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ABSTRACT
We study the problem of query containment of (unions of)
conjunctive queries over annotated databases. Annotations
are typically attached to tuples and represent metadata such
as probability, multiplicity, comments, or provenance. It is
usually assumed that annotations are drawn from a com-
mutative semiring. Such databases pose new challenges in
query optimization, since many related fundamental tasks,
such as query containment, have to be reconsidered in the
presence of propagation of annotations.

We axiomatize several classes of semirings for each of
which containment of conjunctive queries is equivalent to
existence of a particular type of homomorphism. For each of
these types we also specify all semirings for which existence
of a corresponding homomorphism is a sufficient (or neces-
sary) condition for the containment. We exploit these tech-
niques to develop new decision procedures for containment of
unions of conjunctive queries and axiomatize corresponding
classes of semirings. This generalizes previous approaches
and allows us to improve known complexity bounds.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query process-
ing ; H.2.1 [Database Management]: Data Models

Keywords
Annotation, Provenance, Query Optimization

1. INTRODUCTION
Relational database annotation is rapidly coming to mar-

ket. The expressive power of curated [2] and probabilistic
databases [12, 21], various forms of provenance [9, 3, 15], and
even bag semantics as a way to model standard SQL [6], de-
rives from an annotation attribute with special behaviour.
In [15] it was observed that in all of these cases annotations
propagate through queries as we expect if the domain of
annotations has the structure of a commutative semiring.
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Every application that supports annotations should be
able to compare queries to perform standard tasks such as
query rewriting and query optimization. However, as noted
in [17, 6] for the particular case of bag semantics and quite
generally in [14], the introduction of annotations requires a
complete rethinking of these kinds of tasks: a pair of queries
may behave differently when posed over ordinary relations or
over annotated relations; the behaviour can be different even
for different semirings. Hence a general theory is needed to
explain how queries behave over annotated relations, and to
provide query optimization and query rewriting techniques,
regardless of the semiring chosen for annotations.

In this paper, we study the problem of containment of
queries, specifically for the classes of conjunctive queries
(CQs) and unions of conjunctive queries (UCQs). For this
purpose we formally generalize the standard notion of con-
tainment for relational databases so that it subsumes previ-
ously studied containments for bag semantics [17, 6] and sev-
eral naturally ordered semirings [14]. We study in our view
the most general reasonable notion of containment, based on
a few intuitive axioms which any containment should satisfy.

The ideal would be to obtain a decision procedure to de-
cide containment of CQs or UCQs, for an arbitrary anno-
tation semiring. However, there is evidence that obtaining
such a procedure for all semirings is a truly challenging, if
not impossible, task. Indeed, this would require solving con-
tainment for bag semantics, which is undecidable for UCQs
[17] (and even for CQs with inequalities [18]), and is a long-
standing open problem for CQs [6, 17, 1, 7]. With these
observations in mind, we instead ask the following, narrower
question: are there reasonable classes of semirings for which
we can prove that containment of CQs or UCQs is decid-
able? In this paper we answer this question positively, by
finding several such classes. Our main results generalize and
extend previous work [14, 13] unifying how semantic prop-
erties of query containment link to syntactic properties of
different types of homomorphisms between queries. We also
show that these classes are of importance in practice, as they
contain the majority of the annotation semirings that have
been proposed.

In Sec. 3 we begin our study with containment of CQs.
For standard relational databases (which can be modelled
by a set semantics semiring consisting of just two elements
true and false), query containment corresponds precisely to
the NP-complete problem of deciding whether there exists
a homomorphism between these queries [5]. Thus, the nat-
ural starting point of our search for decidable classes is to
ask for which semirings the CQ containment problem coin-



cides with CQ containment for the usual set semantics. This
question was partially answered in [17], where for semirings
which are so called type A systems, containment was shown
to be equivalent to the existence of a homomorphism. We
show that it is possible to describe the class Chom of all such
semirings by two simple axioms: idempotence of multiplica-
tion and annihilation of the multiplicative identity. Inter-
estingly, this class corresponds precisely to the class of type
A′ systems [17], for which such a characterization was open.

Continuing our search for decidable classes, in Sec. 4 we
consider those classes obtained by relaxing the axioms for
Chom. In Sec. 4.1 to 4.4 we show that for each of these
classes there exists a well-known natural type of homomor-
phism that characterizes the class, but only as a sufficient
condition for containment of CQs. As an example, consider
the class of semirings that satisfy only the annihilation ax-
iom. In Sec. 4.2 we demonstrate that this class contains pre-
cisely all the semirings for which the existence of an injective
homomorphism is a sufficient condition for containment of
two CQs. A sufficient condition does not guarantee the de-
cidability of the containment problem; one needs a necessary
condition as well. For this purpose, we describe the largest
class for which an injective homomorphism is necessary for
containment of CQs. Thereby, we have that for all semirings
in the intersection of these two classes, the existence of an
injective homomorphism is both a necessary and sufficient
condition for the containment of two CQs, resulting in a
class of semirings for which containment is decidable.

We establish similar results for several other classes of
semirings obtained by relaxing the axioms that define the
class Chom, and show how these classes are characterized by
other well known types of homomorphism. This gives us de-
cision procedures for the corresponding classes of semirings.
We provide tight complexity bounds for these procedures:
all of them are NP-complete, just as for the class Chom [5].

To describe some of these classes, we introduce the no-
tion of CQ-admissible polynomials. A polynomial is CQ-
admissible if it can be obtained by evaluating a CQ over a
database annotated with variables. In Sec. 4.5 we give a syn-
tactic characterization of these polynomials, which allows us
to axiomatize several classes of semirings. This novel con-
cept is of independent interest; e.g. in [19] the properties of
such polynomials were used implicitly for effectively storing
and manipulating the provenance of CQ results.

Moving beyond homomorphisms, in Sec. 4.6 we also find
several semirings for which containment can be solved via a
small model property, by looking for a small enough database
witness for absence of containment. This results in new
decision procedures to solve containment of CQs, for a wide
range of semirings that had not been previously addressed.

In Sec. 5 we develop decision procedures to solve the con-
tainment of UCQs, which naturally extend the procedures
we used for the case of CQs. In this respect, most of the ex-
isting positive results correspond to semirings for which one
can decide containment of UCQs by checking their elements
locally, one by one [14]. We identify the relationship of this
property with idempotence of the semiring’s addition, which
gives us a decision procedure for containment of UCQs for
several classes of semirings, including Chom. However, for
other classes this simple local method does not work. To
overcome its limitations, we introduce the notion of a com-
plete description of a UCQ (inspired by [11] and [8]), which
is a union of special CQs with inequalities, equivalent to the

original UCQ. This allows us to identify classes of semirings
for which a modified local method works, though applied
not to UCQs themselves but to their complete descriptions.

Complete descriptions open up new possibilities for de-
ciding containment of UCQs over different semantics. Our
machinery allows us to devise in Sec. 5.2 a syntactic con-
dition for checking containment of UCQs for the important
semiring of provenance polynomials [15], for which only a
small model property based approach was known [14]; and
based on this, to improve the complexity upper bound. Also,
complete descriptions allow us to improve the existing suf-
ficient and necessary conditions for containment of UCQs
over bag semantics.

2. PRELIMINARIES
Commutative semirings An algebraic structure K =
〈K,⊕,⊗, 0, 1〉 with binary operations sum ⊕ and product
⊗ and constants 0 and 1 is a (commutative) semiring iff
〈K,⊕, 0〉 and 〈K,⊗,1〉 are commutative monoids1 with iden-
tities 0 and 1 respectively, ⊗ is distributive over ⊕, and
a⊗0 = 0 holds for each a ∈ K. It will be convenient for
us to consider only nontrivial semirings, i.e. semirings such
that 0 6= 1. We use the symbols

∑
and

∏
to denote sum

and product of sets of semiring elements in the usual way.
K-relations A schema S is a finite set of relational sym-

bols, each of which is assigned a non-negative arity. For a
semiring K = 〈K,⊕,⊗, 0,1〉 and an infinite domain D of
constants, a K-instance I over a schema S assigns to each
relational symbol R from S of arity m a K-relation RI , which
is a (total) function from the set of tuples Dm to K such that
its support, i.e. the set {t | t ∈ Dm, RI(t)) 6= 0}, is finite.
We call RI(t) the annotation of the tuple t in RI .

Queries A conjunctive query (CQ) Q over a schema S is
an expression of the form ∃v φ(u,v), where u is a list of free
variables, v is a list of existential variables and φ(u,v) is a
multiset of relational atoms over S using variables u∪v. As
usual we write φ(u,v) = R1(u1,v1), . . . , Rn(un,vn), where
u1∪ . . .∪un = u and v1∪ . . .∪vn = v, keeping in mind that
Ri and Rj in this expression can be the same symbol. A
union of conjunctive queries (UCQ) Q is a multiset of CQs
over the same schema and the same set of free variables.

