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A STRONGLY POLYNOMIAL ALGORITHM FOR A CLASS OF
MINIMUM-COST FLOW PROBLEMS WITH SEPARABLE CONVEX

OBJECTIVES∗

LÁSZLÓ A. VÉGH†

Abstract. A well-studied nonlinear extension of the minimum-cost flow problem is to minimize
the objective

∑
ij∈E Cij(fij) over feasible flows f , where on every arc ij of the network, Cij is a

convex function. We give a strongly polynomial algorithm for the case when all Cij ’s are convex
quadratic functions, settling an open problem raised, e.g., by Hochbaum [Math. Oper. Res., 19
(1994), pp. 390–409]. We also give strongly polynomial algorithms for computing market equilibria
in Fisher markets with linear utilities and with spending constraint utilities that can be formulated
in this framework (see Shmyrev [J. Appl. Ind. Math., 3 (2009), pp. 505–518], Birnbaum, Devanur,
and Xiao [Proceedings of the 12th ACM Conference on Electronic Commerce, 2011, pp. 127–136]).
For the latter class this resolves an open question raised by Vazirani [Math. Oper. Res., 35 (2010),
pp. 458–478]. The running time is O(m4 logm) for quadratic costs, O(n4+n2(m+n logn) logn) for
Fisher’s markets with linear utilities, and O(mn3 + m2(m + n logn) logm) for spending constraint
utilities. All these algorithms are presented in a common framework that addresses the general
problem setting. Whereas it is impossible to give a strongly polynomial algorithm for the general
problem even in an approximate sense (see Hochbaum [Math. Oper. Res., 19 (1994), pp. 390–409]),
we show that assuming the existence of certain black-box oracles, one can give an algorithm using a
strongly polynomial number of arithmetic operations and oracle calls only. The particular algorithms
can be derived by implementing these oracles in the respective settings.

Key words. network flow algorithms, convex optimization, strongly polynomial algorithms,
market equilibrium computation
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1. Introduction. Let us consider an optimization problem where the input is
given by N numbers. An algorithm for such a problem is called strongly polyno-
mial (see [13]) if (i) it uses only elementary arithmetic operations (addition, subtrac-
tion, multiplication, division, and comparison); (ii) the number of these operations is
bounded by a polynomial of N ; and (iii) if all numbers in the input are rational, then
all numbers occurring in the computations are rational numbers of size polynomially
bounded in N and the maximum size of the input numbers. Here, the size of a rational
number p/q is defined as �log2(p+ 1)�+ �log2(q + 1)�.

The flow polyhedron is defined on a directed network G = (V,E) by arc capacity
and node demand constraints; throughout the paper, n = |V | and m = |E|. We study
the minimum-cost convex separable flow problem: for feasible flows f , the objective is
to minimize

∑
ij∈E Cij(fij), where on each arc ij ∈ E, Cij is a differentiable convex

function. We give a strongly polynomial algorithm for the case of convex quadratic
functions, i.e., if Cij(α) = cijα

2 + dijα with cij ≥ 0 for every arc ij ∈ E. We
also give strongly polynomial algorithms for Fisher’s market with linear utilities and
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with spending constraint utilities; these problems can be formulated as minimum-
cost convex separable flow problems, as shown, respectively, by Shmyrev [33] and
Birnbaum, Devanur, and Xiao [2]. The formulations involve linear cost functions and
the function α(logα− 1) on certain arcs.

These algorithms are obtained as special implementations of an algorithm that
works for the general problem setting under certain assumptions. We assume that
the functions are represented by oracles (the specific details are provided later), and
two further black-box oracles are provided. We give a strongly polynomial algorithm
in the sense that it uses only basic arithmetic operations and oracle calls; the total
number of these operations is polynomial in n and m. We then verify our assumptions
for convex quadratic objectives and the Fisher markets and show that we can obtain
strongly polynomial algorithms for these problems.

Flows with separable convex objectives are natural convex extensions of minimum-
cost flows with several applications, such as matrix balancing or traffic networks; see
[1, Chapter 14] for further references. Polynomial time combinatorial algorithms
were given by Minoux [26] in 1986, Hochbaum and Shanthikumar [18] in 1990, and
Karzanov and McCormick [22] in 1997. The latter two approaches are able to solve
even more general problems of minimizing a separable (not necessarily differentiable)
convex objective over a polytope given by a matrix with a bound on its largest subde-
terminant. Both approaches give polynomial, yet not strongly polynomial algorithms.

In contrast, for the same problems with linear objectives, Tardos [35, 36] gave
strongly polynomial algorithms. One might wonder whether this could also be ex-
tended to the convex setting. This seems impossible for arbitrary convex objectives
by the very nature of the problem: the optimal solution might be irrational, and thus
the exact optimum cannot be achieved.

Beyond irrationality, the result of Hochbaum [16] shows that it is impossible to
find an ε-accurate solution1 in strongly polynomial time even for a network consisting
of parallel arcs between a source and a sink node and the Cij ’s being polynomials of
degree at least three. This is based on Renegar’s result [31] showing the impossibility
of finding ε-approximate roots of polynomials in strongly polynomial time. This is an
unconditional impossibility result in a computation model allowing basic arithmetic
operations and comparisons; it does not rely on any complexity theory assumptions.

The remaining class of polynomial objectives with hope for strongly polynomial
algorithms is where every cost function is convex quadratic. If all coefficients are
rational, then the existence of a rational optimal solution is guaranteed. Granot
and Skorin-Kapov [12] extended Tardos’s method [36] to solving separable convex
quadratic optimization problems with linear constraints, where the running time de-
pends only on the entries of the constraint matrix and the coefficients of the quadratic
terms in the objective. However, this algorithm is not strongly polynomial because
of the dependence on the quadratic terms.

The existence of a strongly polynomial algorithm for the quadratic flow problem
thus remained an important open question (mentioned, e.g., in [16, 4, 17, 12, 34]). The
survey paper [17] gives an overview of special cases solvable in strongly polynomial
time. These include a fixed number of suppliers (Cosares and Hochbaum [4]) and
series-parallel graphs (Tamir [34]). We resolve this question affirmatively, providing
a strongly polynomial algorithm for the general problem in time O(m4 logm).

There is an analogous situation for convex closure sets: Hochbaum [16] shows
that no strongly polynomial algorithm may exist in general, but for quadratic cost

1A solution x is called ε-accurate if there exists an optimal solution x∗ with ||x− x∗||∞ ≤ ε.
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functions, Hochbaum and Queyranne [15] gave a strongly polynomial algorithm.
An entirely different motivation of our study comes from the study of market

equilibrium algorithms. Devanur et al. [5] developed a polynomial time combinatorial
algorithm for a classical problem in economics, Fisher’s market with linear utilities.
This motivated a line of research to develop combinatorial algorithms for other market
equilibrium problems. For a survey, see [28, Chapter 5] or [38]. All these problems
are described by rational convex programs (see [38]). For the linear Fisher market
problem, a strongly polynomial algorithm was given by Orlin [30].

To the extent of the author’s knowledge, these rational convex programs have
been considered so far as a new domain in combinatorial optimization. An explicit
connection to classical flow problems was pointed out in the recent paper [39]. It
turns out that the linear Fisher market problem, along with several other problems,
is captured by a concave extension of the classical generalized flow problem, solvable
by a polynomial time combinatorial algorithm.

The paper [39] uses the convex programming formulation of linear Fisher markets
by Eisenberg and Gale [7]. An alternative convex program for the same problem
was given by Shmyrev [33]. This formulation turns out to be a convex separable
minimum-cost flow problem. Consequently, equilibrium for linear Fisher markets can
be computed by the general algorithms [18, 22] (with a final transformation of a close
enough approximate solution to an exact optimal one).

The class of convex flow problems solved in this paper also contains the formu-
lation of Shmyrev, yielding an alternative strongly polynomial algorithm for linear
Fisher markets. Birnbaum, Devanur, and Xiao [2] gave an analogous formulation for
Fisher’s market with spending constraint utilities, defined by Vazirani [37]. For this
problem, we obtain the first strongly polynomial algorithm. Our running time bounds
are O(n4+n2(m+n logn) logn) for linear utilities and O(mn3+m2(m+n logn) logm)
for spending constraint utilities, with m being the number of segments in the latter
problem. For the linear case, Orlin [30] used the assumption m = O(n2) and achieved
running time O(n4 logn), the same as ours under this assumption. So far, no exten-
sions of [30] are known for other market settings.

1.1. Prior work. For linear minimum-cost flows, the first polynomial time al-
gorithm was the scaling method by Edmonds and Karp [6]. The current most efficient
strongly polynomial algorithm, given by Orlin [29], is also based on this framework.
On the other hand, Minoux extended [6] to the convex minimum-cost flow problem,
first to convex quadratic flows [25] and later to general convex objectives [26]. Our
algorithm is an enhanced version of the latter algorithm, in the spirit of Orlin’s tech-
nique [29]. However, there are important differences that make the nonlinear setting
significantly harder. Let us remark that Orlin’s strongly polynomial algorithm for
linear Fisher markets [30] is also based on the ideas of [29]. In what follows, we give
an informal overview of the key ideas of these algorithms that motivated our result.
For more detailed references and proofs, we refer the reader to [1].

The algorithm of Edmonds and Karp consists of Δ-phases for a scaling parameter
Δ. Initially, Δ is set to a large value, and it decreases by at least a factor of two at the
end of each phase. An optimal solution can be obtained for sufficiently small Δ. The
elementary step of the Δ-phase transports Δ units of flow from a node with excess
at least Δ to another node with demand at least Δ. This is done on a shortest path
in the Δ-residual network, the graph of residual arcs with capacity at least Δ. An
invariant property maintained in the Δ-phase is that the Δ-residual network does not
contain any negative cost cycles. When moving to the next phase, the flow on the
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arcs has to be slightly modified to restore the invariant property.
Orlin’s algorithm [29] (see also [1, Chapter 10.6]) works on a problem instance

with no upper capacities on the arcs (every minimum-cost flow problem can be easily
transformed to this form). The basic idea is that if the algorithm runs for infinite
number of phases, then the solution converges to an optimal solution; furthermore,
the total change of the flow value in the Δ-phase and all subsequent phases is at
most 4nΔ on every arc. Consequently, if an arc ij has flow > 4nΔ in the Δ-phase,
then the flow on ij must be positive in some optimal solution. Using primal-dual
slackness, this means that ij must be tight for an arbitrary dual optimal solution
(that is, the corresponding dual inequality must hold with equality). It is shown that
within O(log n) scaling phases, an arc ij with flow larger than 4nΔ appears.

