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ABSTRACT 

This paper presents a new optimization technique for 
keyboard layouts based on Pareto front optimization. We 
used this multifactorial technique to create two new 
touchscreen phone keyboard layouts based on three design 
metrics: minimizing finger travel distance in order to 
maximize text entry speed, a new metric to maximize the 
quality of spell correction by reducing tap ambiguity, and 
maximizing familiarity through a similarity function with 
the standard Qwerty layout. The paper describes the 
optimization process and resulting layouts for a standard 
trapezoid shaped keyboard and a more rectangular layout. 
Fitts' law modelling shows a predicted 11% improvement in 
entry speed without taking into account the significantly 
improved error correction potential and the subsequent 
effect on speed. In initial user tests typing speed dropped 
from approx. 21 wpm with Qwerty to 13 wpm (64%) on 
first use of our layout but recovered to 18 wpm (85%) 
within four short trial sessions, and was still improving. 
NASA TLX forms showed no significant difference on load 
between Qwerty and our new layout use in the fourth 
session. Together we believe this shows the new layouts are 
faster and can be quickly adopted by users. 
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INTRODUCTION 

Text entry on mobile phones has always been a 
compromise between the space allocated to text entry and 
the size of the device. With finger-controlled touch screens 
becoming dominant in the late 00’s this problem was 
exaggerated by the lack of precision when using relatively 
large blunt fingertips to tap small on-screen buttons and the 
lack of tactile feedback from touch screens (e.g. [13]). This 
combination led to higher error rates on touch screen 

phones than on physical keyboards [1] and many users 
using landscape mode to gain larger keyboards at the 
expense of application display space. 

The Qwerty layout has been adopted almost universally on 
laptops and desktops despite the design constraints being 
far removed from the early physical typewriters that 
inspired the layout. Alternatives such as the Dvorak 
Simplified Keyboard have not been successful for many 
reasons [5], but largely because of the high initial learning 
curve when moving from Qwerty to a faster but alien 
layout. While there have been several faster optimized 
keyboard layouts for touch screens (e.g. The Opti [24],  
Metropolis [31] and matrix [20] keyboards), these suffer the 
same alienation problem as the Dvorak layout. The Qwerty 
keyboard has, thus, dominated on touch screen phones as 
pick-up-and-use usability issues have prevented the 
adoption of more optimal keyboards.  

Bi, Smith and Zhai [2] introduced a novel approach to 
keyboard optimization to attempt to overcome the initial 
hostility of users to alternative layouts. They allowed the 
keys of a Qwerty layout to shuffle by at most one position 
from their original location to achieve a quasi-optimized 

Qwerty variant. This layout had typing speed performance 
between the original Qwerty layout and a fully-optimized 
layout while not being alien as keys were roughly where the 
user would expect them to be. Touch screens and finger 
interaction users normally focus on the keyboard area 
during text entry, thus moving keys slightly is less of a 
problem than one might expect from desktop/laptop 
physical keyboard use.  

With modern powerful touch screen phones has come 
increasingly powerful error correction. Error correction 

 

Figure 1: Triple optimized rectangular keyboard 
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methods attempt to correct both users’ spelling mistakes 
and their typing errors – most commonly hitting 
neighbouring keys to the intended ones (e.g. [18]). Spell 
checking is made considerably harder when correcting 
typed words that are, themselves valid even if the context is 
wrong (e.g. [15]). As an example, the Qwerty layout has the 
I and O keys as neighbours, thus in/on, if/of, for/fir, hot/hit 
etc. are all only one key slip from each other. With smaller 
touch-screen phones this can be a very short physical 
distance, e.g. on an HTC Hero, key centres are under 
4.5 mm apart. The arrangement of the characters on the 
keyboard can improve the performance of an error 
correction algorithm by, for a given language, reducing the 
likelihood of near-misses resulting in valid words. While it 
has been shown that the layout of ambiguous keyboards, for 
example the traditional phone 12-key pad, can considerably 
affect entry performance [10], we believe this paper 
presents the first work to adjust the layout of an 
unambiguous keyboard for spell correction. 

In the remainder of this paper we present a triple-
optimization process using Pareto front optimization that 
attempts to optimize for (a) speed of text entry, (b) error 
correction tap interpretation clarity and (c) familiarity to the 
traditional Qwerty layout. Initially we present the three 
metrics in detail then their combination through Pareto front 
optimization. We also present keyboard layouts generated 
by this process for the traditional key layout and for a 
slightly squarer layout that increases key sizes (figure 1). 
Finally, we present results from Fitts’ law analysis and an 
initial study into pick-up-and-use usability of our optimized 
layout. Throughout the paper we will focus on portrait 
mode text entry – the normal style of interaction with a 
touch-screen phone and the larger challenge for text entry.  

