
The Voronoi Diagram of Curved Objects*

Helmut Alt Otfried Schwarzkopf

Freie Universitat Berlin, Institut fiir Informatik Universiteit Utrecht, Vakgroep Informatica
Takustr. 9, D-14195 Berlin Postbus 80.089, NL-3508 TB Utrecht

Abstract

Voronoi diagrams of curved objects can show certa”n

phenomena that are often considered artifacts: The

Voronoi diagram is not connected; there are pairs of

objects whose bisector is a closed curve or even a two-

dimensional object; there are Voronoi edges between

different parts of the same site, (so-called self-Voronoi-

edges); these self- Voronoi-edges may end at seemingly

arbitrary points, and, in the case of a circular site, even

degenerate to a single isolated point.

We give a systematic study of these phenomena, char-

acterizing their differential geometric and topological

properties. We show how a given set of curves can be

refined such that the resulting curves define a ‘(well-

behaved” Voronoi diagram. We also give a randomized

incremental algorithm to compute this diagram. The

expected running time of this algorithm is O(n log n).

1 Introduction

Voronoi diagrams are among the most extensively stud-

ied objects in computational geometry (see for inst ante

Aurenhammer’s survey [I] or the book by Okabe, Boots,

and Sugihara [13]). Naturally the first type of Voronoi

diagrams being considered was the one for point sites

and the Euclidean metric in two dimensions. Subse-

quent research was concerned with generalizations of
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all of these features. In the two-dimensional case these

generalizations were particularly motivated by applica-

tions in motion planning which lead to the so-called

retraction method [12].

This method makes use of the fact that if there is a

collision-free motion of a disk-shaped object within a

collection of obstacles, from a source to a target posi-

tion then there is also one that essentially follows the

edges of the Euclidean Voronoi diagram of the obsta-

cles. Since in general the obstacles are not single points,

Voronoi diagrams for other types of sites were investi-

gated, mostly for line segments. Also, if the object to

be moved is not a disk but some other convex body B

the retraction approach can be applied to translational
motions [9]. In this case the Euclidean distance has to

be generalized to a convex distance function that has

B, with some fixed reference point inside, as its “unit

circle”.

The Voronoi diagram under this distance function is

usually referred to as the B- Voronoi diagram. Klein [5,

6] gave a unified approach for many of the different vari-

ants of two-dimensional Voronoi diagrams, the so-called

abstract Voronoi diagrams. They are not specified by

distance functions but by certain topological conditions

which the vertices and edges have to satisfy. Klein,

Mehlhorn, and Meiser [7] gave a general paradigm for

a randomized O (n log n) algorithm for constructing an

abstract Voronoi diagram for a set of n sites.

Concerning the construction of B-Voronoi diagrams,

so far it was mostly assumed that the obstacles are

bounded by line segments and B is a convex polygon.

In fact, more complex shapes can be approximated by

polygons to arbitrary precision. However, in general a
good approximation requires very many line segments

leading to large running times of the construction algo-

rit hms. Therefore it should be interesting to consider

the construction of B-Voronoi diagrams where the sites

and B are bounded by more general curves. Yap [17]

solves the problem for the Euclidean metric and second

degree curves. Further steps in a more general direction
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are made in [18], where an idea of an algorithm is given

forthe case that the bounding curves are circular arcs

or line segments.

iJnfortunately, Voronoi diagrams of curved objects do

not satisfy the conditions of abstract Voronoi diagrams.

Figure 1 shows the particularities that can occur even in

the Euclidean case. Here we simply define the Voronoi
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Figure 1: A Voronoi diagram of curves

diagram as the set of all points having more than one

closest point on the union of all sites: The Voronoi dia-

gram is not connected and there are Voronoi edges be-

tween different parts of the same site, which we will call

self- Voronoi-edgeq these self-Voronoi-edges may end at

seemingly arbitrary points, and, in the case of a cir-

cular site, even degenerate to a single isolated point.

Furthermore the bisector between two objects may be

a closed curve. In the case of convex distance functions

additionally there may be even pairs of objects whose

bisector is a two-dimensional region.