Based on this fact, Orlin [29] obtains the following simple algorithm. Let us start
running the Edmonds–Karp algorithm on the input graph. Once there is an arc with
flow larger than 4nΔ, it is contracted and the Edmonds–Karp algorithm is restarted on
the smaller graph. The method is iterated until the graph reduces to a single node. A
dual optimal solution on the contracted graph can be easily extended to a dual optimal
solution in the original graph by reversing the contraction operations. Provided a dual
optimal solution, a primal optimal solution can be obtained by a single maximum
flow computation. Orlin [29] (see also [1, Chapter 10.7]) also contains a second, more
efficient algorithm. When an arc with “large” flow is found, instead of contracting
and restarting, the arc is added to a special forest F . The scaling algorithm exploits
properties of this forest and can thereby ensure that a new arc enters F in O(log n)
phases. The running time can be bounded by O(m log n(m+n logn)), so far the most
efficient minimum-cost flow algorithm known.

Let us now turn to the nonlinear setting. By the Karush–Kuhn–Tucker (KKT)
conditions, a feasible solution is optimal if and only if the residual graph contains no
negative cycles with respect to the cost function C′ij(fij). Minoux’s algorithm is a
natural extension of the Edmonds–Karp scaling technique (see [25, 26], [1, Chapter
14.5]). In the Δ-phase it maintains the invariant that the Δ-residual graph contains
no negative cycle with respect to the relaxed cost function (Cij(fij+Δ)−Cij(fij))/Δ.
When transporting Δ units of flow on a shortest path with respect to this cost func-
tion, this invariant is maintained. A key observation is that when moving to the
Δ/2-phase, the invariant can be restored by changing the flow on each arc by at
most Δ/2. The role of the scaling factor Δ is twofold: besides being the quantity
of the transported flow, it also approximates optimality in the following sense. As
Δ approaches 0, the cost of ij converges to the derivative C′ij(fij). Consequently,
the solution converges to a feasible optimal solution. A variant of this algorithm is
outlined in section 3.

1.2. Overview of the algorithm for convex quadratic flows. To formulate
the exact assumptions needed for the general algorithm, several notions have to be
introduced. Therefore we postpone the formulation of our main result, Theorem 9,
to section 4.2. Now we exhibit the main ideas on the example of convex quadratic
functions. We only give an informal overview here without providing all the technical
details; the precise definitions and descriptions are given in the later parts of the
paper. Then, in section 6.1, we show how the general framework can be adapted to
convex quadratic functions.

Let us assume that Cij(α) = cijα
2 + dijα with cij > 0 for every arc ij ∈ E,

and therefore all cost functions are strictly convex. This guarantees that the optimal
solution is unique. This assumption is made only for the sake of this overview, and it
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is not used in the formal presentation starting in section 2. However, it is useful, as
the uniqueness of the optimum enables certain technical simplifications. We discuss
these simplifications at the end of the section. Our problem can be formulated as
follows:

min
∑
ij∈E

cijf
2
ij+dijfij

∑
j:ji∈E

fji −
∑

j:ij∈E
fij = bi ∀i ∈ V,

f ≥ 0.

In a more general formulation, one could have arbitrary upper and lower capacities
on the arcs. However, this can be reduced to the above form; see section 2.

Let f∗ be the optimal solution; it is unique by the strict convexity of the objective.
Let F ∗ denote the support of f∗. An optimal solution can be characterized using the
KKT conditions: for Lagrange multipliers π : V → R, we have πj − πi ≤ 2cijf

∗
ij + dij

with equality whenever f∗ij > 0, that is, ij ∈ F ∗. Consequently, if F ∗ is provided, then
we can obtain f∗ as the unique solution to the following system of linear equations
(see section 6.1 for details):

πj − πi = 2cijf
∗
ij + dij ∀ij ∈ F ∗,∑

j:ji∈F∗
f∗ji −

∑
j:ij∈F∗

f∗ij = bi ∀i ∈ V,(1)

f∗ij = 0 ∀ij ∈ E \ F ∗.

We will assume the existence of the subroutine Trial(F, b̂) (Oracle 2), where F ⊆ E

is an arbitrary arc set and b̂ : V → R such that the sum of the b̂i values is 0 in every
undirected connected component of F . The subroutine solves the modification of (1)

when F ∗ is substituted by F and b by b̂. The system is feasible under the above
assumption on b̂, and a solution can be found in time O(n2.37) (see Lemma 19).

Our starting point is a variant of Minoux’s nonlinear scaling scheme as described
above, with the only difference that the relaxed cost function is replaced by C′ij(fij +
Δ) (see section 3).

Following Orlin [29], we can identify an arc carrying a “large” amount of flow in
O(log n) steps. The required amount, (2n+m+1)Δ at the end of the Δ-phase, is large
enough that even if we run the algorithm forever and thereby converge to the optimal
solution f∗, this arc must remain positive. Consequently, it must be contained in F ∗.
However, we cannot simply contract such an arc as in [29]. The reason is that the
KKT conditions give πj − πi = cijf

∗
ij + dij , a condition containing both primal and

dual (more precisely, Lagrangian) variables simultaneously.
In every phase of the algorithm, we shall maintain a set F ⊆ F ∗ of arcs, called

revealed arcs. F will be extended by a new arc in every O(log n) phase; thus we
find F ∗ in O(m log n) steps (see Theorem 14). Given a set F ⊆ F ∗, we introduce
some technical notions; the precise definitions and detailed discussions are given in
section 4.1. First, we waive the nonnegativity requirement on the arcs in F : a vector
E → R is called an F -pseudoflow if fij ≥ 0 for every ij ∈ E \ F , but the arcs in F
are unconstrained.

For an F -pseudoflow f and a scaling factor Δ > 0, the (Δ, F )-residual graph
EF

f (Δ) contains all residual arcs where f can be increased by Δ so that it remains
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an F -pseudoflow (that is, all arcs in E and all arcs ji where ij ∈ F , or ij ∈ E \ F
and fij ≥ Δ). We require that the flow f in this phase satisfies the (Δ, F )-feasibility
property: the graph EF

f (Δ) contains no negative cycles with respect to the cost
function C′ij(fij +Δ).

Let us now describe our algorithm. We start with F = ∅ and a sufficiently large Δ
value so that the initial flow f ≡ 0 is (Δ, ∅)-feasible. We run the Minoux-type scaling
algorithm sending flow on shortest paths in the (Δ, F )-residual graph from nodes with
excess at least Δ to nodes with deficiency at least Δ. If there no longer exist such
paths, we move to the Δ/2-phase, after a simple modification step that transforms
the flow to a (Δ/2, F )-feasible one, on the cost of increasing the total excess by at
most mΔ/2 (see subroutine Adjust in section 4.1). We include in F every edge with
fij > (2n+m+ 1)Δ at the end of the Δ-phase.

At the end of each phase when F is extended, we perform a special subroutine
instead of simply moving to the Δ/2-phase. First, we compute the discrepancy DF (b)
defined as follows. Let DF (b) = maxK |

∑
i∈K bi|, where K ranges over the undirected

connected components of F . (Note that the requirement on b̂ in the subroutine

Trial(F, b̂) above was DF (b̂) = 0.) If the discrepancy DF (b) is large, then it can be
shown that F will be extended within O(log n) phases as in Orlin’s algorithm (see the
first part of the proof of Theorem 14).

If the discrepancy is small, the procedure Trial-and-Error is performed, con-
sisting of two subroutines. First, we run the subroutine Trial(F, b̂), where b̂ is a

small modification of b satisfying DF (b̂) = 0. This returns an F -pseudoflow f̂ , satis-
fying (1) with F in place of F ∗. (This step can be seen as “pretending” that F = F ∗

and trying to compute an optimal solution under this hypothesis.) The resulting f̂ is

optimal if and only if F = F ∗. Otherwise, we use a second subroutine Error(f̂ , F )

(see Oracle 3) that returns the smallest value Δ̂ > 0 such that f̂ is (F, Δ̂)-feasible.
This subroutine can be reduced to a minimum cost-to-time ratio cycle problem (also
known as the tramp steamer problem); see [1, Chapter 5.7]. A strongly polynomial
time algorithm was given by Megiddo [23].

If Δ̂ < Δ/2, then we set Δ̂ as our next scaling value and f = f̂ as the next

F -pseudoflow—we can proceed since f̂ is (F, Δ̂)-feasible. Otherwise, the standard
transition to phase Δ/2 is done with keeping the same flow f . The analysis shows
that a new arc shall be revealed in every O(log n) phase. The key lemma, Lemma 13,

relies on the proximity of f and f̂ , which implies that Trial-and-Error cannot
return the same f̂ if performed again after O(log n) phases. Consequently, the set F
cannot be the same and therefore has been extended. Since |F | ≤ m, this shows that
the total number of scaling phases is O(m log n).

Besides the impossibility of contraction, an important difference as compared
to Orlin’s algorithm is that F cannot be assumed to be a forest (in the undirected
sense). There are simple quadratic instances with the support of an optimal solu-
tion containing cycles. In Orlin’s algorithm, progress is always made by connecting
two components of F . This will also be an important event in our algorithm, but
sometimes F shall be extended with arcs inside a component.

The main difference when applied to Fisher markets instead of quadratic costs is
the implementation of the black boxes Trial and Error. These are implemented by
a simple linear time algorithm and the Floyd–Warshall algorithm, respectively. The
description above made the simplifying assumption that cij > 0 for all ij ∈ E, that
is, all cost functions are strictly convex, and thus there is a unique optimal solution.
This might not be true even for quadratic costs if cij = 0 is allowed on certain arcs.



STRONGLY POLYNOMIAL SEPARABLE CONVEX COST FLOWS 1735

An important difference between the description and the general algorithm is that in
the general algorithm, the set F ∗ has to be more carefully defined; in particular, it
will contain the support of every optimal solution. We therefore have to introduce
the additional notion of F -optimal solutions for F ⊆ F ∗. The algorithm will find
F -optimal solutions instead of optimal ones; however, an F -optimal solution can be
converted to an optimal solution via an additional maximum flow subroutine.