OPTIMISATION METRICS 

Finger distance metric  

The time taken to type a letter on the keyboard is dependent 
on two factors: how long it takes the user to move his/her 
finger to a position above the key and how long it takes to 
tap the key. Fitts’ law [9] has been used extensively to 
predict the time taken by users to select spatial targets. For 
design, Fitts’ law implies that the nearer and bigger a target 
is the quicker it is to tap. Fitts’ law has been used to model 
text entry on, for example, traditional phone keypads (e.g. 
[27]) and stylus based keyboards (e.g. [25]) in attempts to 

both predict likely expert performance rates and to design 
faster keyboard layouts.  Fitts’ law calculates the time for a 
single key tap as: 

 � � 	� � � log
 ��

 � 1� (1) 

where D is the distance to the target key from the starting 
position and W is the width of the target key (the constants 
a and b are dependent on the physical characteristics of the 
keyboard and need to be determined empirically).  

Here we constrain the optimization process in two ways: 

• We fix the keyboard layout at the start of the optimization 
procedure: we restrict ourselves to different letter-to-key 
assignments and not the more general keyboard layout 
problem of adjusting the button sizes and positions; 

• We model single finger text entry: most users of touch-
screen phones use the index finger of their dominant hand 
as the pointer – particularly for small keys [1].  

Given these constraints we can simplify from Fitts' law by 
only modelling the distance that the user's finger has to 
move to enter text. For comparing two keyboards this is a 
faster and simpler calculation that is as effective at stating if 
one keyboard is faster than the other, but without giving full 
predictions of typing speed. In the optimization process, all 
keys were modelled as the same size bar the space key 
which, for simplicity, we modelled as three standard sized 
keys beside each other on the bottom row – distances were 
measured to the nearest of the keys (a similar approach to 
[24] but with a shorter spacebar typical of mobiles). 

We built a bigram weighting model of English by using the 
same national newspaper corpus of English text as in our 
previous studies [7] (with 77 317 unique words and a total 
of 5 171 840 occurrences). While the corpus is journalistic 
in nature, it has been argued that the source of the corpus is 
not critical to keyboard optimization [30] and our bigrams 
are similar to previous published ones (e.g. [28]). Our 
analysis calculated an occurrence count for each two-letter 
bigram as used in the corpus1. To include movement to and 
from the space key we also included space to give 27*27 
possible letter combinations from the 26 letter alphabet. 
The most common letter pair was E_ (where _ represents 
space) with 981 920 occurrences in our collection. The 
probability of any key sequence being E_ is thus 0.033. The 
top key combination probabilities2 are E_=0.033, _T=0.026, 
S_=0.022, TH=0.021, HE=0.020, _A=0.019. The lowest 
non-zero pairing was ZX=0.000 (1 occurrence).  

We calculated the weighted average finger distance by 
summing the product of the Euclidian distance between 
letters pairs and their relative probability from the corpus: 

 ����� �	 〈∑ ��,� 	. ������ !"#� , #�$∀�,�∈' 〉  

                                                           

1 We adjusted the text to include US and UK variants of common words 
2 Full list at  http://personal.cis.strath.ac.uk/~mdd/research/chi2012/ 

 

Figure 2: Bi, Smith and Zhai’s Quasi-Qwerty layout 



 

 

where α is the alphabet in use (here a…z plus space), pi,j is 
the probability of the transition from letter i to j in the 
corpus, ki is the key for letter i, distance is the Euclidian 
distance between the keys’ centres. 

To evenly balance the multiple criteria optimization process 
used later in this paper, it is helpful if the metrics have 
roughly equal ranges of values. We normalized the scores 
for finger distance to the range of approximately 0…1, 
where 1 represents the best keyboard found and 0 the worst. 
We initially derived a fast keyboard iteratively with several 
short runs of the optimizer. The normalised score was given 
as Mdist = Mcalc / (1.1 Mfast) where 1.1 was used to allow for 
better solutions in the final run. For reference the standard 
Qwerty layout scored 0.395 while Bi, Smith and Zhai’s 
quasi-Qwerty keyboard scored 0.643 – confirming that their 
quasi-optimization process resulted in considerably less 
distance for a single finger to move on average. 

We discuss the triple-optimized keyboards and the Pareto 
process in full below. However, running our Pareto 
optimization process resulted in over 24 000 keyboards on 
the final “surface”. Of these, the highest scored keyboard 
for finger distance metric on a standard iPhone™ style 
layout has a distance weight of 0.908 (figure 3). Note that 
the top four most common bigrams (E_, _T, S_ and TH) are 
neighbours with others being near neighbours.  