The aim of this paper is twofold:

algorithm will consider curves as abstract objects and

assume that certain elementary operations are available

as black boxes. These include finding the points hav-

ing the same distance from three given sites, finding all

points of a given slope, finding points where the cur-

vature has a local maximum, given the representations

of two curves finding the representation of a bisector,

and finding intersection points of given curves. The de-

tails of these operations including numerical problems

involved will depend on the particular application of

our paradigm. For example, if it is applied to algebraic

curves of some fixed degree, the elementary operations

would consist of solving systems of algebraic equations

of constant degree and constantly many variables.

As far as we know, this is the first systematic treat-

ment of the phenomenon of self-Voronoi-edges. Self-

Voronoi-edges may long have been considered as ar-

tifacts. We argue that self-Voronoi-edges play an es-

sential role in Voronoi diagrams of curved objects. If

the Voronoi diagram is used to do motion planning us-

ing the retraction method, for instance, then the self-

Voronoi edges are necessary to capture the connectivity

of the workspace. Without them, the robot may not be

able to reach concavities formed by a single curve.

In this extended abstract, we can show our results in

more detail for the case of the Euclidean metric only.

We will give an idea as to how our results can be gen-

eralized to convex distance functions.

We will first characterize sets of curved sites that in-

duce “well-behaved” Voronoi diagrams. As the condi-

tions we will impose cannot be expected to hold for a

given set of curves that may arise in an application,

we then describe how such a given set of curves can—

under some mild conditions—be refined by cutting up

the curves and adding point sites on curves. We will

then describe a randomized incremental algorithm of

running time O (n log n) to compute the Voronoi dia-

gram of a set of “harmless” curves. Combined with our

technique to refine curves that are not yet sufficiently

well-behaved, this will give us an algorithm to compute

the Voronoi diagram of a set of arbitrary curves in time

O(n log n).

1. To investigate all the mentioned phenomena of

Voronoi diagrams of curves and characterize their 2 The Voronoi diagram of harmless
differential geometric and topological properties. curves

2. To show how these difficulties can be overcome

(under certain preconditions) by breaking up the
A curve is given by a function y : I ~ R2 where I c R

curves into so-called “harmless” pieces so that the
is some closed interval. Unless stated otherwise we will

idea of randomized incremental construction can
assume that curves are regular in the differential ge-

be applied.
ometric sense, that is ~ is twice continuously differen-

tiable and ~’(t) # O for all t E 1.We say that two curves

The algorithmic result of this paper is an efficient ran- touch each other in some point p c R2 iff they both pass

domized algorithm for constructing the B-Voronoi dia- through p without properly intersecting there. The ra-

gram of a set of curves. B is assumed to be a convex dius of curvature at some point ~(t)is (informally) the
body bounded by finitely many harmless curves. The radius of the largest circle touching (and not intersect-
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ing) ~ at ~(t) on the “concave side” of y; it is positive

if that circle lies left of the direction of y given by the

parametrization and negative otherwise. The curvature

~(t) is the reciprocal of the radius of curvature (for more

details see Stoker [16]).

We will assume that curves are simple, that is y(t)#

T(t’)for t # t’. Furthermore, each curve will not be

considered as one, but as three sites: the two endpoints

and the interior of the curve. We call an open curve

(a curve without its endpoints) harmless if there is no

circle that touches it in more than one point. A harm-

less site is either a point, an open circular arc, or a

harmless curve. A harmless site collection is a finite set

S of pairwise disjoint harmless sites with the condition

that for every circular arc and harmless curve T ~ S

its endpoints are also members of S. For example, the

parabolic arc {(t, t2)I –3 < t < 3} is not a harmless

curve. We can cut it as its apex by adding the point site

(O, O), and can obtain a harmless site collection of two

parabolic arcs and three point sites. Observe that it is

possible that several curves share one endpoint, so we

allow arbitrary planar subdivisions by regular curves.

Curves may not intersect but this case can be handled

by making the intersection points additional point sites.

Throughout this paper, we will denote by d(%, g) the

Euclidean distance of points z, g ~ R2 and for A C

R2, z 6 R2 we define d(x, A) := in~ d(z, y). Also, let

VA(X) be that point of A with d(z, @~(x)) = d(g, A).

@A is not defined whenever there is no such point or

when there is more than one. The following lemma is

concerned with the set of points closest to some given

point on a harmless curve.

