Run-Time Parallelization of Sequential Database Programs

) N. R. Soparkar!*

Check for

H. V. Jagadish?

panies P. Krzyzanowski®

'Elect. Engin. & Comp. Sci.
University of Michigan
Ann Arbor, MI 48109 USA

Abstract

In order to execute a database program written in sequential
code efficiently on a parallel processor, we develop the use of
transaction concurrency control paradigms to resolve data
dependencies dynamically. The sequential code is divided
into small units for execution, and these units are executed
concurrently as separate “transactions.” Our approach en-
sures that the concurrent execution of the smaller units is
logically equivalent to the original sequential program. We
present an order-preserving concurrency control strategy to
execute concurrently the nested invocations that are gener-
ated by the parallelized execution of the database program.
We present performance figures from a preliminary imple-
mentation to indicate the benefits of our strategy. Finally,
we provide a rough analysis to gauge the overheads associ-
ated with our approach that would impact performance in
a full-fledged implementation.

1 Introduction

Writing correct and efficient parallel database programs, as
compared to sequential ones, is significantly harder. More-
over, there exists a large body of sequential code that could
potentially be parallelized. Indeed, there opportunity_ in
parallelizing sequential code that is not limited to database
programming alone. The typical approach to detect and ex-
ploit inherent parallelism in sequential code is by the use
of a parallelizing compiler. Such compilation statically an-
alyzes the dependencies between portions of the sequential
code. This is relatively straightforward if the database pro-
gramming language is specifically amenable to paralleliza-
tion (e.g., the query language SQL for a relational database).
Such langnages provide limited, though important, types of
parallelism in their sequential code. However, in an object-
oriented database environment, queries may be written in
a general-purpose programming language such as C+4+ or
Smalltalk. Such database programming code is less suitable
for parallelization by a compiler. Examples of such code in-
clude data accesses that involve pointer de-referencing, or ar-

®*Work done at AT&T Bell Labs., Murray Hill.

A. Asthana?

2AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill. NJ 07974 USA

rays that are accessed through indices (i.e., situations where
the memory locations involved in the accesses cannot be as-
certained at compile time). These difficulties encountered
in parallelizing arbitrary sequential code suggest that the
detection of dependencies should be attempted dynamically
at run time {e.g., see [6]).

Similar issues arise in areas such as parallel discrete event
simulation (e.g., [4]), and distributed shared memory sys-
tems (e.g., [7]). In the case of simulations, events are pro-
cessed in order, and the processing of an event may cause
additional events to be enqueued for some later position in
the order. In a parallel system, each processor maintains
such an event queue. Before a processor can process the
current event, it must be ensured that there.will not be a
subsequent notification of an event that should have been
processed earlier. However, if each processor waits for this
assurance, there is limited parallelism. One solution adopted
is to “warp” simulation time: processors make progress op-
timistically, and rollback when required. The parallel execu-
tion approach that we describe in this paper may be viewed
as a generalization of this parallel simulation approach. The
pertinent issues in distributed shared memory systems are
also similar, but are not discussed here.

We use the database transaction management concepts
of concurrency control and recovery to address the issue of
dynamically parallelizing sequential database code. These
concepts can be used to detect, and to maintain, depen-
dencies within a program execution at run time, in a man-
ner similar to the management of concurrent accesses to a
database (e.g., see [3]). The idea is to divide the sequential
code into small units of execution, each of which is treated
like a transaction. These small units are allowed to execute
concurrently provided that their execution is equivalent to
a serial order that conforms to their order of appearance in
the trace of a sequential execution of the original code. In
principle, this allows the extraction of the maximum avail-
able parallelism at run-time — without the need to re-write
code {although the code may need to be re-compiled). The
price paid for the benefit of using run-time analysis is the
cost overhead, in terms of time and processing expended, of
ensuring the serializability of the executions in a specified
order. For this purpose, we devise an relatively inexpensive
concurrency control algorithm. We have implemented this

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to negubhsh, to post on servers or to redistribute to lists, requires specific ’
permission and/or fee.

CIKM '95, Baltimore MD USA

© 1995 ACM 0-89791-812-6/95/11..$3.50 .

algorithm on a main-memory, medium-grain MIMD paral-
lel processor. We present preliminary performance numbers
that exhibit the potential utility of our scheme.

74

http://crossmark.crossref.org/dialog/?doi=10.1145%2F221270.221331&domain=pdf&date_stamp=1995-12-02

T] r

time

Figure 1: Method invocations and executions

2 The Source Code

Whilé the ideas in this paper are applicable to any database
programming language, the particular language we use for
our exposition is C++ (e.g., see [9]). Below, we show how
its object-oriented nature gives rise to a natural transaction
unit, and we discuss how these units are invoked.

2.1 The Small Transaction Unit

The first issue that arises with respect to dividing the source
code into smaller units, each of which is to constitute a trans-
action, is the granularity of this division. The smaller the
size of a unit, the greater is the number of transactions, and
consequently, the potential for parallelism. However, a large
number of transactions also implies that the overhead due
to concurrency control would be high.

