
Map Labeling Heuristics:

Provably Goocl and Practically Useful *

Frank Wagner t Alexander Wolff *

Abstract

The lettering of maps ts a classical problem of cartog-

raphy that conststs of placing names, symbols, or other

data near to specified sites on a map. Certain design

rules have to be obeyed. A practically interesting spe -

ctal case, the Map Labeling Problem, consists of placing

azzs parallel rectangular labels of common size so that

one of its corners w the szte, no two labels overlap, and

the labels are of mazzmum size in order to have legible

inscriptions.

The problem w NP-hard; tt as even AfP-hard to ap-

proximate the solution with quality guaranty better than

50 percent. There w an approximation algorithm A

with a qualzty guaranty of 50 percent and running ttme

Q(n log n). So A M the best possible algortthm from a

theoretical point of vzew. This is even true for the run-

ning tzme, stnce there M a lower bound on the running

tame of any such approzimatton algorithm of Q(n log n).

Unfortunately A M useless in practtce as d typically

produces resuits that are Intolerably far off the maximum

size.

The mum contribution of this paper as the presenta-

tion of a heuristtcal approach that has A‘s advantages

whtle avoiding tts disadvantages:

1. It uses A‘s result in order to guaranty the same opti-

*This work was done at the Institut fiir Informatik, Fach-

bereich Mathematilc und Informatik, Freie tJniversitiit Berlin,

Takustrafie 9, 14195 Berlin- Dahlem, Germany. It was snpported

by the ESPRIT BRA Project ALCOM II.

t wagner@math .fu-berlin.de

: awolff@inf .fu-berlin .de

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission’ of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.
1lth Computational Geometry, Vancouver, B.C. Canada
G 1995 ACM 0-89791 -724 -3/9510006 ...$3.50

mal running time eficiency; a method wh~eh M new as

far as we know.

2. Its practtcal results are close to the opttmum.

The practical quality M analysed by comparing our

results to the exact opttmum, where thts is known; and

to lower and upper bounds on the opttmum otherwise.

The sample data consists of three different classes of

random problems and a selection of problems artstng

an the production of groundwater quality maps by the

authorities of the City of Mtinchen.

1 Introduction

Map lettering is one of the classical key problems that

has to be solved in the process of map production. Usu-

ally the map producer does not only want to show the

exact geographic positions of the features depicted but

also explain properties of these features. She has to

arrange this information on the map so that:

— for every piece of information it is intuitively clear

which feature is described;
— the information is of legible size;

— different texts do not overlap.

These and in addition a lot of esthetic criteria are de-

scribed by Imhof [5] in an attempt to characterize good

quality map lettering having mostly manual map mak-

ing in mind. Nowadays there is an increasing need for

large, especially technical maps, for which legibility is

much more important than beauty.

The application which brought the problem to our

attention is the design of groundwater quality maps by

the municipal authorities of the City of Munchen. They

have a net of drillholes spread over the city. ‘l’he map

has to contain the location of these holes and for every

hole a block of measuring results such as the concentra-

tion of certain chemicals.

The growing importance of such technical maps in-

duces a need for th+ computerization of map making,

109

http://crossmark.crossref.org/dialog/?doi=10.1145%2F220279.220291&domain=pdf&date_stamp=1995-09-01

El
uEl

Figure 1: A valid labeling Figure 2: An optimal labeling for the example of Figure 1

the need for fully automated algorithms. Typically, la-

bels in technical maps are axis-parallel rectangles of

identical sizes. By resealing one of the axes we can

assume that the rectangles are squares. An adequate

formalization is as follows:

Problem MAP LABELING

Given n distinct points in the plane. Find the supre-

mum aOPt of all reals a such that there is a set of n

closed squares with side length a, satisfying the follow-

ing two properties.

1. Every point is a corner of exactly one square,

2. All squares are pairwise disjoint.

We call ~OPt the opttmal sue. A set of non-intersecting

squares fulfilling (1) and (2) is called a valid labeling,

see Figure 1 and 2.

