
Just-in-Time Information Extraction using Extraction Views

Amr El-Helw
EMC Corp.

amr.elhelw@emc.com

Mina H. Farid
University of Waterloo

mfathy@uwaterloo.ca

Ihab F. Ilyas
Qatar Computing Research

Institute (QCRI)
ikaldas@qf.org.qa

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing; H.2.4
[Database Management]: Systems—Textual Databases

General Terms
Algorithms, Design, Performance

Keywords
Information extraction, text databases, extraction views

1. INTRODUCTION
Modern real-world applications often rely on large amounts of

data that grow at rapid rates. While some of this data is stored in
a structured form, unstructured text documents such as Web pages,
email messages, news articles and reports contain rich information
that can be very useful if extracted on time. The ability to answer
structured SQL queries over this kind of unstructured data allows
for more complex analysis and better insights into that data.

Example applications that benefit from structured queries over
unstructured textual data include reputation management systems,
which download Web pages to track the “buzz” around compa-
nies and products; comparative shopping agents, which locate e-
commerce Web sites and index the products offered; and other in-
formation extraction applications, which retrieve documents and
extract structured relations from the unstructured text. For exam-
ple, in business intelligence, a company about to release a product
may want to know whether similar products are well received by
consumers, and find out the average price of such products. This
can be achieved by extracting information from online shopping
Web sites, and aggregating and users’ ratings of similar products.

In the absence of automatic means of extracting such informa-
tion, one way to complete such tasks is using keyword search to re-
trieve documents that are relevant to the query at hand, followed by
manually identifying the relevant data in the returned documents.
This can be an expensive process which fails to leverage complex
extraction techniques to find semantically relevant documents that
do not contain the exact text of the keyword query. The simplest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

automated approach is the extract-transform-load (ETL) approach,
which means applying information extraction (IE) techniques on
the text documents to extract the data and transform it into a struc-
tured format, then loading it into a data warehouse. Structured
queries using SQL or similar languages can then be posed on the
data warehouse whenever needed. This approach may be suitable
for applications that do not require recent and up-to-date results.
However, for frequently changing data, this snapshot will become
stale quickly, and will not accurately reflect the original documents.

Just-in-time information extraction is an integration between in-
formation extraction and database engines to allow extracting only
timely and relevant data within reasonable run-time constraints,
by performing extraction as part of query processing rather than
as a separate offline process. Variations of this approach include
SQoUT [4, 5, 6], System-T [7], And XLog [8].

We present a lightweight implementation of just-in-time extrac-
tion that does not require fundamental modifications to the DBMS.
Our framework integrates information extraction with traditional
query processing through view matching techniques. We introduce
extraction views, database views whose data is obtained by running
information extractors on specific document collections, rather than
by running SQL queries on relational data. Extraction views lever-
age the current view infrastructure available in most commercial
DBMSs. They can be used in queries in the same way as traditional
database views, which allows the DBMS to exploit well-developed
query optimization opportunities that are applicable to relational
data, including pushing down predicates, and using different access
paths, join methods and join orders. These different optimizations,
in addition to which extraction views to use for a given query con-
stitute the plan space for that query. The query optimizer uses a
cost model to determine the best plan to answer the query.

Our system demonstrates:

• a solution inspired by the data integration paradigm (specif-
ically the local-as-view approach [3]); Extraction views en-
capsulate the IE tasks, and use extractors as black boxes with
minimum exploitation of IE metadata.

• extending the traditional query optimizer, enabling it to ex-
plore the full optimization space for queries involving such
views and choose the best plan for the defined cost model.

We propose to demonstrate a visual front-end to enable the user
to design an application schema, and pose queries to the database.
The interface presents the user with the query results and the exe-
cution plan chosen by the optimizer.

2. SYSTEM OVERVIEW
In this section we describe our integrated extraction and querying

framework, in which information extraction is query-driven. Our

613

Table 1: Example extractors
Extractor Domain(s)

E1 company
E2 company, city
E3 name
E4 date
E5 name, company, position
E6 color
E7 time
E8 address, city, country
E9 email

proposed framework supports SQL queries on both relational data
and data extracted from text documents. Data is extracted during
query processing, based on a schema that is defined on demand.