The object-oriented nature of the code being written pro-
vides some guidance in the choice for the transaction size.
Each method on an object is likely to be a self-contained
piece of code that operates mainly on data local to the ob-
Ject. Distinct methods, on the other hand, operating on
distinct objects, have a good chance of not having any de-
pendencies. Therefore, initially we choose a method invoca-
tion as our unit of parallel execution (in Section 3 we shall
modify this choice slightly). .We treat each method (i.e.,
public member function) invocation, as a transaction.

In the course of its execution, a method may itself in-
voke other methods. Each of these invoked methods is also
considered to be a distinct (sub)transaction In this manner,
we obtain a nesting within the transaction structure (e.g.,
see [8]). Such a nested transaction has the requirement that
a parent transaction can complete successfully (i.e., com-
mit) only after all of its children have completed similarly.
Subtransactions are allowed to see the effects of the (un-
committed) updates of their parents up to the point of their
invocation, but no updates that may have been performed
after the subtransaction was invoked. This rule applies to
any further levels of nesting as well.

Figure 1 depicts part of a typical nested transaction ex-
ecution. At a point z in the execution, the transaction T}
invokes a (sub)transaction T>. Transactions 7i and T» ex-
ecute concurrently. During the execution of T3, at a point
¥, the (sub)transaction T3 is invoked by 7T>. The important
point to note is that 73 is allowed to see the effects of T} up
to point z, and the effects of 7> up to point y, but not be-
yond. The reason for these views seen by (sub)transaction
T3 becomes clear if an equivalent sequential computation
is considered. Such a computation is obtained by “folding
back” T3 into T3, and T% into T3, and thereby to obtain the
serial execution that is logically equivalent to the concurrent

75

execution that we described. Such an execution would have
Ty executed up to the point z, then T2 up to the point y,
then T3. followed by the portion of T2 after the point y, and
finally. the portion of T} after the point z.

The goal of parallelizing sequential code correctly con-
sists of having all the nested transactions execute in a man-
ner that can be serialized into an order compatible with
the original sequential program. In other words, the trans-
actions at the top-level should be serialized in invocation
order as defined by the program, and invoked subtransac-
tions should be serialized in their invocation order within
each transaction.

2.2 Dependencies

A method invocation in C++ is synchronous (i.e., the in-
voking procedure temporarily blocks after the invocation,
and passes control to the invoked procedure; the invoking
procedure resumes execution only after the invoked proce-
dure completes its execution). A key modification we make
to obtain parallelism is to make these function invocations
asynchronous. That is, an invoking procedure is permitted
to continue execution after having invoked a function (as-
suming that the values returned by the invoked function are
not necessary to continue the execution).

In a sequential program, dependencies among method
invocations can arise in different ways. First, control-flow
in the program could be affected by the value returned by
a previous invocation. Second, there may be explicit data
dependencies in that the returned value of a function may
be used to compute a parameter for a subsequent func-
tion. Third, hidden dependencies may be present due to
pointer de-references, or a dependency on the input data.
While the first two types of dependencies may be detected
at compile-time, the third type may only be noticed at run-
time. We address mainly of the last type of dependencies
(although, the first two are subsumed by our approach).
Our concurrency control technique may be regarded as be-
ing complementary to other available means to parallelize
sequential code since it can be suitably modified for use with
compilation-based techniques for parallelization.

2.3 An Example

The C++ code shown below (which does not include the
variable declarations and class definitions) is designed to
traverse a graph beginning with a set of M start nodes, and
to mark each node in the graph with the number of the
lowest numbered start node that can reach it.

i=1;

for (node in NODE) suchthat start_node(node) {
mark_reachable(i,node) ;
i++

}

mark_reachable(int i, NODE* node)
{
for (j=node->successor ; j != NULL ;
succ_node = j->nodename ;
if (succ_node~>mark == 0) {
succ_node->mark = i ;
mark_reachable(i,succ_node) ;

}

j=j->next) {

}
}

If the set of nodes reachable from a given node are all
disjoint, it is possible to perform the marking in parallel.
In general one cannot assume that this is the case for every
input graph. As such, little parallelism can be extracted at
compile time. Qur approach to parallelizing such code is
to attempt to run each invocation of the mark.reachable
routine in paralle]l. Concurrency control is used to manage
any conflicts that may arise (e.g., due to several source nodes
that reach the same destination).

3 Dynamic Resolution of Dependencies

In this section, we describe our approach to the paralleliza-
_tion of sequential code in detail. We present a nested trans-
action model, and the concurrency control algorithms to be
used in the context of parallelization.

3.1 Nested Transaction Model

Each method invocation that originates directly from the
main program sequential code, is referred to as a “top-level”
transaction. A top-level transaction is permitted to issue
subtransactions (i.e., nested method invocations) during its
execution. When a subtransaction completes its execution,
it informs its invoker by an “acknowledgment” with respect
to the invocation, and at the same time, it returns any com-
puted values.

