

Multidimensional Pareto Optimization of
Touchscreen Keyboards for

Speed, Familiarity and Improved Spell Checking
Mark D Dunlop and John Levine

Computer and Information Sciences, University of Strathclyde
Richmond Street, Glasgow, G1 1XH, Scotland, UK

mark.dunlop@cis.strath.ac.uk, john.levine@cis.strath.ac.uk

ABSTRACT

This paper presents a new optimization technique for
keyboard layouts based on Pareto front optimization. We
used this multifactorial technique to create two new
touchscreen phone keyboard layouts based on three design
metrics: minimizing finger travel distance in order to
maximize text entry speed, a new metric to maximize the
quality of spell correction by reducing tap ambiguity, and
maximizing familiarity through a similarity function with
the standard Qwerty layout. The paper describes the
optimization process and resulting layouts for a standard
trapezoid shaped keyboard and a more rectangular layout.
Fitts' law modelling shows a predicted 11% improvement in
entry speed without taking into account the significantly
improved error correction potential and the subsequent
effect on speed. In initial user tests typing speed dropped
from approx. 21 wpm with Qwerty to 13 wpm (64%) on
first use of our layout but recovered to 18 wpm (85%)
within four short trial sessions, and was still improving.
NASA TLX forms showed no significant difference on load
between Qwerty and our new layout use in the fourth
session. Together we believe this shows the new layouts are
faster and can be quickly adopted by users.

Author Keywords

Touch-screen; keyboard design; keyboard optimization

ACM Classification Keywords

H.5.2 User Interfaces: Input devices and strategies

INTRODUCTION

Text entry on mobile phones has always been a
compromise between the space allocated to text entry and
the size of the device. With finger-controlled touch screens
becoming dominant in the late 00’s this problem was
exaggerated by the lack of precision when using relatively
large blunt fingertips to tap small on-screen buttons and the
lack of tactile feedback from touch screens (e.g. [13]). This
combination led to higher error rates on touch screen

phones than on physical keyboards [1] and many users
using landscape mode to gain larger keyboards at the
expense of application display space.

The Qwerty layout has been adopted almost universally on
laptops and desktops despite the design constraints being
far removed from the early physical typewriters that
inspired the layout. Alternatives such as the Dvorak
Simplified Keyboard have not been successful for many
reasons [5], but largely because of the high initial learning
curve when moving from Qwerty to a faster but alien
layout. While there have been several faster optimized
keyboard layouts for touch screens (e.g. The Opti [24],
Metropolis [31] and matrix [20] keyboards), these suffer the
same alienation problem as the Dvorak layout. The Qwerty
keyboard has, thus, dominated on touch screen phones as
pick-up-and-use usability issues have prevented the
adoption of more optimal keyboards.

Bi, Smith and Zhai [2] introduced a novel approach to
keyboard optimization to attempt to overcome the initial
hostility of users to alternative layouts. They allowed the
keys of a Qwerty layout to shuffle by at most one position
from their original location to achieve a quasi-optimized

Qwerty variant. This layout had typing speed performance
between the original Qwerty layout and a fully-optimized
layout while not being alien as keys were roughly where the
user would expect them to be. Touch screens and finger
interaction users normally focus on the keyboard area
during text entry, thus moving keys slightly is less of a
problem than one might expect from desktop/laptop
physical keyboard use.

With modern powerful touch screen phones has come
increasingly powerful error correction. Error correction

Figure 1: Triple optimized rectangular keyboard

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Mark
Typewritten Text
M. D. Dunlop and J. Levine. "Multidimensional Pareto optimization of touchscreen keyboards for speed, familiarity and improved spell checking." Proceedings of CHI 2012. ACM Press. May 2012.
http://dl.acm.org/citation.cfm?doid=2207676.2208659

methods attempt to correct both users’ spelling mistakes
and their typing errors – most commonly hitting
neighbouring keys to the intended ones (e.g. [18]). Spell
checking is made considerably harder when correcting
typed words that are, themselves valid even if the context is
wrong (e.g. [15]). As an example, the Qwerty layout has the
I and O keys as neighbours, thus in/on, if/of, for/fir, hot/hit
etc. are all only one key slip from each other. With smaller
touch-screen phones this can be a very short physical
distance, e.g. on an HTC Hero, key centres are under
4.5 mm apart. The arrangement of the characters on the
keyboard can improve the performance of an error
correction algorithm by, for a given language, reducing the
likelihood of near-misses resulting in valid words. While it
has been shown that the layout of ambiguous keyboards, for
example the traditional phone 12-key pad, can considerably
affect entry performance [10], we believe this paper
presents the first work to adjust the layout of an
unambiguous keyboard for spell correction.

In the remainder of this paper we present a triple-
optimization process using Pareto front optimization that
attempts to optimize for (a) speed of text entry, (b) error
correction tap interpretation clarity and (c) familiarity to the
traditional Qwerty layout. Initially we present the three
metrics in detail then their combination through Pareto front
optimization. We also present keyboard layouts generated
by this process for the traditional key layout and for a
slightly squarer layout that increases key sizes (figure 1).
Finally, we present results from Fitts’ law analysis and an
initial study into pick-up-and-use usability of our optimized
layout. Throughout the paper we will focus on portrait
mode text entry – the normal style of interaction with a
touch-screen phone and the larger challenge for text entry.