Lemma 1 Let T be an open circular arc or a harmless

curve and let p, q be its endpoints. Then:

a) 47 is defined for all x where d(x, p) > d(x, ~) and

d(x, q) > d(x, v), and @7 is continuous wherever it
is defined.

b) Let a be a point on T, c the center of the circle

of curvature at a. Only points on the ray ~ are

mapped onto a by IJ17. Other points on the same

straight line, which is the normal of-y in a, that are

not mapped to a are closer to one of the endpoints

than to ~.

I?roofi a) By definition, -Y, together with its endpoints,

is a compact subset of R2. Consequently, by continuity

a @ d(z, a) assumes its minimum on T U {p, q} for some

a. E T. By the harmlessness of ~ there is only one

such ao, so 47 is defined. Let now x = R2 be some

point where a := y!J7(Z) is defined and let r := d(~, p).

For some arbitrary s >0 consider the s-neighborhood

Ue (a) and the rest of the curve A := -y\ U. (a). Let E be

sufficiently small so that A # 0. Since for any b c A,

d(x, b) > r and A is compact, there is some 6>0 such

that

d(x, b) > r + 2J (1)

for all b G A. Let y be any point in UJ (x) so that +7 (y)

is defined. Since by the triangle inequality d(y, y) 5

r + d, and by (1) d(y, b) > r + 6 for any b 6 A, it must

be @7(Y) E U,(a). This shows the continuity of @7.

b) Consider z 6 R2 with IJJ.(x) = p. The circle

around x with radius d(x, p) touches s in p. Therefore

the line segment ?@ is part of the normal through p

and x does not lie beyond c, since then the circle would

contain parts ofs in its interior. !21

Figure 2 shows the partition of the plane into 3 re-

gions depending on whether the closest point is p, q or

in the interior of ~. By Lemma 1 b) the Voronoi region

of y cannot go beyond the curve q which is the locus of

all centers of curvature, the so-called evolute of ~.

Figure 2: The Voronoi regions of p, q, and -Y.

Given a harmless site collection S and a sites c S, we

define the Voronoi region ofs in S, VR(S, S) as follows:

VR(S, S) := {xc R2 I 3P c s with d(z, p) = ~~d(z, s’)}.

Note the slight twist in this definition. Had we chosen

the simpler condition “d(x, s) = min.1 ES d(z, s’)”, then

the Voronoi region of a curve would contain the Voronoi

region of its endpoints. Our definition avoids that.

We will find it helpful to restrict our attention to

the “finite” part of the Voronoi diagram. Therefore,

we will add a large circle w with center in the origin

to our site collection. The radius of this circle will be

assumed so large that it contains all Voronoi vertices

and furthermore the circle is not their nearest site. The

Voronoi vertices are the points whose shortest distance

to any site is assumed to at least three different sites.1

This means that nothing from the topological structure

of the Voronoi diagram gets lost by inserting u. So we

1Such a radius exists, in fact, it can be shown by an easy
geometric argument that any triple of sites has at most two such
points.
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only have to consider the Voronoi diagram inside w and,

consequently, all Voronoi regions are bounded.

The VonmoZ diagram V(S) is defined as the set of all

Voronoi regions Vll(s, S), for s E S. Next we investi-

gate the shape of Voronoi regions:

Lemma 2 Let S be a harmless site collection, s c S.

a) Ifs is a point then the intersection of any straight

line through s with VR(S, S) is a line segment.

b) Ifs is a curve and p a point on S, then the nor-

mal through p intersects d VR(S, S) in exactly two

points hl (p) and h,(p) lying on either side of p.

The line segment 1 in between belongs completely to

VR(S, S), in fact, these are exactly the points hav-

ing p as their closest point on any site. The inte-

rior points of 1 do not belong to any other Voronoi

region.

c) hl and hv : s + R2 are continuous.

Proof: [Proof of Part b), a) follows by the same argu-

ment]

Consider some intersection point q of the normal n with

8 VR(S, S). Then the circle C through p with center q

contains no point of any site in its interior but another

one r # p on its boundary. Suppose there is some point

t c n beyond q (seen from p) that belongs to 8 VR(S, S).

Then by Lemma lb) p must be the point on s closest

to t as well. But the circle with center t through p con-

tains r, a contradiction. On the other hand, for any

point u E ~ the circle around u through p is inside L’,

so it is empty, therefore u E VR(S, S).

c) Suppose that hl is not continuous. So there

exists a sequence of points in s converging to p whose

hi-values do not converge to hl (p). Since the Voronoi

region of s is compact there exists a subsequence con-

verging to some q # hz(p). Because of the continuity

of @~ q lies on the straight line through p and hl (p).