Previously [4], we showed by reduction from 3-

SAT that the corresponding decision problem is ~P-

complete. The main result of that paper is an approx-

imation algorithm A that finds a valid labeling of at

least half the optimal size. In addition, it is shown

that, provided that P # A(T, no polynomial time ap-

proximation algorithm with a quality guaranty better

than 50 percent exists. Related results were reported

in [1] and [8]. The running time of A is in O(n log n).

In [10] we showed that there is a matching lower bound

on the running time of fd(n log n).

A conceptually works as follows: We start with in-

finitesimal equally sized squares attached to each point

in all four possible positions. Then all squares are ex-

panded uniformly. In order to resolve conflicts between

them, we eliminate all those which would contain an-

other point if they were twice as big. It is easy to show

that after this process, a point p can not have more than

two squares left which overlap other squares. If we con-

sider p a boolean variable and associate its squares with

the values p and ~, we can generate a boolean formula

consisting of clauses which encode all conflicts. Suppose

the square p was overlapping the square q of a point q,

this would give us the clause (p A @ = (~ V q) meaning

that we do not want p and ~ to be simultaneously in the

solution. If we join all such clauses with the A–operator,

the satisfiability of the formula tells us exactly whether

there is a solution of the current size. Since all clauses

consist of two laterals, the formula is of 2-SAT type,

and can be evaluated in time proportional to its length

[2].

This works only because we make sure that no point

has more than two squares left after the elimination

phase. On the other hand, we often eliminate both

of two conflict partners, where it would have sufficed

to delete one to resolve the conflict. This seems to

be the reason for the practically very bad behaviour

of A. In fact, A usually produces solutions not much

better than 50 percent of the optimum, which makes it

nearly useless for practical problems. So we developed a

heuristical approach that uses strongly the ideas of .4,

maintains its quality and running time guaranty, and

yields very convincing results. Instead of eliminating

the squares as early as possible, it eliminates a square

just when it is clear that it cannot be in any solution

of the current size. The bad side effect of this is, that

some points might have three or four squares left af-

ter the elimination phase. In order to handle this, we

suggest three different heuristics to bring their number

down to two.

The simplest of these heuristics is used by the City of

Munchen for the application mentioned above, by the

PTT Research Labs of the Netherlands to produce om

line maps for mobile radio networks, and in a computer

system for the automated search for matching constella-

tions in a star catalogue [11] as a tool to label the output

on the screen. With a very similar algorithmic approach

we were able to solve the so-called METAFONT label-

ing problem posed by Knuth and Raghunathan [6].

110

2 Description of the Heuristics

2.1 A Theoretical Foundation

Definition 1 For a point p an the plane denote by pi,

i E {1, 2, 3, 4], an axzs-parallel untt sqaare wzth p m

Lts southwest, southeast, northeast respectively north-

west corner. The enumeration as chosen like that of

quadrants. We wtll call p, a candidate of the site p.

For a real u >0 denote by Opt analogously a candi-

date wtth edge length u. Where thts edge length is omit-

ted, we refer to a candzdate of the current label stze. A

solution of size u as a ualtd labeling wtth candidates of

.wde length O.

For technical reasons, we will from now on consider a

candidate an open square, plus the open edges incident

to the site. Note that this excludes all corner points,

especially the site itself. The idea is that we shrink the

squares by a tiny bit, so that an optimal labeling is a

valid labeling, too.

Definition 2 of some spectal label stzes:

~dead =

Uopt =

ulower =

hpper =

largest label size at whtch all .sttes

still haue a candtdaie which does

not contazn a stte.

.swe of the maxtmum vallit solu-

tion. This M equwalent to the

prevzous defintt!on Of~OPt.

swe of the soluiton of the Ap -

proxtmaizon Algorzthrn A

2C710W,T

cO~Okl’y 3 UIOW,, < fS.pt < Upper < ~dead

Pl”oof. ~opt < U~Lppe~is of course due to .4’s approxi-

mation guaranty, see [4].

mapper < ~dead: A stops at the latest at size u&cLd/2,

because then there is a point all of whose candidates
,.

are ehmmated. Therefore ai~~, ~!. < u&,,d/2, u

We say that two candidates ouerlap or have a con flzct

if they intersect. Analogously, two points are in conflict

if any of their candidates are. One of the key words

in the description of the heuristics is that of a confllct

stze. For a pair of candidates we define its conflict size

as the largest edge length at which do not intersect. We

call a conflict size znterestmg, if both candidates do not

contain a site, and if it is not larger than ~upper.