The rest of the paper is organized as follows. Section 2 contains the basic defini-
tions and notation. Section 3 presents the simple adaptation of the Edmonds–Karp
algorithm for convex cost functions, following Minoux [26]. Our algorithm in section 4
is built on this algorithm with the addition of the subroutine Trial-and-Error,
which guarantees strongly polynomial running time. Analysis is given in section 5.
Section 6 adapts the general algorithm for quadratic utilities, and for Fisher’s market
with linear and with spending constraint utilities. Section 7 contains a final discussion
of the results and some open questions. The appendix contains the description of the
shortest path subroutines used. A table summarizing notation and concepts can be
found at the end of the paper.

2. Preliminaries. LetG = (V,E) be a directed graph, and let n = |V |, m = |E|.
For notational convenience, we assume that the graph contains no parallel arcs and
no pairs of oppositely directed arcs. Consequently, we can denote the arc from node
i to node j by ij. All results straightforwardly extend to general graphs. We are
given node demands b : V → R with

∑
i∈V bi = 0. The flow is restricted to be

nonnegative on every arc, but there are no upper capacities. On each arc ij ∈ E,
Cij : R→ R ∪ {∞} is a convex function. We allow two types of arcs ij:

• Free arcs: Cij is differentiable everywhere on R.
• Restricted arcs: Cij(α) = ∞ if α < 0, Cij is differentiable on (0,∞), and it
has a left derivative in 0 that equals −∞; let C′ij(0) = −∞ denote this left
derivative. Let us use the convention C′ij(α) = −∞ for α < 0.

By convexity, C′ij is continuous on R for free arcs and on [�ij ,∞) for restricted arcs.
Restricted arcs will play a role in the Fisher market applications, where the function
Cij(α) = α(logα − 1) will be used on certain arcs (with Cij(0) = 0 and Cij(α) = ∞
if α < 0).

The minimum-cost flow problem with separable convex objective is defined as
follows:

min
∑
ij∈E

Cij(fij)

∑
j:ji∈E

fji −
∑

j:ij∈E
fij = bi ∀i ∈ V,(P)

f ≥ 0.

The problem is often defined with more general lower and upper capacities: �ij ≤
fij ≤ uij . One can reduce general capacities to the above form via the following
standard reduction (see, e.g., [1, section 2.4]). For each arc ij ∈ E, let us add a
new node k = kij and replace ij by two arcs ik and jk. Let us set bk = uij − �ij ,
Cik(α) = Cij(α+ �ij), Cjk ≡ 0. Furthermore, let us increase bi by �ij and decrease bj
by uij . It is easy to see that this gives an equivalent optimization problem, and if the
original graph had n′ nodes and m′ arcs, the transformed instance has n = n′ +m′

nodes and m = 2m′ arcs.
Further, we may assume without loss of generality that G = (V,E) is strongly

connected and (P) is always feasible. Indeed, we can add a new node t with edges
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vt, tv for any v ∈ V , with extremely high (possibly linear) cost functions on the
edges. This guarantees that an optimal solution shall not use such edges whenever
the problem is feasible. We will also assume n ≤ m.

By a pseudoflow we mean a function f : E → R satisfying the capacity constraints.
For the uncapacitated problem, it simply means f ≥ 0. Let

(2) ρf (i) :=
∑

j:ji∈E
fji −

∑
j:ij∈E

fij

denote the flow balance at node i, and let

Ex(f) = Exb(f) :=
∑
i∈V

max{ρf (i)− bi, 0}

denote the total positive excess. For an arc set F , let
←−
F := {ji : ij ∈ F} denote the set

of reverse arcs, and let
←→
F = F ∪←−F . We shall use the vector norms ||x||∞ = max |xi|

and ||x||1 =
∑ |xi|.

Following [18, 22], we do not require the functions Cij to be given explicitly, but
we assume oracle access only.

Oracle 1. We are given an oracle, which we will refer to as the differential
oracle, satisfying either of the following properties:

(a) For every arc ij ∈ E, the oracle returns the value C′ij(α) in O(1) time for every
α ∈ R. If α is rational, then C′ij(α) is also rational.

(b) For every arc ij ∈ E, the oracle returns the value eC
′
ij(α) in O(1) time for every

α ∈ R. If α is rational, then eC
′
ij(α) is also rational.

These two options are tailored to the main applications. The more natural oracle,
Oracle 1(a), holds for quadratic objectives, where C′ij(α) = 2cijα + dij for the cost

function Cij(α) = cijα
2+dij . Option (b) is needed for Fisher markets, where C′ij(α) =

logα for cost functions of the form Cij(α) = α(logα− 1), and C′ij(α) = − logUij for
the other type of cost function, Cij(α) = −α logUij , for a rational Uij . Note that we
do not assume an evaluation oracle returning Cij(α) or e

Cij(α)—these values are not
needed for the algorithm.

The next assumption slightly restricts the class of functions Cij for technical
reasons.

(*)
Each cost function Cij(α) is either linear or strictly convex; that is,
C′ij(α) is either constant or strictly monotone increasing.

Arcs with Cij(α) linear are called linear arcs ; the rest are called nonlinear arcs.
Let mL and mN denote their numbers, respectively. We use the terms linear and
nonlinear for the corresponding reverse arcs as well. If Cij does not satisfy this
restriction, R can be decomposed into intervals such that C′ij is either constant or
strictly monotone increasing on each interval. We can replace ij by a set of paths of
length two (to avoid adding parallel arcs) with appropriately chosen capacities and
cost functions all of which satisfy the assumption. Indeed, the piecewise linear utility
functions in Fisher markets with spending constraint utilities will be handled in a
similar way. If the cost functions are explicitly given, for example, the slope of every
linear segment is part of the input, then the size of the resulting network still only
depends on the input size (that includes all numbers in the input). Hence a strongly
polynomial algorithm in this instance will be strongly polynomial with respect to the
original instance as well. This does not hold, however, if the function Cij is given in
some different, implicit way.
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2.1. Optimality and Δ-feasibility. Given a pseudoflow f , let us define the
residual graph Ef as

Ef := E ∪ {ij : ji ∈ E, fij > 0}.
Arcs in E are called forward arcs and those in the second set backward arcs. Recall our
assumption that the graph contains no pairs of oppositely directed arcs, and hence
the backward arcs are not contained in E. We will use the convention that on a
backward arc ji, fji = −fij , and Cji(α) = Cij(−α), also convex and differentiable.
The residual capacity is ∞ on forward arcs and fij on the backward arc ji.

The KKT conditions assert that the feasible solution f to (P) is optimal if and
only if there exists a potential vector π : V → R such that

(3) πj − πi ≤ C′ij(fij) ∀ij ∈ Ef .

This is equivalent to asserting that the residual graph contains no negative cost di-
rected cycles with respect to the cost function C′ij(fij).

For a value Δ > 0, let

Ef (Δ) = E ∪ {ij : ji ∈ E, fij ≥ Δ}
denote the subset of arcs in Ef that have residual capacity at least Δ. We say that
the pseudoflow f is Δ-feasible if there exists a potential vector π : V → R such that

(4) πj − πi ≤ C′ij(fij +Δ) ∀ij ∈ Ef (Δ).

Equivalently, f is Δ-feasible if and only if Ef (Δ) contains no negative cycles with
respect to the cost function C′ij(fij+Δ). If ji is a reverse arc, then (4) gives C′ij(fij−
Δ) ≤ πj − πi.

We note that our notion is different (and weaker) than the analogous conditions
in [26, 18], where (Cij(fij +Δ)− Cij(fij))/Δ is used in place of C′ij(fij +Δ).

Algorithm 1. Adjust(Δ, f̄).

INPUT A 2Δ-feasible pseudoflow f̄ and a potential vector π satisfying
(4) with f̄ and 2Δ.

OUTPUT A Δ-feasible pseudoflow f such that π satisfies (4) with f and Δ.
for all ij ∈ E do

if C′ij(f̄ij +Δ) < πj − πi then fij ← f̄ij +Δ.
elseif f̄ji ≥ Δ and πj − πi < C′ij(f̄ij −Δ) then fij ← f̄ij −Δ.

else fij ← f̄ij .
return f .

The subroutine Adjust(Δ, f) (see Algorithm 1) transforms a 2Δ-feasible pseu-
doflow to a Δ-feasible pseudoflow by possibly changing the value of every arc by
±Δ.

Lemma 1. The subroutine Adjust(Δ, f) is well-defined and correct: it returns
a Δ-feasible pseudoflow with (f, π) satisfying (4). Further, Ex(f) ≤ Ex(f̄) +mNΔ
(recall that mN is the number of nonlinear arcs).

Proof. First we observe that the “if” and “elseif” conditions cannot hold simul-
taneously: C′ij(f̄ij + Δ) < πj − π < C′ij(f̄ij − Δ) would contradict the convexity of

Cij . Consider the potential vector π satisfying (4) with f̄ and 2Δ. We prove that π
satisfies (4) with f and Δ as well.
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First, take a forward arc ij ∈ E with C′ij(f̄ij + Δ) < πj − πi. By 2Δ-feasibility

we know that πj −πi ≤ C′ij(f̄ij +2Δ). These show that setting fij = f̄ij +Δ satisfies
(4) for both ij and ji, using

C′ij(fij −Δ) ≤ C′ij(fij) = C′ij(f̄ij +Δ) < πj − πi ≤ C′ij(f̄ij + 2Δ) = C′ij(fij +Δ).

Next, assume f̄ji ≥ Δ and πj − πi < C′ij(f̄ij −Δ). Note that fij satisfies (4) by

πj − πi < C′ij(f̄ij −Δ) ≤ C′ij(f̄ij) = C′ij(fij +Δ).

If ji ∈ Ef̄ (2Δ) (that is, f̄ij ≥ 2Δ), then we have C′ij(fij −Δ) = C′ij(f̄ij − 2Δ) ≤
πj − πi, and thus (4) also holds for ji. If ji ∈ Ef̄ (Δ)− Ef̄ (2Δ), then ji /∈ Ef (Δ).