OPTIMISATION METRICS

Finger distance metric

The time taken to type a letter on the keyboard is dependent
on two factors: how long it takes the user to move his/her
finger to a position above the key and how long it takes to
tap the key. Fitts’ law [9] has been used extensively to
predict the time taken by users to select spatial targets. For
design, Fitts’ law implies that the nearer and bigger a target
is the quicker it is to tap. Fitts’ law has been used to model
text entry on, for example, traditional phone keypads (e.g.
[27]) and stylus based keyboards (e.g. [25]) in attempts to

both predict likely expert performance rates and to design
faster keyboard layouts. Fitts’ law calculates the time for a
single key tap as:

 � � 	� � � log
 ��

 � 1� (1)

where D is the distance to the target key from the starting
position and W is the width of the target key (the constants
a and b are dependent on the physical characteristics of the
keyboard and need to be determined empirically).

Here we constrain the optimization process in two ways:

• We fix the keyboard layout at the start of the optimization
procedure: we restrict ourselves to different letter-to-key
assignments and not the more general keyboard layout
problem of adjusting the button sizes and positions;

• We model single finger text entry: most users of touch-
screen phones use the index finger of their dominant hand
as the pointer – particularly for small keys [1].

Given these constraints we can simplify from Fitts' law by
only modelling the distance that the user's finger has to
move to enter text. For comparing two keyboards this is a
faster and simpler calculation that is as effective at stating if
one keyboard is faster than the other, but without giving full
predictions of typing speed. In the optimization process, all
keys were modelled as the same size bar the space key
which, for simplicity, we modelled as three standard sized
keys beside each other on the bottom row – distances were
measured to the nearest of the keys (a similar approach to
[24] but with a shorter spacebar typical of mobiles).

We built a bigram weighting model of English by using the
same national newspaper corpus of English text as in our
previous studies [7] (with 77 317 unique words and a total
of 5 171 840 occurrences). While the corpus is journalistic
in nature, it has been argued that the source of the corpus is
not critical to keyboard optimization [30] and our bigrams
are similar to previous published ones (e.g. [28]). Our
analysis calculated an occurrence count for each two-letter
bigram as used in the corpus1. To include movement to and
from the space key we also included space to give 27*27
possible letter combinations from the 26 letter alphabet.
The most common letter pair was E_ (where _ represents
space) with 981 920 occurrences in our collection. The
probability of any key sequence being E_ is thus 0.033. The
top key combination probabilities2 are E_=0.033, _T=0.026,
S_=0.022, TH=0.021, HE=0.020, _A=0.019. The lowest
non-zero pairing was ZX=0.000 (1 occurrence).

We calculated the weighted average finger distance by
summing the product of the Euclidian distance between
letters pairs and their relative probability from the corpus:

 ����� �	 〈∑ ��,� 	. ������ !"#� , #�$∀�,�∈' 〉

1 We adjusted the text to include US and UK variants of common words
2 Full list at http://personal.cis.strath.ac.uk/~mdd/research/chi2012/

Figure 2: Bi, Smith and Zhai’s Quasi-Qwerty layout

where α is the alphabet in use (here a…z plus space), pi,j is
the probability of the transition from letter i to j in the
corpus, ki is the key for letter i, distance is the Euclidian
distance between the keys’ centres.

To evenly balance the multiple criteria optimization process
used later in this paper, it is helpful if the metrics have
roughly equal ranges of values. We normalized the scores
for finger distance to the range of approximately 0…1,
where 1 represents the best keyboard found and 0 the worst.
We initially derived a fast keyboard iteratively with several
short runs of the optimizer. The normalised score was given
as Mdist = Mcalc / (1.1 Mfast) where 1.1 was used to allow for
better solutions in the final run. For reference the standard
Qwerty layout scored 0.395 while Bi, Smith and Zhai’s
quasi-Qwerty keyboard scored 0.643 – confirming that their
quasi-optimization process resulted in considerably less
distance for a single finger to move on average.

We discuss the triple-optimized keyboards and the Pareto
process in full below. However, running our Pareto
optimization process resulted in over 24 000 keyboards on
the final “surface”. Of these, the highest scored keyboard
for finger distance metric on a standard iPhone™ style
layout has a distance weight of 0.908 (figure 3). Note that
the top four most common bigrams (E_, _T, S_ and TH) are
neighbours with others being near neighbours.

Figure 3: Fastest iPhone layout keyboard3

The Pareto optimization process is designed to find best
solutions along the Pareto front, as such it is not good at
finding bad solutions as poorer ones are discarded in favour
of all-round better ones. However, it is worth contrasting
the best solution found with the worst recorded at the end of
the search. The poorest performing keyboard on the front
for finger travel distance had a weight of 0.256 (figure 4).
Tapping out a common phrase with these two keyboards
casually confirms that the finger moves considerably less
with the best rather than the worst keyboard.

Figure 5 compares the finger travel metric for our fastest
keyboard (Fig. 3) with the standard Qwerty and Quasi-
Qwerty keyboards (Fig. 2).

™ iPhone is a trademark of Apple Inc.
3 Here we refer to iPhone-layout as a standard Qwerty key layout with 10
keys on top row, 9 middle and 7 bottom with the same tall key aspect-ratio
as portrait iPhones.