Lemma 4 The number of interesting conflict sizes M

linear.

Proof. Let s be the vector (uUPP,,, awPr~~),

and < the lexicographical order on R2. Given

Figure 3:

a candidate p%, say PI, we define two sauares as
L

in Figure 3,-Q: ={z&lR21p-s<z <p+2s} and

Q’:= {SIP - ~S 5 z < P+ ~S}, such that ~~pP~~PI c
Q c Q’. ‘Then clearly all sites q with candidates qj,

which might have a conflict with pl of size not greater

than uUPper, must lie within Q, because its border runs

around pl at a distance of u~ppe~. We know that there

must be a partial solutlon of size al~~~~ for the sites

in Q. All candidates of such a solution must lie in Q’,

so Q cannot contain more than 64 sites. Therefore the

number of conflicts of interesting size per candidate is—
constant

2.2 Structure

All three heuristics

u

use a common framework. We

first need to run the Approximation Algorithm A to

get Uupper and a solution of size a~o~,,. This takes

O(n log n) time. What they do then, can be split up

into

1.

2,

the following parts:

Find all interesting conflict sizes.

Do a binary search on the interesting conflict sizes

between o1OW., and utipp.~, and check for each size

you look at, whether there is a solution or not, by

going through the following three phases:

Phase I: Preprocessing.

Phase II: Make all decisions, which do not destroy

a possible solution.

Phase III: For those points which still have two or

more “ active” candidates left, choose exactly two,

and check whether this remaining problem is solv-

able by 2-SAT, as described in the introduction.

The heuristics differ in the way in which they choose

those two candidates in Phase III.

111

2.3 Finding interesting conflict sizes

Since A supplies us with uUPP.r which is an upper bound

for uoPt, we know that during the search for an optimal

solution, only conflicts between sites at a distance of

at ‘ost 2UUPPCT in the L ~–metric, have to be consid-

ered. Therefore, we can use a sweep line — or rather,

sweep window, approach to determine these conflicts of

interest. As usual, we need two data structures: firstly,

an event point queue as horizontal structure. This is a

queue which holds pointers to the lexicographically or-

dered sites in the window, that is to all sites of distance

at most 2uuPPer left of the sweep line which moves to the

right. Further, we need a vertical structure, the sweep

window status, which allows us to look up efficiently

neighbors of new sites entering the window according

to the y-coordinate.

The result of the sweep is a list of all conflict sizes

between uio~e, and UUPP.,. We do not have to con-

sider any other label size, since the conflict graph does

not change inbetween two consecutive interesting con-

flict sizes. We use this list afterwards to do a binary

search for the best possible solution. In addition to this

long list, for every candidate pi we create a short list

consisting of pointers to other candidates qj, which are

overlapping pi before pi touches the first site which we

call 6(p~), or reaches the size awpp~~. So for every p% we

need to know 6(pi) and d(pi) := [Ip – 6(pi][lN or m if

there is no site in the itk quadrant relative top. This in-

formation can be obtained by eight plane sweeps — one

for the closest site in every 45° octant — in U(n log n)

time according to [3].

What happens when the right border of the window

moves to the lexicographically next site? We want to

keep the invariant that we have computed all interesting

conflict sizes between the candidates of all sites left of

the right border of the window.

OUT: Since there cannot be any such conflict be-

tween the new site p entering the window on its right,

and sites q leaving it on the left side, we first of all re-

move them from both the event point queue and the

sweep window status. This can be done in constant

time per site.

IN: Then we look at all successors (and predecessors)

r of p in the vertical structure and compute all conflicts

between r’s and p’s four candidates. With similar argu-

ments as in the proof of Lemma 4 we show that there

can only be a constant number of other sites r with

11P- rllm < 2a UpPW m the window, and onlY the con-

flicts between those sites r and p are interesting.

We use (2, 4)–trees to implement the sweep window

status, so inserting p costs O(log n) time (see [7]), but

accessing a successor or predecessor of p, or deleting p

can then be done in constant time, computing the con-

flicts between its and p’s candidates of course, too.