Since W is closed q ~ W. This is a contradiction to

part b). Q

We summarize important topological properties of

Voronoi diagrams in the following theorem:

Theorem 3 Let S be a harmless site collection of n

sites.

(i) The union of the Voronoi regions covers w, and

no Voronoi region is empty.

(i~R~;R~ C S and s c R we have VR(S, S) c

(iii) The intersection of two Voronoi regions lies on

the bounday of both.

(iv) A Voronoi region VR(S, S) is simply connected,

for point sites it is even star-shaped.

(v) The boundary of each Voronoi-region VR(S, S)

is a Jordan-curve except ifs is an endpoint where

several curves meet. In this case the Voronoi-region

might be a line segment or the point itself.

Proofi (i) Since the union of all sites is a compact

set, for any point z G u the minimum distance to

that union is assumed, so z lies in some Voronoi

region. Any Voronoi region contains the site itself

and, therefore is not empty.

(ii) Let s ~ R c S, and let x ~ VI?(S, S). This means

that there is a point p ~ s with d(x, p) < d(x, s)

for all z E S. Clearly this implies z E VR(S, R).

(iii) Let z c VR(S, S) n VR(t, S). So there must be

points p E s, q G t lying on the maximal empty

circle around z. By Lemma 2b) any point in the

interior of the line segments @ and ?@ lies in

VR(S, S) \ VR(t, S) and VR(t, S) \ VR(S, S), re-

spectively. This shows that x lies on the boundary

of both.

(iv) Let a be some closed curve within VR(S, S). Let q

be some arbitrary point surrounded by a and n the

normal to s through q which is unique by Lemma

lb) (the straight line sq ifs is a point). n intersects

a in at least two points a, b G VR(S, S) surrounding

q. Then by Lemma 2b) q G VR(S, S). Since this

holds for any point q in the region encircled by a,

a is within VR(S, S) contractible to a point. Since

this holds for any a, VR(S, S) is simply connected.

(v) Let s be a harmless curve and consider it ori-

ented by its parametrization. Then to any x G S

there exist unique points ht(z), h.(z) G 8 VR(Z, S)

to the left and right of s, respectively with

~, (h,(x)) = ~s (h.(x)) = z (see Lemma 2b)).

Since he and h, are continuous (Lemma 2c)) and

because of the harmlessness ofs, they are also one-

to-one the images A := he(s), B := h,(s) are homo-

morphic to s, so they are simple curves. By con-

tinuity reasons their endpoints have the endpoints

P, q of s as closest points. Altogether, the bound-

ary of 8 VR(S, S) consists of A, B and two segments

1, J (that may degenerate to a single point) of the

normals through p, q, respectively (see Figure 3).

Since 1, A, J, B are pairwise non-intersecting, their

‘-’J+.
“. .
“. .*”’”’ ”=*...*,* :.* *””””’”*...*.. ,. . . . . . .

B ““”0./”

Figure 3: Voronoi region VR(S, S)
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concatenation forms a Jordan curve. Ifs is a circu- points. When decreasing the radius the center of the

lar segment the argument is similar only that one circle traces a self-Voronoi-edge that ends at c where

of A, B may degenerate to a single point. the two tangent points fall together. c is the center

of the circle of curvature C of T at p which is a local

\ 1
maximum of curvature. Points on the line segment @

. . .. -l-..+- \:
are centers of circles that touch FYin p.

yr’J .,,,’+
,“-.: ..- .’. . . . . . . ..- . . . . . . . .

.- ,’

b)
a) ●..** ●.*

,,...~ ●.**

Figure 4: Degenerate Voronoi-cells

Similar techniques prove the statement, if s is an

isolated point or an endpoint of a curve. If sev-

eral curves share s as an endpoint VR(S, S) may

degenerate to a line segment (Figure 4a)) or just s

itself (Figure 4b)). The former phenomenon occurs

when the closed half-spaces beyond the normals of

those curves in s intersect only in a straight line,

the latter when they intersect only in s itself.