A transaction, or subtransaction, may itself execute some
code between invocations of further subtransactions. Such
portions of the execution, between successive pairs of sub-
transaction invocations, are also treated as subtransactions
for purposes of concurrency control — even though there
is no method invocation involved. Along with the top-level
transaction, all the invoked subtransactions are permitted
to execuie in paralle], within the limits prescribed by the
concurrency control.

Transactions execute atomically in that all the actions
of a transaction execute, or none do. To maintain the cor-
rectness of the concurrent executions, the concurrency con-
trol must necessarily abort certain executions as described
below. As in standard database terminology, an abort of
a transaction refers to the undo of its effects. Since the
sequential program code is written without anticipating a
transaction-oriented execution, there can be no abort re-
quests within the code itself. As explained below, if a trans-
action is aborted by the concurrency control, it is re-started
repeatedly until a particular attempt executes to comple-
tion. A top-level transaction does not return a value to the
main program until the concurrency control ensures that it
will not need to be aborted (i.e., until the top-level transac-
tion is committed).

3.2 Transaction Numbering and Serializability

Each atomically executed portion of the code is given an
identifier that is recursively defined as follows. The suc-
cessive portions of code in the main program demarcated
by method invocations (i.e., the invocations that form top-
level transactions) are given the successive identifiers 1, 2, 3,
.... The first portion of a top-level transaction is given the
identifier i.1 where 1 is the identifier of the portion of code
in the main program that just precedes in the sequential
execution order. Finally, consider a particular atomic unit
of execution with an identifier :. The first method that it
invokes, if any, is given the identifier :0 (i.e., 1 concatenated
with the bit value 0). The subsequent, continuing, portion

76

main program top level transaction invocations

»

1 2 i 3 T\ n
;' H
.17 111 2.1 211
v v)

invocations at a lower level

-v.'\ T1 T
4 itll
T2y
0 @ ;01
I
t; 00

Figure 2: Scheme for identifier numbers

of the execution (that is not part of the method invoked), is
regarded as a separate atomic unit of execution, and is given
the identifier :1. Figure 2 depicts an example identifier num-
bering (including the code shown in Figure 1). Note that
our scheme permits the identifiers for the code below the
level of the main program to have a compact binary number
representation.

We need to provide a total order on the identifiers. The
order relation, <, is defined as follows (the intuition behind
the definition is provided subsequently). For two distinct
identifiers 10 and 11, 10 < 11 if, and only if, either:

o the number corresponding to the main program in i
“is smaller than the same in 21, or

e 1o and ¢; arise from the same top-level transaction,
and by suitably padding (one of) the identifiers with
bit values of 0 (at the least significant bit positions) to
make the identifiers equal in length — and referring to
them as jo and j1 modified from io and 31, respectively,
we have either

— Jjo is smaller than j; when these modified identi-
fiers are regarded as numbers, or

— the modified identifiers are indistinguishable, but
o has fewer bits than 1;.

Thus, for instance, the following total order among a possi-
ble set of identifiers is consistent with the above definition:
3.101 < 3.1011 < 3.11 < 4.110 < 4.111 < 4.1110. We find it
necessary to define the order relation on identifiers with dif-
fering number of bits in this manner since it is not possible,
during a dynamic execution, to ascertain a prioréi the num-
ber of bits necessary in the largest identifier. Henceforth, we
say that an identifier iy is lower or higher than an identifier
11 according as tg < #; or 11 < fo.

Our numbering scheme provides unique identifiers, and
we use the term segment to refer to each part of an execu-
tion that has a distinct identifier. Each segment of the code
must be executed as one atomic block by sequentially exe-
cuting it in its entirety. Note that if the entire program were
to be executed sequentially on a uniprocessor, the different
segments would execute in the increasing order of their iden-
tifiers. This may be seen by regarding the executions in the

N
N

2.11 N

(n-l))/x
\n-l).ll
I
\ z

y A \ Ty cont’'d
% \ T2 cont’d

Figure 3: A binary invocation order tree

7%/

form of a binary tree of invocations, as depxcted in Figure
3 (for the example from Figure 2). Each edge in the tree
corresponds to a particular segment of the code, and the
depth-first search order of the edges in the tree (i.e., in the
order that the edges are first encountered in the search) cor-
responds to a sequential execution order of the segments.
Therefore, our aim is not just to ensure serializability of the
segments (e.g., see [3]), but also to ensure that an equiva-
lent serial order of execution of the segments is the order
that would be followed if the entire program were to be ex-
ecuted sequentially. That is, the segment executions should
be serialized in the increasing order of their identifiers. .

3.3 Using Concurrency Control

We make certain assumptions to help describe the use of
concurrency control paradigms for the parallel executions.
Each segment of the code accesses at most one object. If
a segment requires to access additional objects, it can do
so only through further method invocations, which are then
treated as separate segments, and assigned their own iden-
tifiers. Each segment is required to execute as a single un-
interrupted thread.