Tap interpretation clarity metric (Neighbour Ambiguity)

Traditionally text entry methods can be categorized as
unambiguous, where each key unambiguously maps to a
character (e.g. laptop Qwerty keyboards), or ambiguous,
where multiple characters are mapped to each key (e.g. the
traditional 12-key phone pad). With an ambiguous
keyboard the most common method of automatic
disambiguation is to use a large dictionary (e.g. T9 [11] and
[7]). Dictionary disambiguation offers the most common
word in the language when a user types a key sequence, e.g.
on a 12-key phone hello will be offered for 43556 as the
most likely word given the keys GHI DEF JKL JKL MNO.
Overall this works surprising well, with success rates
estimated at around 95% ([10]). However, it does not cope
with key combinations where two or more words are widely
used, e.g. home/good and he/if are common examples that
share the same keystrokes on a traditional phone. More
complex approaches to disambiguation, e.g. [8, 12],
attempted to solve this using more contextual knowledge.
Alternatively, Gong and Tarasewich [10] investigated the
best layout of miniature keypads to reduce the ambiguity of
the keyboard layout itself by separating combinations that
lead to multiple popular words. The best solution, of course,
is a combination of both: a powerful contextual engine with
an optimized layout to reduce the effort required by the
context engine.

Modern powerful smart-phones and laptop/desktop spell
correctors have blurred the distinction between ambiguous
and unambiguous keyboards – they typically give users the
impression of an unambiguous Qwerty layout but use
increasingly complex automatic error correction algorithms

Figure 4: Slowest keyboard on final Pareto front

Figure 5: Finger travel distance metric comparison

to soften the solidity of the one-char-per-key rule (e.g. [4,
16, 18]). For example, typing typung in most desktop word
processors and most touch phones will result in the word
typing being inserted even though the user tapped the
unambiguous u as the fourth key. Error correction has been
shown to be particularly important on touch screens with
small keys [18] and is seen as one of the challenges for
intelligent text entry [17]. Furthermore, Allen et al. showed
that, while expert touch-screen users and expert physical-
keyboard users achieved roughly the same speed, both
groups had higher error rates on iPhones than on mini-
physical keyboard phones [1]. This implies that, although
automatic error correction has come far there are still
considerable problems with error correction on touch-
screen mobiles.

In developing our keyboard layout one factor we wished to
take into account was interpretation clarity for taps. We
created a table of bad-bigrams, or badgrams for short, of
keys that were ambiguous given their neighbours. This
table is similar to the table used above for keyboard
distance but is based on the likelihood of a one letter
substitution resulting in a valid word, e.g. mistyping for as
fir results in a badgram for OI on Qwerty keyboards. We
scanned all same-length words in our corpus and assigned a
frequency to each badgram found based on the more
common of the two words. Summed over all words on the
corpus, this resulted in AE being the most frequent badgram
with 1 227 442 weighted occurrences (i.e. having A and E
as neighbours leads to many single key tap errors giving
valid words: end instead of and, ha instead of he, been
instead of bean etc.). As with the bigram table, we
converted to probabilities by dividing the score by the total
score for all combinations to give a top badgrams2 of
AE=0.017, AO=0.017, EO=0.015, ST=0.015, EI=0.013,
IO=0.012 and AI=0.012.

The aim of the tap clarity optimizer was to reduce the total
ambiguity for keys that were adjacent in the layout, which
should maximize the effectiveness of a spell corrector to
correctly interpret taps. This metric is defined as:

 ��)*_,-).��/ �	 〈∑ �0	neighbours9::	p9:	
!=�!: 0∀�,�∈' 〉

where α is the alphabet in use (here a…z), Pi,j is the
badgram probability for letters i,j and neighboursij is true if
the keys for i and j are adjacent (vertically or horizontally)
on the selected keyboard, otherwise false. For Pareto
optimization, this score is again normalized to
approximately the range 0…1, where 1 represents the best
keyboard and 0 the worst. For reference the standard
Qwerty layout scored 0.559 while quasi-Qwerty scored
0.459, showing that this layout sacrificed some spell-
checking clarity in making their speed gain.

Again using a standard iPhone-layout, the best found
keyboard for neighbour ambiguity had a score of 0.997
(figure 6). This keyboard should be optimal for a spell

checker to correctly interpret taps as single letter tap errors
will most likely not result in a valid word (or at least not a
common valid word). The most common badgrams are
clearly separated (e.g. AE, AO, EO, ST). Figure 7 compares
the interpretation clarity metric for this keyboard with the
standard Qwerty and Quasi-Qwerty keyboards.

Figure 6: Best keyboard for spelling correction

Figure 7: Comparison of Interpretation Clarity Metric

Familiarity to Qwerty metric

There is a long history of text entry research into alternative
keyboards for touch screens. While achieving very
promising expert user performance predictions, these
layouts have had very low adoption rates as users tend to
favour the familiar Qwerty layout. Bi, Smith and Zhai [2]
proposal was a middle ground: they allowed keys to be
moved around to optimize a layout but restricted the
distance to 1 key away from the home key. We have
followed their general approach but softened this rule by
imposed a strong weighting against keys which move far
from their Qwerty layout position. The effect being to allow
keys more freedom but punish a keyboard design where
many keys move from the Qwerty home location and
severely punish keyboards where individual keys have
moved far from their home location. The aim is that when
users are typing with a finger on a touch screen, the keys
they are aiming for will most often be in the proximity of
where they expect it to be given their Qwerty experience
but at the same time to give freedom for stronger
optimization of other metrics.

