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Abstract

A thrackte is a graph that can be drawn in the plane

so that its edges are represented by Jordan arcs and

any two distinct arcs either meet at exactly one com-

mon vertex or cross at exactly one point interior to

both arcs. About thirty years ago, J. H. Conway con-

jectured that the number of edges of a thrackle can-

not exceed the number of its vertices. We show that

a thrackle has at most twice as many edges as ver-

t ices. Some related problems and generalizations are

also considered.

1 Introduction

Let G be a graph with vertex set V(G) and edge

set E(G), and assume that it has no loops or multiple

edges. A drawing of G is a representation of G in the

plane such that every vertex corresponds to a point,

and every edge is represented by a Jordan arc con-

necting the corresponding two points without passing

through any other vertex. Two edges (arcs) are said

to cross each other if they have an interior point p in

common. For simplicity, we always assume that no

three edges cross at the same point. A crossing p is

called proper if in a small neighborhood of p one edge

passes from one side of the other edge to the other side.

Due to its aesthetic appeal and wide range of applica-

tions in VLSI layout, computer-aided-design, software
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visualization, etc., the area of graph drawings has re-

ceived a lot of attention in the past two decades. For a

recent bibliography of graph drawing algorithms, see

[DETT94].

There are many interesting results in topological

graph theory characterizing all graphs embeddable on

a given surface without crossing (see [WB78]). How-

ever, we know very little about the possible inter-

section patterns determined by the edges of a graph

drawn on a surface. In particular, even for some very

simple graphs we do not how to find the crossing num-

ber of G, i.e., the minimum number of crossing pairs

of edges in a planar drawing of G. In the case when

G is a complete bipartite graph, this is Tur6n’s brick

factory problem [T77, G72]. The determination of the

crossing number is known to be NP-complete [GJ83].

Another well-known open problem that illustrates

our ignorance about graph drawings was raised by

Conway more than thirty years ago. He defined a

thrackle as a drawing of a graph G with the property

that any two distinct edges either

(i) share an endpoint, and then they do not have

any other point in common; or

(ii) do not share an endpoint, in which case they

meet exactly once and determine a proper crossing.

Thrackle Conjecture: The number of edges of a

ihrackle cannot exceed the number of its vertices.

A graph that can be drawn as a thrackle is said to

be thrackleabie. Assuming that the above conjecture

is true, Woodall [W69] characterized all thrackleable

graphs. With this assumption, a finite graph is thrack-

leable if and only if it has at most one odd cycle, it

has no cycle of length four, and each of its connected

components cent ains at most one cycle. Note that it

is quite straightforward to check the necessity of these
conditions (see Lemma 2.1). Using a construction sug-

gested by Conway, the thrackle conjecture can be re-

duced to the following statement: If a graph G consists

of two even cycles meeting in a single vertex then G
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is not thrackleable (cf. [W69, PRS94]). It is worth

mentioning that the thrackle conjecture is true for

straighi-line thrackles, i.e., for drawings where every

edge is represented by a segment [HP34, FS35, PA95].

See [LST94] for a surprising relation between straight-

line thrackles and triangulations of certain polytopes,

and [G75] for another geometric application.

Any two edges of a thrackle intersect in exactly one

point, including the endpoints. For finite set-systems

satisfying a similar condition we have the following

well-known result [F40, BE48].

Fisher Inequality: Let F be a family of subsets

of a finite set X such that any two members of F have

exactly one element in common. Then F has at most

as many members as the number of elements of X.

An interesting modular version of this inequality

was discovered by Berlekamp [B69]. Suppose that

every member of F haa an odd number of elements

and that the intersection of any two members is even.

Then [F [ < IX\. These results and their generaliza-

tions originate in linear algebra and play a central role

in finite geometries and in the theory of combinatorial

designs (see [BF88]),

Since thrackles do not contain cycles of length four,

it follows from [KST54] that the maximum number of

edges a thrackle of n vertices can have is 0(n312). Our

next theorem represents a substantial improvement on

this bound.

Theorem 1.1 Every thrackle of n vertices has at

most 2n – 3 edges.

The proof is based on the following result.

Theorem 1.2 Every thrackleable bipartite graph is

planar.