For each object in the database, we maintain a list con-
sisting of identifiers of the segments that have successfully
accessed the object. We refer to each element of a list as a
lock, and the order of the elements is the order in which the
the accesses occurred — with the most recent access being
the last element.

The state of an object just before, and just after, a seg-
ment accesses it are referred to as the before-image, and the
after-image, respectively, for the segment. The effect (w.r.t.
the state of the accessed object) of aborting a segment is
reinstating its before-image. Below, we discuss how aborts
are effected. and how such “shadow” images are maintained.

Consider a segment with an identifier 20, that needs to

77

access an object O. The following algorithm is executed
after the completion of any ongoing access to O. First, the
identifier + of the last lock on the list for O is examined —
the identifier would be that of the most recent segment that
successfully accessed O. The algorithm checks whether it is
safe to permit the segment requesting the access to proceed
by comparing the identifiers 1 and s0. If #+ < 1g, or there is no
lock 1n the list, then a lock with identifier 1o is appended to
the list for O. and the segment with identifier 10 is allowed to
access O (after the requisite shadow information is recorded
as described below).

If the comparison described above yields 1 > 1o, then
the segment with the identifier ¢+ must be aborted (and if
necessary, executed again later). Furthermore, the lock ¢
is deleted from the list for object O. Thereafter, the same
comparison, with any accompanying aborts and deletions
from the list, are effected for the next lock on the list. The
algorithm iterates in this manner until either ¢+ < 1o for the
identifier t of the last lock on the list for O, or the list is
empty. Since each list is finite, the segment with the iden-
tifier 10 gets access to the object O eventually. Note that
our approach is similar to executions of a “timestamp” or-
der scheme with a wound-wait restart policy {e.g., see [5, 3])
— with the identifiers regarded as the timestamps. The d
ference is that in our scheme, the segment with a lugher
number is aborted, and a segment is committed only if all
lower numbered segments are committed (commitment is
described below).

We use database concurrency control theory (e.g., see
{3]) to prove that the above algorithm is indeed correct in
our context. At a given point in the executien, consider a
set of segments that have either completed executing or are
currently executing. Define a serializability graph (SG) for
the execution (e.g., see {3]) with nodes consisting of the seg-
ments labeled by their identifiers. A directed edge (3, j) is
created in the SG if, and only if, an object was accessed by
the segment numbered ¢ before the same object was accessed
by the segment numbered j, and neither segment was sub-
sequently aborted. The execution of the segments is serial-
izable since each segment executes as a single uninterrupted
thread. Therefore, from the theory of concurrency control
(e.g., see [3]), the SG must be acyclic.

It is more important to establish the correctness of our
approach in the context of equivalence to the sequential ex-
ecution of the original code. This would be established if,
after all segments are successfully executed, each object can
be shown to have been accessed by segments in increasing
order of their identifiers. The following result helps in this
regard.

Theorem 1. For a completed execution of a set of seg-
ments under the concurrency control, the identifiers provide
a topological sort order of the nodes of the SG for the eze-
cution.

Proof: Consider an edge (¢, 7) in the SG for the execu-
tion. The edge indicates that segment ¢ accessed an object
O before the segment j did, and hence, the lock correspond-
ing to t must precede the lock corresponding to j in the list
for O. Now, the concurrency control ensures that for each
list for an object in a completed execution, the locks in the
list are in an increasing order of the identifiers. Hence, 1 < ;
must hold, thereby implying that the identifiers provide the
required topological sort order. O

Note that deadlocks ‘and starvation do not occur in our
scheme since there is a total order on the segment identifiers,
and a lower identifier segment does not wait indefinitely on
a higher identifier segment.

3.4 Effecting Aborts

A segment may sometimes have to be aborted and re-started,
as mentioned above. To facilitate this, a segment creates a
copy of an object when its lock is added to the list for the
object.The segment updates the object in place as it exe-
cutes. If the segment is forced to abort, then the copy can
be used to recover the state of the object as it was before
the segment commenced execution. If and when the segment
commits, the shadow copy is discarded.

A segment with a higher identifier may be permitted to
see the effects of a segment with a lower identifier. This may
happen if both segments access a common object, or as a
consequence of the results returned back by the lower num-
bered segment. The former situation is recognized from the
lock lists, and the latter situation by the concurrency con-
trol that passes the returned results from the lower num-
bered segment to the higher numbered segment. In such
situations, if the lower numbered segment is aborted, then
so must the higher numbered segment. That is, as a conse-
quence of a segment abort, there may be cascading segment
aborts. Therefore, when a segment aborts, it may necessary
to effect other aborts, and restart the aborted executions
again. Whenever a set of aborts occur together in this man-
ner, for each object, the aborts are effected in the decreas-
ing order of the identifiers in the list — consistent with the
most recent access being aborted first. Due to space con-
straints, we do not discuss the low-level abort and recovery
algorithms for the concurrency control in detail.