 

Figure 3: Fastest iPhone layout keyboard3 

The Pareto optimization process is designed to find best 
solutions along the Pareto front, as such it is not good at 
finding bad solutions as poorer ones are discarded in favour 
of all-round better ones. However, it is worth contrasting 
the best solution found with the worst recorded at the end of 
the search. The poorest performing keyboard on the front 
for finger travel distance had a weight of 0.256 (figure 4). 
Tapping out a common phrase with these two keyboards 
casually confirms that the finger moves considerably less 
with the best rather than the worst keyboard.   

Figure 5 compares the finger travel metric for our fastest 
keyboard (Fig. 3) with the standard Qwerty and Quasi-
Qwerty keyboards (Fig. 2). 

                                                           

™  iPhone is a trademark of Apple Inc. 
3 Here we refer to iPhone-layout as a standard Qwerty key layout with 10 
keys on top row, 9 middle and 7 bottom with the same tall key aspect-ratio 
as portrait iPhones. 

Tap interpretation clarity metric (Neighbour Ambiguity) 

Traditionally text entry methods can be categorized as 
unambiguous, where each key unambiguously maps to a 
character (e.g. laptop Qwerty keyboards), or ambiguous, 
where multiple characters are mapped to each key (e.g. the 
traditional 12-key phone pad). With an ambiguous 
keyboard the most common method of automatic 
disambiguation is to use a large dictionary (e.g. T9 [11] and 
[7]). Dictionary disambiguation offers the most common 
word in the language when a user types a key sequence, e.g. 
on a 12-key phone hello will be offered for 43556 as the 
most likely word given the keys GHI DEF JKL JKL MNO. 
Overall this works surprising well, with success rates 
estimated at around 95% ([10]). However, it does not cope 
with key combinations where two or more words are widely 
used, e.g. home/good and he/if are common examples that 
share the same keystrokes on a traditional phone. More 
complex approaches to disambiguation, e.g. [8, 12], 
attempted to solve this using more contextual knowledge. 
Alternatively, Gong and Tarasewich [10] investigated the 
best layout of miniature keypads to reduce the ambiguity of 
the keyboard layout itself by separating combinations that 
lead to multiple popular words. The best solution, of course, 
is a combination of both: a powerful contextual engine with 
an optimized layout to reduce the effort required by the 
context engine. 

Modern powerful smart-phones and laptop/desktop spell 
correctors have blurred the distinction between ambiguous 
and unambiguous keyboards – they typically give users the 
impression of an unambiguous Qwerty layout but use 
increasingly complex automatic error correction algorithms 

 

Figure 4: Slowest keyboard on final Pareto front 

 

Figure 5: Finger travel distance metric comparison 



 

 

to soften the solidity of the one-char-per-key rule (e.g. [4, 
16, 18]). For example, typing typung in most desktop word 
processors and most touch phones will result in the word 
typing being inserted even though the user tapped the 
unambiguous u as the fourth key.  Error correction has been 
shown to be particularly important on touch screens with 
small keys [18] and is seen as one of the challenges for 
intelligent text entry [17]. Furthermore, Allen et al. showed 
that, while expert touch-screen users and expert physical-
keyboard users achieved roughly the same speed, both 
groups had higher error rates on iPhones than on mini-
physical keyboard phones [1]. This implies that, although 
automatic error correction has come far there are still 
considerable problems with error correction on touch-
screen mobiles. 

In developing our keyboard layout one factor we wished to 
take into account was interpretation clarity for taps. We 
created a table of bad-bigrams, or badgrams for short, of 
keys that were ambiguous given their neighbours. This 
table is similar to the table used above for keyboard 
distance but is based on the likelihood of a one letter 
substitution resulting in a valid word, e.g. mistyping for as 
fir results in a badgram for OI on Qwerty keyboards. We 
scanned all same-length words in our corpus and assigned a 
frequency to each badgram found based on the more 
common of the two words. Summed over all words on the 
corpus, this resulted in AE being the most frequent badgram 
with 1 227 442 weighted occurrences (i.e. having A and E 
as neighbours leads to many single key tap errors giving 
valid words: end instead of and, ha instead of he, been 
instead of bean etc.). As with the bigram table, we 
converted to probabilities by dividing the score by the total 
score for all combinations to give a top badgrams2 of 
AE=0.017, AO=0.017, EO=0.015, ST=0.015, EI=0.013, 
IO=0.012 and AI=0.012.  

The aim of the tap clarity optimizer was to reduce the total 
ambiguity for keys that were adjacent in the layout, which 
should maximize the effectiveness of a spell corrector to 
correctly interpret taps. This metric is defined as:  

  ��)*_,-).��/ �	 〈∑ �0	neighbours9::	p9:	
!=�!: 0∀�,�∈' 〉  

where α is the alphabet in use (here a…z), Pi,j is the 
badgram probability for letters i,j and neighboursij is true if 
the keys for i and j are adjacent (vertically or horizontally) 
on the selected keyboard, otherwise false. For Pareto 
optimization, this score is again normalized to 
approximately the range 0…1, where 1 represents the best 
keyboard and 0 the worst. For reference the standard 
Qwerty layout scored 0.559 while quasi-Qwerty scored 
0.459, showing that this layout sacrificed some spell-
checking clarity in making their speed gain. 