Evaluations For CQ Q = ∃v R1(u1,v1), . . . , Rn(un,vn)
and a tuple t, denote by V(Q, t) the set of all mappings f
from u ∪ v to the domain D such that f(u) = t. Given a
K-instance I, the evaluation of Q on I for t is the value

QI(t) =
∑

f∈V(Q,t)

∏
1≤i≤n

RIi (f(ui,vi)).

Similarly, the evaluation of a UCQ Q on I for t is

QI(t) =
∑
Q∈Q

QI(t).

From this definition it follows that if Q = ∅ then QI(t) = 0.

3. GENERAL FRAMEWORK

3.1 K-containment and positive semirings
As noted in [15], the introduction of annotations on rela-

tions requires a complete rethinking of the notions of query

1A commutative monoid is a set with an associative and
commutative binary operation and an identity element.



optimization and query rewriting. In particular, it was first
discovered in [6] that two queries that are equivalent when
posed over ordinary relations may not be equivalent when
evaluated on K-relations. Furthermore, for two different
semirings K1 and K2, two queries may be equivalent under
K1-relations, but not equivalent under K2-relations.

Our main aim is to explore the problem of query contain-
ment over different K-relations. First we need to formally
specify what we mean by “equivalence” and “containment”
of queries. The notion of equivalence is naturally formalised
as follows: given a semiring K, UCQs Q1 and Q2 over the
same schema are K-equivalent (denoted Q1 ≡K Q2) iff for
every K-instance I and tuple t it holds that QI

1(t) = QI
2(t).

However, to study containment of queries over some semir-
ing K, we should be able to compare elements of K not only
for equality. Therefore, we assume that the semiring K is
equipped with a partial order2 �K. This allows us to define
when a UCQ Q1 is K-contained in a UCQ Q2, which we
denote by Q1 ⊆K Q2:

Q1 ⊆K Q2 ⇐⇒ ∀I ∀t QI
1(t) �K QI

2(t).

We always assume that �K is minimal with respect to ⊆K,
i.e. there is no subrelation of �K that produces the same
K-containment. However, for some partial orders the above
definition results in a rather spartan notion of K-contain-
ment. For example, by considering the usual order ≤ on the
semiring Z of integers, one can easily verify that the empty
UCQ is not Z-contained in any non-empty UCQ.

Thus, we need to restrict the class of partially ordered
semirings that we consider for our study. In order to do so,
we list four intuitive requirements that, in our view, any def-
inition of K-containment should satisfy, and then identify all
the semirings K equipped with partial orders �K for which
the definition of K-containment is guaranteed to satisfy our
requirements. These requirements are as follows:

(C1) ⊆K is a preorder, i.e. reflexive and transitive;

(C2) Q1 ≡K Q2 iff Q1 ⊆K Q2 and Q2 ⊆K Q1;

(C3) ∅ ⊆K Q holds for all Q;

(C4) if Q1 ⊆K Q2 then Q1 ∪Q3 ⊆K Q2 ∪Q3 for any Q3.

Note that requirement (C3) rules out the example with Z
and ≤. It turns out that we can easily axiomatize the class
of semirings with partial orders that have K-containments
satisfying (C1) – (C4). The following proposition says that
this class consists of all positive semirings, i.e. semirings K =
〈K,⊕,⊗, 0, 1〉 equipped with a partial order �K, such that

- 0 �K a for all a ∈ K, and

- a �K b⇒ a⊕ c �K b⊕ c for all a, b, c ∈ K.

Proposition 3.1 A semiring K equipped with a partial or-
der �K is positive iff the corresponding K-containment ⊆K
satisfies requirements (C1) – (C4).

We assume for the rest of the paper that all semirings are
positive and denote the class of such semirings by S.

We focus in this work on the following decision problems:

CQ K-Containment UCQ K-Containment

Input : CQs Q1, Q2 Input : UCQs Q1, Q2

Question: Is Q1 ⊆K Q2? Question: Is Q1 ⊆K Q2?

2A partial order is a transitive, reflexive and antisymmetric
binary relation.

In particular, we are interested in classifying the semirings
in S for which different conditions on CQs (and UCQs) are
sufficient for K-containment, and also for which semirings
they are necessary. If for a semiring K such a condition is
both sufficient and necessary, and it is possible to check the
condition algorithmically, then we have a decision procedure
for K-containment.

3.2 Naturally ordered semirings and
provenance polynomials

In [14] it was noted that in most semantics considered so
far, including set and bag semantics, the notion of contain-
ment is based on natural orders of the semirings. A semiring
K = 〈K,⊕,⊗,0, 1〉 is naturally ordered iff the preorder �nat

K ,
defined as a �nat

K b ⇐⇒ ∃c a⊕ c = b, is a partial order. In
principle, this condition appears to be too restrictive, and
for this reason we have opted for the more general approach
based on positive semirings. It is straightforward to show
that any naturally ordered semiring is a positive semiring.
Thus, our approach is general enough to include all previous
work, as far as we are aware.

In [14] the problem of K-containment of CQs and UCQs
was considered for several naturally ordered semirings, in-
cluding the one known as the semiring of provenance poly-
nomials, N [X] = 〈N[X],+,×, 0, 1〉. This is the set N[X] of
polynomials over a set of variables X, with natural number
coefficients, equipped with the usual operations + and ×.
In [15] it was pointed out that this semiring (without any
order) is special among such semirings since it is “most
general”, i.e. possesses the universal property : for any (un-
ordered) semiring K = 〈K,⊕,⊗, 0,1〉 any function ν : X →
K can be uniquely extended to a morphism Evalν : N[X]→
K, i.e. a mapping between semirings which preserves all
the operations and relations (including constants 0 and 1).
In [14] it was shown that N [X], now with its natural order,
is universal for all naturally ordered semirings. It turns out
that this is also true for all (positive) semirings.

Proposition 3.2 Given a set of variables X, N [X] is uni-
versal for the set S of all (positive) semirings.

Based on this property, we can formulate different univer-
sal axioms on semirings, involving the order �K, in terms
of N [X]. Given a semiring K = 〈K,⊕,⊗, 0, 1〉 from S, a
set X of n variables, and polynomials P1 and P2 from N[X],
we write P1 �K P2 iff for all values a1, . . . , an from K,
the inequality P1(a1, . . . , an) �K P2(a1, . . . , an) holds. Here
P1(a1, . . . , an) and P2(a1, . . . , an) denote the valuations of
P1 and P2 over values a1, . . . , an. Since �K is a partial or-
der, we can also write P1 =K P2 for P1 �K P2 ∧ P2 �K P1.
We will use such polynomial notation throughout the paper.

3.3 Containment by homomorphisms
The study of query containment in the context of query

optimization had begun for relational databases by the 1970s
[5]. These databases can be naturally modelled by B-rela-
tions, where B = 〈{false, true},∨,∧, false, true〉 is the set
semantics semiring. Here a tuple is annotated with true iff
it is in the relation and false otherwise. For B-containment
the natural order�B is assumed, which is defined as false �B
true. A CQ Q1 is B-contained in a CQ Q2 iff one can find a
homomorphism from Q2 to Q1, by the classical result of [5].
Given CQs Q1 = ∃v1 φ1(u1,v1) and Q2 = ∃v2 φ2(u2,v2), a
homomorphism (also known as containment mapping) from



Q2 to Q1 is a function h : u2 ∪ v2 → u1 ∪ v1 such that
h(u2) = u1 and for each atom R(u,v) from φ2(u2,v2), the
atom R(h(u,v)) is in φ1(u1,v1). A homomorphism extends
to atoms and sets of atoms in the usual way. We write
Q2 → Q1 iff there exists a homomorphism from Q2 to Q1.

Based on the results of [14] or [17] it is straightforward to
show that the existence of a homomorphism between CQs is
necessary for their K-containment over any semiring K from
S. Thus, a first natural question to ask is: which semirings
behave the same as B with respect to containment of CQs,
i.e. for which semirings K is it the case that Q2 → Q1 is suf-
ficient for Q1 ⊆K Q2? This question was answered partially
in [15, 14, 17]. In [13] it was shown that this correspondence
holds if K is a distributive bilattice. As the main result of
this section we show that it is possible to axiomatize the
class of all semirings for which K-containment of CQs coin-
cides with the usual set semantics containment.

Denote by Chom the class of semirings K that satisfy the
following axioms (using the convenient polynomial notation
introduced at the end of Sec. 3.2, i.e. assuming that all vari-
ables are universally quantified):

1. (⊗-idempotence) x× x =K x;

2. (1-annihilation) 1 + x =K 1.

Next we will see that Chom contains exactly all semirings
that behave like set semantics, w.r.t. K-containment of CQs.

Theorem 3.3 The following are equivalent:

- semiring K belongs to Chom;

- Q1 ⊆K Q2 iff Q2 → Q1, for all CQs Q1 and Q2.

