
Exploring Latency-Power Tradeoffs
in Deep Nonvolatile Memory Hierarchies

Doe Hyun Yoon
doe-hyun.yoon@hp.com

Tobin Gonzalez
tobin.gonzalez@hp.com

Parthasarathy Ranganathan
partha.ranganathan@hp.com

Robert S. Schreiber
rob.schreiber@hp.com

Intelligent Infrastructure Lab
Hewlett-Packard Labs
Palo Alto, CA, 94304

ABSTRACT

To handle the demand for very large main memory, we are
likely to use nonvolatile memory (NVM) as main memory.
NVM main memory will have higher latency than DRAM.
To cope with this, we advocate a less-deep cache hierar-
chy based on a large last-level, NVM cache. We develop
a model that estimates average memory access time and
power of a cache hierarchy. The model is based on captured
application behavior, an analytical power and performance
model, and circuit-level memory models such as CACTI and
NVSim. We use the model to explore the cache hierarchy
design space and present latency-power tradeoffs for mem-
ory intensive SPEC benchmarks and scientific applications.
The results indicate that a flattened hierarchy lowers power
and improves average memory access time.

Categories and Subject Descriptors

B.3.3 [Memory Structures]: Performance Analysis and
Design Aids; B.3.1 [Memory Structures]: Semiconductor
Memories

General Terms

Design

Keywords

Nonvolatile memory, Memory hierarchy,
Latency-power tradeoff

1 Introduction

A modern microprocessor has a private SRAM L1 cache (16-
32KB); a private SRAM L2 cache (128-512KB); and a shared
last-level cache (LLC) using SRAM or embedded DRAM,
as large as 30MB in high-end processors. New technolo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’12, May 15–17, 2012, Cagliari, Italy.
Copyright 2012 ACM 978-1-4503-1215-8/12/05 ...$10.00.

gies such as 3D stacking and byte-addressable nonvolatile
memory (NVM) are expected to bring even higher capacity
caches. As a result, the cache hierarchy is becoming deeper,
with L4 and L5 caches (3D-stacked, on-package, or off-chip
DRAM caches, or all of them together).

Power and energy efficiency have become the number one
design criterion; hence, designing a memory hierarchy should
be an optimization procedure considering multiple objec-
tives including performance and power. The key perfor-
mance characteristic of cache is average memory access time
(AMAT). Two factors dominate AMAT: hit rate, which is
mostly determined by the size of LLC, and average latency
for a hit. The traditional design strategy for reducing AMAT
is a deep cache hierarchy, but this may lead to poor power
efficiency. Increasing total capacity improves AMAT only
slightly but at the cost of significant increase in power, and
a deep hierarchy increases AMAT when the working set is
bigger than the intermediate level caches.

NVM main memory changes the cache architecture prob-
lem; NVM main memory provides larger capacity but at
the cost of higher latency than that of DRAM main mem-
ory. For NVM main memory systems, we advocate a 3-level
cache hierarchy with an NVM LLC. A flat hierarchy burns
less energy than a deeper hierarchy. An NVM LLC has near-
zero standby power, and this allows a larger on-chip (or 3D-
stacked) cache than a conventional SRAM or DRAM cache,
increasing hit rate.

We first develop a latency-power tradeoff model in Sec-
tion 2. With the model we undertake a co-design study of
the optimal depth of a hierarchy in Section 3. Then, we ex-
pand the model to support new byte-addressable NVM and
show latency-power tradeoffs of various designs. We discuss
the limitations of the proposed approach and future work
in Section 6 and conclude this paper in Section 7.

2 Latency-Power Tradeoff Model
In this section, we develop a latency-power tradeoff model.
The main objective of this study is not to pinpoint a spe-
cific optimal configuration but to explore diverse design di-
rections with potential future memory technologies and to
identify which direction is most power efficient. The model is
fast, so that we can practically explore a large design space.

Figure 1 delineates a high-level organization of the pro-
posed model, which has a performance and power model

Application
PIN cache

model

1

10

100

1000

Proc 128kB 1MB 8MB 64MB 512MB 4GB

M
P
K

I

Configuration:
- # levels
- Size of each level
- Array type: SRAM, DRAM, … Technology

parameters

CACTI
NVSim

P
o

w
e

r

AMAT

Change config

for exhaustive search

P
o

w
e

r

AMAT

Pareto-optimal frontier

Optimizer
Performance &
Power model

Figure 1: High-level overview of the proposed memory hierarchy analysis framework.