Again using a standard iPhone-layout, the best found 
keyboard for neighbour ambiguity had a score of 0.997 
(figure 6). This keyboard should be optimal for a spell 

checker to correctly interpret taps as single letter tap errors 
will most likely not result in a valid word (or at least not a 
common valid word). The most common badgrams are 
clearly separated (e.g. AE, AO, EO, ST). Figure 7 compares 
the interpretation clarity metric for this keyboard with the 
standard Qwerty and Quasi-Qwerty keyboards. 

 

Figure 6: Best keyboard for spelling correction 

 

Figure 7: Comparison of Interpretation Clarity Metric 

Familiarity to Qwerty metric  

There is a long history of text entry research into alternative 
keyboards for touch screens. While achieving very 
promising expert user performance predictions, these 
layouts have had very low adoption rates as users tend to 
favour the familiar Qwerty layout. Bi, Smith and Zhai  [2] 
proposal was a middle ground: they allowed keys to be 
moved around to optimize a layout but restricted the 
distance to 1 key away from the home key. We have 
followed their general approach but softened this rule by 
imposed a strong weighting against keys which move far 
from their Qwerty layout position. The effect being to allow 
keys more freedom but punish a keyboard design where 
many keys move from the Qwerty home location and 
severely punish keyboards where individual keys have 
moved far from their home location. The aim is that when 
users are typing with a finger on a touch screen, the keys 
they are aiming for will most often be in the proximity of 
where they expect it to be given their Qwerty experience 
but at the same time to give freedom for stronger 
optimization of other metrics. 

Similarity between keyboards can be measured by scoring 
the distance of all keys to their home keys on a same-sized 
standard Qwerty keyboard. However, to increase familiarity 



 

 

of the keyboard and “punish” keys that move far from their 
home we experimented with different familiarity metrics 
based on squaring, cubing and exponential function of the 
Euclidean distance for each key. With experimentation, 
squaring the distance gave the best balance between 
allowing movement and keeping keys near their home 
locations. This function gives a distance score of 0 for a key 
that is in the same location as on the Qwerty layout, 1 for a 
key that moves to its neighbour (horizontally and a key's 
aspect ratio vertically, e.g. 1.7 for an iPhone), and 9 for a 
letter that moves three keys horizontally (given the standard 
layout is 10 keys wide this is a high value). However, as 
this metric averages the score over all keys, unlike Bi et 
al.’s quasi-Qwerty, it does give flexibility for individual 
keys to move a few keys if many of the other keys stay very 
close to their Qwerty location.  

We calculated the familiarity metric as: 

 �?)@�-�).��/ �	 〈∑ ������ !A#� , B�C
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where α is the alphabet in use (a…z), ki is the location of the 
centre of the key on the given keyboard, qi is its location on 
a same sized standard Qwerty layout keyboard, and 
distance is the Euclidian distance between these points. 
Again the score is finally normalized to the range 0…1 for 
Pareto optimization, where 1 represents the best keyboard 
found and 0 the worst. For reference the standard Qwerty 
layout scores 1.0 while quasi-Qwerty scores 0.850.  

TRIPLE-METRIC OPTIMIZATION PROCESS 

In designing artefacts, we often have more than one 
criterion that we use to evaluate the final product. For 
example, a motor vehicle can be judged by its fuel 
efficiency, its ease of handling, the comfort of the ride and 
so on. Often these criteria conflict: a hard suspension may 
help with handling but be detrimental to passenger comfort.  
Multi-objective optimization algorithms [29] seek to create 
solutions to such problems by considering the optimization 
process across these potentially conflicting objectives. A 
simple way of addressing such problems is to create a 
single combined objective function, where each individual 
objective is a component in a weighted sum. However, the 
difficulty of coming up with an appropriate weighting for 
each part of the sum and the fact that this method only 
returns a single solution means that this is not generally the 
method of choice [6]. Instead, what is needed is a method 
which can return multiple solutions where each solution has 
something about it which makes it better than other 
solutions according to at least one of the criteria. This leads 
to a need to explore solutions that are Pareto optimal. If 
there are 3 criteria to optimize, as in this study, and we have 
found a Pareto optimal artefact which has the evaluation 
[x,y,z], then this means there is no point in the solution set 
for which all criteria are equal or better. In other words, if 
we want to improve the score for one of the criteria along 
the Pareto front, we have to compromise by lowering the 
score for at least one of the other metrics. A point which is 
not Pareto optimal is said to be dominated - there is a Pareto 

optimal solution which is better than it in at least one 
dimension and no worse in the others. 