Similarity between keyboards can be measured by scoring
the distance of all keys to their home keys on a same-sized
standard Qwerty keyboard. However, to increase familiarity

of the keyboard and “punish” keys that move far from their
home we experimented with different familiarity metrics
based on squaring, cubing and exponential function of the
Euclidean distance for each key. With experimentation,
squaring the distance gave the best balance between
allowing movement and keeping keys near their home
locations. This function gives a distance score of 0 for a key
that is in the same location as on the Qwerty layout, 1 for a
key that moves to its neighbour (horizontally and a key's
aspect ratio vertically, e.g. 1.7 for an iPhone), and 9 for a
letter that moves three keys horizontally (given the standard
layout is 10 keys wide this is a high value). However, as
this metric averages the score over all keys, unlike Bi et
al.’s quasi-Qwerty, it does give flexibility for individual
keys to move a few keys if many of the other keys stay very
close to their Qwerty location.

We calculated the familiarity metric as:

 �?)@�-�).��/ �	 〈∑ ������ !A#� , B�C
∀�∈' 〉

where α is the alphabet in use (a…z), ki is the location of the
centre of the key on the given keyboard, qi is its location on
a same sized standard Qwerty layout keyboard, and
distance is the Euclidian distance between these points.
Again the score is finally normalized to the range 0…1 for
Pareto optimization, where 1 represents the best keyboard
found and 0 the worst. For reference the standard Qwerty
layout scores 1.0 while quasi-Qwerty scores 0.850.

TRIPLE-METRIC OPTIMIZATION PROCESS

In designing artefacts, we often have more than one
criterion that we use to evaluate the final product. For
example, a motor vehicle can be judged by its fuel
efficiency, its ease of handling, the comfort of the ride and
so on. Often these criteria conflict: a hard suspension may
help with handling but be detrimental to passenger comfort.
Multi-objective optimization algorithms [29] seek to create
solutions to such problems by considering the optimization
process across these potentially conflicting objectives. A
simple way of addressing such problems is to create a
single combined objective function, where each individual
objective is a component in a weighted sum. However, the
difficulty of coming up with an appropriate weighting for
each part of the sum and the fact that this method only
returns a single solution means that this is not generally the
method of choice [6]. Instead, what is needed is a method
which can return multiple solutions where each solution has
something about it which makes it better than other
solutions according to at least one of the criteria. This leads
to a need to explore solutions that are Pareto optimal. If
there are 3 criteria to optimize, as in this study, and we have
found a Pareto optimal artefact which has the evaluation
[x,y,z], then this means there is no point in the solution set
for which all criteria are equal or better. In other words, if
we want to improve the score for one of the criteria along
the Pareto front, we have to compromise by lowering the
score for at least one of the other metrics. A point which is
not Pareto optimal is said to be dominated - there is a Pareto

optimal solution which is better than it in at least one
dimension and no worse in the others.

The search algorithm in this work is a variant of local
neighbourhood search [14] adapted for use in finding a
Pareto optimal set using the above three metrics: finger
travel distance, spelling interpretation clarity and Qwerty
familiarity. The process starts with a randomly generated
set of points that are optimized locally for different
weightings of the three metrics (typically 40-50 starter
keyboards are created). This initial set of keyboards is taken
through 2000 iterations of improvement in which local
moves are made that may, or may not, improve the solution.
In each iteration each keyboard in the set has a small
number of keys swapped (1 key is swapped then extra keys
are swapped with a probability of 25% of continuing after
each swap4); if the new keyboard is better on any metric
then it is added to the set; if it is also at least as good on
ALL metrics than an existing solution then it dominates the
existing one, which is discarded. This leads to a Pareto

front – a set of dominant solutions on a 3D surface.

The final Pareto front for optimizing the standard Qwerty
keyboard is shown in Figure 8. This shows the trade-off
between the different measures with high scores being
achievable only at the expense of others. It also,
reassuringly, shows a convex surface showing that
compromise solutions are not, overall, poorer than single
optimized solutions. This front is composed of over 24 000
individual keyboards (out of the 46.7 million candidate
keyboards considered in the 2000 iteration run).

PROPOSED IMPROVED KEYBOARD LAYOUTS

The final compromise keyboard proposal is taken to be the
keyboard that achieves best on average – the centre of the
Pareto surface (i.e. keyboard nearest the 45° line through
the space). All metrics were scaled in advance so the best

4 This ensures that the Pareto curve optimization is, in a sense, complete as
all combinations are reachable from any given initial keyboard layout.

Figure 8: Pareto Front Shape

(individual score) lies around 1 and the worst around 0 –
ensuring the 45° point is a fair balance of the three metrics.
This was achieved through iterative running of the Pareto
optimization process. A small imbalance at this stage would
result in us picking a different near-central solution.
However, the solution space around the centre 45° selected
keyboard was stable with only small changes being seen on
solutions near the central one and a fairly smooth front
shape near the centre (see Fig. 8). While varying per starter
keyboard, most Pareto optimizations didn’t change the
suggested keyboard for the last 500+ iterations of 2000
optimization iterations, giving further confidence in
stability of the solutions discussed below.

A standard Qwerty layout triple-optimized keyboard:
The Sath-Trapezoidal keyboard

Using iPhone key shape (a key aspect ratio of 1.7) and a
standard Qwerty layout as a starter keyboard, our triple-
optimization process created the keyboard shown in Figure
9 with a score of approx. 0.69 for each metric. We will refer
to this as the Sath-trapezoidal keyboard.