Finally, consider the case when fij = f̄ij . The condition (4) holds for ij, as we
assume πj − πi ≤ C′ij(f̄ij + Δ). Also, either fij = f̄ij < Δ and thus ji /∈ Ef (Δ), or

fij = f̄ij ≥ Δ and (4) holds for ji by the assumption C′ij(f̄ij −Δ) ≤ πj − πi.
To verify the last claim, observe that C′ij is constant on every linear arc and

therefore f̄ij = fij will be set on every linear arc. The flow change is ±Δ on every
nonlinear arc; every such change may increase the excess of one of the endpoints of
the arc by Δ. Consequently, Ex(f) ≤ Ex(f̄ ) +mNΔ follows.

3. The basic algorithm. Algorithm 2 outlines a simple algorithm for minimum-
cost flows with separable convex objectives, to be referred as the “Basic algorithm.”
This is a modified version of Minoux’s algorithm [26]. The algorithm returns a ε-
accurate solution for a required precision ε > 0. That is, for output f , there is an
optimal solution f∗ such that ‖f − f∗‖∞ < ε.

Algorithm 2. Basic.

f ← 0; Δ← Δ0;
do //Δ-phase

do //main part

S(Δ)← {i ∈ V : ρf (i)− bi ≥ Δ};
T (Δ)← {i ∈ V : ρf (i)− bi ≤ −Δ};
P ← shortest s-t path in Ef (Δ) for the cost C′ij(fij +Δ) with

s ∈ S(Δ), t ∈ T (Δ);
send Δ units of flow on P from s to t;

while S(Δ), T (Δ) �= ∅;
Adjust(Δ/2, f);
Δ← Δ/2;

while Δ > ε/(2n+mN + 1);
Return f .

We start with the pseudoflow f ≡ 0 and an initial value Δ = Δ0. We assume that
the value Δ0 is provided in the input so that 0 is Δ0-feasible and Ex(0) ≤ (2n+m)Δ0;
in the enhanced algorithm we shall specify how such a Δ0 value can be determined.
The algorithm consists of Δ-phases, with Δ decreasing by a factor of two between
two phases; the algorithm terminates once Δ < ε/(2n+mN + 1).

In the main part of phase Δ, let S(Δ) = {i ∈ V : ρf (i) − bi ≥ Δ} and T (Δ) =
{i ∈ V : ρf (i)− bi ≤ −Δ}, the set of nodes with excess and deficiency at least Δ. As
long as S(Δ) �= ∅, T (Δ) �= ∅, send Δ units of flow from a node s ∈ S(Δ) to a node
t ∈ T (Δ) on a shortest path in Ef (Δ) with respect to the cost function C′ij(fij +Δ).
(Note that there must be a path connecting nodes in S(Δ) and T (Δ), due to our
assumption that the graph G = (V,E) is strongly connected, and E ⊆ Ef (Δ).)
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The main part finishes once S(Δ) = ∅ or T (Δ) = ∅. The Δ-phase terminates
by performing Adjust(Δ/2, f) and proceeding to the next phase with scaling factor
Δ/2.

In the main part, we need to compute shortest paths in the graph Ef (Δ) for the
cost function C′ij(fij + Δ). This can be done only if there is no negative cost cycle.
Δ-feasibility is exactly this property and is maintained throughout (see Lemma 3
below). Details of the shortest path computation will be given in section 5.1 for the
enhanced algorithm.

3.1. Analysis.

Theorem 2. The Basic algorithm delivers an ε-accurate solution in O(log((2n+
mN +1)Δ0/ε) phases, and every phase comprises at most O(2n+mN ) flow augmen-
tations.

An appropriate Δ0 can be chosen to be polynomial in the input size, and hence
this gives a weakly polynomial running time bound. We now state the two simple
lemmas needed to prove this theorem. The first lemma verifies the correctness and
efficiency of the algorithm, showing that Δ-feasibility is maintained throughout and
the number of flow augmentations is linear in every Δ-phase. We omit the proof; its
analogous counterpart for the enhanced algorithm will be proved in Lemma 10.

Lemma 3.
(i) In the main part of the Δ-phase, the pseudoflow is an integer multiple of Δ on

each arc, and consequently, Ef (Δ) = Ef .
(ii) Δ-feasibility is maintained when augmenting on a shortest path.
(iii) At the beginning of the main part, Ex(f) ≤ (2n + mN )Δ, and at the end,

Ex(f) ≤ nΔ.
(iv) The main part consists of at most 2n+mN flow augmentation steps.

Our second lemma asserts the proximity of a current flow to all later flows during
the algorithm. If we let the algorithm run without ever terminating, it will converge
to an optimal solution. Hence the lemma justifies that the algorithm obtains an
ε-accurate solution, as claimed in Theorem 2. Moreover, it also helps to identify
edges which must be contained in the support of an optimal solution. The proof is
also omitted; see Lemma 11 and the first part of the proof of Theorem 14. This is
essentially the same argument that was used by Orlin (see, e.g., [1, Lemma 10.21]).

Lemma 4. Let f be the pseudoflow at the end of the main part of the Δ-phase and
f ′ in an arbitrary later phase. Then ||f−f ′||∞ ≤ (2n+m+1)Δ. If fij > (2n+m+1)Δ
at the end of the Δ-phase, then this property is maintained in all later phases, and
there exists an optimal solution f∗ with f∗ij > 0.

For all such arcs, we can conclude that πj − πi = C′ij(f
∗
ij) for an optimal solution

f∗. It will belong to the set of revealed arcs, defined in the next section. The overall
aim of the algorithm is to identify a large enough set of revealed arcs containing the
support of an optimal solution. The above lemma guarantees that the first such arc
can be identified in a strongly polynomial number of steps in the Basic algorithm.
We will, however, need to modify the algorithm in order to guarantee that the set of
revealed arcs is always extended in a strongly polynomial number of steps.

4. The enhanced algorithm.

4.1. Revealed arc sets. Let F ∗ denote the set of arcs that are tight in every
optimal solution (note that in general, we do not assume the uniqueness of the optimal
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solution). This arc set plays a key role in our algorithm. Formally,
(5)
F ∗ := {ij ∈ E : πj − πi = C′ij(fij) holds ∀f optimal to (P), ∀π : V → R,

s.t. (f, π) satisfies the inequalities (3)}.

The next lemma shows that F ∗ contains the support of every optimal solution.

Lemma 5. Let f be an arbitrary optimal solution to (P), and let fij > 0 for some
ij ∈ E. Then ij ∈ F ∗.

The proof needs the following notion, also used later. Let x, y : E → R be two
vectors. Let us define the difference graph Dx,y = (V,Ex,y) with ij ∈ Ex,y if ij ∈ E
and xij > yij or if ji ∈ E and xji < yji. Using the convention xji = −xij , yji = −yij
it follows that xij > yij for every ij ∈ Ex,y. We will need the following simple claim.

Claim 6. Assume that for two vectors x, y : E → R, ρx = ρy holds (recall the
definition of ρ in (2)). Then every arc in the difference graph Ex,y must be contained
in a cycle in Ex,y.

Proof. For ij ∈ Ex,y, let us set zij = xij − yij if xij > yij . The assumption
ρx = ρy implies that zij is a circulation in Ex,y with positive value on every arc. As
such, it can be written as a nonnegative combination of incidence vectors of cycles.
Therefore every ij ∈ Ex,y must be contained in a cycle.

Proof of Lemma 5. Let f∗ be another arbitrary optimal solution, and consider
potentials π and π∗ with both (f, π) and (f∗, π∗) satisfying (3). We shall prove that
π∗j − π∗i = C′ij(f

∗
ij). Since (f∗, π∗) is chosen arbitrarily, this will imply ij ∈ F ∗. If

f∗ij > 0, then ji ∈ Ef∗ and thus π∗j − π∗i = C′ij(f
∗
ij) must hold.

Assume now f∗ij = 0. Consider the difference graph Df,f∗ . Since fij > f∗ij , it
follows that ij ∈ Ef,f∗ . Because of ρf∗ ≡ ρf ≡ b, Claim 6 is applicable and provides
a cycle C in Ef,f∗ containing ij. For every arc ab ∈ C, fab > f∗ab and thus ab ∈ Ef∗

and ba ∈ Ef . By (3),

0 =
∑
ab∈C

π∗b − π∗a ≤
∑
ab∈C

C′ab(f
∗
ab),

0 =
∑
ab∈C

πa − πb ≤
∑
ab∈C

C′ba(fba) = −
∑
ab∈C

C′ab(fab).

The convexity of Cab and fab > f∗ab give C′ab(fab) ≥ C′ab(f
∗
ab). In the above inequali-

ties, equality must hold everywhere, implying π∗j − π∗i = C′ij(f
∗
ij), as desired.

We shall see that using Oracle 2 (to be described later), finding the set F ∗ enables
us to compute an optimal solution in strongly polynomial time. In the Basic algorithm,
F = {ij ∈ E : fij > (2n+m+ 1)Δ} is always a subset of F ∗ according to Lemmas 4
and 5. Furthermore, once an edge enters F , it stays there in all later phases. The
Enhanced algorithm provides a modification of the Basic algorithm with the guarantee
that within every O(log n) phases, a new arc enters F .

In each step of the enhanced algorithm, there will be an arc set F , called the
revealed arc set, which is guaranteed to be a subset of F ∗. We remove the lower
capacity 0 from arcs in F and also allow negative values here.

Formally, for an edge set F ⊆ E, a vector f : E → R is an F -pseudoflow if fij ≥ 0
for ij ∈ E \ F (but it is allowed to be negative on F ). For such an f , let us define
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(6) EF
f := Ef ∪←−F = E ∪←−F ∪ {ji : ij ∈ E \ F, fij > 0}.

If ij ∈ F , then the residual capacity of ji is ∞. In every phase of the algorithm, we
maintain an F -pseudoflow f for a revealed arc set F ⊆ F ∗.

Provided the revealed arc set F ⊆ F ∗, we will aim for F -optimal solutions as
defined below; we prove that finding an F -optimal solution is essentially equivalent to
finding an optimal one. We say that f : E → R is F -optimal if it is an F -pseudoflow
with ρf ≡ b and there exists a potential vector π : V → R with

(7) πj − πi ≤ C′ij(fij) ∀ij ∈ EF
f .

This is stronger than the optimality condition (3) in that it also requires the inequality

on arcs in
←−
F . On the other hand, it does not imply optimality, as it allows fij < 0

for ij ∈ F . Nevertheless, it is easy to see that every optimal solution f∗ is also
F -optimal for every F ⊆ F ∗. This is due to the definition of F ∗ as the set of arcs
satisfying πj − πi = C′ij(fij) whenever (f, π) satisfies (3). Conversely, we shall prove
that provided an F -optimal solution, we can easily find an optimal solution by a
single feasible circulation algorithm, a problem equivalent to maximum flows (see [1,
Chapters 6.2 and 7]).