This sums up to a running time of O(n log n) for sort-

ing the sites and for the sweep. As a consequence of

Lemma 4, it requires only linear space — for the list

of all conflict sizes and the short lists stored with every

candidate, which have constant length.

2.4 Check whether there is a solution

for a fixed label size o

2.4.1 Phase I: Preprocessing

We run through all the candidates pi. If ct(pi) < c

we eltmmate pi, i. e. we will not consider it any more

because then api contains &(pZ). Otherwise we create

a new list of overlap information which is an excerpt

from pi’s conflict list. Its elements consist of pointers

to the overlap information of those candidates which

actually overlap Pi for the given label size a, the area of

the intersection (needed for Heuristic J), and a pointer

back to the candidate it belongs to. This can be done

in linear time since the sum of the lengths of all conflict

lists is linear, confer Section 2.3.

2.4.2 Phase II: Making Decisions

We run once through all sites p. There are three cases:

●

●

●

If all candidates of p have been eliminated, we stop

and return “no solution” to the program which

does the binary search on the conflict list.

If p has candidates free of intersections with other

candidates, we choose an arbitrary one of them (say

pi), and eliminate all other candidates PJ of P. Be-

fore their deletion, we have to do some updates for

each of them: we delete its list of overlap informa-

tion and the symmetric entries stored with those

candidates which overlap it.

If p has only one candidate p, left, do the same

updates with all candidates qj which overlap pi,

and then delete them.

While we do this we maintain a stack. On this stack

we put all those candidates which now fulfill the same

properties as pi did before, i. e. do not intersect any

other squares, or are the last candidates of their sites.

Before we look at the next site p, we do all the decisions

waiting for us on the stack. Since there is just a linear

number of conflicts, and we can detect and delete each

of them in constant time, Phase II takes us linear time.

Corollary 5 If there IS a solutton of the current label

size U, then there M stall one after Phase II.

112

Proof. Suppose to the contrary that pi is the first

candidate after whose elimination the remaining prob-

lem becomes unsolvable. Then the following statement

is true:

Every solution m of the problem just before

‘*) this elimination must contain pi.

Consider the circumstances under which pi could

have been eliminated:

1.

2.

3.

pi cent ains a site q. This contradicts (*).

pi does not overlap other candidates, but the same

holds for some pj, and the algorithm decides to

eliminate pj,

In this case we could replace pi in m by pj, contra-

dicting (*),

pi overlaps qi which is the last candidate of q.

Then also qj- must be part of rr, which again con-

tradicts (*).

u

At the end of Phase II we are done if all sites have

exactly one candidate left. Otherwise we know that

candidates of sites with several candidates — call them

active — never intersect with those that are “the last

of their breed”, i. e. belong to sites with exactly one

square left, because then the former ones would have

been eliminated. So it is enough to focus on active

candidates from now on. The others are already chosen

as part of the solution, and do not interfere with the

active ones any more.

As a consequence of Corollary 5 we also know that

we have not yet returned ‘7no solution” if there is one

of size cr. So we could still find a solution with the help

of 2-SAT as described before if no site had more than

two candidates left. If some do, our heuristics try to get

rid of the additional candidates in different ways until

they all hand over the remaining problem to 2-SAT.

Eliminating candidates, is of course, where we might

lose a possible solution of the current size.

2.4,3 Phase III: The Heuristics Come into Play

Heuristic H We randomly choose two of the possible

four candidates left per point, before we hand them

over to 2-SAT. To increase the probability of a choice

which enables a solution, this process can be repeated

in case of a negative answer. Three repetitions yield

good results without prolonging the running time too

much.

Since we look at a (hopefully small) part of the linear

number of conflicts, we will only get a linear number of

clauses, resulting in a running time of O(n) for 2-SAT,

and for this part of Heuristic H as well.

113

Heuristic I Here we run through all points with ac-

tive candidates twice. In the first run, we only look at

those with four candidates left, eliminate the one with

most conflicts, and make all decisions of the type we did

in Phase II. During the second run, we do the same for

points which still have three active candidates. Then

the remaining problem (consisting only of points with

exactly two active candidates) is handed over to 2-SAT.

This takes linear time.