Deciding the existence of a homomorphism between CQs
is well known to be NP-complete [5]. We therefore obtain
the following corollary.

Corollary 3.4 If K ∈ Chom then CQ K-Containment is
NP-complete.

Many semirings used for annotations are distributive lat-
tices, and hence belong to Chom. Besides the set semantics
B, they include the semiring of positive boolean expressions
PosBool[X] described in [15], which is used in incomplete
databases [16], and the probabilistic semiring P[Ω] used in
event tables [12, 21]. Also, the class Chom corresponds pre-
cisely to the class of type A′ systems introduced in [17]; in
fact, Thm. 3.3 answers the question from this paper, of what
the decision procedure is for CQ containment over such sys-
tems. However, many annotation semirings do not belong
to Chom, including provenance polynomials N [X], the why-
provenance semiring Why[X] from [3], or bag semantics N
[6]. In the next section, we study what happens when we
relax the conditions for Chom.

4. K-CONTAINMENT OF CQS
From a practical point of view, it would be useful to have

a decision procedure for K-containment of CQs for an ar-
bitrary semiring K. However, there is evidence that ob-
taining such a procedure for all semirings not in Chom is
a truly challenging, if not impossible, task. The semiring
N = 〈N0,+,×, 0, 1〉 of natural numbers with zero, with the
usual arithmetic operations and the natural order, is used
to model bag semantics [15]. A universal decision procedure
for CQ K-Containment would thus require being able to
solve this problem for the special case of bag semantics N ,

which is a long-standing open problem [6, 17]. It is also not
difficult to show that there are infinitely many semirings K
for which the K-containment of CQs is at least as hard as
for bag semantics.

With these observations in mind, we instead ask the fol-
lowing, narrower question: are there any reasonable classes
of semirings for which we can prove that K-containment of
CQs is decidable? We have already pointed out that this
is the case for the class Chom, since for all semirings K in
Chom the problem of K-containment can be solved by de-
ciding the existence of a homomorphism. A natural starting
point for our search is therefore to relax the axioms of the
class Chom. We thus obtain the class of semirings that sat-
isfy the ⊗-idempotence axiom, that we denote by Shcov; the
class of semirings that satisfy the 1-annihilation axiom, de-
noted by Sin; and, if we relax both axioms, the class S of all
(positive) semirings.

We show that for each of these classes there exists a natu-
ral type of homomorphism that characterizes the class, but
only as a sufficient condition for K-containment of CQs. In
the search for classes similar to Chom, we then provide the
largest class of semirings for which each of these conditions
is necessary for K-containment, resulting in analogues of
Thm. 3.3 for different classes of semirings and different types
of homomorphisms.

After Shcov, Sin, and S we look at one more class, that
we denote by Ssur. This class lies “between” Shcov and S, in
the sense that it can be obtained from Shcov by a partial,
instead of complete, relaxation of the ⊗-idempotence axiom.
The class Ssur is interesting in its own right, since it can be
characterized by the well studied notion of surjective homo-
morphism ([6, 17]) as yielding a sufficient condition for CQ
N -containment. In the same fashion, we identify the largest
class of semirings for which this condition is also necessary.

Notice that, up to this point, we have only considered
solving the K-containment problem by means of finding dif-
ferent types of homomorphism between CQs. Thus, it is
natural to ask whether there exists a different approach for
solving this problem. We address this question at the end
of this section, and show that there exists a large class of
semirings which possesses a small model property : if a CQ
Q1 is not K-contained in a CQ Q2, then this is witnessed by
a small enough K-instance.

4.1 Containment by homomorphic covering
We begin with the class Shcov of semirings satisfying the
⊗-idempotence axiom. For these semirings, we exploit the
notion of homomorphic covering: given CQs Q1 and Q2, we
say that Q2 homomorphically covers Q1, and write Q2⇒Q1,
if for every atom R(u,v) in Q1 there exists a homomorphism
h from Q2 to Q1 with R(u,v) in the image of h.

This type of homomorphism arose in the context of query
optimization as a necessary condition for N -containment of
CQs over bag semantics N [6]. It was also noted that exis-
tence of a homomorphic covering is not sufficient to guaran-
tee N -containment. Homomorphic coverings were also used
in [14] to show that Q2 ⇒ Q1 is both necessary and sufficient
for Q1 ⊆Lin[X] Q2, where Lin[X] is the lineage semiring [9].

Next we establish axiomatic bounds for semirings to have
homomorphic covering as both a sufficient and necessary
condition for K-containment of CQs. Our next result shows
that the class Shcov captures precisely all semirings for which
Q2 ⇒ Q1 is a sufficient condition.



Proposition 4.1 The following are equivalent:

- semiring K belongs to Shcov;

- Q2 ⇒ Q1 implies Q1 ⊆K Q2, for all CQs Q1, Q2.

Of course, a sufficient condition itself does not guarantee
the decidability of the K-containment problem; one needs
such a condition to be necessary as well. Since one can
easily find semirings in Shcov for which the existence of a
homomorphic covering is not a necessary condition (for ex-
ample, any semiring in Chom), our only hope is to describe
the largest class for which a homomorphic covering is neces-
sary for K-containment of CQs. Denote by Nhcov the class
of semirings K such that for every n, k ≥ 1 it holds that

x1 × . . .× xn × y 6�K (x1 + . . .+ xn)k

(again, assuming all variables to be universally quantified).

Proposition 4.2 The following are equivalent:

- semiring K belongs to Nhcov;

- Q1 ⊆K Q2 implies Q2 ⇒ Q1, for all CQs Q1, Q2.

Therefore, bag semantics N is in Nhcov, but not in Shcov.
However, Lin[X] is in both, and we have the following result
for the class Chcov = Shcov ∩Nhcov

3 of all semirings which
behave the same as Lin[X] w.r.t. K-containment of CQs.

Theorem 4.3 The following are equivalent:

- semiring K belongs to Chcov;

- Q1 ⊆K Q2 iff Q2 ⇒ Q1, for all CQs Q1 and Q2.

We also know that checking for homomorphic covering
between CQs is an NP-complete problem [14]. This gives us
the following result.

Corollary 4.4 If K ∈ Chcov then CQ K-Containment is
NP-complete.

4.2 Containment by injective homomorphism
In this section we consider the class Sin of semirings which

satisfy the 1-annihilation axiom. This class was consid-
ered implicitly in previous studies of containment on K-
relations [15, 14, 17], and has notable applications. In the
context of the Semantic Web it was shown in [4] that Sin

is the class of all semirings which can be safely used as an-
notation domains for RDF data while respecting the infer-
ence system of RDFS. An extension of the SPARQL query
language for querying annotated RDF data then followed
in [22], entailing a need to solve optimization problems for
this class of semirings. As an example of a semiring which
is in Sin, but not in Chom, we give the tropical semiring
T + = 〈N0 ∪ {∞},min,+,∞, 0〉 (with its natural order).

To study the class Sin, we introduce the notion of injec-
tive homomorphism: given CQs Q1 = ∃v1 φ1(u1,v1) and
Q2 = ∃v2 φ2(u2,v2), a homomorphism h from Q2 to Q1 is
injective (or one-to-one) if h is injective on atoms, i.e. the
multiset of atoms h(φ2(u2,v2)) is contained in the multi-
set of atoms φ1(u1,v1). We write Q2 ↪→ Q1 iff there exists
an injective homomorphism from Q2 to Q1. Similar to the
case of Shcov, the following proposition shows that the class
Sin is precisely the class of semirings for which the existence
of an injective homomorphism is a sufficient condition for
K-containment of CQs.

3Since ⊗-idempotence defines Shcov, the exponent k may be
omitted from the necessary condition of Chcov.

Proposition 4.5 The following are equivalent:

- semiring K belongs to Sin;

- Q2 ↪→ Q1 implies Q1 ⊆K Q2, for all CQs Q1, Q2.

Unfortunately, as shown in the following example, Q2 ↪→
Q1 is just a sufficient, but not always necessary condition
for CQ K-containment for a semiring K from Sin\Chom.

Example 4.6 Consider the conjunctive queries

Q1 = ∃u, v, w R(u, v), R(u,w), Q2 = ∃u, v R(u, v), R(u, v).

We will see in Sec. 4.6 that Q1 is T +-contained in Q2. How-
ever, there is no injective homomorphism from Q2 to Q1.

To identify the largest class for which the existence of an
injective homomorphism is a necessary condition for CQ K-
containment, we need the following definition.

Definition 4.7 A polynomial P from N[X] is CQ-admis-
sible iff there exists a CQ Q, an N [X]-instance I each tuple
of which is annotated with either a unique variable from X
or 0, and a tuple t, such that QI(t) = P.

Essentially, a polynomial is CQ-admissible if it is possible
to obtain it by a CQ on an abstractly tagged instance ([15]).