Program

32kB cache

Load/store instr

32kB cache

Miss

Miss
An exclusive

hierarchy

Traffic below a 32kB cache

Traffic below a combined 64kB cache

64kB cache

Miss Traffic below a combined 128kB cache

.

.

.

Binary
Instrumentation

Figure 2: A cache model for PIN to profile MPKI vs. cache
sizes.

and an optimizer. The performance and power model takes
application characteristics and technology parameters and
then estimates AMAT and power (including static and dy-
namic power) of the given memory hierarchy (the configura-
tion). Each configuration can be represented as a point on a
power-AMAT plane. The optimizer exhaustively explores a
design space and identifies the Pareto-optimal frontier, pre-
senting the latency-power tradeoff.

In the remainder of this section, we describe the details of
the model: Section 2.1 and Section 2.2 discuss the inputs to
the model; Section 2.3 describes the performance and power
model; and Section 2.4 discusses the optimizer.

2.1 Application Characteristics

We capture application characteristic using a binary instru-
mentation tool, Pin [12]. We implement a hierarchical cache
model as a pintool to profile MPKI (misses per thousand
instructions) for various cache sizes (from 32KB to 8GB).
Figure 2 illustrates how we profile traffic (MPKI) of each
cache size. Each cache is 8-way set associative, and the
number of sets is scaled accordingly to increase cache size:
64 sets in a 32kB cache, 128 sets in a 64kB cache, etc. This
methodology is very similar to those of Lin et al . [10] and
Murphy et al . [14].

The performance and power model in Section 2.3 uses
the MPKI vs. cache size information to estimate AMAT
and power. In this study, we use a subset of SPEC CPU
2006 benchmark suite [25] (we use mostly memory-intensive
applications but include non-memory-intensive applications
also) as well as scientific applications including Mantevo
MiniApps [22] and Graph 500 [1]. Table 1 summarizes the
applications in this study, and Figure 3 shows the profiled
MPKI vs. cache size curves for SPEC CPU 2006 applica-
tions, Mantevo MiniApps, and Graph 500.

2.2 Technology Parameters

We leverage CACTI 6 [13] and NVSim [28] to draw technol-
ogy parameters such as latency, energy per access, and static
power. For each cache level, we allow 3 different technolo-
gies: SRAM, DRAM, and PCRAM (phase-change memory).
We use PCRAM as an example NVM. SRAM and DRAM
are modeled in CACTI, and PCRAM in NVSim.

2.3 Performance and Power Model

The performance and power model takes the application
characteristics and technology parameters and estimates AMAT
and power of a given configuration.

Configuration: The configuration (in Figure 1) specifies
a cache hierarchy to be evaluated: n is the number of cache
levels; C(i) is cache capacity at level i (1 ≤ i ≤ n); and a
cache memory at level i can be one of SRAM, DRAM or
PCRAM. For a given configuration, we define MPKI, ac-
cess latency, static power, energy per read, and energy per
write at cache level i as M(i), L(i), Ps(i), Er(i), and Ew(i),
respectively, where these values are from the profiled appli-
cation characteristics (in Section 2.1) and technology param-
eters (in Section 2.2). In addition, we define M(0), L(n+1),
and Er(n + 1) for easier formulation of equations: M(0) is
the number of load instructions per thousand instructions,
and L(n+ 1) and Er(n+ 1) are latency and energy per read
of main memory (e.g., DRAM), respectively.

Performance model: We assume an in-order core and
measure performance using AMAT as shown in Equation 1.
While an aggressive out-of-order core or simultaneous multi-
threading can hide memory latency and leverage memory-
level parallelism, lower AMAT, in general, indicates better
performance as shown in [18].

Table 1: Workloads.