Lemma 7. Assume that for a subset F ⊆ F ∗, an F -optimal solution f is provided.
Then an optimal solution to (P) can be found by a feasible circulation algorithm.
Further, ij ∈ F ∗ whenever fij > 0.

Proof. Assume f and f̄ are both F -optimal solutions, that is, for some vectors
π and π̄, the pairs (f, π) and (f̄ , π̄) both satisfy (7). We prove that (i) fij = f̄ij
whenever ij is a nonlinear arc; and (ii) if ij is a linear arc with fij �= f̄ij , then
πj − πi = C′ij(fij) = C′ij(f̄ij) = π̄j − π̄i.

Note that (i) and (ii) immediately imply the second half of the claim, as it can
be applied for f and an arbitrary optimal (and, consequently, F -optimal) solution f̄ .

The proof uses the same argument as for Lemma 5. Without loss of generality,
assume fij > f̄ij for an arc ij, and consider the difference graph Df,f̄ . Since ρf ≡
ρf̄ ≡ b and fij > f̄ij , Claim 6 is applicable and shows that ij must be contained

on a cycle C ⊆ Ef,f̄ . For every arc ab ∈ C, ab ∈ EF
f̄

and ba ∈ EF
f follows (using

←→
F ⊆ EF

f̄
∩ EF

f ). By (7),

0 =
∑
ab∈C

π̄b − π̄a ≤
∑
ab∈C

C′ab(f̄ab),

0 =
∑
ab∈C

πa − πb ≤
∑
ab∈C

C′ba(fba) = −
∑
ab∈C

C′ab(fab).

Now convexity yields C′ab(fab) = C′ab(f̄ab) for all ab ∈ C. The condition (*) implies
that all arcs in C are linear, in particular, ij is linear. This immediately proves (i).
To verify (ii), observe that all above inequalities must hold with equality.

This suggests the following simple method to transform an F -optimal solution f
to an optimal f∗ of (P). For every nonlinear arc ij, we must have f∗ij = fij . Let
H ⊆ E be the set of linear arcs satisfying πj − πi = C′ij(fij). Consider the solutions
h of the following feasible circulation problem:
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hij = fij ∀ij ∈ E \H,∑
j:ji∈E

hji −
∑

j:ij∈E
hij = bi ∀i ∈ V,

h ≥ 0.

We claim that the feasible solutions to this circulation problem are precisely the
optimal solutions to (P). Indeed, if f∗ is an optimal solution, then (i) and (ii) imply
that f∗ij = fij for all ij ∈ E \H and ij ∈ H for every arc with fij �= f∗ij . The degree
conditions are satisfied because of ρf∗ ≡ ρf ≡ b. Conversely, every feasible circulation
h is an optimal solution to (P) since (h, π) satisfies (3).

In every step of our algorithm we will have a scaling parameter Δ ≥ 0 and a
revealed arc set F ⊆ F ∗. The Basic algorithm used the notion of Δ-feasibility; it has
to be modified according to F . Let EF

f (Δ) denote the set of arcs in EF
f with residual

capacity at least Δ. That is,

(8) EF
f (Δ) := Ef (Δ) ∪←−F = E ∪←−F ∪ {ji : ij ∈ E \ F, fij ≥ Δ}.

We say that the F -pseudoflow f is (Δ, F )-feasible if there exists a potential vector
π : V → R so that

(9) πj − πi ≤ C′ij(fij +Δ) ∀ij ∈ EF
f (Δ).

This is equivalent to the property that EF
f (Δ) contains no negative cycle with respect

to the cost function C′ij(fij +Δ).
In accordance with (Δ, F )-feasibility, we have to modify the subroutine Adjust.

The modified subroutine, denoted by Adjust(Δ, f, F ), is shown in Algorithm 3. The
only difference from Algorithm 1 is that condition (4) is replaced by (9) and that in
the second condition, “f̄ji ≥ Δ” is replaced by “f̄ji ≥ Δ or ij ∈ F .” The following
lemma can be proved by the same argument as Lemma 1.

Algorithm 3. Subroutine Adjust(Δ, f̄ , F ).

INPUT A (2Δ, F )-feasible pseudoflow f̄ and a potential vector π satisfying
(9) with f̄ and 2Δ.

OUTPUT A (Δ, F )-feasible pseudoflow f such that π satisfies
(9) with f and Δ.

for all ij ∈ E do
if C′ij(f̄ij +Δ) < πj − πi then fij ← f̄ij +Δ.
elseif (f̄ji ≥ Δ or ij ∈ F ) and πj − πi < C′ij(f̄ij −Δ) then fij ← f̄ij −Δ.

else fij ← f̄ij .
return f .

Lemma 8. The subroutine Adjust(Δ, f, F ) is well-defined and correct: it returns
a (Δ, F )-feasible pseudoflow with (f, π) satisfying (9). Further, Ex(f) ≤ Ex(f̄ ) +
mNΔ.

Finally, we say that a set F ⊆ E is linear acyclic if F does not contain any
undirected cycles of linear arcs (that is, no cycle in F may consist of linear arcs and
their reverse arcs). We shall maintain that the set of revealed arcs F is linear acyclic.

This notion is motivated by the following: assume there exists a cycle consisting of
linear arcs and their reverses. Given an F -pseudoflow, we could modify it by sending
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an arbitrary amount of flow around this cycle. Hence we would not be able to derive
our proximity result, Lemma 15, and Lemma 13, which relies on it. On the other
hand, we can pick an arbitrary arc on a cycle of linear arcs, remove it from F , and
reroute its entire flow on the rest of the cycle.

4.2. Subroutine assumptions. Given the set F ⊆ F ∗ of revealed arcs, we will
try to find out whether F already contains the support of an optimal solution. This
motivates the following definition. We say that the (not necessarily nonnegative)
vector x : E → R is F -tight if xij = 0 whenever ij /∈ F and there exists a potential
vector π : V → R with

(10) πj − πi = C′ij(xij) ∀ij ∈ F.

For example, any optimal solution is F ∗-tight by Lemma 5. Notice that an F -tight

vector f is not necessarily F -optimal, as (7) might be violated for edges in EF
f \
←→
F

and also since Exb(f) > 0 is allowed (note that ρf ≡ b is equivalent to Exb(f) = 0).
Conversely, an F -optimal vector is not necessarily F -tight, as it can be nonzero on
E \ F .

Given F and some node demands b̂ : V → R, we would like to find an F -tight
x with Exb̂(x) = 0. This is equivalent to finding a feasible solution (x, π) to the
following system:

πj − πi = C′ij(xij) ∀ij ∈ F,∑
j:ji∈F

xji −
∑

j:ij∈E
xij = b̂i ∀i ∈ V,(11)

xij = 0 ∀ij ∈ E \ F.
Let us define the discrepancy Db̂(F ) of F as the maximum of |∑i∈K b̂i| over undi-
rected connected components K of F . A trivial necessary condition for solvability is
Db̂(F ) = 0: indeed, summing up the second set of equalities for a component K, we

obtain 0 =
∑

i∈K b̂i.

Oracle 2. Assume we have a subroutine Trial(F, b̂) so that for any linear

acyclic F ⊆ E and any vector b̂ : V → R satisfying Db̂(F ) = 0, it delivers an

F -tight solution x to (11) with ρx ≡ b̂ in strongly polynomial running time ρT (n,m).

For quadratic cost functions and also for Fisher markets, this subroutine can be
implemented by solving simple systems of equations (for quadratic cost functions, this
was already outlined in section 1.2).

Consider now an F -tight vector f , and let

(12) errF (f) := inf{Δ : f is (Δ, F )-feasible}.
Recall the definition (8) of the edge set EF

f (Δ). As f is assumed to be F -tight and

therefore fij > 0 if and only if ij ∈ F , we get that EF
f (Δ) = E ∪←−F . Consequently,

EF
f (Δ) is independent of the value of Δ. Because of continuity, this infimum is

actually a minimum whenever the set is nonempty. If f is not (Δ, F )-feasible for any
Δ, then let errF (f) = ∞. f is F -optimal if and only if f is a feasible flow (that is,
Exb(f) = 0) and errF (f) = 0).

Oracle 3. Assume a subroutine Error(f, F ) is provided that returns errF (f)
for any F -tight vector f in strongly polynomial running time ρE(n,m). Further, if
err∅(0) =∞, then (P) is unbounded.
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This subroutine seems significantly harder to implement for the applications: we
need to solve a minimum cost-to-time ratio cycle problem for quadratic costs and all
pairs of shortest paths for the Fisher markets.

Having formulated all necessary assumptions, we are finally in the position to
formulate the main result of the paper.

Theorem 9. Assume Oracles 1–3 are provided and (*) holds for the problem
(P) in a network on n nodes and m arcs, mN among them having nonlinear cost
functions. Let ρT (n,m) and ρE(n,m) denote the running times of Oracles 2 and 3,
and let ρS(n,m) be the running time needed for a single shortest path computation
for nonnegative arc lengths. Then an exact optimal solution can be found in O((n +
mN )(ρT (n,m) + ρE(n,m)) + (n+mN )2ρS(n,m) logm) time.

This gives an O(m4 logm) algorithm for quadratic convex objectives. For Fisher
markets, we obtain O(n4 +n2(m+n logn) logn) running time for linear utilities and
O(mn3 +m2(m+ n logn) logm) for spending constraint utilities.

Algorithm 4. Enhanced Convex Flow.