Just like the Fisher inequality, the thrackle conjec-

ture has some modular versions, too. For example, call

a graph drawing a generalized (or modulo 2-) thrackle

if any two edges meet an odd number of times, where

“meet” means either “meet at a common vertex” or

“meet at a proper crossing”.

Theorem 1,3 Every generalized thrackle of n ver-

tices has at most 3n – 4 edges.

‘Theorem 1.4 A bipartite graph can be drawn as a

generalized thrack!e if and only if it is planar.

Woodall [W72] asked whether the thrackle conjec-
ture remains true for generalized thrackles. Our last

theorem implies that the answer to this question is

in the negative, because a bipartite planar graph of n

vertices can have as many as 2n – 4 edges.

2 Three lemmas

In the sequel, a thrackle and its underlying ‘(ab-

stract” graph are both denoted by G. If there is no

danger of confusion, we make no notational distinction

between a vertex (edge) of the graph and the corre-

sponding point (arc).

Lemma 2.1 Let G be a thrackleable graph. Then G

contains (i) no cycle of length four; (ii) no two vertex

disjoint odd cycles.

Proofi To show (ii), notice that a pair of vertex dis-

joint odd cycles would be represented in a thrackle by

two closed curves that properly cross each other an

odd number of times. ❑

Lemma 2.2 Let Cl and C’z be two cycles in a graph G

that have precisely one vertex v in common. Suppose

that G can be drawn as a thrackle.

Then the two closed curves representing Cl and C2

cross each other in a small neighborhood of v if and

only zf both cycles are odd.

Proof: Let ki denote the length of Ci, i = 1,2. The

closed curve representing (71 divides the plane into

kl(kl – 3)/2 + 2 connected cells. Color these cells

with black and white so that no two cells that share a

boundary arc have the same color. The curve repre-

senting C2 intersects Cl exactly 2(k1 –2) +(k2 –2)k1 ~

kl k2 times (mod 2), not counting v. Every time C’2

intersects C’l, it passes from one cell to another whose

color is different. Assume that in a small neighbor-

hood of v the initial segment of an edge of C2 incident

to v lies in a white region. Then the initial segment

of the other edge of C2 incident to v lies in a black

region if and only if kl k2 is odd. ❑

A graph consisting of three vertex disjoint paths

Pt, i = 1,2,3 between u and v is called a Cl-graph.

A drawing of this ~-graph is said to be a preserver

if in a small neighborhood of u the initial pieces of

the paths Pi follow each other in the same circular

order as the final pieces do around v. Otherwise, the

drawing is called a converter. Note that, using this

terminology, if G is a planar graph drawn in the plane

without crossing then any E1-subgraph of this drawing

is a converter.

The proof of the next lemma is very similar to that

of the previous one.

Lemma 2.3 A @-subgraph of a thrackle M a con-

verter if and only zf at most one of its three paths has

odd length.

Remark: With the exception of Lemma 2. l(i), all

statements and proofs in this section remain valid for

generalized thrackles.
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3 Bipartite thrackles

Proof of Theorem 1.2: By Kuratowski’s theo-

rem, it is sufficient to show that a thrackleable bipar-

t ite graph G does not cent ain a subdivision of K5 or

a subdivision of K3,3.

Suppose that G contains a subdivision of K5, whose

vertices are vo, . . . . v4. Assume without loss of general-

ity that in a thrackle-drawing of G the initial pieces of

the edges incident to W. follow each other in the clock-

wise order Vovl, . . . . VOU. Then there are two (even)

cycles through W., VI, V3 and V., V2, V4 that have no ver-

tex in common other than V., The corresponding two

curves cross each other in a small neighborhood of V.,

contradicting Lemma 2.2.