Benchmark Suite Application Description Input

SPEC CPU 2006

mcf combinatorial optimization

SPEC reference input

bzip2 compression and decompression
hmmer search a gene sequence database

omnetpp discrete event simulation
astar 2D path finding
milc physical and quantum chromodynamics - MIMD lattice computation
lbm computational fluid dynamics, lattice boltzmann model

Mantevo
MiniFE Unstructured implicit finite element codes 160 × 160 × 160
MiniMD Force computation in molecular dynamics 80 × 80 × 80

Graph 500 Graph 500 Breadth first search on a large graph scale = 22

0.01

0.1

1

10

100

1000

Proc 128kB 1MB 8MB 64MB 512MB 4GB

M
P

K
I

Cache Size

mcf bzip2
hmmer lbm
astar milc
omnetpp

(a) SPEC CPU 2006

0.1

1

10

100

1000

Proc 128kB 1MB 8MB 64MB 512MB 4GB

M
P
K

I
Cache Size

MiniFE MiniMD Grah500 Graph 500

(b) MiniFE, MiniMD, and Graph 500

Figure 3: Traffic (MPKI) vs. cache sizes.

AMAT = L(1) +

n∑
i=1

M(i)× L(i + 1) (1)

Power model: We consider power only in caches and ig-
nore power in wires across cache levels and other compo-
nents in order to keep the model simple. Total power in a
cache hierarchy, Ptotal, is a sum of static and dynamic power.
Estimating static power consumption is straightforward as
shown in Equation 2.

Pstatic =

n∑
i=1

Ps(i) (2)

Calculating dynamic power is a little bit tricky since we
need to translate dynamic energy consumption into dynamic
power. We first calculate total dynamic energy consumption
for 1000 instructions as shown in Equation 3.

Edynamic =M(0)× E(1)+
n∑

i=1

M(i)× (Er(i + 1) + Ew(i))
(3)

Then, we get total dynamic power in Equation 4. The
denominator in Equation 4 is an estimated time to execute
1000 instructions, and we assume an in-order core with cycle
time of Tcyc (1ns in our study).

Pdynamic =
Edynamic

(1000−M(0))× Tcyc + AMAT ×M(0)
(4)

2.4 Exploring the Design Space and Pareto-Optimal
Frontier

As shown in Figure 1, the result of the performance and
power model can be represented as a point on a power-
AMAT plane. The optimizer runs the performance and
power model iteratively, varying the configuration, and plots
the operating points of all the possible configurations on a
power-AMAT plane. Then it identifies the Pareto-optimal
frontier, showing latency-power tradeoff.

We change the number of levels between 2 and 6. We
evaluate SRAM caches up to 2GB in Section 3 to show neg-
ative impacts of a large SRAM cache. In Section 4, SRAM
cache size is limited to 32MB, DRAM cache size is between
4MB and 64MB, and PCRAM cache size is between 16MB
and 1GB. We apply these constraints to avoid unreasonably
large SRAM caches or tiny PCRAM / DRAM caches.

Figure 4 shows an example running with the Graph 500
application. Red dots are Pareto-optimal, and blue dots are
not. Among those optimal operating points, we annotate
minimum latency, minimum power, and power-efficient con-
figurations. All those configurations (red dots) are Pareto-
optimal, the minimum latency configuration uses too much
power, the minimum power configuration has poor perfor-
mance, and the power-efficient configurations are balanced
in both latency and power. From this, we argue for design-
ing a power-efficient cache hierarchy rather than minimizing
latency; designing a cache hierarchy to further minimize la-
tency beyond the power-efficient point causes skyrocketing
cache power.

3 Depth of a Cache Hierarchy
In this section, we use the latency-power model to study
optimal depth of a cache hierarchy. We compare Pareto-

P
o

w
e

r
(m

W
)

102

103

104

105

106

0 10 20 30 40 50 60

AMAT (ns)

Pareto-Optimal

Frontiers

Power-efficient

configurations

Minimum latency

configuration

Minimum power

configuration

Figure 4: An example of exhaustive search and Pareto-
optimal frontier.

optimal frontiers of cache hierarchies with different number
of levels, from simple 2-level hierarchies to 6-level hierar-
chies.

Figure 5 shows latency-power tradeoffs of 2- to 6-level
cache hierarchies for the Graph 500 application; As shown
in Figure 5(a), the difference among the 3- to 6-level hier-
archies is not critical. We evaluated more than 6 levels, but
they were even worse, and we do not show them in Figure 5.

The rectangle in Figure 5(a) is magnified in Figure 5(b).
The 2-level hierarchies achieve lower AMAT at low power,
the 3-level hierarchies are better when higher power is al-
lowed, and a hierarchy with 4 or more levels is worse than
the a 3-level hierarchy.