The search algorithm in this work is a variant of local 
neighbourhood search [14] adapted for use in finding a 
Pareto optimal set using the above three metrics: finger 
travel distance, spelling interpretation clarity and Qwerty 
familiarity. The process starts with a randomly generated 
set of points that are optimized locally for different 
weightings of the three metrics (typically 40-50 starter 
keyboards are created). This initial set of keyboards is taken 
through 2000 iterations of improvement in which local 
moves are made that may, or may not, improve the solution. 
In each iteration each keyboard in the set has a small 
number of keys swapped (1 key is swapped then extra keys 
are swapped with a probability of 25% of continuing after 
each swap4); if the new keyboard is better on any metric 
then it is added to the set; if it is also at least as good on 
ALL metrics than an existing solution then it dominates the 
existing one, which is discarded. This leads to a Pareto 

front – a set of dominant solutions on a 3D surface.  

The final Pareto front for optimizing the standard Qwerty 
keyboard is shown in Figure 8. This shows the trade-off 
between the different measures with high scores being 
achievable only at the expense of others. It also, 
reassuringly, shows a convex surface showing that 
compromise solutions are not, overall, poorer than single 
optimized solutions. This front is composed of over 24 000 
individual keyboards (out of the 46.7 million candidate 
keyboards considered in the 2000 iteration run). 

PROPOSED IMPROVED KEYBOARD LAYOUTS 

The final compromise keyboard proposal is taken to be the 
keyboard that achieves best on average – the centre of the 
Pareto surface (i.e. keyboard nearest the 45° line through 
the space). All metrics were scaled in advance so the best 

                                                           

4 This ensures that the Pareto curve optimization is, in a sense, complete as 
all combinations are reachable from any given initial keyboard layout. 

 

Figure 8: Pareto Front Shape 

 



 

 

(individual score) lies around 1 and the worst around 0 – 
ensuring the 45° point is a fair balance of the three metrics. 
This was achieved through iterative running of the Pareto 
optimization process. A small imbalance at this stage would 
result in us picking a different near-central solution. 
However, the solution space around the centre 45° selected 
keyboard was stable with only small changes being seen on 
solutions near the central one and a fairly smooth front 
shape near the centre (see Fig. 8). While varying per starter 
keyboard, most Pareto optimizations didn’t change the 
suggested keyboard for the last 500+ iterations of 2000 
optimization iterations, giving further confidence in 
stability of the solutions discussed below. 

A standard Qwerty layout triple-optimized keyboard: 
The Sath-Trapezoidal keyboard 

Using iPhone key shape (a key aspect ratio of 1.7) and a 
standard Qwerty layout as a starter keyboard, our triple-
optimization process created the keyboard shown in Figure 
9 with a score of approx. 0.69 for each metric. We will refer 
to this as the Sath-trapezoidal keyboard. 

 

Figure 9: Triple optimized standard iPhone style keyboard 

Table 1 summarizes the metric scores for this keyboard 
compared to the standard Qwerty and the Quasi-Qwerty. 
Overall our alternative layout achieves a considerably better 
finger travel distance than Qwerty and noticeably better 
than quasi-Qwerty. It also achieves considerably better 
interpretation clarity than both, but at a reduction in 
familiarity. 

 
Finger 

Distance 
Interpretation

Clarity 
Qwerty 

Familiarity 
Average 

score 

Sath 0.694 0.695 0.694 0.694 

Qwerty 0.395 0.559 1.000 0.651 

Quasi-
Qwerty  

0.643 0.459 0.829 0.644 

Table 1: Standard keyboard metrics 

Given the balance of metrics and Pareto optimization 
process, we claim that the Sath keyboard presented here 
provides the best compromise between typing speed, tap 
interpretation for spell correction and familiarity with 
Qwerty to support pickup-and-use usability.  

More rectangular layout: Sath-Rectangular 

In the discussion so far we have focused on an "iPhone like 
Qwerty keyboard layout". This layout is a standard Qwerty 

layout from typewriter and computer use but with a higher 
aspect ratio – approximately 1.7 for the iPhone, when 
measured to include surrounding grey-space, and a slightly 
taller 1.75 for an HTC Hero (a relatively small Android 
phone). The standard Qwerty layout has a trapezoidal 
shape, if drawn symmetrically, with 10 keys on the top row, 
9 in the middle and only 7 on the bottom row (a 10-9-7 
format). Full size keyboards pad the lower rows with non-
alphabetic and functional keys but there are often fewer 
such keys on mobiles with additional characters being 
entered through a secondary mode. Above we presented our 
results for optimization using this standard trapezoidal 
layout and aspect ratio.  