Error(0, ∅);
f ← 0; Δ← max{err∅(0), Exb(0)/(2n+mN )}; F ← ∅;
repeat //Δ-phase

do //main part

S(Δ)← {i ∈ V : ρf (i)− bi ≥ Δ};
T (Δ)← {i ∈ V : ρf (i)− bi ≤ −Δ};
P ← shortest s-t path in EF

f (Δ) for the cost C′ij(fij +Δ) with

s ∈ S(Δ), t ∈ T (Δ);
send Δ units of flow on P from s to t;

while S(Δ), T (Δ) �= ∅;
Extend(Δ, f, F );
if (F was extended) and (Db(F ) ≤ Δ) then Trial-and-Error(F )

else Adjust(Δ/2, f, F );
Δ← Δ/2;

Subroutine Extend(Δ, f, F )
for all ij ∈ E \ F , fij > (2n+m+ 1)Δ do

if F ∪ {ij} is linear acyclic then F ← F ∪ {ij}
else

P ← path of linear arcs in
←→
F between i and j;

send fij units of flow on P from i to j;
fij ← 0;

4.3. Description of the enhanced algorithm. Algorithm 4 starts with f = 0,
Δ = max{err∅(0), Exb(0)/(2n + mN )}, and F = ∅. The algorithm consists of Δ-
phases. In the Δ-phase, we shall maintain a linear acyclic revealed arc set F ⊆ F ∗

and a (Δ, F )-feasible F -pseudoflow f . The algorithm will always terminate during
the subroutine Trial-and-Error.

The main part of the Δ-phase is the same as in the Basic algorithm. Let S(Δ) =
{i ∈ V : ρf (i)−bi ≥ Δ} and T (Δ) = {i ∈ V : ρf (i)−bi ≤ −Δ}. As long as S(Δ) �= ∅,
T (Δ) �= ∅, send Δ units of flow from a node s ∈ S(Δ) to a node t ∈ T (Δ) on a shortest
path in EF

f (Δ) with respect to the cost function C′ij(fij +Δ). (The existence of such
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a path P is guaranteed by our assumption that the graph G = (V,E) is strongly
connected.)

After the main part (the sequence of path augmentations) is finished, the sub-
routine Extend(Δ, f, F ) adds new arcs ij ∈ E \ F with fij > (2n +m + 1)Δ to F
maintaining the linear acyclic property. This is achieved as follows: we first add all
nonlinear such arcs to F . We add a linear arc to F if it does not create any (undi-
rected) cycles in F . If adding the linear arc ij would create a cycle, we do not include
it in F , but reroute the entire flow from ij using the (undirected) path in F between
i and j.

If no new arc enters F , then we perform Adjust(Δ/2, f, F ) and move to the next
scaling phase with the same f and set the scaling factor to Δ/2. This is done also if
F is extended, but it has a high discrepancy: Db(F ) > Δ.

Otherwise, the subroutine Trial-and-Error(F ) determines the next f and Δ.
Based on the arc set F , we find a new F -pseudoflow f and scaling factor at most Δ/2.
The subroutine may also terminate with an F -optimal solution, which enables us to
find an optimal solution to (P) by a maximum flow computation due to Lemma 7.
Theorem 14 will show that this is guaranteed to happen within a strongly polynomial
number of steps.

The Trial-and-Error subroutine. The subroutine assumes that the discrep-
ancy of F is small: Db(F ) ≤ Δ.

Step 1. First, modify b to b̂: in each (undirected) component K of F , pick a node
j ∈ K and change bj by −∑

i∈K bi; leave all other bi values unchanged. Thus we get

a b̂ with Db̂(F ) = 0. Trial(F, b̂) returns an F -tight vector f̂ .

Step 2. Call the subroutine Error(f̂ , F ). If b = b̂ and errF (f̂) = 0, then f̂
is F -optimal. An optimal solution to (P) can be found by a single maximum flow
computation, as described in the proof of Lemma 7. In this case, the algorithm
terminates. If errF (f̂) ≥ Δ/2, then keep the original f , perform Adjust(Δ/2, f, F ),

and go to the next scaling phase with scaling factor Δ/2. Otherwise, set f = f̂ and
define the next scaling factor as

Δnext = max{errF (f̂), Exb(f̂)/(2n+mN )}.

5. Analysis. The details of how the shortest path computations are performed
will be discussed in section 5.1; in the following analysis, we assume it can be effi-
ciently implemented. At the initialization, err∅(0) must be finite or the problem is
unbounded, as assumed in Oracle 3.

Trial-and-Error replaces f by f̂ if errF (f̂) ≤ Δ/2 and keeps the same f
otherwise. The first case will be called a successful trial; the latter is unsuccessful.
The following is (an almost identical) counterpart of Lemma 3.

Lemma 10.
(i) In the main part of the Δ-phase, the F -pseudoflow f is an integer multiple of Δ

on each arc ij ∈ E \ F , and consequently, EF
f (Δ) = EF

f .
(ii) (Δ, F )-feasibility is maintained in the main part and in the subroutine

Extend(Δ, f, F ).
(iii) At the beginning of the main part, Ex(f) ≤ (2n + mN )Δ, and at the end,

Ex(f) ≤ nΔ.
(iv) The main part consists of at most 2n+mN flow augmentation steps.
(v) The scaling factor Δ decreases by at least a factor of 2 between two Δ-phases.
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Proof. For (i), f is zero on every arc in E \ F at the beginning of the algorithm
and after every successful trial. In every other case, the previous phase had scaling
factor 2Δ, and thus by induction, the flow is an integer multiple of 2Δ at the end
of the main part of the 2Δ-phase, a property also maintained by Extend(2Δ, f, F ).
The 2Δ-phase finishes with Adjust(Δ, f, F ), possibly modifying the flow on every
arc by ±Δ. In the main part of the Δ-phase, the shortest path augmentations also
change the flow by ±Δ. This implies EF

f (Δ) = EF
f .

For (ii), P is a shortest path if there exists a potential π satisfying (9) with
πj − πi = C′ij(fij +Δ) on each arc ij ∈ P (see also section 5.1). We show that when
augmenting on the shortest path P , (9) is maintained with the same π. If ij, ji /∈ P ,
then it is trivial, as the flow is left unchanged on ij. Consider now an arc ij ∈ P ;
the next argument applies if ij is both a forward and a reverse arc. The new flow
value will be fij +Δ, and hence we need πj − πi ≤ C′ij(fij +2Δ), obvious since C′ij is

monotonically increasing. We next verify (9) for the backward arc ji ∈ EF
f (Δ). This

gives πi − πj ≤ C′ji((fji −Δ) +Δ), which is equivalent to C′ij(fij) ≤ πj − πi, again a
consequence of monotonicity.

In subroutine Extend, we reroute the flow fij from a linear arc ij if
←→
F contains a

directed path P from i to j. This cannot affect feasibility since the C′ij ’s are constant

on linear arcs. Also note that arcs in
←→
F have infinite residual capacities.

For (iii), Ex(f) ≤ nΔ, as the main part terminates with either S(Δ) = ∅ or
T (Δ) = ∅. Lemma 8 shows that Adjust(Δ/2, f, F ) increases the excess by at most
mNΔ/2. Consequently, Ex(f) ≤ (2n+mN)(Δ/2) at the beginning of the Δ/2-phase.

The other possible case is that a successful trial replaces Δ by Δnext. By defini-
tion, the new excess is at most (2n+mN )Δnext.

Further, (iii) implies (iv), as each flow augmentation decreases Ex(f) by Δ. Fi-
nally, (v) is straightforward if the next value of the scaling factor is set as Δ/2. This is

always the case, except if Trial-and-Error is called and errF (f̂) ≤ Δ/2, when the

next scaling factor is set as the maximum of errF (f̂) and Exb(f̂)/(2n+mN). We show

that this second term is also at most Δ/2. Indeed, f̂ was obtained by Trial(F, b̂),

and therefore ρf̂ (i) − bi = b̂i − bi ≤ Δ due to the definition of b̂ and Db(F ) ≤ Δ. It

follows that Exb(f̂) ≤ nΔ, and thus Exb(f̂)/(2n+mN ) < Δ/2.

Lemma 11. F ⊆ F ∗ holds in each step of the algorithm.

Proof. The proof is by induction. A new arc ij may enter F if fij > (2n+m+1)Δ
after the main part of the Δ-phase. We shall prove that f∗ij > 0 for some F -optimal
solution f∗, and thus Lemma 7 gives ij ∈ F ∗.

After the phase when ij entered, let us continue with the following modified
algorithm: do not extend F and do not perform Trial-and-Error anymore, but
always choose the next scaling factor as Δ/2, and keep the algorithm running forever.
(This is almost the same as the Basic algorithm, with the difference that we have a
revealed arc set F .)

Let Δ0 = Δ and Δt = Δ/2t denote the scaling factor in the tth phase of this
algorithm (with phase 0 corresponding to the Δ-phase). Consider any Δt-phase
(t ≥ 1). The flow is modified by at most (2n + mN )Δt during the main part by
Lemma 10(iv) and by Δt/2 in Adjust(Δt/2, f, F ), amounting to a total modifica-
tion ≤ (2n+mN + 1

2 )Δt. Consequently, the total modification in the Δt phase and
all later phases is bounded by (2n+mN + 1

2 )
∑∞

k=t Δk ≤ 2(2n+m+ 1
2 )Δt.

We may conclude that when running forever, the flow f converges to an F -optimal
solution f∗. Indeed, let f (t) denote the F -pseudoflow at the end of the tth phase. By
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the above observation, ||f (t) − f (t′)||∞ ≤ 2(2n + m + 1
2 )Δt for any t′ ≥ t ≥ 0.

Consequently, on every arc ij ∈ E, the sequence f
(t)
ij converges; let f∗ denote the

limit. We claim the f∗ is F -optimal.
First, f∗ is clearly an F -pseudoflow. Property (7) is equivalent to the property

that EF
f does not contain any negative cycle with respect to C′ij(fij). This fol-

lows from the fact that EF
f (Δt) does not contain any negative cycle with respect to

C′ij(f
(t)
ij ) due to the (Δt, F )-feasibility of f (t). Finally, Exb(f

∗) = limt→∞Exb(f
(t)) ≤

limt→∞ nΔt = 0, and therefore Exb(f
∗) = 0.

To finish the proof, we observe that f∗ij > 0. Indeed, fij > (2n +m + 1)Δ after

the main part of the Δ-phase, and hence fij > (2n + m + 1
2 )Δ at the end of the

Δ-phase (after performing Adjust(Δ/2, f, F )). By the above argument, the total
change in all later phases is ≤ 2(2n+m+ 1

2 )Δ1 = (2n+m+ 1
2 )Δ, yielding the desired

conclusion.

Recall the characterization of arcs as free and restricted. Free arcs are differ-
entiable on the entire R, whereas for a restricted arc ij, we have C′ij(α) = −∞ for
α < 0. Therefore we have to avoid the flow value becoming negative even if ij ∈ F
for a restricted arc.