2.1 Attribute Domains and Lineage
Our framework assumes the existence of a set of extractors E ,

which can be general purpose extractors such as UIMA [2] anno-
tators or GATE [1] applications. Each extractor in E extracts data
and returns it as objects with one or more attributes. All objects
returned by a given extractor E have the same set of attributes,
attr(E). Hence, the output of each extractor can be viewed as a
set of tuples sharing the same attributes. Given the set E , the do-
main universe D is the set of all possible domains extracted by all
extractors in E , i.e. for E = {E1, ..., En},D = attr(E1) ∪ ... ∪
attr(En).

Example 1. Table 1 shows a group of 9 available extractors, and
the domains that can be extracted by each. Based on these ex-
tractors, D = {company, city, name, date, position, color, time,
address, country, email}

The set D represents the space of extractable information that
is accessible to queries. The domain names in D are unique, i.e.
there can be no two domains with the same name that extract dif-
ferent types of data. However, the same domain can be extracted
by multiple extractors. The domain universe D can be expanded by
adding new extractors that return different domains. These domains
are independent of any particular queries or applications.

Given an extractor E, if the domains returned are d1, d2, ..., dm,
each returned tuple has the following:

• The values v1, v2, ..., vm, where vi belongs to the domain di;
1 ≤ i ≤ m, and

• The lineage of each vi. The lineage of an extracted attribute
value is additional metadata that indicates where that value
was extracted from.

The simplest and most common form of lineage information can
be ⟨docURL, span⟩, where docURL is the URL of the document
from which a particular attribute value is extracted, and span is
the position of that value inside the document, usually defined as
(begin, end). We assume that all extractors expose this lineage in-
formation in addition to the actual extracted data. In our work, we
found that many real-life extractors do in fact return this informa-
tion as a minimum [1, 2, 7]. This lineage information is often useful
in linking data produced by different extractors.

2.2 T-tables as Relational Wrappers
Our framework supports answering queries that reference both

relational data and extracted data. The relational data is represented
as traditional relational tables. A relational table consists of (a) an

intension, which is the table definition (the set of attributes in the
table, and the type of each attribute), and (b) an extension, the ac-
tual data in that table, stored as tuples. To represent the extracted
data, we define a special type of tables, called T-tables. A T-table
consists of only the table signature describing the attributes in that
table and their domains. They provide a relational wrapper to the
extracted data in order to be able to pose queries on that data. From
the query point of view, a T-table is like a traditional relational ta-
ble. The difference is the source of the data in each. In traditional
tables, the data has to be loaded before any queries can be posed.
This data is stored in a structured form (tuples), and read from disk
during query execution. T-tables only have to be defined prior to
issuing any queries, but no data is loaded into them. During query
execution, data is directly extracted from text documents. Each T-
table can only include data that is available for extraction, i.e. only
include attributes that refer to the domains in D. The T-table def-
inition is in the form T (a1 : d1, ..., an : dn) where each ai is an
attribute name, and di is the domain to which ai belongs.

Example 2. Consider the domain universe from Example 1, and
suppose we need to pose queries related to companies and employ-
ees. For this particular application, we can define the following
T-tables:

• Comp (cname: company, addr: address, cty: city, cntry:
country)

• Emp (ename: name, birthdate: date, job: position, ecomp:
company, hiredate: date)

Both the cname and ecomp attributes belong to the company do-
main in D. Similarly, the birthdate and hiredate attributes belong to
the date domain. Note that the T-table Emp cannot include a salary
attribute for example, since we have no money domain that can be
extracted. Defining the T-tables allows the user to pose queries such
as:
SELECT job, min(hiredate) FROM Comp, Emp

WHERE cname = ecomp AND cntry = ’Italy’

2.3 Extraction Views and Joiners
Even though the definition of the T-table specifies the attribute

domains, this definition does not specify where the data is obtained
from (which document collection) or how to obtain it (which ex-
tractors to use). This is accomplished using extraction views and
joiners. An extraction view v is defined as v(T,A,C,E), where:

• T is a T-table on which v is defined
• A is the set of attributes in T that v covers
• C is the document collection that is mapped to v

• E is the extractor that will be used to extract the tuples of v
from the documents in C

Extraction views are a way of packaging extractors into logical
entities. The extraction view definition tells the system where and
how to obtain the data. It establishes the mapping between the T-
table attributes, the document collection, and the extractor. Differ-
ent extraction views can cover different groups of attributes (pos-
sibly overlapping) in the same T-table, each using a different ex-
tractor and/or a different document collection. An extraction view
v(T,A,C,E) is valid only if (a) all the attributes in A must belong
to the T-table T , and (b) the domains of the attributes in A (as spec-
ified in the definition of T) must be among those produced by the
extractor E.

614

Figure 1: Application builder window, with a child window to create a new T-table

Example 3. Suppose that we have two document collections:
C1 contains company information, and C2 contains employee in-
formation. Given the T-tables defined in Example 2, and given the
extractors in Table 1, we can define the following extraction views
(among others):

• v1(Comp, {cname}, C1, E1)

• v2(Emp, {ecomp}, C2, E1)

• v3(Emp, {ename}, C2, E3)

• v4(Emp, {birthdate}, C2, E4)

• v5(Emp{ename, ecomp, job}, C2, E5)

• v6(Emp, {hiredate}, C2, E4)

• v7(Comp, {addr, cty, cntry}, C1, E8)

The definition of v1 means that the attribute cname in T-table
Comp can be obtained by invoking extractor E1 on document col-
lection C1. Note that some views overlap, e.g. v3 and v5 have the
ename attribute in common.

We often need to construct the tuples of a T-table from the tuples
returned by multiple extraction views. In Example 3, v1 and v7 to-
gether cover all the attributes of the T-table Comp. However, with
only the extraction views, it is not possible to determine which v1
tuple belongs to which v7 tuple. Thus a join condition is needed to
determine which values actually belong to the same Comp entity.
The concept of joining or linking the outputs of extractors based on
positional information or other metadata already exists in some of
today’s publicly available IE frameworks. For example, UIMA [2]
allows the definition of aggregate analysis engines, which operate
on the outputs of extraction modules, potentially using extraction
metadata to join them. Although in many cases, it is necessary
to understand the semantics of the text to determine which values
belong together, this can often be determined by analyzing the po-
sition of attribute values within the documents. This is especially
true for documents that are semi-structured, e.g. Web pages dis-
playing search results or containing HTML tables. This is where
the lineage information produced by the extractors becomes use-
ful. We exploit this information by defining joiners.A joiner j is
defined as j(T,A,C, P), where:

• T is a T-table on which j is defined
• A is the set of attributes in T that j covers
• C is the document collection on which j applies

• P is a predicate (or set of predicates) on the values and/or
lineage of the attributes in A.

The joiner definition is specific for a particular document collec-
tion, since the document format in one collection can be different
from another.

Example 4. Continuing our running example, we can define the
joiner j1(Comp, {cname, addr}, C1, P) where:
P = [cname.docURL = addr.docURL and addr.begin – cname.end
< 30]

This joiner definition means that a tuple that contains a cname
value (e.g. returned from v1), and a tuple that contains an addr
value (e.g. returned from v7) belong to the same logical entity if
the addr value is located less than 30 characters after the cname
value within the same document. Note that in Example 3, some
extraction views (e.g. v4 and v6) use the same extractor to extract
two different attributes. On their own, these two views return the
exact same date values. However, with the other views and with the
proper joiners, these two views can contribute different information
to queries.

3. DEMONSTRATION
The system is implemented by extending the data model and op-

timizer of Apache Derby to include the required data objects and
algorithms. In addition to the core query engine, we developed a
Java GUI with JDBC connection to demonstrate the system. We
outline the different stages in the system’s lifetime in Section 3.1,
and then we describe the demonstration scenario in Section 3.2

3.1 System Lifetime
The various objects and components in our framework are de-

fined and used at different points in time.