Figure 6 shows the same latency-power tradeoffs for the
MiniFE application. MiniFE has a flat traffic curve as shown
in Figure 3(b) (streaming access pattern). This is due to
sparse matrix vector multiplication (SpMV) in each iteration
of the conjugate gradient solver in MiniFE. Hence, AMAT
stays at around 7.5ns unless the largest cache is 2GB (top
left operating points), which can hold the entire sparse ma-
trix (around 1.5GB). Even a very large cache (e.g,. 1GB)
cannot reduce AMAT effectively (top right operating points)
but incurs orders of magnitude higher power.

We analyze other applications, and they show the same
trend. Increasing the depth of a cache hierarchy beyond 3
levels does not reduce latency and often use more power.
In general, a 3-level hierarchy balances latency and power.
Large SRAM caches are not power efficient due to an order
of magnitude higher power.

4 Cache Hierarchy for NVM Main Mem-
ory

Researchers have recently proposed new byte-addressable
NVM such as PCRAM as a scalable substitute for DRAM
as main memory [8, 21] The main advantage with NVM
main memory is higher density and lower standby power
than DRAM.

Previously, researchers also suggested a DRAM cache to
compensate for high access time of NVM main memory [21,
11]. We analyze the latency-power tradeoffs of cache hierar-

P
o

w
e

r
(m

W
)

102

103

104

105

0 10 20 30

AMAT (ns)

40

106

50 60

2-level
3-level
4-level
5-level
6-level

(a)

P
o

w
e

r
(m

W
)

104

105

8 9 10 11 14

AMAT (ns)

12 13

2-level
3-level
4-level
5-level
6-level

3-level is better

2-level is better

(b)

Figure 5: Graph 500 – power-performance tradeoffs of 2- to
6-level hierarchies. The rectangle in (a) is shown in (b).

P
o

w
e

r
(m

W
)

103

104

2 3 4 5 7

AMAT (ns)

6 8
102

2-level
3-level
4-level
5-level
6-level

105

106

Figure 6: MiniFE – power-performance tradeoffs of 2- to
6-level hierarchies.

chies with heterogeneous technologies: SRAM, DRAM and
PCRAM. We show that a large NVM LLC is power effi-
cient. A large NVM LLC reduces costly off-chip traffic and
does not increase power by much. An advanced cache man-
agement scheme can further improve the efficiency of NVM
LLC for streaming applications.

4.1 Cache Hierarchy with Heterogeneous Technolo-
gies

Figure 7 shows latency-power tradeoffs of cache hierarchies
with heterogeneous technologies for the Graph 500 appli-
cation. SRAM cache + DRAM main memory denotes the

P
o

w
e

r
(m

W
)

103

104

0 20 40 60 100

AMAT (ns)

80
102

SRAM cache + DRAM main memory
SRAM cache + PCRAM main memory
SRAM/DRAM cache + PCRAM main memory
SRAM/DRAM/PCRAM cache + PCRAM main memory

Penalty due to

slow NVM main memory

Mitigating NVM penalty

with DRAM caches

Further reducing power with

low-leakage NVM caches

120

Figure 7: Effects of disparate technologies in main memory
and a cache hierarchy (the Graph 500 application).

traditional SRAM-only cache hierarchies with DRAM main
memory. When we replace DRAM main memory with PCRAM,
the Pareto-optimal frontier moves away due to high access
time of PCRAM (SRAM cache + PCRAM main memory).
One of the advantages with PCRAM main memory is higher
memory capacity than DRAM, reducing page fault rates,
but our analysis does not show this benefit with PCRAM.

As prior work on a DRAM cache [21, 11], we use a DRAM
cache to compensate for high PCRAM access time. We as-
sume a 3D-stacked DRAM cache that leverages high TSV
(through silicon via) bandwidth [27]. We present a latency-
power tradeoff with mixed SRAM and DRAM caches
(SRAM/DRAM cache + PCRAM main memory). We let
the optimizer choose memory technology of each cache level,
and the Pareto-optimal designs use SRAM for L1 and DRAM
for L2 and L3. A DRAM cache uses lower power than an
SRAM cache, so the SRAM/DRAM heterogeneous hierar-
chies allow a larger DRAM cache than SRAM, which reduces
slow off-chip accesses.