3.5 Commit Processing

The list of locks for an object could get arbitrarily large
as the concurrent executions proceed. Therefore, there is a
need to discard some locks, and the corresponding shadow
information, regularly. We refer to this process of discard-
ing as the commitment of the segments since, as is the case
for database transaction management, the execution of a
transaction is committed irretrievably once the shadow in-
formation for it is discarded. It is safe to commit a segment
only if it is ensured that no subsequent abort for it will be
necessary. The following result helps in this regard.

Lemma 1. The ezecution of a segment with an identi-
fier 10 does not need to be aborted if every segment with an
identifier 1, such that 1 < 1o, ts commatted.

Proof: There are two ways in which the execution of a
segment with an identifier 4o, that accessed an object O, may
need to be aborted. The first case is when a segment with
a identifier s such that 1 < 10 attempts to access the object
O after the execution of the segment with the identifier 1.
The second case occurs if a segment with a lower identifier
from the same transaction is aborted, and as a consequence
of having used its results, the segment with the identifier
15 needs to be aborted. Either case cannot occur since all
lower identifier segments are assumed to be committed. O

We assume a shared-nothing architecture in which each
object resides in exactly one processor with no replication
across the processors. We assume that methods invoked on
a particular object are executed at its corresponding pro-
cessor. Note that it is possible, for instance, for a top-level
transaction to be a function call f; on an object Oy at pro-
cessor A, for function f; to invoke a function f; on object
O» at processor B, and for function f> to issue yet another
function f; on object Oz at processor A; it is even possible
that Os is the same as O,. For the inter-processor commu-
nications, we make the sole assumption that the messages

78

between processors maintain order for any given source-
destination pair. For instance, we allow for the possibility
that processor A first sends a message m, to processor B and
then a message m2 to processors C, but the m2 may reach
processor C earlier than m; reaches processor B. In fact.
another message ms issued by processor C after it receives
mz, may reach processor B before m; does.

We now describe our commitment protocol for a top-
level transaction. Since the objects accessed by a top-level
transaction may be on different processors, the commitment
of all its, possibly non-local, segments must be coordinated.
This is done by traversing the binary tree of invocations in
a depth-first search order. A commit token is sent to a seg-
ment by its invoking processor when the segment is encoun-
tered in the “forward” direction of the depth-first search —
as reflected by the next higher identifier. The commit for
a segment is eflected (by discarding the corresponding lock
and shadow information) when the commit token is received.
Acknowledgments are sent back in the “reverse” direction of
the depth-first search.

The main program segments are committed by a coor-
dinator process, executing at a single, dedicated processor,
that counts-up through the main program segment identi-
fiers. The coordinator issues a commit token to a top-level
transaction only after it receives an acknowledgment for the
successful commitment of the preceding top-level transac-
tion.

The coordinator knows about the top-level transactions
since, when initiated, a top-level transaction it sends the
coordinator a message informing it of the initiation. The
coordinator keeps this information in a queue, and issues a
commit token at the appropriate time. Finally, after com-
mitment, a top-level transaction sends an acknowledgment
back to the coordinator. We expect that centralized coordi-
nation will not be a bottleneck for most realistic programs
and levels of parallelism (see also Sections 4 and 5).

Theorem 2. Once a segment is committed by the com-
mitment protocol, its abort cannot be required subsequently
by the concurrency control.

Proof: The use of a coordinator process that counts-up
through the top-level transaction identifiers ensures that the
segments of only one top-level transaction at a time are un-
der the process of commitment. Moreover, it ensures that
the order of commitment between the top-level transactions
is in the increasing order of their identifiers. Within each
top-level transaction, commitment occurs in the order of in-
creasing identifiers since our protocol follows the order of
invocation through the tree of invocations. Therefore, the
segments are committed in the increasing order of the iden-
tifiers, and the resuit follows from Lemma 1. O

4 Experimental Evaluation

We describe a preliminary implementation and experiments
to provide a rough assessment of our strategy. We made
some simplifying assumptions which generally degraded per-
formance; a detailed implementation ought to provide bet-
ter results. First, we limited the length of an identifier to a
fixed size (i.e., segments that were beyond a certain depth
in the invocation tree had the same identifier as their invok-
ing segment, and we executed them sequentially). Second,
we maintained only one lock at a time for an object (i.e., if
there was a lock on an object, then the requesting segment
had to await the release of the lock).

4.1 System Configuration

We used the SWIM system [1, 2] for our experiments (al-
though the generality of our approach umplies that it can
be used for any multiprocessor system). SWIM may be re-
garded as an “intelligent memory” used to accelerate object-
oriented data storage and manipulation. It comprises of sev-
eral {up to a few dozen) small memory units, called Active
Storage Elements (ASEs), embedded in 2 communication
network. An ASE can be configured to manage objects of
a particular class by loading its on-chip microcode memory
with the appropriate microcode to execute member func-
tions associated with that class. A member function is in-
voked on a specific object by sending a message to the ASE
managing it. This message must identify the particular ob-
Jject of interest, the specific function to be executed, and
the values for any parameters that may be required. Any
response from the ASE is also in the form of a message.
In addition to the semantic fit in terms of object-oriented
storage, the key feature of importance is that SWIM can be
considered a medium-fine-grain multiprocessor with a very
low inter-processor communication cost; barring contention,
2 message of two 32-bit words takes only 3 clock cycles,
from the registers of one ASE to the registers of another
ASE. All our performance measurements were on a SWIM
system used as the parallel object-manipulation back-end to
a SUN workstation that executed the top-level transaction
calls. The particular SWIM system we used had 16 ASEs.
One was dedicated for commit processing. The other ASEs
were used to execute the segments in parallel.