Claim 12. fij ≥ 0 holds for every restricted arc ij during the entire algorithm,
even if ij ∈ F .

Proof. fij ≥ 0 holds at the initialization; consider the first Δ-phase when fij < 0
is attained. This can happen during a path augmentation or in theAdjust subroutine
(Extend may not modify fij , as ij is a nonlinear arc). In the case of a path augmen-
tation, ji is contained on the shortest path P , and therefore πj − πi = C′ij(fij −Δ)
must hold for a potential π (see the proof of Lemma 10). This is a contradiction, as
fij −Δ < 0 and thus C′ij(fij −Δ) = −∞. A similar argument works for Adjust.

Lemma 13. When Trial-and-Error(F ) is performed in the Δ-phase, errF (f̂) ≤
6(m+ 1)2Δ holds.

This lemma is of key importance. Before proving it, we show how it provides
the strongly polynomial bound. The main idea is the following: in Trial-and-

Error(F ), we replace f by f̂ and Δ by a new value instead of Δ/2 in case errF (f̂) <

Δ/2; otherwise, we ignore f̂ and proceed to the next phase as usual. Whereas

errF (f̂) ≥ Δ/2 is possible, the lemma gives an upper bound in terms of Δ. Note
also that the output of the subroutine Trial-and-Error(F ) depends only on the

revealed arc set F . Consequently, if we had errF (f̂) ≥ Δ/2, then by the time the
scaling factor reduces to a smaller value Δ′ such that 6(m+ 1)2Δ′ < Δ/2, the set F
must have been extended.

Theorem 14. The enhanced algorithm terminates in at most O((n+mN ) logm)
scaling phases.

Proof. The set of revealed arcs can be extended at most mN + n− 1 times since
there can be at most (n − 1) linear arcs because of the linear acyclic property. We
shall show that after any Δ-phase, a new arc is revealed within 2�log2 T � phases for
T = 24(m+ 1)2.

As Δ decreases by at least a factor of two between two phases, after �log2 T � steps
we have ΔT ≤ Δ/T . Assume that in the ΔT phase, we still have the same revealed
arc set F as in the Δ-phase.

Case I (Db(F ) > Δ). At the end of the main part of the ΔT -phase, Db(F ) >
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24(m + 1)2ΔT . Thus there is an undirected connected component K of F with
|∑i∈K bi| > 24(m+ 1)2ΔT . Let ρf (K) denote the total f value on arcs entering K
minus the value on arcs leaving K, that is,

ρf (K) :=
∑

ij∈E:i/∈K,j∈K
fij −

∑
ij∈E:i∈K,j /∈K

fij .

We have

|ρf (K)| =
∣∣∣∣∣
∑
i∈K

ρf (i)

∣∣∣∣∣ =
∣∣∣∣∣
∑
i∈K

(ρf (i)− bi + bi)

∣∣∣∣∣ ≥
∣∣∣∣∣
∑
i∈K

bi

∣∣∣∣∣ − Exb(f).

The last part is derived from the simple inequality |β +α+ + α−| ≥ |β| − γ whenever
α+, α−, β, γ ∈ R with −γ ≤ α− ≤ 0 ≤ α+ ≤ γ. In our setting, β =

∑
i∈K bi,

α+ =
∑

i∈K max{ρf (i)− bi, 0}, α− =
∑

i∈K min{ρf(i)− bi, 0}, and γ = Exb(f). The
conditions hold since

γ = Exb(f) =
∑
i∈V

max{ρf (i)− bi, 0} = −
∑
i∈V

min{ρf(i)− bi, 0}.

For the second equality, note that
∑

i∈V bi =
∑

i∈V ρf (i) = 0. Now we conclude

|ρf (K)| ≥
∣∣∣∣∣
∑
i∈K

bi

∣∣∣∣∣− Exb(f) > 24(m+ 1)2ΔT − nΔT > (2n+m+ 1)mΔT .

Consequently, there must be an arc ij entering or leaving K with fij > (2n +
m + 1)ΔT , a contradiction, as at least one such arc must have been added to F in
Extend(ΔT , f, F ). Note that the first such arc examined during Extend(ΔT , f, F )
does keep the linear acyclic property, as it connects two separate connected compo-
nents of F .

Case II (Db(F ) ≤ Δ). We may assume that we are either at the very beginning
of the algorithm with F = ∅ or in a phase when F just has been extended; otherwise,
we could consider an earlier phase with this property. We can interpret the initial
solution 0 and initial Δ as the output of Trial-and-Error(∅).

Case IIa (Db(F ) > ΔT ). The argument of Case I, applied for ΔT instead of Δ,
shows that within �log2 T � phases after the ΔT phase, F shall be extended, showing
that a new arc was revealed within 2�log2 T � phases after the Δ-phase.

Case IIb (Db(F ) ≤ ΔT ). Recall the assumption that F has not changed between
phases Δ and ΔT , and thus Db(F ) has not changed its value either. Let us apply
the analysis of the Trial-and-Error subroutine for the ΔT -phase. (Even if the
subroutine is not actually performed, its analysis is valid provided that Db(F ) ≤ ΔT .)

Let f̂ be the arc set found by Trial(F, b̂). Let us assume that b is always modified

to b̂ the same way for the same F ; with this assumption, the output of the subroutine is
the same whether called in the Δ- or in the ΔT -phase. In the event of an unsuccessful
trial in the Δ-phase, Δ/2 ≤ errF (f̂). Using Lemma 13 for the ΔT -phase,

errF (f̂) ≤ 6(m+ 1)2ΔT ≤ Δ/4 ≤ errF (f̂)/2,

a contradiction. On the other hand, if we had a successful trial in the Δ-phase, then
ΔT ≤ 2Δnext/T , as ΔT is the scaling factor T − 1 phases after the Δnext-phase.

Lemma 13 and Exb(f̂) ≤ nDb(F ) ≤ nΔT together yield

Δnext = max{errF (f̂), Exb(f̂)/(2n+mN )} ≤ 6(m+ 1)2ΔT ≤ Δnext/2,



STRONGLY POLYNOMIAL SEPARABLE CONVEX COST FLOWS 1749

again a contradiction.

Some preparation is needed to prove Lemma 13. We note that the linear acyclic
property is important due to the following lemma; if F may contains undirected cycles
of linear arcs, the claim is not true.

Lemma 15. For a linear acylic arc set F ⊆ E, let x and y be two F -tight vectors.
Then ||x− y||∞ ≤ ||ρx − ρy||1 holds.

Proof. First, we claim that the difference graph Dx,y = (V,Ex,y) is acyclic. In-
deed, if there existed a cycle C ⊆ Ex,y, then we would get 0 =

∑
ab∈C C′ab(xab) =∑

ab∈C C′ab(yab), as in the proof of Lemma 5. Since xab > yab for every ab ∈ C, this
is only possible if all arcs of C are linear (*), contradicting the linear acyclic property

of F . (Note that Ex,y ⊆ ←→F since, by definition, every F -tight vector is supported on
F .)

Define the function z by zij = xij − yij > 0 for ij ∈ Ex,y (again with the
convention xji = −xij , yji = −yij if ij ∈ E). ρz ≡ ρx − ρy, and therefore we have to
prove zij ≤ ||ρz ||1 for ij ∈ Ex,y. This property indeed holds for every positive z with
acyclic support.

Consider a reverse topological ordering v1, . . . , vn of V , where vavb ∈ Ex,y implies
a > b. For the arc ij ∈ Ex,y, let i = vt′ and j = vt (t

′ > t). Let Vt = {v1, . . . , vt}. Vt

is a directed cut in Ex,y, and thus

∑
p>t≥q

zvpvq =
∑
p≤t

ρz(vp).

As z is positive on all arcs, this implies zvavb ≤
∑

p≤t ρz(vp) ≤ ||ρz||1 for all such arcs,
in particular for ij.

Claim 16. If f and f̂ are F -pseudoflows with f̂ij = 0 for ij ∈ E \ F , and f is

(Δ, F )-feasible, then f̂ is (Δ + ||f − f̂ ||∞, F )-feasible.

Proof. There is a potential π so that f and π satisfy (9), that is, πj − πi ≤
C′ij(fij + Δ) if ij ∈ EF

f (Δ). For α = ||f − f̂ ||∞, we have fij + Δ ≤ f̂ij + Δ + α.

Consequently, (9) is satisfied for (f̂ij , π) and Δ + α for every arc in EF
f (Δ).

By the assumption that f̂ is zero outside F , we have EF
f̂
(Δ+α) = E∪←−F ⊆ EF

f (Δ)

and thus the claim follows.

Proof of Lemma 13. When Trial-and-Error is applied, f is (Δ, F )-feasible
with some potential π and Exb(f) ≤ nΔ. We claim that there is an F -tight f̄ so that
|f̄ij − fij | ≤ Δ for every ij ∈ F , and Exb(f̄) ≤ (2n+m+ 2)mΔ.

Indeed, (Δ, F )-feasibility gives

C′ij(fij −Δ) ≤ πj − πi ≤ C′ij(fij +Δ) ∀ij ∈ F.

If ij is a free arc (that is, differentiable on the entire R), then C′ij is continuous, so
there must be a value fij − Δ ≤ β ≤ fij + Δ with C′ij(β) = πj − πi. This also
holds if ij is a restricted arc since, by Claim 12, fij ≥ 0 and C′ij is continuous on

(max{0, fij − Δ}, fij + Δ), and C′ij(0) = −∞. Let us set f̄ij = β. This increases
Exb(f) by at most |F |Δ.

Let us set f̄ij = 0 for ij ∈ E \ F . Note that fij ≤ (2n+m+1)Δ if ij /∈ F (every
arc with fij > (2n +m + 1)Δ is either added to F or is modified to fij = 0 in the
subroutine Extend). Further, Exb(f) ≤ nΔ, and thus we obtain an F -tight f̄ with
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Exb(f̄) ≤ nΔ+ |F |Δ+ (2n+m+ 1)(m− |F |)Δ
≤ (2n+m+ 2)mΔ.

On the other hand, Exb(f̂) ≤ nDb(F ) ≤ nΔ since Exb̂(f̂) = 0 and b̂ is obtained from
b by modifying certain values by ≤ Db(F ). Consequently,

||ρf̄ −ρf̂ ||1 ≤ ||ρf̄ −b||1+ ||ρf̂ −b||1 = 2Exb(f̄)+2Exb(f̂) ≤ 2(2n+m+3)mΔ ≤ 6m(m+1)Δ.