Suppose next that G contains a subdivision of K3,3

with vertex classes {ul, U2, U3} and {vl, V2, V3}. De-

note this subdivision by K. Assume first that the

lengths of all nine paths in K connecting the Ui’s and

the Vj’s have the same parity. Deleting from K the

point U3 together with the three paths connecting it

to the vj ‘s, we obtain a @-graph. In view of Lemma

2.3, it is a converter between U1 and U2, Similarly,

deleting U2 (ul ) we obtain a converter between U1

and U3 (U2 and U3 , respectively). We say that the

type of ui is clockwise or counterclockwise according

to the circular order of the initial segments of the

paths Uivl, uiv2, uiv3 around Ui. It follows from the

definition of a converter that any two ui’s must have

opposite types, which is impossible.
There are two other essentially different cases ac-

cording to the parities of the nine paths forming K. It

turns out that in both cases one can arrive at a con-

tradiction by showing that there is exactly one pair of

points among U1, U2, U3 having opposite types. ❑

Proof of Theorem 1.4: In view of the remark at the

end of the previous section, the above argument also

proves that every bipartite graph that can be drawn as

a generalized thrackie is planar. To establish the theo-

rem, we have to show that the reverse of this st atement

is also true, i.e., every bipartite planar graph G can be

drawn as a generalized thrackle. To see this, consider

a crossing-free embedding of G in the plane such that

(i) V(G) = VI U VZ, where all points of VI are

mapped into the upper half-plane and all points of

VZ below the line y = – 1;

(ii) every edge e E E(G) connects a vertex of V, to

a vertex of V2, and each piece of e belonging to the
strip —1 < y < 0 is a vertical segment.

Now erase the part of the drawing in the strip – 1 ~

y s O, and replace the part in the upper half-plane

by its reflection about the y-axis. Reconnecting the

corresponding pairs of points on the lines y = – 1 and

y = O by straight-line segments, we obtain a drawing

of G such that any pair of independent edges meet

an odd number of times. This can be turned into a

generalized thrackle by slightly modifying the edges

in a small neighborhood of their endpoints so as to

reverse the circular order of edges around each vertex

of G. ❑

We could have completed our proof without using
Lemma 2.2. The fact that a thrackle contains no sub-

divion of K5 can also be deduced from Lemma 2,3 in

a slightly more complicated way.

Corollary 3.1 A graph is planar if and only if it has

a drawing whose every @-subgraph is a converter,

For a related result, see [T70].

4 Reduction to the bipartite case

Every graph can be made bipartite by the removal

of fewer than half of its edges. It follows from Euler’s

polyhedral formula that any bipartite planar graph of

n vertices has at most 2n – 4 edges (n > 2). If in ad-

dition the graph has no cycles of length four then this

bound can be replaced by [3n/2] – 3 (n > 3). Thus,

Theorem 1.4 and Lemma 2. l(i) immediately imply the

following.

Corollary 4.1 Let n >3. ‘I’hen

(i) every thrackle ofn vertices has at most 3n–7 edges;

(ii) every generalized thrackle ofn vertices has at most

4n – 9 edges.

In the rest of this section we sketch how to reduce

the bound in Corollary 4. l(i) roughly by n.

Let G be a thrackle of n vertices, n >3. One can

assume that G is not bipartite, otherwise its number

of edges cannot exceed [3n/2j – 3. Let C denote a

shortest odd cycle of G with length c. By Lemma

2.1 (i) and by the minimality of C, any vertex of G has

at most one neighbor belonging to C. Hence, there

are at most n edges of G incident to some vertex of C.

It follows from Lemma 2.l(ii) that the graph G – C

obtained from G by the removal of all points of C is

bipartite. Thus,

IE(G)I < lE(G-C)l+n < 3(n-c)/2+n = 5n/2-3c/2.

One can refine this argument, as follows. The closed

curve representing C cuts the plane into a number of
cells that can be colored with black and white so that

no two cells with a common boundary arc have the

same color. Let b and w denote the number of vertices

of G – C lying in black and in white cells, respectively.
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Clearly, c + b + w = n, and one can assume without

loss of generality that b < w. Observe that if an edge

e connects a point of C to (say) a black vertex, then

in a small neighborhood of this point the initial piece

of e must be white. There are at most b such edges,

and if remove all of them together with all edges of C,

the resulting graph (thrackle) becomes bipartite. This

yields the inequality

IE(G)I s 13n/2j -3+b+c < 2n+c/2- 3.

Comparing the last two inequalities, we obtain that

IE(G)I < (2 + l/8)n.

One can further reduce this bound by utilizing an

idea of Conway (see [W69, G93, PRS91, PRS94]).