We write Ncq[X] for the set of all CQ-admissible poly-
nomials with variables X. We will use this notion inten-
sively in the rest of this paper; for now, we have opted to
give a non-constructive definition, but we will give an alge-
braic characterization of Ncq[X] in Sec. 4.5. Next we exploit
the connection between CQ K-containment and comparison
of polynomials from Ncq[X] to define precisely the class of
semirings for which an injective homomorphism is a corre-
sponding necessary condition.

Denote by Nin the class of semirings K for which for
every polynomial P from Ncq[X] and any set of variables
x1, . . . , xn, the inequality

x1 × . . .× xn �K P

implies that there exists a subset xi1 , . . . , xim of the variables
x1, . . . , xn such that P contains the monomial xi1×. . .×xim .

Proposition 4.8 The following are equivalent:

- semiring K belongs to Nin;

- Q1 ⊆K Q2 implies Q2 ↪→ Q1, for all CQs Q1, Q2.

Thus, Prop. 4.5 and 4.8 give us decidability of CQ K-
Containment for all semirings K from Cin = Sin ∩ Nin.
Moreover, by showing that deciding the existence of an injec-
tive homomorphism between queries is NP-complete, we can
say the same about K-containment of CQs for any K ∈ Cin.

Theorem 4.9
(1) The following are equivalent:

- semiring K belongs to Cin;

- Q1 ⊆K Q2 iff Q2 ↪→ Q1, for all CQs Q1 and Q2.

(2) If K ∈ Cin then CQ K-Containment is NP-complete.

Having this result, we however note that there are inter-
esting semirings (including the tropical semiring T +), which
lie in Sin, but neither in Chom nor in Cin. In Sec. 4.6 we
will see how to obtain decidability for some semirings in Sin,
but at the cost of higher complexity.



4.3 Containment by bijective homomorphism
We continue with the class obtained from Chom by relax-

ing both of its axioms. This is just the class of all (posi-
tive) semirings S. For this class we use the notion of bijec-
tive homomorphism. Given CQs Q = ∃v1 φ1(u1,v1) and
Q2 = ∃v2 φ2(u2,v2), we say that a homomorphism h from
Q2 to Q1 is bijective (or exact) if it is a bijection on atoms,
i.e. the multiset of atoms h(φ2(u2,v2)) is the same as the
multiset of atoms φ1(u1,v1). We write Q2 ↪→→ Q1 if there
exists a bijective homomorphism from Q2 to Q1.

As shown in [14], the condition Q2 ↪→→ Q1 is both suffi-
cient and necessary for N [X]-containment of CQs over the
provenance polynomials semiring N [X]. Since N [X] is uni-
versal for S by Prop. 3.2, we can conclude that this condition
is sufficient for CQ K-containment for an arbitrary semiring
K, i.e. Q2 ↪→→ Q1 always implies Q1 ⊆K Q2.

From [14] we also know that existence of a bijective homo-
morphism is necessary for B[X]-containment of CQs, where
B[X] = 〈B[X],+,×, 0, 1〉 is the semiring of boolean prove-
nance polynomials, i.e. polynomials over X with boolean co-
efficients from B = {false, true}. This means that B[X]
behaves the same as N [X] w.r.t. K-containment of CQs. As
we have seen in previous sections, this is not the case for all
semirings. Also, one can easily show that the existence of a
bijective homomorphism is not necessary for bag semantics
N , or even for the semiring R+ of non-negative reals with
the usual operations and order.

Our next aim is to identify all semirings which behave as
N [X]. To do so we again exploit the notion of CQ-admissible
polynomials. Denote by Cbi the class of all semirings K for
which for every polynomial P from Ncq[X] and any set of
variables x1, . . . , xn, the inequality

x1 × . . .× xn �K P

implies that P contains the monomial x1 × . . .× xn.

Theorem 4.10 The following are equivalent:

- semiring K belongs to Cbi;

- Q1 ⊆K Q2 iff Q2 ↪→→ Q1, for all CQs Q1 and Q2.

In particular, notice that both B[X] and N [X] belong to
Cbi. Thus, this theorem can be seen as a generalization
of the results of [14]. There it was also shown that N [X]-
containment of CQs is an NP-complete problem. We can
now extend this result to the entire class Cbi.

Corollary 4.11 If K ∈ Cbi then CQ K-Containment is
NP-complete.

This corollary completes our study of K-containment of
CQs for the classes of semirings obtained from Chom by re-
laxing its axioms. Next we will look at another class, which
corresponds to one more well-known type of homomorphism.

4.4 Containment by surjective homomorphism
Looking back to the bag semantics semiring N , we know

that it lies in the class Nhcov for which homomorphic cov-
ering is necessary, but neither in Chcov nor in Cbi. How-
ever, there does exist a well-known sufficient condition for
N -containment, other than just a bijective homomorphism.
This condition is the existence of a surjective homomor-
phism ([6, 17]): given CQs Q1 = ∃v1 φ1(u1,v1) and Q2 =
∃v2 φ2(u2,v2) a homomorphism h from Q2 to Q1 is surjec-
tive (or onto) if h is a surjection on atoms, i.e. the multiset

of atoms φ1(u1,v1) is contained in the multiset of atoms
h(φ2(u2,v2)). We write Q2 � Q1 iff there exists a surjec-
tive homomorphism from Q2 to Q1.

It is therefore natural to ask for which semirings Q2 � Q1

is sufficient for K-containment of CQs, and for which this is
necessary. Besides N , this condition is sufficient for a larger
class of semirings denoted type B systems [17]. From [14] it is
known that Q2 � Q1 is equivalent to Why[X]- and Trio[X]-
containment of CQs, where Why[X] is a semiring capturing
why provenance of [3], and Trio[X] is a semiring for the
provenance model used in the Trio project [10]. However,
the exact axiomatic bounds for these classes of semirings
were not previously known.

As usual, we start by axiomatizing semirings which have
Q2 � Q1 as a sufficient condition. Denote by Ssur the class
of semirings that satisfy the axiom:

1′. (⊗-semi-idempotence) x× y �K x× x× y.

This class can be obtained by relaxing the ⊗-idempotence
axiom of Shcov, but only partially, i.e. Shcov ⊂ Ssur. Other
than the semirings already mentioned as belonging to Shcov,
it contains the semiring T − = 〈N0 ∪ {−∞},max,+,−∞, 0〉
known as the schedule (or max-plus) algebra (with its natu-
ral order). As desired, the class Ssur corresponds to all the
semirings for which the existence of a surjective homomor-
phism is a sufficient condition for K-containment of CQs.

Proposition 4.12 The following are equivalent:

- semiring K belongs to Ssur;

- Q2 � Q1 implies Q1 ⊆K Q2, for all CQs Q1, Q2.

As we saw for the bag semantics semiring N , the exis-
tence of a surjective homomorphism is not necessary for
N -containment, but homomorphic covering is. The same
can be said about T −, but not Why[X] or Trio[X]. Hence,
again we need to axiomatize the class of semirings for which
Q2 � Q1 is necessary for K-containment of CQs. For this
we exploit once more the notion of CQ-admissible polyno-
mials. Denote by Nsur the class of semirings K for which
for every polynomial P from Ncq[X] and any set of variables
x1, . . . , xn, the inequality

x1 × . . .× xn �K P

implies that there exist exponents m1, . . . ,mn ≥ 1 such that
P contains the monomial xm1

1 × . . .× xmn
n .

Proposition 4.13 The following are equivalent:

- semiring K belongs to Nsur;

- Q1 ⊆K Q2 implies Q2 � Q1, for all CQs Q1, Q2.

For those semirings K that do belong to Csur = Ssur∩Nsur

(like Why[X] and Trio[X]), we have once again a decision
procedure for K-containment of CQs. This is summarized
by the following theorem.

Theorem 4.14 The following are equivalent:

- semiring K belongs to Csur;

- Q1 ⊆K Q2 iff Q2 � Q1, for all CQs Q1 and Q2.

The complexity follows from the fact that checking a sur-
jective homomorphism between CQs is NP-complete ([6]).

Corollary 4.15 If K ∈ Csur then CQ K-Containment
is NP-complete.



As mentioned in the introduction, we leave open the prob-
lem of finding decision procedures for all semirings that be-
long to Ssur, but not to Nsur, such asN or T −. In Sec. 4.6 we
show that for some of these semirings, such as T −, the prob-
lem of K-containment of CQs can be solved using a different
approach, albeit with higher computational complexity.

We finish this section with a remark that a homomorphism
is bijective iff it is both injective and surjective. Thus, we
obtain that Cbi = Nin ∩Nsur.

4.5 CQ-admissible polynomials
We defined the evaluation of a CQQ = ∃v R1(u1,v1), . . . ,

Rn(un,vn) on a K-instance I for a tuple t as

QI(t) =
∑

f∈V(Q,t)

∏
1≤i≤n

RIi (f(ui,vi)).