❑

The Voronoi diagram can also be represented as a

graph as follows: The vertices of the graphs of are the

points of V(S) which belong to the boundary of three

or more Voronoi regions. As was mentioned before, it

can be shown that there are at most two such points per

triple of sites. The edges of the graph correspond to the

maximal connected subsets belonging to the boundary

of exactly two Voronoi regions. They are curves by

Theorem 3(v). The faces of the graph correspond to the

Voronoi regions. We will use V(S) to denote the graph

as well. Using Theorem 3(iv) and Euler’s formula we

can prove:

Theorem 4 Given a harmless

sites. The Voronoi graph V(S)

graph with at most n + 1 faces,

and at most 2n – 2 vertices.

Here the outer circle w is not

the edges and vertices where it is involved are counted.

site collection S of n

is a planar connected

at most 3n – 3 edges,

counted as a site, but

3 Partitioning curves into harmless

pieces

Here we will see that the points responsible for self-

Voronoi-edges or, in other words, the non-harmlessness

of curves are the points where the absolute value of the

curvature has a local maximum. Figure 5 shows this

situation. There is a circle around a touching y in two

P

Figure 5: A local maximum of curvature

If we remove these local maxima by cutting the curve

there and making them separate sites, the Voronoi dia-

gram will have the nice properties described in Theorem

3. In fact, it holds

Theorem 5 A regular curve that does not contain its

endpoints is harmless ij it has no two parallel tangents,

it contains no circular segments, and the absolute value

of its curvature has no local maximum.

Proof: Let y be such a curve. Since it has no two

parallel tangents we can assume wlog. that it has no

vertical tangents. So it can be parametrized as the

graph of a function f : I + R, where 1 c R is some

interval, and -y(t)= (t,f(t)).Suppose some circle C is

not intersecting ~ but touching it in two points p and

q. Since there is no vertical tangent C lies in p and q

on the same side of ~. Without loss of generality we

can assume that this is the left side, so the curvature of

-y is nonnegative, and that both p and q lie in the lower

semi-circle of C’. Now the curvature of -y is at most

the curvature of C in p and q, the latter is constant,

and the former has no maximum in between. It follows

that the curvature of T is not larger than the curvature

of C between p and q. Because of the following lemma

this is only possible if -y coincides with C between p

and q, a contradiction. ❑

Lemma 6 Let ~, 6 be two regular curves that are

graphs of functions f, g : I ~ R where I c R is some
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finite interval, so ~(t) = (t, f(t)), d(t) = (t, g(t)) for

all t E I. If ~ touches 6 in two points tl, t2 E I and its

curvature is not greater than 6‘s for all t E [tl,t2]then

~ and d must coincide in [tl, tz].

This lemma follows from the fact, that the curvature

of the graph of a function f is given by

f “(t)

‘(t)= (,+ (f@)3’2

by standard analytical considerations.

In Section 5 we will see how to compute the Voronoi

diagram of a harmless site collection in time O(n log n).

Theorem 5 allows us to apply that algorithm to more

general sets of curves: In fact, it allows us to parti-

tion the given set of curved objects into harmless pieces

and circular arcs. If, for instance, the given curves are

algebraic of constant degree, each can have at most a

constant number of points of vertical tangency or max-

ima of the curvature. By cutting the n original curves

at these points we obtain a collection of O(n) harmless

curves. We can then compute the Voronoi diagram of

these harmless pieces, and obtain a Voronoi diagram of

complexity O(n). If that is desired, we can then merge

the Voronoi cells of curves that are pieces of the same

original curve. In most applications, however, that is

probably not what is needed: If the Voronoi diagram is

used for motion planning with the retraction method,

for instance, the additional self-Voronoi-edges are essen-

tial to guarantee that the resulting road map captures

the connectivity of the workspace,

4 Convex distance functions

Let B c R2 be some convex body with some fixed

reference point o inside. The B-distance from a point

p c R2 to a point q is defined as the factor by which

B, when placed at p with o, has to be stretched around

o until it touches q. The B-distance is in general not

symmetric, but it satisfies the triangle inequality.