We finally show a latency-power tradeoff with mixed SRAM,
DRAM, and PCRAM caches (SRAM/DRAM/PCRAM cache
+ PCRAM main memory). PCRAM has very low leak-
age power; hence, it allows even larger 3D-stacked caches
(e.g., 1GB) still at low power unlike SRAM and DRAM
caches. Note that the best AMAT achieved with the mixed
SRAM/DRAM/PCRAM cache hierarchies is only compara-
ble to that of SRAM-only hierarchies. In fact, SRAM-only
hierarchies can achieve even better performance if we allow
larger than 32MB SRAM caches, but that incurs orders of
magnitude higher power.

4.2 Cache Friendly Applications

Figure 8 shows the latency-power tradeoffs for cache friendly
applications: astar and bzip2. Other cache friendly appli-
cations such as hmmer and MiniMD show similar behavior,
and we do not present them here. Similar to Graph 500, a
large DRAM cache makes up for the penalty with PCRAM
main memory, and a PCRAM cache achieves superb power-
efficiency.

4.3 Memory Intensive Applications

Figure 9 depicts the same analysis for memory intensive ap-
plications: mcf, milc, and lbm. These applications have
MPKI bigger than 10 with a 1MB SRAM cache. Unlike the
cache friendly applications, the SRAM/DRAM cache hier-
archies cannot fully make up for the increased LLC miss

P
o

w
e

r
(m

W
)

103

104

0 1 2 3 5

AMAT (ns)

4
102

SRAM cache + DRAM main memory
SRAM cache + PCRAM main memory
SRAM/DRAM cache + PCRAM main memory
SRAM/DRAM/PCRAM cache + PCRAM main memory

6 7 8 9

(a) astar

P
o

w
e

r
(m

W
)

103

104

0.5 1.0 1.5

AMAT (ns)

2
102

SRAM cache + DRAM main memory
SRAM cache + PCRAM main memory
SRAM/DRAM cache + PCRAM main memory
SRAM/DRAM/PCRAM cache + PCRAM main memory

2.5 3.0 3.5

(b) bzip2

Figure 8: Power-performance tradeoffs with disparate tech-
nologies for astar and bzip2

penalty with PCRAM main memory, leading to less power
efficiency than SRAM-only hierarchies with DRAM main
memory. A PCRAM cache is effective in theses applications
also. In lbm and milc, a 1GB PCRAM cache completely
holds the whole working set, and in mcf, a 1GB PCRAM
cache cuts off-chip traffic by half compared to the largest
SRAM cache (32MB).

4.4 Streaming Access Patterns

A cache is not effective for streaming access patterns; a pro-
gram scans a data array, which is much bigger than the
largest cache. As discussed, SpMV in MiniFE has such an
access pattern. The sparse matrix size is 1.5GB, and even
the largest PCRAM cache, only 1GB in our study, cannot
hold the whole working set. This results in the latency-
power tradeoff in Figure 10(a); DRAM and PCRAM caches
are worse than SRAM-only caches.

Recent research on cache management policies such as dy-
namic insertion policy (DIP) [19] and re-reference interval
prediction (RRIP) [4] can preserve a fraction of working set
in the cache for streaming access patterns. To incorporate
such advanced cache designs in our model, we use an alterna-
tive replacement policy (instead of LRU) in the hierarchical
cache model (Section 2.1). The alternative policy inserts a
cache line only when there are empty slots. Once all the 8
ways of a set are filled with valid cache lines, those 8 lines
are never replaced. This, relatively simple, policy does not
work for most cases but lets a fraction of the sparse matrix
stay in the cache hierarchy even if the whole sparse matrix

P
o

w
e

r
(m

W
)

103

104

0 5 10

AMAT (ns)

102

SRAM cache + DRAM main memory
SRAM cache + PCRAM main memory
SRAM/DRAM cache + PCRAM main memory
SRAM/DRAM/PCRAM cache + PCRAM main memory

15 20 25 30 35

(a) mcf

P
o

w
e

r
(m

W
)

103

104

AMAT (ns)

102

SRAM cache + DRAM main memory
SRAM cache + PCRAM main memory
SRAM/DRAM cache + PCRAM main memory
SRAM/DRAM/PCRAM cache + PCRAM main memory

0 2 4 6 8 10 12 14 16 18

(b) milc

P
o

w
e

r
(m

W
)

103

104

0 2 4

AMAT (ns)

6
102

SRAM cache + DRAM main memory
SRAM cache + PCRAM main memory
SRAM/DRAM cache + PCRAM main memory
SRAM/DRAM/PCRAM cache + PCRAM main memory

8 10 12 14 16 18

(c) lbm

Figure 9: Power-performance tradeoffs with disparate tech-
nologies for mcf, milc, and MiniFE.

is bigger than caches, mimicking DIP and RRIP. We apply
the alternative policy only to caches larger than 32MB.