4.2 Example Experiments

We ran several different queries on our system. The time for
each was measured on the host SUN workstation, using the
standard UNIX time command. The performance benefit
varied greatly depending most significantly on the amount
of parallelism inherent in the given sequential code. The
overhead due to our concurrency control algorithms were
small. Below, we discuss small, but illustrative, examples of
database programs that were parallelized by our technique.

4.2.1 Example 1

Consider a program that is perfectly parallelizible, compris-
ing of a single loop iterating over a collection of objects
evenly distributed between the 15 ASEs. In each iteration of
the loop, some local processing was performed on an object,
and no other objects were updated or referenced. This is a
program that any reasonable parallelizing compiler should
be able to parallelize, and we present performance numbers
here to quantify the run time overhead introduced by con-
currency control. We used objects that were 256 bytes each
in size. Each method invoked on an object required approx-
imately 5500 instructions to execute.

Executed sequentially, as written, the program tock 53.76s
(“real” time) to execute. Executed in parallel, with perfect
parallelism (without the overheads of concurrency control
— as though detected by a parallelizing compiler), the code
took 3.96s to execute. Therefore, on 15 processors, the “per-
fect” speed-up achievable for this application on our system
showed a factor of 13.58. This factor is not a perfect 15 be-
cause of the skew in dispatch times for the multiple parallel
tasks and the time spent by the host doing a small amount
of the sequential processing.

Using the concurrency control algorithm to parallelize
the sequential program at run-time, the time required for

79

execution was 4.03s. giving a speed-up of a factor 13 34
This provides a rough estimate for the small overheads of
commitment, shadowing, and locking. This speed-up is very
close to the best possible parallel execution. and in this case
the overhead for concurrency control were negligible.

4.2.2 Example 2

Consider a more realistic program in which there is potential
for data contention, and little parallelism can be obtained
at compile time. The program involved traversing a graph
of objects whose connectivity was defined only at run time
(i.e., the connectivity was provided as input data). In fact,
each method invocation included a connectivity list for the
object as an argument. The program performed a pattern
search over the data in the objects, and the pattern and des-
tination of the results were required to be a function of the
invocation order. This program was similar to the example
code fragment discussed in Section 2. On account of dy-
namic data dependencies, we cannot expect any parallelism
to be detected by a compiler.

In terms of performance, a sequential execution took
107.33s. We also gauged performance for a blindly opti-
mistic parallel execution, which, as may be expected, pro-
vided incorrect results. However, it did indicate the over-
heads of commitment and shadowing as described for the
example above. The time taken for such an execution was
10.04s. With the concurrency control in place, the time
taken was 15.73s, a speed-up of 6.8 times over the sequen-
tial execution (and correct results were obtained!).

Our preliminary studies exhibit that, at least for some situ-
ations, using the concurrency control strategies as described
in this paper are likely to yield good results. We mention
some ways to reduce the overheads for our scheme; the de-
tails have been omitted due to space restrictions. First, if it
is known a priori that during some phase of an execution,
a method will not invoke any further methods (e.g., this
holds for a segment of the sequential code that initializes
variables), then locks, shadowing, and commit processing
are not needed for that phase. Second, shadowing over-
heads may be reduced by creating a shadow for an object
just once for any top-level transaction — the trade-off being
that rollbacks may be costly. Note that since the very same
sequence of events may cause repeated aborts, a policy may
be enforced to execute a top-level transaction sequentially
if too many aborts are encountered. Third, to reduce the
number of messages, our scheme may be modified to issue
only a single commit token and acknowledgment pair for any
participating processor for a given top-level transaction.

5 A Simple Analysis

Of necessity, experimental verification of our proposed tech-
nique is limited. We present a crude analysis to gauge the
importance of various factors governing parallelism in order
to estimate how our approach will scale-up.

Figure 4 depicts a typical top-level transaction in which
each (subjtransaction requires t time units to execute (not
including the time to execute the invoked subtransactions).
Each such t-sized part, which we refer to as a portion, is ex-
pected to execute sequentially on a single processor. Assume
that each non-leaf (sub)transaction invokes a subtransaction
at ¢ equally spaced points in its execution, and let the depth
of such invocations be d. (The 5-sized executions are the
segments within each portion.)