Thus, the evaluation of a CQ on aN [X]-instance with unique
variables from the set X as annotations is a polynomial over
X. In Def. 4.7 we called such polynomials CQ-admissible.
We heavily used this notion in the definitions of the classes
Nin, Nbi, and Nsur. The goal of this section is to give a con-
structive algebraic characterization of the set Ncq[X] of all
CQ-admissible polynomials. As we mentioned in the intro-
duction, this notion is of independent interest: for instance,
it was implicitly used in [19].

From the definition of evaluation we immediately obtain
that every CQ-admissible polynomial must be homogeneous.
Moreover, let Q be a CQ consisting of k atoms, and I
be an N [X]-instance with tuples annotated with variables
X = {x1, . . . , xn}, such that the mappings in the set V(Q, t)
allow us to obtain any possible combination of images of
the atoms of Q to non-zero annotated tuples of I. Then
QI(t) = (x1 + . . . + xn)k. Therefore, every P from Ncq[X]
of degree k satisfies P �N [X] (x1 + . . . + xn)k. (This prop-
erty allowed us to formulate the axiom for the class Nhcov

in Sec. 4.1 without reference to CQ-admissible polynomials.)
Hence polynomials such as 2x and x2 + y are not in Ncq[X].

The polynomials x2, 2xy and x + y satisfy the require-
ments above, and it is not difficult to construct CQs which
admit them. Unfortunately, these are not the only require-
ments: the polynomial x2 + xy + y2 satisfies them, but can
be proved not to be in Ncq[X]. In order to present the
precise characterization, we need an auxiliary notion: for a
set of variables X an ordered monomial of degree n (or o-

monomial) is a string from Xn. For an o-monomial
#–

M we

denote by
#–

M[i] the variable appearing in its i-th position.

Proposition 4.16 A polynomial P is in Ncq[X] iff it can be
represented in a form

#–

P =
∑

1≤`≤m

#–

M`, such that

1.
#–

M`, 1 ≤ ` ≤ m, are pairwise distinct o-monomials over X
of the same degree n (here concatenation in

#–

M` as a string
is interpreted as product in P), and

2. if for an o-monomial
#–

M of degree n, and for each i, j with
1 ≤ i < j ≤ n, the representation

#–

P contains o-monomials
(each of degree n)

#–

M1, . . . ,
#–

M2k+1, k ≥ 0, such that

-
#–

M1[i] =
#–

M[i],
#–

M2k+1[j] =
#–

M[j] and

-
#–

M2`−1[j] =
#–

M2`[j],
#–

M2`[i] =
#–

M2`+1[i] for all 1 ≤ ` ≤ k,

then
#–

M is contained in
#–

P .

4.6 Containment via small models
Up to now we have studied how to decide K-containment

of CQs by analyzing their structure, resulting in several
classes of semirings for which the existence of a homomor-
phism of a corresponding type between the CQs is equiva-
lent to their K-containment. It is natural to ask whether
the problem of decidability of CQ K-Containment can
be solved by different techniques for some semirings which
are not in any of these classes. Indeed, several other ap-
proaches have appeared in the literature. In [14] a PSPACE
algorithm was suggested for checking N [X]-containment of
UCQs, based on the fact that if a UCQ Q1 is not N [X]-
contained in a UCQQ2, then there exists a witnessingN [X]-
instance, with its size bounded by the size of Q1 and Q2.
Another approach is to cast the problem of decidability of
K-containment as the problem of checking the corresponding
order �K on polynomials, as done in [17] to show undecid-
ability of UCQ N -Containment over bag semantics.

The main result of this section is that by combining these
ideas one can obtain new decidability results for K-contain-
ment of CQs over different semirings K. In contrast with the
rest of the paper, we identify several individual semirings
for which our approach works, but leave a comprehensive
description of such semirings for future research. In order
to describe our algorithm we introduce some terminology.

A CQ with inequalities is a CQ with a set of inequalities
6= on its existential variables. It is complete (a CCQ) if each
pair of distinct variables is bounded by an inequality. A
complete description4 HQI of a CQ Q with existential vari-
ables v is the multiset of CCQs such that for every partition
π of v it contains a CCQ obtained from Q by identifying
all the variables from each equivalence class induced by π,
and attaching an inequality for every pair of variables that
remain different.

Example 4.6 (Continued) For CQQ1 = ∃u, v, w R(u, v),
R(u,w) we have HQ1I = {Q11, Q12, Q13, Q14, Q15}, where

Q11 = ∃u, v, w R(u, v), R(u,w), u 6= v, u 6= w, v 6= w;
Q12 = ∃u, v R(u, v), R(u, v), u 6= v;
Q13 = ∃u, v R(u, v), R(u, u), u 6= v;
Q14 = ∃u,w R(u, u), R(u,w), u 6= w; and
Q15 = ∃u R(u, u), R(u, u).

We will heavily use complete descriptions in Sec. 5, but
for now we are interested in CCQs from HQI as a way of
describing all possible images of a mapping from Q to a K-
instance. Formally, given a set of variables X, a canonical
instance ([15]) JQK of a CQ (or CCQ) Q is an N [X]-instance
with the same schema as Q and with the set of variables of
Q as its domain, such that for every N [X]-relation RJQK and

for every tuple u,v it holds that RJQK(u,v) = x1 + . . .+xn,
where n ≥ 0 is the number of atoms in Q of the form R(u,v),
and x1, . . . , xn are unique (over all JQK) variables from X.

Example 4.6 (Continued) For Q11 and Q12 we have

RJQ11K(u, v) = x1, RJQ11K(u,w) = x2,

RJQ12K(u, v) = x1 + x2,

and all other tuples in JQ11K and JQ12K are annotated by 0.

Denote by S1 the set of ⊕-idempotent semirings, i.e. the
semirings where x =K x + x holds (this notation will be
explained and generalized in Sec. 5). We have the following.
4This is similar to the one from [11] and linearization of [8].



Theorem 4.17 Given a semiring K from S1 and CQs Q1

and Q2, we have that Q1 ⊆K Q2 iff Q
JQK
1 (t) �K Q

JQK
2 (t) for

every CCQ Q ∈ HQ1I and every tuple t of variables of Q1.

This theorem shows that forK ∈ S1, CQ K-Containment
can be reduced to a small number of problems of checking
the order �K between CQ-admissible polynomials.

Corollary 4.18 If K ∈ S1 and it is decidable to check if
P1 �K P2 for any pair of polynomials P1,P2 from Ncq[X],
then CQ K-Containment is decidable.

We do not investigate the decidability of P1 �K P2 for
the entire class S1, but do so for some of its most impor-
tant members that do not have any corresponding type of
homomorphism – the tropical semiring T + and the sched-
ule algebra T −. Since we can decide in PSPACE whether
P1 �T + P2 and P1 �T− P2, we have the following result.

Proposition 4.19 CQ T +- and T −-Containment are in
PSPACE.

We illustrate this proposition by an extension of Ex. 4.6.

Example 4.6 (Continued) We know that HQ1I = {Q11,
Q12, Q13, Q14, Q15}. Hence

Q
JQ11K
1 () = x21 + 2x1x2 + x22, and Q

JQ11K
2 () = x21 + x22.

It is straightforward to see that

x21 + 2x1x2 + x22 =T + x21 + x22.

The same can be shown for the T +-instances JQ12K, JQ13K,
JQ14K, and JQ15K. By Thm. 4.17 we have that Q1 ⊆T + Q2.

5. K-CONTAINMENT OF UCQS
In this section we look at K-containment of UCQs, which

generalizes the problem for CQs considered in Sec. 4. We
examine both existing algorithms for deciding containment
of UCQs and new ones developed here. All of these exploit
the procedures used for CQs. Similarly to before, we iden-
tify classes of semirings corresponding to these algorithms,
refining the classes from the previous sections.

Started for set semantics in [20], the study of K-contain-
ment for UCQs continued for some particular semirings [17,
14], as well as classes of semirings such as type A systems [17]
and distributive bilattices [13]. Generally, semirings from
S1 (i.e. ⊕-idempotent semirings) were identified as well be-
haved w.r.t. containment of UCQs. Prior works show NP-
completeness of checking K-containment for some particular
semiringsK from S1, essentially relying on the following fact.

Proposition 5.1 The following are equivalent:

- semiring K belongs to S1;

- if for UCQs Q1, Q2 it holds that for each Q1 ∈ Q1 there
exists Q2 ∈ Q2 with Q1 ⊆K Q2, then Q1 ⊆K Q2.

This proposition says that K is ⊕-idempotent iff for K-
containment of UCQs it is sufficient to check CQs in Q1

locally, one at a time. Hence, if we have a sufficient condition
for containment of CQs for some class inside S1, then we
have one also for UCQs. Since 1-annihilation implies ⊕-
idempotence, we have that Sin ⊆ S1. Thus, next we study
UCQ K-containment for semirings in Sin and its subclasses.

5.1 Containment by homomorphism and
injective homomorphism

We start with the classes Chom and Cin from Sec. 4 and
investigate for which semirings from these classes Prop. 5.1
can be used in decision procedures for UCQ K-containment.