Here we will assume that B is bounded by a constant

number k of harmless curve segments. So the boundary

of B consists of 2k features: The k harmless curves and

k vertices where they meet. We further partition the

curve sites into pieces so that one piece can be touched

only by one feature of B. This can be done as follows:

To each feature of B there is an interval of possible

tangent slopes. We partition the sites at points where

the slope equals one of the interval boundaries (see Fig-

ure 6). Notice that we have to distinguish between the

two sides of a curve and partition both accordingly. The

number of sites produced this way equals the original

number of sites plus the number of places on sites where

one of the tangent slopes occurs. This number cannot

be bounded in general, but for example for algebraic

curves of constant degree the increase is by a constant

factor.

In order to derive our results from the previous sec-

tion to arbitrary B-distance we have to generalize our

definitions: The B-curvature of a regular curve -y in a

point p is the largest copy of B that touches ~ in p with-

out intersecting it. If the feature of B touching p is a

curve 6, the B-curvature is the ratio of the curvatures

of ~ and d at that point. If the feature is a non-smooth

vertex, the B-curvature is O, no matter what ~ looks

like.

A B-harmless site is a curve that cannot be touched

by any homothet of B in more than one place. A

B-harmless site collection consists of open B-harmless

sites, their endpoints, other points, and curves that are

homothets of segments of the boundary of B.

The B-normal of a curve y in a point p is the orbit

of the reference point o considering all homothets of B

that touch -y in p (see Figure 7). Any B-normal consists

of a ray on either side of -Y.

With these definitions, all results and proofs of the

previous section go through, if the boundary of B con-

tains no straight segments.

Otherwise, the following problems will occur: Let e

be a straight line segment on the boundary of B. Then

for any point p on some site where the tangent is parallel

to e the B-curvature is not defined since an arbitrarily

large copy of B can be placed there. (With the excep-

tion that p is an inflection point of -Y, i.e. has curvature

O.) p is a site by itself, as was mentioned before. There

could be more point sites all lying on a straight line

parallel to e. In this case there are “two-dimensional

Voronoi-edges” and vertices, i.e. two-dimensional areas

of points with the same distance to several of the sites.

The exact partition may have quadratic complexity.

However, as we shall see, our algorithm will first con-

struct the Voronoi diagram of the point sites and then

insert the curves. For point sites however, there is an

efficient algorithm by Klein and Wood [8] manageing

the mentioned degeneracies which can be applied. For

the curve sites these situations cause no problems any

more and the properties of Theorem 3 hold.

5 Randomized incremental construc-

tion

The Voronoi diagram of curved objects does not fit into

the framework of abstract Voronoi diagrams by Klein et

al. [7] and cannot be computed with their randomized

incremental algorithm. The reason for this is that they

assume that the bisector of any pair of sites is an un-

bounded simple curve. Even for a point and a circular

arc, this is no longer true under the Euclidean metric:

The bisector can be a closed curve.

If, however, the objects form a harmless site collec-
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tion, this situation can be remedied. In the following

we demonstrate how to compute the Voronoi diagram

of a harmless site collection in time O (n log n) using a

kind of randomized incremental algorithm, based on the

framework set by Clarkson and Shor [4], Mulmuley [11],

and Boissonnat et al. [2]. We have to make sure that

during the algorithm which constructs the Voronoi dia-

gram by inserting the sites one by one, the intermediate

set of sites is always a harmless site collection, that is

that no curve is inserted before both of its endpoints

are.

Therefore, we compute the Voronoi diagram of a

harmless site collection S in two stages. In the first

stage, we compute a Voronoi diagram of n points

V(P U Q). Here P c S is the set of all point sites.

Q is obtained by selecting for each curve site s E S a

point q. in the relative interior ofs.

The points in Q serve as “placeholders” for the curves

they stem from which, in the second stage are added

one by one in random order. This replacement of the

placeholders by the actual curves is made easy by the

fact that we already know where to insert a new site

s. We will restrict ourselves to the description of the

Euclidean case.

We will need to represent the Voronoi diagram V(R)

of a subset R c S U Q. This can be done using any

standard structure for planar subdivisions, such as the

doubly-connected edge list [10, 14]. In the first stage

of the algorithm, we simply compute the Voronoi dia-

gram V(P U Q). This can be done using any efficient

algorithm for the construction of Voronoi diagrams and

takes time O(n log n).

As discussed in Section 2, we add a large circle w to

our site collection S. If necessary, this circle has to be

handled symbolically. After computing V (P U Q), we

add w to obtain V(P U Q U {w}). This can be done in

time O(n).