Figure 10(b) compares MPKI vs. cache sizes with a normal
LRU replacement policy and the alternative policy. With
LRU, traffic does not reduce unless cache size is bigger than
the working set (1.5GB), whereas the alternative policy re-
duces traffic with caches ranging 128MB to 1GB.

We apply this traffic curve to the latency-power model
(Figure 10(c)). A 1GB PCRAM cache effectively suppresses
off-chip traffic; hence, the SRAM/DRAM/PCRAM cache
hierarchies with PCRAM main memory achieves the most

P
o

w
e

r
(m

W
)

103

104

AMAT (ns)

102

SRAM cache + DRAM main memory
SRAM cache + PCRAM main memory
SRAM/DRAM cache + PCRAM main memory
SRAM/DRAM/PCRAM cache + PCRAM main memory

6 10 12 14 15 8

(a) MiniFE

0.1

1

10

100

1000

Proc 128kB 1MB 8MB 64MB 512MB 4GB

M
P

K
I

Cache Size

LRU Alternative replacement

(b) MiniFE traffic with different replacement policies
P

o
w

e
r

(m
W

)

103

104

AMAT (ns)

102

SRAM cache + DRAM main memory
SRAM cache + PCRAM main memory
SRAM/DRAM cache + PCRAM main memory
SRAM/DRAM/PCRAM cache + PCRAM main memory

6 7 9 10 11 12 13 14 15 8

(c) MiniFE with an alternative replacement policy

Figure 10: MiniFE with an alternative replacement policy.

power efficient operating points and outperforms the SRAM-
only hierarchies with DRAM main memory.

5 Related Work

Our work builds on an extensive amount of prior work. This
includes research on analytical memory models and recent
research on NVM-based systems.

Memory models: Multilevel cache hierarchy models [15,
6] are focused on average memory access time but do not
consider power efficiency. They argue for two-level hierar-
chies as opposed to single-level cache. Our latency-power
model is based on these models but is extended to support
arbitrary number of cache levels and power estimation.

Jacob et al . developed a closed form solution for opti-
mal size of each cache level and suggested that the cheapest
memory level be increased in the first place [3]. This obser-

vation is in line with our analysis that incorporating a large
PCRAM (3D-stacked) cache is effective.

Moguls [26] is another memory model that considers band-
width and power (only dynamic power) in designing a mem-
ory hierarchy. Moguls uses the application-oblivious

√
2

model and do not analyze application-dependent behavior
in detail.

New byte-addressable NVM: Nonvolatile memories such
as PCRAM have been suggested as a scalable substitute for
DRAM in many papers [8, 21, 17] since DRAM scaling is ap-
proaching its limit. Qureshi et al . proposed a DRAM cache
to compensate for slow PCRAM main memory [21] and com-
bining SLC and MLC PCRAM [17]. Studies on NVM main
memory are focused on performance and reliability. Our
work optimizes cache hierarchies (as opposed to optimizing
a cache level), considering both performance and power.

A PCRAM-based cache is suggested by Joo et al . [5], fo-
cusing on PCRAM’s finite write endurance. Dong et al .
proposed 3D-stacked magnetic memory (MRAM) caches,
claiming better power efficiency [2]. The approach is not
thorough design space exploration including SRAM, DRAM,
and NVRAM as in our work.

6 Limitations and Future Work
We developed a latency-power model that explores the de-
sign space exhaustively, but the model has limitations. We
assumed an in-order core for performance and power estima-
tion, but modern processors have latency-hiding techniques:
out-of-order processing, non-blocking caches, simultaneous
multi-threading, prefetching, etc. For a system that can hide
memory latency, AMAT is not an adequate metric for per-
formance. We leave developing a better performance model
to future work.

