the expert systems vendors are also playing.

Table 1 lists some of niches in the current OO mar-
ket and comments on some of the ways AI is being
used in each niche. In most cases, AI is being incorpo-
rated into OO products to make them more flexible.
Since the addition of AI techniques tends to make a
product more complex, most of the OO/AI products
are positioned at the high end of the niche and are
being sold to more sophisticated departmental devel-
opers. ARPA has awarded a grant to encourage dis-
tributed computing. The winning combination
includes Expersoft’s XShell, an AI tool that also
includes a powerful implementation of CORBA. ARPA
has also given grants to about a dozen vendors with AI
experience to encourage the development of semantic
component models. One of the OO databases (Itasca’s
Itasca ODB) is a Lisp-based OODB derived from work
done at MCC.) Some of the OO database people are
experimenting with Deductive OO database models.

The Future
Dramatic changes are occurring in the organization
of corporations. Companies are trying to position
themselves to compete in a worldwide economy. To
do this, they are trying to reengineer their internal
processes to take advantage of what computers can
offer. At the moment, most companies are focused
on creating new infrastructures that will facilitate
worldwide information exchange and significant
gains in productivity.

Object technologies offer a framework on which to
rebuild corporate computing. Object technologies will
create new operating systems, new networks, new ways
of building applications and new ways of storing data.
An immense advantage of OO technology is that it can
encapsulate old applications, making the transition
less painful. More importantly, the move to object
technology is just beginning. The complete CORBA
standard has just been finalized and won’t be imple-
mented until some time this year. This should begin to
nudge companies beyond their early, narrowly con-
ceived client/server systems to distributed systems that

COMMUNICATIONS OF THE ACM November 1995/Vol. 38, No. 11 85

will depend on objects and messaging. Products like
IBM’s SOM, which facilitates the distribution of class
libraries and component-standards like Microsoft’s
OLE2 and CILabs’ OpenDoc are becoming available
and should, in the course of the next two years, radi-
cally change the ideas that most corporate developer’s
have about reusability. Corporate users “discovered”
Smalltalk in 1994 and seem much more excited by
Smalltalk than they were by C++. Recently, OO Cobol
has been released. In addition, the OO database ven-
dors have agreed on a standard and an OO version of
SQL. Approximately 10% of the corporate IS groups
were committed to OO development by the end of
1994. We estimate that by the end of 1996 some 40%
of the IS groups in the U.S. will be committed to OO
technology. In other words, companies are only begin-
ning to get serious about using object technology.

A
t some point in the future, com-
panies will begin realizing
another advantage of object
technology; it will provide the
matrix into which knowledge
and intelligent decision-making
techniques can be incorporated.
Some developers are already

aware that AI can be easily blended with object tech-
nology. Most people, however, are too focused on try-
ing to transition from mainframes, Cobol, and
structured methodologies to objects and distributed
computing to worry about the more advanced capabil-
ities to be obtained from AI-derived OO techniques.

Most of the expert system companies that began in
the mid-1980s have tried to reposition themselves as
object-oriented, client-server tool vendors. Some have
made minor changes to their products and some have
created entirely new products to sell to those interest-
ed in OO development. This strategy will probably
keep some of the expert system companies alive. Tak-
ing a long-term view, however, the expert system com-
panies—like the relational database companies, and,
indeed, IBM and Microsoft—are caught between their
installed base of customers and a new market that has
only begun to evolve. Long before most companies
get serious about acquiring advanced OO tools, cor-
porate users are going to settle on new languages, new
methodologies and work out how to store and use
class libraries. Perhaps a vendor like Taligent will set a
standard that will then define many subsequent
aspects of the ongoing shift to object technologies.
Perhaps the object database vendors will set important
standards. Once these evolving standards are settled,
companies selling products with advanced features
will need to work with the new object standards in
order to get the attention of corporate developers.
The current AI vendors can only influence the direc-
tion in which corporations are evolving to a very lim-
ited degree, although AI-trained individuals are
playing key roles in helping to develop the object stan-
dards that we will have to live with in the future.

The expert system vendors of the 1980s helped to
start the OO revolution that is slowly sweeping corpo-
rate computing in the 1990s. Once the new object
technology standards are in place, probably toward the
end of the 1990s, it is easy to imagine that corporations
will become very interested in techniques that can
extend their object infrastructure as they create new
applications for their evolving worldwide systems. They
will want knowledge and intelligence that can be incor-
porated into the class libraries they will use for appli-
cation development. They will want intelligent agents
that can search through worldwide networks of data-
bases to locate information. Once they have the infra-
structure in place, they will turn to AI-based object
techniques to enhance their systems. They will, howev-
er, insist on tools that support standard OO languages
and methodologies. Those OO AI vendors who have
redone their tools to be compatible with the OO stan-
dards that emerge during the 1990s will be well posi-
tioned to prosper in the late 1990s and beyond.

References
1. Cox, B. Object Oriented Programming: An Evolutionary Approach.

Addison-Wesley, Reading, Mass., 1986.
2. Fikes, R. and Kehler, T. The role of frame-based representation

in reasoning. Commun. ACM 28, 9 (Sept. 1985), 904–920.
3. Finin, T. Understanding frame languages. AI Expert (Nov.

1986), 44–50.
4. Goldberg, A and Robson, D. Smalltalk-80: The Language and Its

Implementation. Addison-Wesley, Reading, Mass., 1983.
5. Harmon, P. Object-oriented application development tools.

Object-Oriented Strategies Newsletter 8 (1994), 1–10.
6. Harmon, P. and King, D. Expert Systems: Artificial Intelligence in

Business. Wiley, NY, 1985.
7. Harmon, P. and Taylor, D. Objects in Action. OMG/Addison-

Wesley, Reading, Mass., 1993.
8. IntelliCorp. Manuals for versions 1, 2 and 3 of their KEE product.
9. Kehler, T.P. and Clemson, G.D. KEE: The knowledge engi-

neering environment for industry. Systems and Software 3, 1 (Jan.
1984), 212–224.

10. Martin, J. and Odell, J. Object-Oriented Analysis and Design. Pren-
tice Hall, Englewood Cliffs, NJ, 1992.

11. Schmucker, K.J. Object-Oriented Programming for the Macintosh.
Hayden Books, Indianapolis, Ind., 1986.

12. Schreiber, G., et. al. Various KADS reports issued by the Univer-
sity of Amsterdam, beginning in 1986. (ESPRIT Project P1098)

13. Stefik, M. and Bobrow, D.G. Object-oriented programming:
Themes and variations. AI Magazine (1986), 40–62.

14. Wegner, P. Workshop on OO Programming at ECOOP, 1987.
Reported in SIGPLAN Notices 23, 1 (Jan. 1988).

About the Author:
PAUL HARMON is the founding editor of Intelligent Software Strate-
gies newsletter and currently edits Object-Oriented Strategies and BPR
Strategies newsletters. Current research interests include develop-
ment of markets for new software technologies, and the use of soft-
ware technologies to transform business organizations. Author’s
Present Address: Harmon Associates, P.O. Box 1198, Inverness, CA
94937; email: Harmon@Mobius.net

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.

© ACM 0002-0782/95/1100 $3.50

C

86 November 1995/Vol. 38, No. 11 COMMUNICATIONS OF THE ACM