Heuristic J For the third variant, we put all active

candidates left into a priority queue according to the

sum of all intersection areas of a candidate pi. We then

delete the minimum pi from the queue, and eliminate

all candidates qj which overlap it, and the other active

candidates pk belonging to p. If any of these decisions

induces new ones according to the pattern used in Phase

II, then these are made as well, before the next mini-

mum is deleted from the queue. Naturally the sizes of

the intersection areas, and the data structure, have to

be updated accordingly. This process is repeated until

either one point runs out of candidates (“no solution”),

or no point has more than two of them left, so the re-

maining problem can be handed over to 2-SAT.

Using Fibonacci heaps to realize a priority queue that

allows inserting and minimum deletions in d(log n),

and decreasing a key in constant time, this part

of Heuristic J can be implemented to run in time

~(n log n), since there is just a constant number of con-

flicts to be resolved per candidate we look at.

Since we have to look at Cl(log n) conflict sizes during

the binary search for the best solution, these running

times sum up to a total of @(n log n) for Heuristic H

and 1, while J takes O(n log2 n) time.

3 Experiments

3.1 The Exact Solver

The exact solver we used was implemented by Erik

Schwarzenecker from Saarbrucken in C+-t-. It uses some

ideas of our Heuristic H but solves the problem in Phase

III exactly. Thanks to its fine tuning it handles exam-

ples of up to 300 points even slightly faster than the

heuristics, but we were forced to introduce a time limit

of 5 minutes for larger hard and dense problem sets

(see Section 3.2) to be able to perform any test row in

reasonable time. This exact algorithm X shows expo-

nential behaviour. For small examples it is very fast,

for larger ones it is unreliable. Only few of the largest

hard and dense examples took less than five minutes,

and we have observed that the solution of examples be-

yond that bound then easily takes half an hour or much

more. The CPU times of X are not comparable to those

of the heuristics, since the latter are implemented in a

very different way.

Still X is much better in practice than the exact

solver with a subexponential time bound suggested in

[9]. It normally runs out of memory for more than 60-

80 points, which we could improve to 120-150, when

we made it solve only the problem remaining in Phase

III. Even splitting this up into its connected regions,

and dealing with those separately, did not help a great

deal.

3.2 Example Generators

Random. We just choose a given number of points

uniformly distributed in a rectangle of given size.

Dense. Here we try to place as many squares as pos-

sible of a given size u on a rectangle. We do this by

randomly choosing points p and then checking whether

cpl intersects with any of the oql chosen before. We

stop when we have unsuccessfully tried to place a new

square 200 times. In a last step we assign a random cor-

ner point to each of the squares we were able to place

without intersection, and return its coordinates. This

method gives us a lower bound for the label size of the

optimal solution.

Hard. In principle we use the same method as for

Dense, that is, trying to place as many squares as pos-

sible into a given rectangle. In order to do so, we put

a grid of cell size u on it. In a random order, we try to

place a square of edge length a into each of the cells.

This is done by randomly choosing a point within the

cell and putting a fixed corner of the square on it. If it

overlaps any of those chosen before, we try to place it

into the same cell a constant number of times.

Real World. The municipal authorities of Munich

provided us with the coordinates of roughly 1200

ground water drill holes within a 10 by 10 kilometer

square cent red approximately on the city centre. From

this list we extract a given number of points being clos-

est to some centre point according to the Lm–norm,

thus getting all those lying in a square around this ex-

traction centre, where the size of the square depends on

the number of points asked for. For our tests we chose

five different centres; that of the map and those of its

four quadrants in order to get results from different ar-

eas of the city with strongly varying point density. This

is due to the fact that many of the holes were drilled

during the construction of subway lines which are con-

centrated in the city centre, see Figure 5.

The choice of these four example generators might

be justified by the following considerations. The need

for real world data for testing is obvious. Random and

Dense are intuitively the first things one would come

up with, and differ enough in their behaviour to make

them worth looking at. Hard examples might serve as a

reminder that we are looking at an ~~-complete prob-

lem, and that no heuristic can be proved to do better

than 50 percent of the optimal solution [4].

3.3 Experimental Set-up

Since the problem generators Dense and Hard ask for a

label size a, while Random and Real World directly use

the number of points as input, the problem sizes differ.