We propose a PCRAM cache to increase cache capacity
without increasing static power. PCRAM (and other NVM
technologies) suffer from write endurance; a memory cell
has limited lifetime. Most authors assume endurance of 108

write cycles, but recently developed fully-confined PCRAM
cells have much longer lifetime (more than 1011 write cy-
cles) [7]. We can also combine wear-leveling [20], failure tol-
erance [23, 29, 24, 16] and write buffers (SRAM or DRAM)
to cope with write endurance.

Our estimate of poor power efficiency in SRAM-only hier-
archies is based on CACTI 6. A recent study on circuit-level
cache modeling revealed that SRAM leakage power can be
reduced with power control mechanisms [9]. We believe that
the big picture we present in this paper will not change sig-
nificantly even with aggressive power control techniques. We
leave incorporating various power reduction/control tech-
niques to future work.

7 Conclusions
We develop a latency-power model of memory hierarchies;
the proposed model reports both AMAT and power and is
yet simple enough to enable exhaustive search for identifying
latency-power tradeoffs.

We first use the model to compare cache hierarchies with
different depths. Our analysis shows that deep hierarchies
are less power efficient than flat hierarchies (2 or 3 levels) and
that large SRAM caches demand a large amount of static
power.

Then, we embrace new byte-addressable NVM technolo-
gies in our model. We corroborate prior work; NVM main

memory degrades performance due to high NVM latency,
and DRAM caches can make up for this penalty. But, large
DRAM caches (similar to large SRAM caches) draw a large
amount of static power, leading to poor power efficiency.
We suggest a 3D-stacked NVM cache; an NVM cache can
be even larger than SRAM or DRAM caches, while leakage
power is much less. We also discuss streaming access pat-
terns; combining NVM caches and advanced cache manage-
ment schemes can potentially reduce costly off-chip traffic
for streaming access patterns.

While there are several opportunities for refinement in
the proposed approach, we believe the co-design by model-
driven design space exploration is important and will lead
to a more optimized system design.

8 Acknowledgment

This material is based upon work supported by the Depart-
ment of Energy under Award Number DE - SC0005026.

9 Disclaimer

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or ser-
vice by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, rec-
ommendation, or favoring by the United States Government
or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

10 References

[1] Graph 500. http://www.graph500.org/.

[2] X. Dong, X. Wu, Y. Xie, Y. Chen, and H. Li. Stacking MRAM
atop microprocessors: An architecture-level evaluation. IET
Computers & Digital Techniques, 5(3), 2011.

[3] B. L. Jacob, P. M. Chen, S. R. Silverman, and T. N. Mudge.
An analytical model for designing memory hierarchies. IEEE
Transactions on Computers, 45:1180–1194, Oct. 1996.

[4] A. Jaleel, K. Theobald, S. C. Steely Jr., and J. Emer. High
performance cache replacement using re-reference interval
prediction (RRIP). In Proc. the 37th Ann. Int’l Symp.
Computer Architecture (ISCA), Jun. 2010.

[5] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie.
Energy- and endurance-aware design of phase change memory
caches. In Proc. the Conf. Design Automation and Test in
Europe (DATE), Mar. 2010.

[6] N. P. Jouppi and S. J. E. Wilton. Tradeoffs in two-level on-chip
caching. In Proc. the 21st Ann. Int’l Symp. Computer
Architecture (ISCA), Apr. 1994.

[7] I. S. Kim, S. L. Cho, D. H. Im, E. H. Cho, D. H. Kim, G. H.
Oh, D. H. Ahn, S. O. Park, S. W. Nam, J. T. Moon, and C. H.
Chung. High performance PRAM cell scalable to sub-20nm
technology with below 4F2 cell size, extendable to DRAM
applications. In Proc. the Symp. VLSI Technology (VLSIT),
Jun.

[8] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting
phase change memory as a scalable DRAM alternative. In Proc.
the 36th Ann. Int’l Symp. Computer Architecture (ISCA),
Jun. 2009.

[9] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi.
CACTI-P: Architecture-level modeling for SRAM-based
structures with advanced leakage reduction techniques. In Proc.

the IEEE/ACM Int’l Conf. Computer-Aided Design
(ICCAD), Nov. 2011.