MacKenzie states that when measuring Fitts’ law distance, 
the size of a key should be the minimum of height and 
width [22]. As such these tall, thin keys have effectively the 
same Fitts’ law functions as if they were just as high as 
their width but with further distances between the keys 
vertically. As discussed above, the small keys also tend to 
lead to many typing errors as the key centres are very close 
together – for example keys of the size found on portrait 
mode iPhones have been shown to be significantly slower 
and more error prone than larger keys [18, 19].  As such we 
attempted to reduce the aspect ratio of keys to make them 
squarer, while maintaining their height and familiarity with 
the original Qwerty layout. We investigated Pareto 
optimization starting with a more rectangular 9-9-8 profile 
keyboard that results in a less-tall aspect ratio of 
approximately 1.5 for the same screen area.  

Here we started our optimization process with a Qwerty 
layout in which the Q and A were shifted one row down to 
give the starter layout WERTYUIOP QSDFGHJKL 

AZXCVBNM which has a 9-9-8 profile and a familiarity 
score of 0.951. Using this keyboard layout and a 1.5 aspect 
ratio gave an improvement over the standard 10-9-7 layout 
with the keyboard shown in figure 10 rating approx. 0.75 
for each metric. 

While a relatively small numerical improvement, the 
buttons in this layout also have a larger hit area which 
should improve typing speed and reduce miss-strikes 
further improving spelling performance. Using the same 
area as an iPhone keyboard, this layout increases the key 
width from 4.6 to 5.2 mm – a considerable improvement of 
11% in “target size” used in Fitts' law calculations. As key 

 

Figure 10: Optimized more rectangular keyboard layout 



 

 

sizes on portrait touch-screen phones are well below 
research recommendations for touch screen key sizes (e.g. 
[26]) and have been shown to be considerably poorer than 
the larger keys used in landscape mode [19], this small 
difference may have a very significant impact on speed.  

 Finger 
Distance 

Neighbour 
Ambiguity 

Qwerty 
Familiarity 

Average 
score 

Sath 
Trapz 

0.694 0.695 0.694 0.694 

Sath 
Rect 

0.751 0.751 0.751 0.751 

Table 2: Comparing standard and rectangular layouts 

FITTS' LAW SPEED CALCULATIONS 

The finger distance metric used above is suitable for 
optimization a fixed format keyboard but cannot be used to 
predict text entry speed. Fitts' law [9] (Equation 1) can be 
used to estimate the potential speed of a keyboard layout for 
error-free expert text entry (e.g. [28]). As such it is worth 
discussing here as it gives a more concrete comparison to 
other keyboards through use of words-per-minute estimates. 
Equation 2 shows the Fitts' law calculation for weighted 
average time to press a key. The time to press a key is 
logarithmically proportional to the distance to that key 
while logarithmically inversely proportional to width of the 
target key (big keys close to the starting point are fastest 
targets to hit). The constants a and b have to be derived 
experimentally for a given device, for comparison with 
work of others we used the figures a=0.083 and b=0.127 [2, 
32] in our studies despite their being derived for stylus-
based keyboarding. To calculate the average time per 
keystroke, a weighted average is used based on the 
probability of bigrams in the language, so that key 
combinations that are struck more commonly (e.g. moving 
from e to space) have a proportionally higher impact on the 
average than rarely used key combinations (e.g. moving 
from z to x). The same bigram data as used for the finger 
travel optimizations were used here but these were 
compared with the table used in [25] and found to result in 
very small differences in predicted times. 
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For the standard Qwerty keyboard (10-9-7) we estimated an 
average key tap time of 0.360 s given an aspect ratio of 1.7 
and the constants a and b from above. This is equivalent to 
a predicted expert typing speed of 33.3 words-per-minute 
(wpm). Bi, Smith and Zhai used the same Fitts' constants to 
estimate 181.2 characters-per-minute, or 36.2 wpm, for a 
standard Qwerty keyboard – slightly faster than our 
estimate. This is predominantly due to the aspect ratio of 
keys – Bi, Smith and Zhai followed MacKenzie's early lead 
in modelling touch screen entry with square keys similar to 
laptop keys and not the highly stretched keys now used on 

touch screen phones. While the true values of a and b for 
finger tapping on keys below 5 mm requires to be 
calculated experimentally, our estimate is, we believe, 
unlikely to change the ordering of keyboards but will affect 
predicted speeds as the values of a and b used are based on 
studies with approximately 10 mm wide keys. 

Figure 11 shows the words-per-minute estimates for our 
two keyboards compared with the traditional Qwerty and 
quasi-Qwerty (both using 1.7 aspect ratios as this matches 
the keyboard area of the iPhone) and, for comparison, the 
fastest single optimized keyboard layout we identified. This 
shows a predicted improvement of 10% and 11% 
respectively for our trapezoidal and rectangular keyboard 
layouts over standard Qwerty and smaller 3% and 4% 
predicted improvement over the quasi-Qwerty keyboard.  