Figure 9: Triple optimized standard iPhone style keyboard

Table 1 summarizes the metric scores for this keyboard
compared to the standard Qwerty and the Quasi-Qwerty.
Overall our alternative layout achieves a considerably better
finger travel distance than Qwerty and noticeably better
than quasi-Qwerty. It also achieves considerably better
interpretation clarity than both, but at a reduction in
familiarity.

Finger

Distance
Interpretation

Clarity
Qwerty

Familiarity
Average

score

Sath 0.694 0.695 0.694 0.694

Qwerty 0.395 0.559 1.000 0.651

Quasi-
Qwerty

0.643 0.459 0.829 0.644

Table 1: Standard keyboard metrics

Given the balance of metrics and Pareto optimization
process, we claim that the Sath keyboard presented here
provides the best compromise between typing speed, tap
interpretation for spell correction and familiarity with
Qwerty to support pickup-and-use usability.

More rectangular layout: Sath-Rectangular

In the discussion so far we have focused on an "iPhone like
Qwerty keyboard layout". This layout is a standard Qwerty

layout from typewriter and computer use but with a higher
aspect ratio – approximately 1.7 for the iPhone, when
measured to include surrounding grey-space, and a slightly
taller 1.75 for an HTC Hero (a relatively small Android
phone). The standard Qwerty layout has a trapezoidal
shape, if drawn symmetrically, with 10 keys on the top row,
9 in the middle and only 7 on the bottom row (a 10-9-7
format). Full size keyboards pad the lower rows with non-
alphabetic and functional keys but there are often fewer
such keys on mobiles with additional characters being
entered through a secondary mode. Above we presented our
results for optimization using this standard trapezoidal
layout and aspect ratio.

MacKenzie states that when measuring Fitts’ law distance,
the size of a key should be the minimum of height and
width [22]. As such these tall, thin keys have effectively the
same Fitts’ law functions as if they were just as high as
their width but with further distances between the keys
vertically. As discussed above, the small keys also tend to
lead to many typing errors as the key centres are very close
together – for example keys of the size found on portrait
mode iPhones have been shown to be significantly slower
and more error prone than larger keys [18, 19]. As such we
attempted to reduce the aspect ratio of keys to make them
squarer, while maintaining their height and familiarity with
the original Qwerty layout. We investigated Pareto
optimization starting with a more rectangular 9-9-8 profile
keyboard that results in a less-tall aspect ratio of
approximately 1.5 for the same screen area.

Here we started our optimization process with a Qwerty
layout in which the Q and A were shifted one row down to
give the starter layout WERTYUIOP QSDFGHJKL

AZXCVBNM which has a 9-9-8 profile and a familiarity
score of 0.951. Using this keyboard layout and a 1.5 aspect
ratio gave an improvement over the standard 10-9-7 layout
with the keyboard shown in figure 10 rating approx. 0.75
for each metric.

While a relatively small numerical improvement, the
buttons in this layout also have a larger hit area which
should improve typing speed and reduce miss-strikes
further improving spelling performance. Using the same
area as an iPhone keyboard, this layout increases the key
width from 4.6 to 5.2 mm – a considerable improvement of
11% in “target size” used in Fitts' law calculations. As key

Figure 10: Optimized more rectangular keyboard layout

sizes on portrait touch-screen phones are well below
research recommendations for touch screen key sizes (e.g.
[26]) and have been shown to be considerably poorer than
the larger keys used in landscape mode [19], this small
difference may have a very significant impact on speed.

 Finger
Distance

Neighbour
Ambiguity

Qwerty
Familiarity

Average
score

Sath
Trapz

0.694 0.695 0.694 0.694

Sath
Rect

0.751 0.751 0.751 0.751

Table 2: Comparing standard and rectangular layouts

FITTS' LAW SPEED CALCULATIONS

The finger distance metric used above is suitable for
optimization a fixed format keyboard but cannot be used to
predict text entry speed. Fitts' law [9] (Equation 1) can be
used to estimate the potential speed of a keyboard layout for
error-free expert text entry (e.g. [28]). As such it is worth
discussing here as it gives a more concrete comparison to
other keyboards through use of words-per-minute estimates.
Equation 2 shows the Fitts' law calculation for weighted
average time to press a key. The time to press a key is
logarithmically proportional to the distance to that key
while logarithmically inversely proportional to width of the
target key (big keys close to the starting point are fastest
targets to hit). The constants a and b have to be derived
experimentally for a given device, for comparison with
work of others we used the figures a=0.083 and b=0.127 [2,
32] in our studies despite their being derived for stylus-
based keyboarding. To calculate the average time per
keystroke, a weighted average is used based on the
probability of bigrams in the language, so that key
combinations that are struck more commonly (e.g. moving
from e to space) have a proportionally higher impact on the
average than rarely used key combinations (e.g. moving
from z to x). The same bigram data as used for the finger
travel optimizations were used here but these were
compared with the table used in [25] and found to result in
very small differences in predicted times.