[10] J. M. Lin, Y. Chen, W. Li, Z. Tang, and A. Jaleel. Memory
characterization of SPEC CPU 2006 benchmark suite. In Proc.
the 11th Workshop for Computer Architecture Evaluation of
Commercial Workloads (CAECW), Feb. 2008.

[11] G. H. Loh and M. D. Hill. Efficiently enabling conventional
block sizes for very large die-stacked DRAM caches. In Proc.
the 44th Ann. IEEE/ACM Int’l Symp. Microarchitecture
(MICRO), Dec. 2011.

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. PIN: Building
customized program analysis tools with dynamic
instrumentation. In Proc. the ACM Conf. Programming
Language Design and Implementation (PLDI), Jun. 2005.

[13] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi.
CACTI 6.0. Technical report, HP Labs., Apr. 2009.

[14] R. C. Murphy, A. Rodrigues, P. Kogge, and K. Underwood.
The implications of working set analysis on supercomputing
memory hierarchy design. In Proc. the International
Conference on Supercomputing (ICS), Jun. 2006.

[15] S. Przybylski, M. Horowitz, and J. Hennessy. Characteristics of
performance-optimal multi-level cache hierarchies. In Proc. the
16th Ann. Int’l Symp. Computer Architecture (ISCA), Jun.
1989.

[16] M. K. Qureshi. Pay-As-You-Go: Low overhead hard-error
correction for phase change memories. In Proc. the 44th
IEEE/ACM Int’l Symp. Microarchitecture (MICRO), Dec.
2011.

[17] M. K. Qureshi, M. Fraceschini, L. Lastras, and J. Karidis.
Morphable memory system: A robust architecture for
exploiting multi-level phase change memories. In Proc. the 37th
Ann. Int’l Symp. Computer Architecture (ISCA), Jun. 2010.

[18] M. K. Qureshi, M. Franceschini, and L. Lastras. Improving
read performance of phase change memories via write
cancellation and write pausing. In Proc. the 16th Int’l Symp.
High-Performance Computer Architecture (HPCA), Jan.
2010.

[19] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely Jr., and
J. Emer. Adaptive insertion policies for high-performance

caching. In Proc. the 34th Ann. Int’l Symp. Computer
Architecture (ISCA), Jun. 2007.

[20] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abail. Enhancing lifetime and security of
PCM-based main memory with start-gap wear leveling. In
Proc. the 42nd IEEE/ACM Int’l Symp. Microarchitecture
(MICRO), Dec. 2009.

[21] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable
high-performance main memory system using phase-change
memory technology. In Proc. the 36th Ann. Int’l Symp.
Computer Architecture (ISCA), Jun. 2009.

[22] Sandia National Laboratories. Mantevo project.
https://software.sandia.gov/mantevo/index.html.

[23] S. Schechter, G. H. Loh, K. Strauss, and D. Burger. Use ECP,
not ECC, for hard failures in resistive memories. In Proc. the
37th Ann. Int’l Symp. Computer Architecture (ISCA), Jun.
2010.

[24] N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and
H.-H. S. Lee. SAFER: Stuck-at-fault error recovery for
memories. In Proc. the 43rd IEEE/ACM Int’l Symp.
Microarchitecture (MICRO), Dec. 2010.

[25] Standard Performance Evaluation Corporation. SPEC CPU
2006. http://www.spec.org/cpu2006/, 2006.

[26] G. Sun, C. J. Hughes, C. Kim, J. Zhao, C. Xu, Y. Xie, and
Y.-K. Chen. Moguls: A model to explore the memory hierarchy
for bandwidth improvements. In Proc. the 38th Ann. Int’l
Symp. Computer Architecture (ISCA), Jun. 2011.

[27] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. S. Lee. An
optimized 3D-stacked memory architecture by exploiting
excessive, high-density TSV bandwidth. In Proc. the 16th Int’l
Symp. High-Performance Computer Architecture (HPCA),
Jan. 2010.

[28] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie. Design implications
of memristor-based RRAM cross-point structures. In Proc. the
Design, Automation and Test in Europe (DATE), Mar. 2011.

[29] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan,
N. P. Jouppi, and M. Erez. FREE-p: Protecting non-volatile
memory against both hard and soft errors. In Proc. the 17th
Int’l Symp. High-Performance Computer Architecture
(HPCA), Feb. 2011.