- -
- — -
-~ A

-~

< -

-~ -
-~
-
- —~

Figure 4: Idealized mode] of a nested transaction

The time required for the sequential execution of one

Y)
top-level transaction is tS~—=%. If there are C concurrent]
P- pesery y

active top-level transactions at any time, their sequential

execution would require Ct ‘d:_ll" L time. Unrealistically as-
suming that there are enough processors available to ex-
ploit all the parallelism, that there are no dependencies, and
that no aborts or waits occur, the execution of a transac-
tion would appear similar to the depiction in Figure 1. The
makespan time for such an optimistic parallel execution of
a single top-level transaction, and consequently, C top-level
transactions, is t(1 + C‘"fl }. Therefore, with C transactions
executing concurrently, the best possible speed-up factor is

approximately de (assuming that c is sufficiently large —
i.e., that the transactions have a large degree of inherent
parallelism). Observe that the speed-up possible is greater
than a factor of C since there is intra-top-level-transaction
parallelism due to the subtransactions, in addition to inter-
top-level-transaction parallelism.

Now let us consider the various significant factors that
could adversely affect the attractive optimistic parallel exe-
cution time. Except where noted otherwise, the issues are
each considered independently in the following analysis.

Shadowing and locks. Each time a portion executes, it
must create shadow data,-and also create locks. Let us as-
sume that the time taken for shadowing is s per object,
that is done per portion, and disregard the comparatively
negligible time taken to create a lock. Assuming that shad-
ows are created at each portion, the time taken to execute
a segment increases to t, = t + (¢ + 1)s, and this may be
approximated to t, = t + cs for a sufficiently large value
of ¢. (If shadows and locks are created at each segment,
the same analysis can incorporate the added complexity by
considering an additional depth of the nesting.)

Inherent dependencies. We assume that the only depen-
dencies that may occur in the parallelized executions oc-
cur in the form of contention for data. That is, we assume
that each segment within a particular top-level transaction
can complete its execution without having to wait for the
values returned by the execution of another segment of the
same top-level transaction. (We may reasonably expect that
many of these unaccounted for dependencies could be de-
tected by a parallelizing compiler.) The following analysis
only deals with the question of data coitention.

Let a denote the probability of a contention between
two portions that request access to a common object. That
1s, for the concurrent execution of C top-level transactions,

a1
< -1
aC =

is the probability that a portion will actually con-

80

tend with another active portion during its lifetime. There-
fore, the probability that a contention is not encountered

by a portion is (1 — aC °d::1‘1). We assume that a is small
enough to safely permit disregarding the probability that
more than two portions contend for the same object. For
a sufficiently large value of ¢, we may regard the probabil-
ities for contention and non-contention as being aCc® and
1 — aCc®, respectively.

We now estimate the effective dilation in the execution
time for a portion due to the concurrency control overheads.
Note that since each such execution involves shadowing and
the creation of locks, instead of t, we use t, as estimated
above. Consider a portion that requests access to an object,
and is faced with data contention. In such a situation, if
the portion needs to await the completion of an access on
the requested object, then the duration of the wait may be
estimated to be -2-(;'17)-, which is half the time taken for a
portion to execute. Now, let us consider the situation that
a segment numbered ;7 of a portion is to be executed, and
that it encounters contention with a segment numbered 1

of another portion. Assuming that there are no cascading
c‘H'l—l
4(c—-1)

aborts, the following occur with a probability of aC
each.

e t < j, and 1 executes before j. In addition to the
execution time for 7, a wait is encountered, and the ef-
fective time for the execution of the portion containing
segment 7 becomes ¢; = 1, + 5(—;5;—1—)-

1 < 7, and j executes before i. Segment j must be

aborted, and it takes s units of time to reinstate the

before-image for ;. Assuming that a re-execution of
segment j is initiated directly after i completes execu-
tion, the effective time taken to execute successfully
the portion containing segment j becomes approxi-
mately t2 = t, + s + 5 + 2 (ie, the sum of the
times taken for the successful execution, the abort of
segment j, the execution of 1, and the re-execution of
segment j).

J <1, and j executes before i. Only the execution time
for the portion with segment j needs to be accounted,
and that is t3 = t,.

J <1, and 1 executes before j. The contention induces
the overheads of a wait for the execution of segment
t to complete, followed by an abort of i, and hence,
the effective time taken for the portion to execute is
ty = 5(-'2‘_}_—17 —+ 8+ t,.

Therefore, with data contention, the effective execution time
for a large value of c is

ta = (1 —aCc)t, + (SS) (8 + 2 + ta + ta)
which simplifies to
ta = (1 - aCc®)t, +aCc(t, + § + 3%).
Further approximations yield t4 =t + ¢s(1 + aCc% 1)
indicating that shadowing, and deeply nested transactions,
are significant factors that would degrade performance.
Notice that our analysis for data contention has been
quite pessimistic for two reasons. First. since the transac-
tions would be generated to a large extent in the increasing
order of their identifier numbers, the order of accesses on
the objects is less likely to cause aborts. Second, with a lim-
ited number of processors, it should be expected that the
processors could be assigned to the portions in increasing
identifier orders.