 �D � 	∑ ∑ ���	�∈'�∈' �� � � log
 �
�EF

� � 1�� (2)	

For the standard Qwerty keyboard (10-9-7) we estimated an
average key tap time of 0.360 s given an aspect ratio of 1.7
and the constants a and b from above. This is equivalent to
a predicted expert typing speed of 33.3 words-per-minute
(wpm). Bi, Smith and Zhai used the same Fitts' constants to
estimate 181.2 characters-per-minute, or 36.2 wpm, for a
standard Qwerty keyboard – slightly faster than our
estimate. This is predominantly due to the aspect ratio of
keys – Bi, Smith and Zhai followed MacKenzie's early lead
in modelling touch screen entry with square keys similar to
laptop keys and not the highly stretched keys now used on

touch screen phones. While the true values of a and b for
finger tapping on keys below 5 mm requires to be
calculated experimentally, our estimate is, we believe,
unlikely to change the ordering of keyboards but will affect
predicted speeds as the values of a and b used are based on
studies with approximately 10 mm wide keys.

Figure 11 shows the words-per-minute estimates for our
two keyboards compared with the traditional Qwerty and
quasi-Qwerty (both using 1.7 aspect ratios as this matches
the keyboard area of the iPhone) and, for comparison, the
fastest single optimized keyboard layout we identified. This
shows a predicted improvement of 10% and 11%
respectively for our trapezoidal and rectangular keyboard
layouts over standard Qwerty and smaller 3% and 4%
predicted improvement over the quasi-Qwerty keyboard.

Figure 11: Comparison of keyboard typing speeds

However, as discussed above this does not fully take into
account the increased key size with the rectangular
keyboard (only the smaller vertical aspect ratio) nor does it
take into account the improvement in error correction likely
in practice given the larger keys. Fig. 12 shows that the two
optimized keyboards presented here also have considerably
better tap interpretation clarity that should lead to faster text
entry as users will learn that they need to be less accurate
on typing and still achieve corrected-error-free entry.

PAPER PROTOTYPE

To investigate the initial pick-up-and-use aspects of the new
keyboard we created paper prototypes of the new keyboard
layout using a slightly earlier version of our optimized
rectangular keyboard. These paper prototypes were correct
in size and aspect ratio for an HTC Desire and were trialled
with 12 students. These users were encouragingly positive
and stated that they would use the keyboard when available.
The students stated that they generally found keys quickly
in practice typing (though the A was commented on as
being moved quite far). One user commented that even for
two-thumbed use it felt easier as common keys were more
central to the keyboard, an unintentional consequence of
finger distance metric and the central space key.

INITIAL USER STUDIES

Encouraged by the paper prototype results we developed an
Android implementation and ran a four day user trial with
10 regular touchscreen phones users (8 male, 2 female,
mostly between 18 and 35 years old with one 36+ user) to
measure their performance with rectangular-Sath over the
initial learning period. Sessions lasted under 45 minutes per
day in a quiet environment with subjects seated in a
comfortable chair without the use of a desk.

Procedure & Equipment

Users came at the same time for four days and were asked
to enter two initial warm up phrases then 17 phrases
selected randomly from MacKenzie and Soukoreff [23]
standard set. There were 4 task sets (68 phrases total),
randomly allocated to each participant (balanced on first
day with unused phrase sets per person randomly allocated
on days 2-4). To assess Qwerty performance users entered
some phrases using the standard Qwerty layout (first part of
day 1 and second part of day 2), all other phrases were
entered using rectangular-Sath (figure 1).

Phrases were presented in the web browser of an HTC
Desire S and the users typed answers into a text box on the
same web page before hitting “next” to move on to the next
phrase. Timing information was recorded using JavaScript
based on the time from first to last key press. In line with
other studies, users were asked to type as quickly as
possible but accurately and were allowed to use backspace
to correct mistakes they spotted “immediately” but were
told not to correct mistakes they noticed later and were
prevented from using editing controls except backspace.

The implementation used a basic spell checking algorithm
with the standard Android suggestion bar to show suggested
words and highlight auto-corrections. A typed word was
auto-corrected if it was not in the dictionary but a same-
length dictionary word existed that was very close to the
tapped locations (i.e. one tapped character was out by one
key). We restricted to same length corrections to target
miss-taps and not wider omitted taps, double taps or true
spelling errors. The Qwerty and Sath keyboards used the
same underlying code and spell corrector.

 Speed results

Our users averaged 21.3 wpm (stdev 7.3) using Qwerty.
Their performance dropped to 13.4wpm (6.1) when using
Sath for the first time but recovered to 17.7 wpm (5.2) by
the fourth day of the test (figure 13 shows the daily results –
Sath speed based on Sath phrases per day with Qwerty
based on all Qwerty phrases as there was no significant
difference in Qwerty speed between day 1 and 2).

We also analysed speed as a percentage of the users
individual Qwerty performance. This analysis shows that
users dropped to 64% of their individual Qwerty speed for
the first block of phrases using Sath but that this recovered
to 85% on the fourth day (fig 14). For comparison average
Quasi-Qwerty performance was approx. 65% of average
Qwerty in word-by-word tests, while their freely optimised
keyboard achieved only 45% in initial use.