 

Figure 11: Comparison of keyboard typing speeds 

However, as discussed above this does not fully take into 
account the increased key size with the rectangular 
keyboard (only the smaller vertical aspect ratio) nor does it 
take into account the improvement in error correction likely 
in practice given the larger keys. Fig. 12 shows that the two 
optimized keyboards presented here also have considerably 
better tap interpretation clarity that should lead to faster text 
entry as users will learn that they need to be less accurate 
on typing and still achieve corrected-error-free entry. 

PAPER PROTOTYPE 

To investigate the initial pick-up-and-use aspects of the new 
keyboard we created paper prototypes of the new keyboard 
layout using a slightly earlier version of our optimized 
rectangular keyboard. These paper prototypes were correct 
in size and aspect ratio for an HTC Desire and were trialled 
with 12 students. These users were encouragingly positive 
and stated that they would use the keyboard when available. 
The students stated that they generally found keys quickly 
in practice typing (though the A was commented on as 
being moved quite far). One user commented that even for 
two-thumbed use it felt easier as common keys were more 
central to the keyboard, an unintentional consequence of 
finger distance metric and the central space key.  



 

 

INITIAL USER STUDIES 

Encouraged by the paper prototype results we developed an 
Android implementation and ran a four day user trial with 
10 regular touchscreen phones users (8 male, 2 female, 
mostly between 18 and 35 years old with one 36+ user) to 
measure their performance with rectangular-Sath over the 
initial learning period. Sessions lasted under 45 minutes per 
day in a quiet environment with subjects seated in a 
comfortable chair without the use of a desk. 

Procedure & Equipment 

Users came at the same time for four days and were asked 
to enter two initial warm up phrases then 17 phrases 
selected randomly from MacKenzie and Soukoreff [23] 
standard set. There were 4 task sets (68 phrases total), 
randomly allocated to each participant (balanced on first 
day with unused phrase sets per person randomly allocated 
on days 2-4). To assess Qwerty performance users entered 
some phrases using the standard Qwerty layout (first part of 
day 1 and second part of day 2), all other phrases were 
entered using rectangular-Sath (figure 1). 

Phrases were presented in the web browser of an HTC 
Desire S and the users typed answers into a text box on the 
same web page before hitting “next” to move on to the next 
phrase. Timing information was recorded using JavaScript 
based on the time from first to last key press. In line with 
other studies, users were asked to type as quickly as 
possible but accurately and were allowed to use backspace 
to correct mistakes they spotted “immediately” but were 
told not to correct mistakes they noticed later and were 
prevented from using editing controls except backspace. 

The implementation used a basic spell checking algorithm 
with the standard Android suggestion bar to show suggested 
words and highlight auto-corrections. A typed word was 
auto-corrected if it was not in the dictionary but a same-
length dictionary word existed that was very close to the 
tapped locations (i.e. one tapped character was out by one 
key). We restricted to same length corrections to target 
miss-taps and not wider omitted taps, double taps or true 
spelling errors. The Qwerty and Sath keyboards used the 
same underlying code and spell corrector. 

 Speed results 

Our users averaged 21.3 wpm (stdev 7.3) using Qwerty. 
Their performance dropped to 13.4wpm (6.1) when using 
Sath for the first time but recovered to 17.7 wpm (5.2) by 
the fourth day of the test (figure 13 shows the daily results – 
Sath speed based on Sath phrases per day with Qwerty 
based on all Qwerty phrases as there was no significant 
difference in Qwerty speed between day 1 and 2). 

We also analysed speed as a percentage of the users 
individual Qwerty performance. This analysis shows that 
users dropped to 64% of their individual Qwerty speed for 
the first block of phrases using Sath but that this recovered 
to 85% on the fourth day (fig 14). For comparison average 
Quasi-Qwerty performance was approx. 65% of average 
Qwerty in word-by-word tests, while their freely optimised 
keyboard achieved only 45% in initial use. 

 

Figure 12: Comparison of keyboard interpretation clarity 

 

Figure 13: Words per minute speeds 

 

Figure 14: Percentage speed compared to Qwerty 

 

Figure 15: NASA TLX Scores  



 

 

Other Results 

Uncorrected error rates were low throughout the study. 
Overall 7.9% of phrases contained a single erroneous word, 
with none having multiple errors. With an average phrase 
length of 5.6 standard words (=5 chars as used in wpm 
calculations), this equates to an error once per 71 words. On 
Qwerty tests, 5.3% of phrases were erroneous with a higher 
8.8% of Sath phrases being erroneous (with no clear pattern 
over the four days). Errors from key positioning changes 
should result in same length typing errors. For Qwerty we 
found 3% (5 of 170) of phrases were correct-length but 
erroneous compared with 4% (19 of 510) of Sath phrases. 
All Qwerty errors were independently categorised as typos 
while 4 other errors were recorded with Sath – if these were 
excluded then Sath would have the same typo error rate as 
Qwerty in this initial use study (other errors were 
transposition of letters, spelling errors and typing the 
wrong, but semantically sensible, word). 