We run the exact solver, the Approximation Algorithm

A, and the heuristics on each of the examples. For every

size we averaged the approximation quality and running

time over 50 tests.

Actually we do not use uUPPer (that is twice the re-

sult of A) as an upper bound for the conflicts we have

to look at in the heuristics, because then we would have

to add the computation time of A to that of the heuris-

tics. Though losing the theoretical bounds, it turned

out to be much faster and to yield results of the same

quality if we compute O&ad and work with a longer list
. .

of confhct sizes (between O and ~&~d instead of ulOWer

and aUPPer) on which we do the binary search. Even

the longer conflict lists of each candidate did not play

a great roll, because oUPPer and ~dead normally do not

differ a lot in any case, especially not for large Hard or

Dense examples where we have the highest number of

conflicts per candidate.

3.4 Results

We show the two classical kinds of plots; time and

quality. Quality here means the quotient of the solu-

tions of a heuristic and the exact solver. Time is mea-

sured in CPU time, which is sufficient since it is closely

related to the number of square-square conflicts. This

on the other hand determines the number of crucial

steps, namely finding all interesting conflicts once, and

then extracting those valid for a certain a in every step

of the binary search.

The results both for time and quality are averaged

only over those tests the exact solver managed within

the time bound.

The standard deviation is represented by the length

of the vertical bars in each point of the result plots.

3.4.1 Running Time

In Figure 4 we plot the running times of the slowest of

the three heuristics, namely J, on the different example

114

cpu time [see]

87

0 100 200 300 400 500 600 700 800 900 1000 #of points

Figure 4: Running time of Heuristic J on different example classes

sets. H and 1 are slightly faster. Above 300 points the

plot shows a rather stable O(n) -behaviour with very

small standard deviation. So far we are neither able

to analyse the running time for small dense and hard

examples nor to support the empirically linear running

time by a theoretical analysis.

3,4.2 Approximation Quality

In Figures 8, 9, 10, and 11, the approximation quality

of the three heuristics on the different example sets is

plotted. On random and real world problems all three

heuristics yield extremely good results. For an exam-

ple, see Figure 6 and 7. On dense examples the differ-

ences between the heuristics become more clearly visi-

ble. Heuristic 1 is the best, yielding results of very high

average quality with a slightly larger standard devia-

tion. The behaviour on hard examples is still quite good

but clearly becoming worse with an increasing number

of points.

The quality of Algorithm A is extremely bad on Hard

and Dense, and still useless from a practical point of

view on random and real world examples.

A remark on the examples for which X did not give a

result within the time bound: As mentioned above we

did not include those in the calculation of the quality

plots. But using the bound ouPPe, resulting from the

approximation algorithm A, and taking into consider-

ation the typical quality of A, we found out that the

behaviour of the heuristics on those examples does not

differ significantly from that on the other examples.

4 Implementation

The implementation of the heuristics follows the struc-

ture listed in 2.2. The code was written in C++, and

we strongly took advantage of data structures and al-

gorithms provided by LEDA [7]. The commands LEDA

offers, helped a great deal to shorten and simplify the

code. It was not optimized with respect to running

time but rather kept “legible”. All heuristics and prob-

lem generators can be tested on the WWW under

http: //ww.r. inf. fu-berli.n. de/-awolf f

/htrnl/labelimg. html.

5

Our

Conclusion and Acknowledge-

ments

experiences with the Map Labeling Problem and

its solution can be summed up as follows: We started

with the purely mathematical formulation of the prob-

lem which was communicated to us by Kurt Mehlhorn

from Saarbrucken, who received the problem from Rudi

Kramer of the Amt fur Informations- und Datenver-

arbeitung in Munchen. Quickly we showed the ~’P-

hardness, were surprised to hear of the practical rele-

vance, and started developing an approximation algo-

rithm. We found one, analysed it, and showed its theo-

retical optimality. The problem was solved perfectly—

in theory!