Figure 12: Comparison of keyboard interpretation clarity

Figure 13: Words per minute speeds

Figure 14: Percentage speed compared to Qwerty

Figure 15: NASA TLX Scores

Other Results

Uncorrected error rates were low throughout the study.
Overall 7.9% of phrases contained a single erroneous word,
with none having multiple errors. With an average phrase
length of 5.6 standard words (=5 chars as used in wpm
calculations), this equates to an error once per 71 words. On
Qwerty tests, 5.3% of phrases were erroneous with a higher
8.8% of Sath phrases being erroneous (with no clear pattern
over the four days). Errors from key positioning changes
should result in same length typing errors. For Qwerty we
found 3% (5 of 170) of phrases were correct-length but
erroneous compared with 4% (19 of 510) of Sath phrases.
All Qwerty errors were independently categorised as typos
while 4 other errors were recorded with Sath – if these were
excluded then Sath would have the same typo error rate as
Qwerty in this initial use study (other errors were
transposition of letters, spelling errors and typing the
wrong, but semantically sensible, word).

NASA TLX forms were completed after each session (each
block on days 1 and 2). These showed significantly higher
workload for mental (p < 0.001, t-test, n = 10), physical
(p < 0.001), effort (p < 0.001), and frustration (p < 0.05) for
the new keyboard on the first day of use. However, there
were no significant differences between first day Qwerty
and fourth day Sath indicating that users had reduced to
their Qwerty level of effort (figure 15).

At the end of the study, users were asked “if it was proven
faster and less prone to spelling errors”, would they adopt
this keyboard. Eight of the ten users replied positively on a
7-point scale with a mean response of +1.6 (see fig. 16).

Definitely
not

Definitely
yes

Figure 16: Adoption preference

Several users commented that it would take some time to
get up to full speed on the new layout while a couple
commented that they had already got used to the new
layout. A couple of comments showed some users
understood the design, e.g. “I liked how letters which are
close to each other in a word were close on the keyboard”.

Study Discussion

We observed an initial performance of 64% which, after
only four short sessions, had recovered to 85% of their own
Qwerty performance with users typing at nearly 18 wpm in
their fourth session. While not yet outperforming Qwerty
they were typing at a good speed and showed good signs of
continual improvement. Given the growth shown on figures
13/14 we are confident that this study shows (a) initial use
is not too painful and (b) users would most likely exceed
Qwerty speed within a short period of more intensive use.

FUTURE WORK

We are currently improving the Android app to commercial
quality to allow non-study usage. This will enable
longitudinal trials after which we should be able to better
estimate practical expert text entry speed. The constants a

and b in our Fitts’s law modelling are based on the best
available estimates – these studies will also allow us to
accurately model these for modern touch screen phones.

The Pareto curve provides a 3D surface on which all points
are, in some sense, optimal given different bias on the
underlying metrics. As users become familiar with the
revised keyboards shown in this paper it may be possible to
dynamically move forward along the front towards the
origin of familiarity by building on the user's new
familiarity with our keyboard. Longer trials are planned to
see if users can handle a keyboard design that changes
dynamically over time but in a "familiar way". We will also
investigate how this impacts on their use of the standard
Qwerty, for example when using a friend's keyboard or
swapping to hard keyboard phone or laptop.

We picked three metrics of speed, interpretation clarity and
Qwerty-familiarity as we feel any optimization should take
at least these three aspects into account. Other metrics could
be included as Pareto optimization is open to any number of
dimensions. For example, the language models underlying
our optimization are relatively simple and do not require
particularly detailed corpora so it would be worth exploring
optimized keyboards for other languages (another of
Kristensson’s challenges [17]) or even multi-lingual
optimization (c.f. [3]). We are also working on optimizing
for two thumbs using more detailed timing models [21].

CONCLUSION

This paper has introduced a new approach to keyboard
optimization. We use Pareto Front optimization to optimize
on three metrics in parallel: finger travel distance (speed of
entry), tap interpretation clarity for spell correction (itself a
new metric) and familiarity with standard Qwerty. Using
our metrics we proposed two new Sath-keyboards that give
a considerable improvement in finger travel distance by
rearranging the keys on the standard layout keyboard and
by also making the key layout more rectangular. In addition
to the predicted improvement in speed we saw a
considerable reduction in neighbour ambiguity that should
lead to improved tap interpretation and spell correction.
Fitts' law modelling confirmed a conservative improvement
of 10-11% in terms of words-per-minute. When compared
with Bi, Smith and Zhai's quasi-optimized keyboard [2] we
show a small improvement in speed with a considerable
improvement in the tap interpretation metric (but at a cost
in familiarity). In user trials, users performed at 64% of
their Qwerty speed on first use but this improved to 85%
within four short trial sessions and showed strong signs of
continued improvement. Moreover, the combined effect of
less distance in typing and higher tap interpretation clarity
should, in medium term use, see cumulative gains as users
learn they can be less accurate with taps and achieve the
same quality input. User studies are planned to accurately
model finger-based entry on touch screens of these sizes
and to study the impact of our improved layout and spell
correction ability on input speeds over long term studies.

ACKNOWLEDGEMENTS

Our thanks to our pre-test and main-test subjects, Tony
Fowlie who developed a preliminary keyboard as part of his
honours project, Scott MacKenzie for clarifications on
bigram tables and to our anonymous reviewers.

REFERENCES

1. Allen, J. M., McFarlin, L. A. and Green, T. An In-
Depth Look into the Text Entry User Experience on the
iPhone. In Proc. 52nd HFES (2008), 508-512.

2. Bi, X., Smith, B. A. and Zhai, S. Quasi-qwerty soft
keyboard optimization. In Proc. CHI 2010, ACM Press
(2010), 283-286.