Recall that we write Q2 → Q1 (and Q2 ↪→ Q1) if there
is a homomorphism (resp., injective homomorphism) from a
CQ Q2 to a CQ Q1. We generalize these notions to unions
as follows: given UCQs Q1 and Q2 we write Q2 → Q1 (and
Q2 ↪→ Q1) iff for each Q1 ∈ Q1 there exists Q2 ∈ Q2 such
that Q2 → Q1 (resp., Q2 ↪→ Q1).

For the class Chom, we know that the existence of a homo-
morphism is a sufficient condition for containment of CQs,
and thus by Prop. 5.1 we can conclude that Q2 → Q1 im-
plies Q1 ⊆K Q2. It turns out, that for this class of semirings
the “only if” direction of the second item of Prop. 5.1 holds
as well, so this condition is also necessary. Hence, we can
extend Prop. 5.1, and present the following theorem.

Theorem 5.2 The following are equivalent:

- semiring K belongs to Chom;

- Q1 ⊆K Q2 iff Q2 → Q1, for all UCQs Q1 and Q2.

Thus, we have a decision procedure for K-containment of
UCQs, for all semirings K in Chom. The NP-completeness
of this procedure was first obtained for the set semantics
semiring B in [20], which we know to be in this class.

Corollary 5.3 If K ∈ Chom then deciding K-containment
for UCQs is NP-complete.

Unfortunately, once we move away from Chom, we cannot
guarantee a similar result, since the “only if” direction of
the second item of Prop. 5.1 does not hold for an arbitrary
semiring in S1. This can be seen from the following example.

Example 5.4 Consider again the tropical semiring T + =
〈N0 ∪ {∞},min,+,∞, 0〉, and UCQs Q1 = {Q11} and Q2 =
{Q21, Q22} over a schema with unary relations R, S, where

Q11 = ∃v R(v), S(v);
Q21 = ∃v R(v), R(v); Q22 = ∃v S(v), S(v).

It is possible to show that Q1 ⊆T + Q2, but neither of the
containments Q11 ⊆T + Q21 nor Q11 ⊆T + Q22 holds.

From Prop. 5.1 and 4.5 we know that Q2 ↪→ Q1 is a suffi-
cient condition for K-containment of UCQs, for all semirings
in Sin. However, the example above shows that this condi-
tion may not be necessary for all semirings from Sin. Next
we identify the semirings for which it is. Denote by N1

in the
class of semirings K for which for every polynomial P ∈ N[X]
without a constant term and any set of variables x1, . . . , xn
from X, the inequality

x1 × . . .× xn �K P

implies that there exists a subset xi1 , . . . , xim of variables
x1, . . . , xn such that P contains the monomial xi1×. . .×xim .
Note that this is the same condition as the one for Nin,
but it is required to hold not only for CQ-admissible, but
for all polynomials without a constant term. This defini-
tion is justified by the fact that any such polynomial can be
obtained on an N [X]-instance with tuples annotated with
unique variables. For N1

in we have the desired proposition.

Proposition 5.5 The following two statements are equiva-
lent:



- semiring K belongs to N1
in;

- Q1 ⊆K Q2 implies Q2 ↪→ Q1, for all UCQs Q1 and Q2.

For the class C1
in = Sin∩N1

in we have the following result.

Theorem 5.6
(1) The following are equivalent:

- semiring K belongs to C1
in;

- Q1 ⊆K Q2 iff Q2 ↪→ Q1, for all UCQs Q1 and Q2.

(2) If K ∈ C1
in then UCQ K-Containment is NP-complete.

In the following sections we will see that the classes Cbi,
Csur, and Chcov, for which we have decision procedures for
containment of CQs, do not lie inside S1 but have non-empty
intersections with it. For these intersections, Prop. 5.1 gives
a sufficient condition for K-containment of UCQs. However,
new techniques will have to be developed to handle semirings
outside these intersections.

5.2 Containment by bijective homomorphism
In Sec. 4.3 we argued that the existence of a bijective

homomorphism is a sufficient condition for K-containment
of two CQs, for any semiring K. Thus, Prop. 5.1 gives us
a sufficient condition for K-containment of UCQs for any
semiring K in S1: to affirm that Q1 ⊆K Q2 it suffices for
every CQ from Q1 to find a bijective homomorphism to it
from some CQ of Q2. In [14] it was shown that this condi-
tion is also necessary for the semiring of boolean provenance
polynomials B[X] (which is universal for S1). At the end of
this section we will find a subclass C1

bi of S1 consisting of
all semirings which behave the same as B[X] w.r.t. UCQs.

However, not much is known about decision procedures
and complexity for containment of UCQs for semirings out-
side S1, other than the classic result that this problem is
undecidable under bag semantics N [17]. As was observed
in [14], if for UCQs Q1 and Q2 it holds that for every
Q1 ∈ Q1 there exists a unique Q2 ∈ Q2 such thatQ1 ⊆K Q2,
then Q1 ⊆K Q2 for any semiring K, i.e. this condition is suf-
ficient for containment of UCQs for any semantics. However,
it was also shown that this condition is not necessary for
provenance polynomials N [X], and therefore for any semir-
ing. This is shown in the following example.

Example 5.7 Consider a schema with a binary relation R,
and UCQs Q1 = {Q11, Q12}, Q2 = {Q21, Q22}, where

Q11 = ∃u, v R(u, v), R(u, u); Q12 = ∃u, v R(u, v), R(v, v);
Q21 = ∃u, v, wR(u, v), R(w,w); Q22 = ∃u R(u, u), R(u, u).

We cannot find for every CQ Q in Q1 a unique CQ in Q2

containing Q. Later we will demonstrate that Q1 ⊆N [X] Q2.

A PSPACE algorithm was suggested in [14] for deciding
N [X]-containment of UCQs. This algorithm involves guess-
ing a small enough N [X]-instance as a counterexample, and
then posing the queries over it. However, the possibility of
solving it using some type of homomorphism was left open.

In what follows, we use the techniques developed in Sec. 4.3
to devise a syntactic criterion to decide N [X]-containment
of unions of conjunctive queries. We also give a procedure
for checking this criterion which allows us to improve the
PSPACE upper bound given in [14]. Afterwards we shall
see which semirings behave just as N [X] w.r.t. containment
of UCQs (clearly, all such semirings lie in Cbi). But first,
in order to study these problems, we revisit the notion of
complete description from Sec. 4.6 and extend it to UCQs.

A complete description HQI of a UCQ Q is a union of
complete descriptions of its elements.5 The semantics of a
CCQ Q is the same as that of a CQ (given in the preliminar-
ies), except that V(Q, t) for any t contains only mappings
preserving the inequalities. Similarly, homomorphisms of all
types considered in Sec. 4 between CCQs should preserve the
inequalities. Hence, for any UCQ Q and semiring K we have
that Q ≡K HQI, i.e. complete descriptions are just explicit
representations of UCQs.

All endomorphisms of CCQs are automorphisms. This
key property allows us to use CCQs in the condition for
N [X]-containment of UCQs. Further, for CCQs Q1 and
Q2, this property implies that Q2 ↪→→ Q1 iff Q1 and Q2

are isomorphic, i.e. coincide up to renaming of existential
variables. Given a UCQ Q and a CQ Q we write Q[Q'] for
the number of CQs in Q that are isomorphic to Q.

Definition 5.8 Given UCQs Q1, Q2, we write HQ2I ↪→→∞
HQ1I iff for each CCQ Q it holds that

HQ1I[Q'] ≤ HQ2I[Q'].

If Q1 = {Q1} and Q2 = {Q2} consist of single CQs then
HQ2I ↪→→∞ HQ1I is equivalent to Q2 ↪→→ Q1, so the definition
above extends bijective homomorphisms. We are ready to
state the decision procedure forN [X]-containment of UCQs.

Proposition 5.9 For any UCQs Q1 and Q2 it holds that
Q1 ⊆N [X] Q2 iff HQ2I ↪→→∞ HQ1I.

Next we continue Ex. 5.7 and show that Q1 ⊆N [X] Q2.

Example 5.7 (continued) Having that HQ1I = {Q′11, Q′12,
Q′22, Q

′
22} and HQ2I = {Q′21, Q′11, Q′12, Q′22, Q′22}, where

Q′11 = ∃u, v R(u, v), R(u, u), u 6= v;
Q′12 = ∃u, v R(u, v), R(v, v), u 6= v;
Q′21 = ∃u, v, w R(u, v), R(w,w), u 6= v, v 6= w,w 6= u;
Q′22 = ∃u R(u, u), R(u, u),

we conclude that HQ2I ↪→→∞ HQ1I, and hence Q1 ⊆N [X] Q2.