Now we replace each vertex and edge of C by two

nearby vertices and edges, respectively. More pre-

cisely, we split each vertex v of C into two vertices,

vb and vu, and connect all black and white neighbors

of v to ‘Uband VW, respectively. Furthermore, if v and

v’ are two consecutive vertices of C’, we connect v~ to

v; and VW to vi. It is not hard to see that this con-

struction can be carried out in such a way that the

resulting drawing G’ is a thrackle, which becomes bi-

partite after the removal of all edges between ?Jb’sand

black vertices. Thus,

[E(G’)1 - b = IE(G)I + c- b s 13(n + c)/2J -3,

which implies that

IE(G)I < 2n -3,

as stated in Theorem 1.1.

5 Small forbidden configurations

All of the results in the previous sections were based

on parity arguments. Theorem 1.4 shows that if we

want to settle Conway’s original conjecture, we have

to go beyond these methods. In the proof of Theorem

1.1 we were able to explore a property of thrackles

that does not hold for generalized thrackles. Namely,
we used the fact that a thrackleable graph has no cy-

cle of length four (Lemma 2. l(i)). By excluding some

other small configurations that would contradict the

thrackle conjecture, one can easily improve the bound

in Theorem 1.1. The trouble is that it is quite diffi-

cult to find any new non–trivial forbidden subgraph,

because even a relatively small graph may have an

enormous number of topologically different drawings

such that no two edges meet more than once. In this

section, we illustrate these difficulties by an example.

Let 633 denote a graph consisting of two vertices

connected by three vertex disjoint paths of length

three.

Theorem 5.1 A thrackleable graph cannot contain

@3 as a subgraph.

For the proof we need some preparation. Let G

be a fixed thrackle whose edges are smooth curves.

Given two directed edges e and t that do not share

an endpoint, we say that e meets f clockwise if at their

intersection point a tangent vector to e can be carried

into a tangent vector of f by a clockwise turn with

angle less than m.

Let P = elezesee be a directed path in G with

length four, directed towards eA. Associate P with

a 4 x 4 matrix Al such that ikfij = O if i = ~ or if
ei and ej do not have an interior point in common.

Otherwise, let &fij = 1 or – 1 depending on whether

ei meets ej clockwise or counterclockwise. Clearly, M

is antisymmetric and it is determined by the triple

(A413, Llle, A424). This triple is called the type of P.

It turns out that their are only six possible types:

a=(l, l,–l); b=(l, –,l, –l); c=(l, –l, l);

A=(–l, –l,l); B=(–l,l,l); C=(–1, 1,–1).

Lemma 5.2 Let el, e2, . . . . efj be szz directed edges of

a thrackle that form a simple directed cycie, and let

Pi = eiei+1ei+2ei+3, where the indices are taken mod

6.

Then iype(Pl)type(P2). . . type(Pc) must be one

of the following sequences: AaAaAa, aAaAaA,

BbBbBb, bBbBbB.

Given a directed path P = el ezeseA, let the reverse
of P be defined as P-l = e;le;le;le;l, where e~l

denotes the same edge as e~ but with reversed orienta-

tion. If el . . . e5 is a simple directed path, we say that

P! = e2e3e4e5 can be obtained from P = e1e2e3e4 by

a shifi.

Lemma 5.3 Let P be a path of length four in a

thrackle, and assume that type(P) E {a, b, A, B}.

(i) type(P-l) = b, a, B or A according to whether

type(P) = a, b, A or B.

(ii) If P’ can be obtained from P by a shift and
iYPe(P’) c {a, b, A, B}, then @pe(P)@pe(P’) must be

one of the following six pairs: aA, aB, bB, Aa, Ab, Bb.

Proof of Theorem 5.1: Assume that there is a

thrackle containing & as a subgraph. By Lemma 5.2,

the type of every directed path of @3 belongs to the

set {a, b, A, B}. Consider a path P whose type belongs

{b, B}. (If P does not satisfy this condition then its re-

verse does. ) Observe that the topology of @3 allows us

to transform P into its reverse by a series of shifts. It

follows from Lemma 5.3(ii) that the types of all paths
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obtained during this process belong to {b, B}. How-

ever, by Lemma 5.3(i), type(P-l) E {a, A}, which is

a contradiction. ❑
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