3. Bi, X., Smith, B. A. and Zhai, S. Multilingual
Touchscreen Keyboard Design and Optimization.
Human-Computer Interaction (to appear 2011).

4. Clawson, J., Lyons, K., Rudnick, A., Iannucci, R. A. J.
and Starner, T. Automatic whiteout++: correcting mini-
QWERTY typing errors using keypress timing. In
Proc. CHI 2008, ACM Press (2008), 573-582.

5. David, P. A. Clio and the Economics of QWERTY.
American Economic Review, 75, 2 (1985), 332-337.

6. Deb, K. Multi-Objective Optimization using

Evolutionary Algorithms. Wiley, 2002.
7. Dunlop, M. D. and Crossan, A. Predictive text entry

methods for mobile phones. Personal Technologies, 4,
2 (2000).

8. Dunlop, M. D., Glen, A., Motaparti, S. and Patel, S.
AdapTex: contextually adaptive text entry for mobiles.
In Proc. MobileHCI '06, ACM Press (2006).

9. Fitts, P. M. The information capacity of the human
motor system in controlling the amplitude of
movement. J. Experimental Psychology, 47, 6 (1954),
381-391.

10. Gong, J. and Tarasewich, P. Alphabetically constrained
keypad designs for text entry on mobile devices. In
Proc. CHI '05, ACM Press (2005), 211-220.

11. Grover, D. L., King, M. T. and Kushler, C. A. Reduced

keyboard disambiguating computer Tegic
Communications, Inc., Patent US5818437 (1998).

12. Hasselgren, J., Montnemery, E., Nugues, P. and
Svensson, M. HMS: A Predictive Text Entry Method
Using Bigrams. In Proc. Workshop on Language

Modeling for Text Entry Methods at EACL (2003), 43-
49.

13. Hoggan, E., Brewster, S. A. and Johnston, J.
Investigating the effectiveness of tactile feedback for
mobile touchscreens. In Proc. CHI ’08, ACM Press
(2008), 1573-1582.

14. Hoos, H. H. and Stutzle, T. Stochastic Local Search:

Foundations and Applications. Morgan Kaufmann,
2005.

15. Jones, M. P. and Martin, J. H. Contextual spelling
correction using latent semantic analysis. In Proc.

ANLP 1997, Association for Computational Linguistics
(1997), 166-173.

16. Kristensson, P.-O. and Zhai, S. Relaxing stylus typing
precision by geometric pattern matching. In Proc. IUI

2005, ACM Press (2005), 151-158.
17. Kristensson, P. Five Challenges for Intelligent Text

Entry Methods. AI Magazine, 30, 4 (2009), 85-94.
18. Kwon, S., Lee, D. and Chung, M. K. Effect of key size

and activation area on the performance of a regional
error correction method in a touch-screen QWERTY
keyboard. International Journal of Industrial

Ergonomics, 39, 5 (2009), 888-893.
19. Lee, S. and Zhai, S. The performance of touch screen

soft buttons. In Proc. CHI 2009, ACM Press (2009),
309-318.

20. Lewis, J. R., Kennedy, P. J. and LaLomia, M. J.
Development of a Digram-Based Typing Key Layout
for Single-Finger/Stylus Input. In Proc. HFES (1999).

21. MacKenzie, I. S. and Soukoreff, R. W. A model of
two-thumb text entry. In Proc. Graphics Interface

2002, Canadian Information Processing Society (2002).
22. MacKenzie, I. S. and Soukoreff, R. W. Text entry for

mobile computing: Models and methods, theory and
practice. Human-Computer Interaction, 17 (2002), 147-
198.

23. MacKenzie, I. S. and Soukoreff, R. W. Phrase sets for
evaluating text entry techniques. In Proc. CHI 2003,
ACM Press (2003), 754-755.

24. MacKenzie, I. S. and Zhang, S. X. The design and
evaluation of a high-performance soft keyboard. In
Proc. CHI'99, ACM Press (1999), 25-31.

25. MacKenzie, I. S., Zhang, S. X. and Soukoreff, R. W.
Text entry using soft keyboards. Behaviour &

Information Technology, 18, 4 (1999), 235-244.
26. Parhi, P., Karlson, A. K. and Bederson, B. B. Target

size study for one-handed thumb use on small
touchscreen devices. In Proc. MobileHCI 2006, ACM
Press (2006), 203-210.

27. Silfverberg, M., MacKenzie, I. S. and Korhonen, P.
Predicting text entry speed on mobile phones. In Proc.

CHI'00, ACM Press (2000).
28. Soukoreff, R. W. and MacKenzie, I. S. Theoretical

upper and lower bounds on typing speed using a stylus
and soft keyboard. Behaviour & Information

Technology, 14 (1995), 370-379.
29. Steuer, R. E. Multiple Criteria Optimization: Theory,

Computations, and Application. John Wiley & Sons,
New York, 1986.

30. Zhai, S., Hunter, M. and Smith, B. Performance
Optimization of Virtual Keyboards. Human-Computer

Interaction, 17, 2 (2002), 229-269.
31. Zhai, S., Hunter, M. and Smith, B. A. The metropolis

keyboard - an exploration of quantitative techniques for
virtual keyboard design. In Proc. UIST'00, ACM Press
(2000), 119-128.

32. Zhai, S., Sue, A. and Accot, J. Movement model, hits
distribution and learning in virtual keyboarding. In
Proc. CHI'02, ACM Press (2002), 17-24.