Commitment overheads. If all the subtransactions in-
voked are to an external processor, then for each segment,
there is an overhead of two messages to account for the com-
mit token and its corresponding acknowledgment. Note that
the messages related to the function invocation and return
are present even for the sequential case, and therefore, they
are not overheads. Thus, the number of overhead messages
related to committing the C concurrently executing top-level
transactions, 1is 20#2_5%5111 (i.e., twice the number of
portions involved in the execution), and that may be approx-
imated to 2Cc®*' messages for a large value of ¢. The time
taken for the traversal of these messages should be added
to the expected time for parallel execution. This is a pes-
simistic estimate since the number of external invocations
may be few due to careful data placement strategies. Also,
2 limited number of processors implies that several messages
may actually be local to a processor. The significance of this
communication overhead depends on the specific parailel ar-
chitecture used, and the cost of sending small messages in
this architecture. If the time taken to send a small message
is m, then the overhead time taken to dprocess the commit-
ment for the executions is t. = 2mCc®t! for a large value
of ¢ (barring contention for the communication resources).
Other than communication overheads, the time expended
on the computation related to commit processing is likely
to be negligibly small, and hence, we disregard them.

Limited processors.
parallel, there could be C

in true parallelism. That is, approximately Cc? processors
would be needed for a large value of ¢. If only N processors
are available, and N < Cc?, then we may hope to achieve a
linear speed-up if the overheads due to scheduling are small.

Assuming that all the necessary processors are available,
our analysis suggests that instead of the optimistic ¢(1+ Cfl
time taken to execute the C transactions in parallel, the
overheads to manage the concurrency would increase the
expected parallel time to t4(1 + cfl) + t. where the follow-
ing approximate values hold for sufficiently large c,
ta = t + cs(1 4+ aCc?"?), which is the dilated portion exe-
cution time, t. = 2mCc®t!, which is the delay caused by
communications due to commitment overheads, s = time
taken to create shadow information, and a lock, for an ob-
ject, and m = message traversal time for a commit, or its
acknowledgment.

The main observations from the above analysis are as fol-
lows. First, note that the overhead for concurrency control
grows exponentially as the depth of the invocation tree, and
polynomially as the number of parallel execution threads.

If each segment could execute in
d+41
c =1

—=— such segments executing

81

Therefore, deeply nested invocations tend to degrade per-
formance sharply. Second, the overhead due to shadowing,
which has been included within the execution time for each
segment of a transaction in the above analysis, may be sig-
nificant because the concurrency control algorithm adopted
may create shadows frequently. This overhead is dependent
on the amount of shadow information that must be created,
which is an application-specific consideration. Third. the
message communications overhead is a simple additive term,
although it has a multiplicative factor that is sensitive to the
degree of parallelism, and the depth of the invocations. The
message overhead is architecture-dependent in that the time
for the traversal of the messages between the processoars, is
an important factor.

6 Conclusions

A novel use of concurrency control to perform dependency
resolution for a database program written in sequential object-
oriented code, thereby to permit parallel executions, was
described in this paper. This was achieved by managing
the parallel executions of portions of the code in the man-
ner that concurrent transactions are handled in database
systems. By mapping method invocations in a sequential
object-oriented program into a nested transaction model,
we showed how to implement order-preserving concurrency
control for the parallel executions generated. Also, we pre-
sented a preliminary analysis and some performance num-
bers that exhibit the potential benefits of our technique. Our
approach to dynamic parallelization of sequential database
programs would have good potential for significant perfor-
mance pay-offs in multiprocessor systems when it is imple-
mented in a more complete manner.

References

[1] A. Asthana, H. V. Jagadish, J. A. Chandross, D. Lin, and
S. C. Knauer. A high bandwidth intelligent memory for su-
percomputers. Proceedings Third International Conference
on Supercomputing, May 1988.

A. Asthana, H. V. Jagadish, and S. C. Knauer. An intelligent
memory transaction engine. In International Workshop on
Database Machines, Deauuille, Fra.ncc, June 1989. -

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, Reading, MA, 1987.

R. M. Fujimoto. Parallel discrete event simulation. Commu-
nications of the ACM, 33(10), October 1990.

J. Gray and A. Reuter. Transaction Processing: Concepts
and Technigues. Morgan Kaufmann, San Mateo, California,
1993.

M. Lam. Coarse-grain parallel programming in Jade. ACM
SIGPLAN Notices, 26(7):94-105, July 1991.

K. Li and P- Hudak. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems,
7(4):321-359, 1989.

J. E. B. Moss. Nested transactions: An introduction. In
B. Bhargava, editor, Concurrency Control and Religbility in
Distributed Systems, pages 395—425. Van Nostrand Reinhold,
1987.

(2]

3]

(4]
(5]

[e]
(7

(9] Addison-

B. Stroustrup. C++ Programming Language.
Wesley, Reading, MA, 1987. 2nd ed.