Let now s~, sz, . . ..sm. be a random permutation of

the curve sites in S. Let q. denote q~r, the point in the

interior of ST we had chosen. We consider the sites sr

in this order. In every step of the algorithm, we have to

replace a point site qr in the current Voronoi diagram

V(PU{w, sl,. ... s,_l, qr, q~})q~}) byacurvesitesr to

obtain V(P U {W, SI, . . . ,ST, qT+I, . . . ,q~}). Let’s look

at this in more detail.

For brevity, let s := s,, let q := q. = q,, let

R := PU{sl, . . ..sl. q~,q~+l,l, q~}, q~}, and let R’ :=
PU{sl, . . ..s._l, sT, qr+l, q~}, q~}. By Theorem 3, the

Voronoi region VR(S, R’) ofs is a simply connected re-

gion whose boundary is a closed Jordan-curve (recall

that s is not a point site). To obtain V(R’) from V(R)

means to remove the portion 1 of V(R) that lies in

VR(S, R’), and to add the boundary of VR(S, R’). We

first prove a lemma.

Lemma 7 The “skeleton” Z contains the boundary of

VR(q, R), is connected, and contains no cycle except

for the boundary of VR(q, R). All its leaves lie on the

boundary of VR(S, R’), and its complexity is linear in
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the number of these leaves.

Proofi Since q lies on s, clearly VR(q, R) is com-

pletely contained in VR(S, R’), and hence 1 cent ains

the boundary of VR(q, R). If Z contained any other cy-

cle, some Voronoi region VR(r, R), r E R, r # q, must

lie inside VR(S, R’) which would imply that r lies in

VR(S, R’), which is impossible.

Assume now that Z is not connected. That means

that there are at least two connected components ZI

and Zz of Z. By Theorem 3(iv), none of these can be

contained in the interior of VR(S, R’), they both must

have some connection with 8 VR(S, R’). So there is a

path ~ c VR(S, R’) \ Z connecting two points x and y

on the boundary of VR(S, R’) and separating Z1 from

Z2 . Since -y n V(R) = 0, -y lies in the interior of some

VR(r, R), for r E R. This implies that there must be

points x’ and y’ arbitrarily close to z and y that lie in

VR(r, R’). That means that x and y can be connected

by a path -y’ in VR(r, R’). The combination ~ U -f is

a closed loop in VR(r, R) containing either 11 or Z2, a

contradiction. It follows that Z is connected.

Leaves of Z must clearly lie on 8 VR(S, R’). By

removing one edge on 8 VR(q, R) from Z, it becomes a

tree all of whose interior vertices have degree at least

three. Consequently, its complexity is linear in the

number of its leaves. •l

Consider now the boundary of VR(S, R’). As dis-

cussed in the proof of Theorem 3(v), it consists of two

segments I and J—possibly degenerated to a point—

through the endpoints p and q of s and two simple

curves A and B. The curves A and B consist of a

sequence of

● edges that lie in the interior of some VR(r, R), r ~

R, and are hence part of the bisector of r and s,

● crossings between edges of V(R) and 8 VR(S, R’),

and

. vertices of V(R).

We first identify I, J, and the skeleton Z. This can

be done using a graph search starting at any edge on

the boundary of VR(q, R) and takes time linear in the

complexity of Z. The leaves of Z are the vertices of

VR(S, R’), and from that information we can then con-

struct the curves A and B to obtain VR(S, R’) in time

linear in the complexity of Z and VR(S, R’).

It remains to bound the running time of the algo-

rithm. As we observed, the first stage of the algorithm

takes time O (n log n). Inserting curve site s. takes time

linear in the complexity of Z and VR(sr, R’) and thus

by Lemma 7 linear in the complexity of the new Voronoi

region VR(ST, R’).

It remains to bound the expected size of VR(sr, R’).

We use a standard backwards-analysis argument [3, 151:

Fix R’, and let s be a random curve site in R’. The

total complexity of V(R’) is O(n) by Theorem 4, and

there are r possible choices for s. Consequently, the

expected complexity of VR(S, R’) is O(n/r). Summing

this over all curve sites, we find that the second stage

of the algorithm takes expected time O (n log n) as well.

Theorem 8 The two-stage randomized incremental al-

gorithm constructs the Voronoi diagram of a harmless

site collection of n sites in time O(n log n).
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