NASA TLX forms were completed after each session (each 
block on days 1 and 2). These showed significantly higher 
workload for mental (p < 0.001, t-test, n = 10), physical 
(p < 0.001), effort (p < 0.001), and frustration (p < 0.05) for 
the new keyboard on the first day of use. However, there 
were no significant differences between first day Qwerty 
and fourth day Sath indicating that users had reduced to 
their Qwerty level of effort (figure 15). 

At the end of the study, users were asked “if it was proven 
faster and less prone to spelling errors”, would they adopt 
this keyboard. Eight of the ten users replied positively on a 
7-point scale with a mean response of +1.6 (see fig. 16). 

Definitely 
not  

Definitely 
yes 

Figure 16: Adoption preference 

Several users commented that it would take some time to 
get up to full speed on the new layout while a couple 
commented that they had already got used to the new 
layout. A couple of comments showed some users 
understood the design, e.g. “I liked how letters which are 
close to each other in a word were close on the keyboard”.  

Study Discussion 

We observed an initial performance of 64% which, after 
only four short sessions, had recovered to 85% of their own 
Qwerty performance with users typing at nearly 18 wpm in 
their fourth session. While not yet outperforming Qwerty 
they were typing at a good speed and showed good signs of 
continual improvement. Given the growth shown on figures 
13/14 we are confident that this study shows (a) initial use 
is not too painful and (b) users would most likely exceed 
Qwerty speed within a short period of more intensive use. 

FUTURE WORK 

We are currently improving the Android app to commercial 
quality to allow non-study usage. This will enable 
longitudinal trials after which we should be able to better 
estimate practical expert text entry speed. The constants a 

and b in our Fitts’s law modelling are based on the best 
available estimates – these studies will also allow us to 
accurately model these for modern touch screen phones. 

The Pareto curve provides a 3D surface on which all points 
are, in some sense, optimal given different bias on the 
underlying metrics. As users become familiar with the 
revised keyboards shown in this paper it may be possible to 
dynamically move forward along the front towards the 
origin of familiarity by building on the user's new 
familiarity with our keyboard. Longer trials are planned to 
see if users can handle a keyboard design that changes 
dynamically over time but in a "familiar way". We will also 
investigate how this impacts on their use of the standard 
Qwerty, for example when using a friend's keyboard or 
swapping to hard keyboard phone or laptop.  

We picked three metrics of speed, interpretation clarity and 
Qwerty-familiarity as we feel any optimization should take 
at least these three aspects into account. Other metrics could 
be included as Pareto optimization is open to any number of 
dimensions. For example, the language models underlying 
our optimization are relatively simple and do not require 
particularly detailed corpora so it would be worth exploring 
optimized keyboards for other languages (another of 
Kristensson’s challenges [17]) or even multi-lingual 
optimization (c.f. [3]). We are also working on optimizing 
for two thumbs using more detailed timing models [21]. 

CONCLUSION 

This paper has introduced a new approach to keyboard 
optimization. We use Pareto Front optimization to optimize 
on three metrics in parallel: finger travel distance (speed of 
entry), tap interpretation clarity for spell correction (itself a 
new metric) and familiarity with standard Qwerty. Using 
our metrics we proposed two new Sath-keyboards that give 
a considerable improvement in finger travel distance by 
rearranging the keys on the standard layout keyboard and 
by also making the key layout more rectangular. In addition 
to the predicted improvement in speed we saw a 
considerable reduction in neighbour ambiguity that should 
lead to improved tap interpretation and spell correction. 
Fitts' law modelling confirmed a conservative improvement 
of 10-11% in terms of words-per-minute. When compared 
with Bi, Smith and Zhai's quasi-optimized keyboard [2] we 
show a small improvement in speed with a considerable 
improvement in the tap interpretation metric (but at a cost 
in familiarity). In user trials, users performed at 64% of 
their Qwerty speed on first use but this improved to 85% 
within four short trial sessions and showed strong signs of 
continued improvement. Moreover, the combined effect of 
less distance in typing and higher tap interpretation clarity 
should, in medium term use, see cumulative gains as users 
learn they can be less accurate with taps and achieve the 
same quality input. User studies are planned to accurately 
model finger-based entry on touch screens of these sizes 
and to study the impact of our improved layout and spell 
correction ability on input speeds over long term studies. 
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