Applied to real world data, the algorithm proved use-

less. We used the insight into the problem structure

gained during the design of A and our insight into the

reasons for its practical failure, to develop Heuristic

115

If which produced satisfiable good results. Meanwhile

Bettina Preis et. al. developed an exact algorithm which

could solve small problemsupto about 80 points, which

enabled us to estimate the quality of our heuristic. We

improved H to 1, and to the even more sophisticated

Heuristic J which turned out to be a little worse than

our champion 1. Erik Schwarzenecker used our heuris-

tical concept to enable A“ to solve larger problems in

reasonable time. He also suggested the class of hard

examples. Thus we were able to do a thorough experi-

mental analysis of the quality ofour heuristics. We also

owe thanks to Stefan Lohrum who helped us to make

our heuristics accessible on the WWW.

Our intense contacts with the practitioners were suc-

cessful in two respects: We could solve their problems,

and they gave us the opportunity to get to know inter-

esting related problems that come up in this context.

We are now adapting our heuristics to these variants of

the original problem and hope to be able to solve them

with similar success.

References

[1]H. AONUMA, H. IMAI, Y. KAMBAYASHI, A visual

system of piacing characters appropiatly in multi-

media map databases, Proceedings of the IFIP TC

21WG 2.6 Working Conference on Visual Database

Systems, North Holland (1989) 525-546.

[2] S. EVEN, A. ITAI, A. SHAMIR, On the complexity

of Timetable and Multi commodity Flow Problems,

SIAM J. Comput. 5 (1976) 691-703

[3] M. FORMANN, Algorithms for Geometrzc Packing

and Scaling Problems, Dissertation, Fachbereich

Mathematik, Freie Universitat Berlin (1992)

[4] M. FORMANN, F, WAGNER, A Packing Problem

with Applications to Lettering of Maps, Proceed-

ings of the 7th ACM Symposium on Computa-

tional Geometry (1991) 281-288

[5] E. IMHOF, Positioning Names on Maps, The

American Cartographer 2 (1975) 128-144

[6] D. E. KNUTH AND A. RAGHUNATHAN, The Prob-

lem of Compatible Representatives, SIAM Journal

on Discrete Mathematics 5 (1992) 422–427

[7] K. MEHLHORN, S. NAHER, LEDA, a Library of

Eficzent Data Types and Algorithms, TR A 04/89,

FB 10, Universit at des Saarlandes, Saarbriicken,

1989

[8] H. IMAI, T. AS~NO, Efjiczent Algorithms for Geo-

metric Graph Search Problems, SIAM J. Comput.

15 (1986) 478-494

[9] L. KU6ERA, K. MEHLHORN,

B. PREIS, E. SCHWARZENECKER, Exact Algo-

rithms for a Geometric Packing Problem (Extended

Abstract), Proceedings of the 10th Annual Sympo-

sium on Theoretical Aspects of Computer Science

(STACS 93), Lecture Notes in Computer Science

665 (1993) 317-322

[10] F. WAGNER Approximate Map Labehng is in

Q(n log n), Information Processing Letters 52

(1994) 161-165

[11] G. WEBER, L. KNIPPING, H. ALT, An Applica-

tion of Point Pattern Matching in Astronautics,

Journal of Symbolic Computation 17 (1994) 321-

340

116

. .

..
.“.

“. .

... .
.

. .

...

.
.“

. . . .

“. .
. .

‘.. . . .

.. -....
.“ ‘ “.”,

. . .
“.

.“:. .
..

Figure 5: Map showing our sample data from Munich, and the section tested below.

are no conflicts between this section and the rest. The subway lines can be detected

There

easily.

Figure 6: Solution of the program used by the authorities of the City of Munchen before (label

height 5000, 3 sites not labelled). It tries to maximize the number of sites labelled for a given size.

Figure 7: Solution produced by all of our heuristics (label height 5400, optimal).

The dashed rectangle shows the candidate with label height P&.d = 6650.

117

. .

m— -

:, ,,

- +

-m
,. ,

uH-L-: ,’
: ,’
: ,’w+++++

:1.,’

++++ -

+ -

J- , I r r
~

.Z

i:
R
<

-

,
t
,t

+

:

t

+
/

,/

-

\
‘1

-

1’
/

i’

-++

‘.,
‘.

A-+
i’

/
1’

d+
,’

,’
/’

/’
, ,

-.,
.....

...
..*

, I

1’
i’

,’

-

‘1
‘1

4. /1’i’
-

tti-
‘1‘1‘!

+
1’!

-
‘1i

L !//
+

I,
-