Therefore, the condition HQ2I ↪→→∞ HQ1I on UCQs Q1

and Q2 is equivalent to their N [X]-containment. Using
Prop. 3.2, we conclude that it is sufficient for K-contain-
ment over any semiring K. We leave the question of the
complexity of checking this condition to the end of this sec-
tion, but look now at semirings which behave the same as
N [X], i.e. for which the condition is also necessary. Again
we exploit the relationship between queries and polynomials.

Denote by C∞bi the class of all semirings K such that for
every coefficient ` > 0, polynomial P ∈ N[X] without a
constant term and monomial M over X, the inequality

`M �K P

implies that M has a coefficient at least ` in P.
Notice that C∞bi is a subclass of Cbi. Also, as desired,
N [X] is in C∞bi , i.e. this class contains semirings K which
behave the same as N [X] w.r.t. K-containment of UCQs. It
turns out that it contains all such semirings.

Proposition 5.10 The following are equivalent:

- semiring K belongs to C∞bi ;

- Q1 ⊆K Q2 iff HQ2I ↪→→∞ HQ1I, for all UCQs Q1, Q2.

5Recall here, that we assume that CCQs are multisets,
i.e. this union is always disjoint.



The above proposition gives us a decision procedure for K-
containment of UCQs, for all semirings K in C∞bi . For these
semirings the equality kx =K `x holds only when k = `.
Coming back to⊕-idempotent semiringsK from the class S1,
we have that kx =K `x holds for all k, ` ∈ N. What happens
for those semirings that lie “in between” these classes? Such
semirings satisfy kx =K `x not for all, but just for some k 6=
`. In what follows, we will classify them and parameterize
Prop. 5.10 over this classification.

A semiring K has offset k iff for all ` ≥ k it holds that
kx =K `x. In particular, ⊕-idempotent semirings from S1

have offset 1. The following proposition says that the small-
est offset of a semiring K identifies all its axioms kx =K `x.

Proposition 5.11 Suppose K is a (positive) semiring. If
kx =K `x holds for some 1 ≤ k < `, then K has offset k.

Based on this fact, we consider the classes Sk, k ∈ N, of
semirings with offset k. We have already seen one such class,
S1. Note, that for all k ≥ 1 we have Sk ⊂ Sk+1. Our aim is
to obtain a sufficient condition for containment of UCQs for
each Sk. The following example gives an idea how to do it.

Example 5.7 (continued) Coming back to UCQs Q1 and
Q2, we know that Q1 ⊆K Q2 for any semiring K. However,
if we take Q′1 = Q1∪{Q22} we have that now HQ′1I = HQ1I∪
{Q′22} has not two, but three CCQs isomorphic toQ′22. Since
HQ2I has only two of them, we have that HQ2I 6↪→→∞ HQ′1I
and thereby Q′1 6⊆N [X] Q2. At the same time, we see that

Q′1 ⊆K Q2 for any semiring K with offset 2. The reason is
that we can dismiss the third copy of Q′22 in HQ′1I, since it
is made redundant by the offset 2 of K, i.e. by removing it
we do not alter the result of the query over any K-instance.

The above example illustrates the intuition that to ob-
tain a “tight” sufficient condition for some semiring K, one
should take into account its smallest offset and, if it is greater
than 1, split UCQs to their complete descriptions. Hence,
the desired sufficient condition for such semirings is likely to
resemble HQ2I ↪→→∞ HQ1I. For the sake of uniformity we ex-
tend the notion of offset and say that any semiring has offset
∞; that is, S∞ = S, and write N∞ for N ∪ {∞}. Using the
ideas above, we can extend the condition stated in Def. 5.8 to
each k ∈ N∞, so that the criterion HQ2I ↪→→k HQ1I also gen-
eralizes Prop. 5.1 for values of k other than 1. The definition
is rather technical (it needs to take into account automor-
phisms of CCQs), and for space reasons is deferred to the
full version. Using this criterion we state the following fact.

Proposition 5.12 For each k ∈ N∞ the following are equiv-
alent:

- semiring K belongs to Sk;

- HQ2I ↪→→k HQ1I implies Q1⊆K Q2, for all UCQs Q1, Q2.

Similarly to the homomorphism types from Sec. 4, for ev-
ery k ∈ N we can axiomatize a class Nk

bi for which HQ2I ↪→→k

HQ1I is necessary for containment of UCQs. All the axioms
are similar to the one for C∞bi and are omitted. The semir-
ings from each intersection Ck

bi = Sk ∩Nk
bi have the same

smallest offset k. For these classes we have Ck
bi ⊂ Cbi,

k ≥ 1. The following theorem extends Prop. 5.10 to the
classes Ck

bi and uniformly establishes complexity bounds for
all the procedures from this section.

Theorem 5.13 Let k ∈ N∞.
(1) The following are equivalent:

- semiring K belongs to Ck
bi;

- Q1 ⊆K Q2 iff HQ2I ↪→→k HQ1I, for all UCQs Q1 and Q2.

(2) If K ∈ Ck
bi then UCQ K-Containment is NP-complete

if k = 1, in Πp
2 if 2 ≤ k <∞, and in coNP#P if k =∞.

The complexity for C1
bi is lower, since the counterpart of

Prop. 5.1 holds and splitting UCQs to complete descriptions
is redundant. This agrees with the result of [14] for B[X].
For the case of k = ∞ the coNP#P upper bound improves
the result given there for N [X].6 For the intermediate cases
of 2 ≤ k < ∞, the complexity drops since the number of
CCQs in the search space is bounded by k.

5.3 Containment by surjective homomorphism
In this section we look at the problem of containment of

UCQs over semirings from the class Ssur, for which the exis-
tence of a surjective homomorphism is sufficient for contain-
ment of CQs. We develop a syntactic condition similar to
the condition ↪→→∞ from Sec. 5.2, which is sufficient for UCQ
K-containment for all semirings K from Ssur, and necessary
for some of them, including the universal semirings of Ssur.

The naive approach is to state such a condition by requir-
ing for every Q1 in Q1 the existence of a unique CQ Q2

in Q2 such that Q2 � Q1. However, this condition suffers
from the same problem as the similar condition for the class
S: it is sufficient for K-containment of Q1 in Q2 over every
K from Ssur, but modifying Ex. 5.7 it is possible to show
that it is not necessary for any such semiring. Thus, such a
condition doesn’t suit our purposes, because it doesn’t aid in
our search for decision procedures for containment of UCQs.
This leaves open the possibility of finding a stricter criterion,
which is still sufficient for all semirings in Ssur. Using the
power of complete descriptions, we devise such a criterion.

Definition 5.14 Given two UCQs Q1 and Q2 we write
HQ2I �∞ HQ1I iff for every CCQ Q1 from HQ1I there exists
a unique CCQ Q2 in HQ2I such that Q2 � Q1.

With this condition in hand we can state the proposition.

Proposition 5.15 The following are equivalent:

- semiring K belongs to Ssur;

- HQ2I�∞ HQ1I implies Q1⊆K Q2, for all UCQs Q1,Q2.

Notice that since bag semantics N is in Ssur, this propo-
sition gives us a new sufficient condition for N -containment
of UCQs, which improves previous results of [6, 17].

Corollary 5.16 If HQ2I �∞ HQ1I then Q1 ⊆N Q2.

While it is possible to axiomatize the class N∞sur of semi-
rings for which the condition HQ2I �∞ HQ1I is necessary for
a UCQ Q1 to be K-contained in a UCQ Q2, the definition
is somewhat technical, and we defer the reader to the full
version. By the results of Sec. 4.4, this condition is not
necessary for any semiring that is not in Nsur, like the bag
semantics semiring (N -containment of UCQs is in general
undecidable [17]). One can also show that it is not necessary
for any semiring from Nsur with finite smallest offset.

As intended, HQ2I �∞ HQ1I leads to a decision procedure
for UCQ K-containment for the class C∞sur = Ssur ∩N∞sur.

Theorem 5.17 The following two statements are equiva-
lent:
6This bound coincides with the best known bound for de-
ciding bag-equivalence of CQs with inequalities < (see [8]).



- semiring K belongs to C∞sur;

- Q1 ⊆K Q2 iff HQ2I �∞ HQ1I, for all UCQs Q1 and Q2.

The proof exploits Hall’s marriage theorem and the fact
that, for CCQs Q1 and Q2 we have Q2 � Q1 iff Q2 is
isomorphic to a CCQ which contains exactly the same atoms
as Q1 but with greater or equal multiplicities. Checking
HQ2I �∞ HQ1I can clearly be done in EXPTIME. We
leave the issue of exact complexity open.

Finally, we analyze necessary conditions for the classes
Sksur = Ssur∩Sk of semirings having finite offsets. For semir-
ings with minimal offsets k ≥ 2 the straightforward exten-
sion on the base of complete descriptions does not work, and
in order to find such a criterion one needs to use even more
elaborate representations of UCQs. Formulating this crite-
rion is possible, but extremely technical, and thus it appears
unlikely that it would have any practical applicability.