Extractor Registration Time
Registering an extractor tells our framework how to invoke the
extractor and what kind of information it can extract. This up-
dates the domain universe D. Registering extractors is application-
independent, and can be done at any time, causing the domain uni-
verse to expand as new kinds of extractable information become
available.

615

JN

JN

v1

v2 v3

to use a passage of Lorem Ipsum, you need to be sure there

isn't anything embarrassing hidden in the middle of text.

Iinitial survey by giving us your straightforward opinions.

Sincerely yours,. J. Doe. , CEO., ABC Company. INTERACT.

1

2

3

4

5

Figure 2: Query interface
Application Design Time
Given a particular application or query workload, this is where T-
tables, extraction views, and joiners are defined, using the extrac-
tors and the attribute domains that are available to the framework.
The application or workload cannot be started until this phase is
completed.

Query Time
Queries are posed over the defined T-tables. During query opti-
mization, the optimizer finds the best execution plan using a com-
bination of the defined extraction views and joiners. During query
execution, the extractors associated with the selected views are in-
voked, extracting information from the corresponding document
collections and returning them as relational tuples.

3.2 Demonstration Scenario
Screenshots of our user interface are shown in Figures 1 and 2.

The first step in our demo is application design, which takes place
as follows:

1. The user launches the application builder (Figure 1), which
has 3 areas, showing the existing T-tables, extraction views,
and joiners respectively.

2. For each of the 3 object types, the user can add new objects
by clicking the (+) button, which opens a new window to
define the properties. Figure 1 shows the Create T-table win-
dow. Similar windows exist for extraction views and joiners.

3. In the application builder, selecting any of the existing ob-
jects displays information about that object at the bottom.

After designing the application, the user can start posing queries
using the query interface (Figure 2), which is divided into query
(area 1), results (area 2) , lineage (area 3), plan (area 4), and node
information (area 5). We will demonstrate our system with various
queries. The query scenario is as follows:

1. The user types the query in area 1, and clicks the "Run" but-
ton.

2. A table of the query results is shown in area 2.
3. The user can click on any tuple in the query results to see

the lineage of this tuple (the original documents from which
the data was extracted) in area 3. If the tuple is a result of

joining multiple documents, then area 3 will have a separate
tab for every document. The attribute values of the selected
tuple are highlighted in the shown documents. In the shown
example, both attributes of the selected tuple come from the
same document, which is shown at the bottom, with the val-
ues highlighted in the text.

4. The execution plan chosen by the optimizer is displayed in
area 4. This plan shows which extraction views are used, as
well as the join types and join order. T-tables are not shown
in the actual plan since they are only logical wrappers.

5. Clicking any node in the execution plan displays detailed in-
formation about that node in area 5, including the node’s type
(view, join, selection, etc.), the node’s input and/or output at-
tributes, among other information.

4. REFERENCES
[1] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.

GATE: An Architecture for Development of Robust HLT
Applications. In ACL, pages 168–175, 2002.

[2] D. Ferrucci and A. Lally. UIMA: An Architectural Approach
to Unstructured Information Processing in the Corporate
Research Environment. Nat. Lang. Eng., 10:327–348, 2004.

[3] A. Y. Halevy. Answering Queries Using Views: A Survey.
VLDB Journal, 10(4):270–294, 2001.

[4] A. Jain, A. Doan, and L. Gravano. Optimizing SQL Queries
over Text Databases. In ICDE, pages 636–645, 2008.

[5] A. Jain, P. G. Ipeirotis, A. Doan, and L. Gravano. Join
Optimization of Information Extraction Output: Quality
Matters! In ICDE, pages 186–197, 2009.

[6] A. Jain, P. G. Ipeirotis, and L. Gravano. Building Query
Optimizers for Information Extraction: The SQoUT Project.
SIGMOD Record, 37(4):28–34, 2008.

[7] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and
S. Vaithyanathan. An Algebraic Approach to Rule-Based
Information Extraction. In ICDE, pages 933–942, 2008.

[8] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan.
Declarative Information Extraction Using Datalog with
Embedded Extraction Predicates. In VLDB, pages 1033–1044,
2007.

616