Instead, we concentrate on the case k = 1, i.e. ⊕-idem-
potent semirings. Given UCQs Q1, Q2 we write Q2 �1 Q1

if for each Q1 ∈ Q1 there exists Q2 ∈ Q2 such that Q2� Q1.
It immediately follows from Prop. 5.1 and 4.12 that the

condition Q2 �1 Q1 implies that Q1 ⊆K Q2. Moreover,
it was noted in [14] that this condition is also necessary for
Why[X]-containment of Q1 and Q2. Next we identify all the
semirings that behave just as Why[X].

Denote by N1
sur the class of semirings K for which for every

polynomial P ∈ N[X] without a constant term and any set
of variables x1, . . . , xn, the inequality

x1 × . . .× xn �K P

implies that there exist exponents m1, . . . ,mn ≥ 1 such that
P contains the monomial xm1

1 × . . .× xmn
n . Similarly to the

class N1
in, this condition is the same as the condition for

Nsur, but should hold not only for CQ-admissible, but for
all polynomials without constant terms. Given that this is
a stronger requirement, one expects that N1

sur ⊂ Nsur. This
is indeed the case, since for example the semiring Trio[X]
is not in N1

sur, but is in Nsur.
The class N1

sur corresponds precisely to the class of semir-
ings K for which Q2 �1 Q1 is necessary for K-containment
of UCQs. For the intersection C1

sur = Ssur ∩N1
sur the fol-

lowing corollary holds. The complexity was first shown for
the Why[X] semiring in [14].

Corollary 5.18
(1) The following are equivalent:

- semiring K belongs to C1
sur;

- Q1 ⊆K Q2 iff Q2 �1 Q1, for all UCQs Q1 and Q2.

(2) If K ∈ C1
sur then UCQ K-Containment is NP-complete.

5.4 Containment by homomorphic covering
So far we have generalized to UCQs all the types of homo-

morphisms from Sec. 4, except homomorphic covering. This
section closes the remaining gap. We have left it to the end
of the paper, since, when compared to the previous results,
the case of Shcov is rather specific. Nevertheless, we iden-
tify a sufficient condition for UCQ containment for the class
Shcov and show that for some semirings it is also necessary.
It again is based on the concept of complete descriptions.

It is important that all semirings in Shcov have offset 2.

Proposition 5.19 The following holds: Shcov ⊆ S2.

For the ⊕-idempotent semirings from S1
hcov = S1 ∩ Shcov

Prop. 5.1 holds, as usual. This time, however, the condition

requiring checking CQs in UCQs Q1 and Q2 only pairwise
is never necessary, as shown in the following example.

Example 5.20 Consider UCQs Q1 = {Q11} and Q2 =
{Q21, Q22} over a schema with unary relations R, S, where

Q11 = ∃v R(v), S(v); Q21 = ∃v R(v); Q22 = ∃v S(v).

It is not difficult to show that Q1 ⊆K Q2, over any semiring
K ∈ Shcov. However, neither Q21 ⇒ Q11 nor Q22 ⇒ Q11.

The above example captures the intuition that both Q21

and Q22 should be used at the same time to produce a cov-
ering for Q11. Next we define a condition, that generalizes
this intuition. Given UCQs Q1, Q2, we write Q2 ⇒1 Q1 if
for each Q1 ∈ Q1 and every atom R(u,v) in Q1 there is a
homomorphism h from some Q2 ∈ Q2 to Q1 with R(u,v)
in the image of h.

We shall see below that this condition is only adequate
for those semirings in Shcov which have offset 1. To define
a general condition we need to use complete descriptions.
First we extend the definition of ⇒1 to complete descrip-
tions, in the expected way: the homomorphisms from CCQs
of HQ2I covering all atoms of all CCQs in HQ1I should pre-
serve inequalities. Notice that Q2⇒1 Q1 iff HQ2I⇒1 HQ1I.

In the condition HQ2I ⇒2 HQ1I for semirings with offset 2,
we also require that every CCQ without automorphisms hav-
ing multiplicity more than one in HQ1I has to be covered by
two CCQs in HQ2I. Formally, we have that HQ2I ⇒2 HQ1I,
if (1) HQ2I ⇒1 HQ1I, and (2) for every CCQ Q1 in HQ1I
without nontrivial automorphisms (preserving inequalities)

- either there exist two CCQs7 Q′2, Q
′′
2 ∈ HQ2I such that

Q′2 → Q1 and Q′′2 → Q1,

- or min(HQ1I[Q'1 ], 2) ≤ HQ2I[Q'1 ].

Finally, we can present the desired characterization.

Proposition 5.21 For k = 1, 2 the following are equivalent:

- semiring K belongs to Skhcov;

- HQ2I ⇒k HQ1I implies Q1 ⊆K Q2, for all UCQs Q1, Q2.

Similarly to the previous conditions, it is possible to iden-
tify classes for which ⇒k is necessary for containment of
UCQs. For k = 1, 2 denote by Nk

hcov the class of all semirings
K such that for every coefficient ` and polynomial P ∈ N[X]
without a constant term, the inequality

`(x1 × . . .× xn) �K P

implies that P uses all the variables x1, . . . , xn and has no
less than min(`, k) monomials.

Proposition 5.22 For every k = 1, 2 the following are equiv-
alent:

- semiring K belongs to Nk
hcov;

- Q1 ⊆K Q2 implies HQ2I ⇒k HQ1I, for all UCQs Q1, Q2.

Notice that the bag semantics semiringN belongs to N2
hcov.

Thus the condition HQ2I ⇒2 HQ1I is of particular interest,
since it is a new necessary condition for N -containment of
UCQs. This improves on conditions known previously [6].

Corollary 5.23 If Q1 ⊆N Q2 then HQ2I ⇒2 HQ1I.

As usual, for the intersections Ck
hcov = Skhcov ∩Nk

hcov we
have the following theorem. The NP-completeness of UCQ

7CQs Q′2 and Q′′2 still may be isomorphic or even coincide.



K-containment of CQs K-containment of UCQs
class key axioms homomorphism type compl. sub-class extra axiom homomorphism type compl.

Chom
⊗-idempotence
1-annihilation

Q2 → Q1 (usual) NP-c† Chom — Q2 → Q1 NP-c†

Chcov ⊗-idempotence Q2 ⇒ Q1 (hom. cov.) NP-c† C1
hcov offset 1 Q2 ⇒1 Q1 NP-c†

C2
hcov — HQ2I ⇒2 HQ1I in Πp

2

Cin 1-annihilation Q2 ↪→ Q1 (injective) NP-c C1
in — Q2 ↪→ Q1 NP-c

Csur ⊗-semi- Q2 � Q1 (surjective) NP-c† C1
sur offset 1 Q2 �1 Q1 NP-c†

idempotence C∞sur — HQ2I �∞ HQ1I in EXPTIME

Cbi — Q2 ↪→→ Q1 (bijective) NP-c† C1
bi offset 1 Q2 ↪→→1 Q1 NP-c†

Ck>1
bi offset k HQ2I ↪→→k HQ1I in Πp

2

C∞bi — HQ2I ↪→→∞ HQ1I in coNP#P

Table 1: Summary of semiring classes and complexity (results known before are marked by †). Key axioms
define the corresponding sufficient classes; the axioms for the necessary classes are omitted for clarity.

K-containment for semirings from C1
hcov was first provided

in [14] for the case of the lineage semiring Lin[X].

Theorem 5.24
(1) Given a number k = 1, 2, the following are equivalent:

- semiring K belongs to Ck
hcov;

- Q1 ⊆K Q2 iff HQ2I ⇒k HQ1I, for all UCQs Q1 and Q2.

(2) UCQ K-Containment is NP-complete if K ∈ C1
hcov,

and in Πp
2 if K ∈ C2

hcov.

6. CONCLUSION
We have studied containment of CQs and UCQs over an-

notated relations. We have established several interesting
classes of semirings for which these problems are decidable
by means of different syntactic criteria, developed by mod-
ifying and extending the well-known notion of homomor-
phism between CQs. Our work extends previous results
on the subject and should have practical implications, since
most semirings used for annotations in the literature fall into
one of these well-behaved classes. Tab. 1 provides a sum-
mary, with complexity bounds for checking the associated
criteria. For semirings that do not fall into these classes, we
have extended the range of available machinery for query op-
timization problems, by providing generalized or improved
necessary and sufficient conditions. For some of these semir-
ings we also suggest new decision procedures based on small
model properties.

Many problems remain open. In particular, we would like
to continue studying the small model property approach, ei-
ther proving or disproving that such methods can work for
semirings with non-idempotent addition. It is also interest-
ing to study CQ-admissible polynomials on their own, and in
particular how to decide containment over them. We believe
that this study may have consequences for solving some of
the fundamental open problems in the area of query opti-
mization. Finally, we anticipate that the concept of complete
descriptions opens new possibilities to solve containment
and equivalence problems over different semantics for not
only CQs and UCQs, but for a much wider range of queries.
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