Applying Lemma 15 for x = f̄ and y = f̂ gives ||f̂ − f̄ ||∞ ≤ 6m(m + 1)Δ. We
also have ||f − f̄ ||∞ ≤ (2n+m+1)Δ ≤ (3m+1)Δ by the construction, and therefore

||f − f̂ ||∞ ≤ ||f − f̄ ||∞ + ||f̄ − f̂ ||∞ < 6(m+ 1)2Δ−Δ.

Applying Claim 16 for f and f̂ we conclude that f̂ is 6(m+1)2Δ-feasible; recall that
f was (Δ, F )-feasible when we applied Trial-and-Error.

Theorem 17. Let ρS(n,m) be the running time needed for one shortest path com-
putation for nonnegative lengths. Then the running time of the algorithm is bounded
by

O((n+mN )(ρT (n,m) + ρE(n,m)) + (n+mN )2ρS(n,m) logm).

Proof. By Theorem 14, there are at most (n + mN) logm scaling phases, each
dominated by O(n +mN ) shortest path computations. The subroutine Trial-and-

Error is performed only when F is extended, that is, at most n + mN times, and
comprises the subroutines Trial and Error.

5.1. Shortest path computations. For the sake of efficiency, we shall maintain
a potential vector π during the entire algorithm such that (f, π) satisfies condition
(9) on (Δ, F )-feasibility.

For the initial Δ value, Δ ≥ err∅(0), and the latter value is computed by
Error(0, ∅). This means that f = 0 is (Δ, ∅)-feasible. Similarly, after every suc-

cessful trial we have a new flow f̂ computed by Error(f, F ) and new scaling factor

value Δnext ≥ errF (f̂). In the applications, this subroutine will also return a potential
vector π such that (f, π) satisfies (9).

Alternatively, such a potential vector may be obtained by the standard label
correcting algorithm (see [1, Chapter 5.5]) since it is a dual proof of the fact that the
graphEF

f (Δ) contains no negative cycles with respect to the cost function C′ij(fij+Δ);
we have access to these values via the value oracle (Oracle 1).

In the main part of the Δ-phase, we may apply a variant of Dijkstra’s algorithm
(see [1, Chapter 4.5]) to compute shortest paths. This needs a nonnegative cost
function, but instead of the original C′ij(fij + Δ) that may take negative values, we
shall use C′ij(fij+Δ)−πj+πi, a nonnegative function by (9); the set of shortest paths
is identical for the two costs. This subroutine can be implemented by updating the
potentials π, so that (Δ, F )-feasibility is maintained, and we obtain C′ij(fij + Δ) =
πj −πi on every arc of every shortest path. For the sake of completeness, we describe
this subroutine in the appendix.

As shown in the proof of Lemma 10(ii), once we have a potential π such that
C′ij(fij + Δ) = πj − πi on every arc of a shortest path P , then sending Δ units of
flow on P maintains (9) for (f, π). It is also maintained in Extend(Δ, f, F ) since
flow values are modified only on arcs with C′ij constant. Finally, Adjust(Δ/2, f, F )
modifies the flow so that (9) is maintained for the same π and Δ/2 by Lemma 8.

Let us now explore the relation to Oracle 1. In both applications, we shall verify
that the subroutine Trial-and-error returns a rational flow vector f and a rational
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value Δ. Since flow will always be modified in units of Δ in all other parts of the algo-
rithm, we may conclude that a rational f will be maintained in all other parts. Under
Oracle 1(a) (i.e., quadratic objectives), we shall maintain a rational potential vector
π, while under Oracle 1(b) (i.e., Fisher markets), we shall maintain the rationality
of the eπi values; during the computations, we shall use the representation of these
values instead of the original π. For this aim, we will use a multiplicative variant of
Dijkstra’s algorithm, also described in the appendix. We shall also verify that in the
corresponding applications, the subroutine Error(f, F ) returns a potential vector π
so that (f, π) satisfies (9), with the πi or the eπi values being rational, respectively.

Finally, it is easy to verify that whereas we are working on a transformed un-
capacitated instance, we may use the complexity bound of the original instance, as
summarized in the following remark.

Remark 18. A shortest path computation can be performed in time ρS(n,m) =
O(m+n logn) using Fibonacci heaps; see [9]. Recall that the original problem instance
was on n′ nodes and m′ arcs, and it was transformed to an uncapacitated instance on
n = n′ +m′ nodes and m = 2m′ arcs. However, as in Orlin’s algorithm [29], we can
use the bound O(m′ + n′ logn′) instead of O(m′ + m′ logn′) because shortest path
computations can be essentially performed on the original network.

6. Applications.

6.1. Quadratic convex costs. Assume that Cij(α) = cijα
2 + dijα for each

ij ∈ E, with cij ≥ 0. This clearly satisfies the assumption in Oracle 1(a) since
C′ij(α) = 2cijα+ dij . Also, (*) is satisfied: ij is linear if cij = 0.

The subroutine Trial(F, b) can be implemented by solving a system of linear
equations

πj − πi = 2cijxij + dij ∀ij ∈ F,∑
j:ji∈F

xji −
∑

j:ij∈F
xij = bi ∀i ∈ V,(13)

xij = 0 ∀ij ∈ E \ F.
The conditions in Oracle 2 are verified by the next claim.

Lemma 19. Let F be linear acyclic (that is, there is no undirected cycle of arcs
with cij = 0) with Db(F ) = 0. Then (13) is feasible and a solution can be found in
ρT (n,m) = O(n2.37 +m) time.

Proof. Clearly, we can solve the system separately on different undirected con-
nected components of F . In what follows, let us focus on a single connected compo-
nent; for simplicity of notation, assume this component is the entire V .

Consider first the case when all arcs are linear. Then we can solve the equalities
corresponding to edges and nodes separately. As F is assumed to be linear acyclic,
it forms a tree. If we fix one πj value arbitrarily, it determines all other πi values by
moving along the edges in the tree. The xij ’s can be found by solving a flow problem
on the same tree with the demands bi. This is clearly feasible by the assumption
Db(F ) = 0, that is,

∑
i∈V bi = 0 (note that we do not have nonnegativity constraints

on the arcs). Both tasks can be performed in linear time.
Assume next that both linear and nonlinear arcs are present, and let T be an

undirected connected component of linear arcs. As above, all πj − πi values for
i, j ∈ T are uniquely determined. If there is a nonlinear arc ij ∈ F with i, j ∈ T ,
then xij = (πj − πi − dij)/(2cij) = α is also uniquely determined. We can remove
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this edge by replacing bi by bi + α and bj by bj − α. Hence we may assume that the
components of linear arcs span no nonlinear arcs.

Next, we can contract each such component T to a single node t by setting
bt =

∑
i∈T bi and modifying the dij values on incident arcs as follows. Let t correspond

to a fixed node in T , and consider an arc with i ∈ T , j /∈ T . Let α denote the sum of
dab values on the t− i path in T ; let us add α to dij . Similarly for an arc ij entering
T we must subtract the sum of the costs on the t− j path from dij . A solution to the
contracted problem can be easily extended to the original instance.

For the rest, we can assume all arcs are nonlinear, that is, cij > 0 for all ij ∈ F .
Let A be the node-arc incidence matrix of F : Ai,ij = −1, Ai,ji = 1 for all ij ∈ F , and
all other entries are 0. Let C be the |F | × |F | diagonal matrix with Cij,ij = −2cij .
The system of linear equations (13) can be written in the form

(
AT C
0 A

)
(π, x)T =

(
d
b

)
.

This can be transformed into(
AT C
L 0

)
(π, x)T =

(
d
b′

)
,

where L is the weighted Laplacian matrix with Lii =
∑

j:ij∈←→F
1

2cij
, Lij = Lji = − 1

2cij

if ij ∈ F and Lij = 0 otherwise, and b′ is an appropriate vector with
∑

i∈V b′i = 0.
The main task is to solve the system Lπ = b′. It is well known (recall that V

is assumed to be a single connected component) that L has rank |V | − 1 and the
system is always feasible whenever

∑
i∈V b′i = 0. A solution can be found in O(n2.37)

time [3]. All previously described operations (eliminating nonlinear arcs spanned in
components of linear arcs, contracting components of linear arcs) can be done in O(m)
time, and hence the bound ρT (n,m) = O(n2.37 +m).

To implement Error(f, F ), we have an F -tight vector f , and we need to find
the minimum Δ value such that there exists a π potential with

(14) πj − πi ≤ (2cijfij + dij) + 2cijΔ ∀ij ∈ E ∪←−F .

We show that this can be reduced to the minimum-cost-to-time ratio cycle problem,
defined as follows (see [1, Chapter 5.7]). In a directed graph, there are a cost function
pij and a time τij ≥ 0 associated with each arc. The aim is to find a cycle C minimizing
(
∑

ij∈C pij)/(
∑

ij∈C τij). A strongly polynomial algorithm was given by Megiddo

[23, 24] that solves the problem in min{O(n3 log2 n), O(n log n(n2 + m log logn))}
time. The problem can be equivalently formulated as

minμ such that there are no negative cycles

for the cost function pij + μτij .(15)

Our problem fits into this framework with pij = 2cijfij + dij and τij = 2cij . In (15),
the optimal μ value is −Δ. However, Megiddo [23] defines the minimum ratio cycle
problem with τij > 0 for every ij ∈ E. This property is not essential for Megiddo’s
algorithm, which uses a parametric search method for μ to solve (15) under the only
(implicit) restriction that the problem is feasible.

In our setting τij > 0 holds for nonlinear arcs, but τij = 0 for linear arcs. Also,
there can be cycles C with

∑
ij∈C τij = 0. (This can happen even if F is linear acyclic,
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as C can be any cycle in E ∪←−F .) If we have such a cycle C with
∑

ij∈C pij < 0, then
(15) is infeasible. In every other case, the problem is feasible, and thus Megiddo’s
algorithm can be applied.

For this reason, we first check whether there is a negative cycle with respect to

the pij ’s in the set of linear arcs in E ∪←−F . This can be done via the label correcting
algorithm in O(nm) time [1, Chapter 5.5]. If one exists, then (14) is infeasible, thus
errF (f) = Δ =∞, and (P) is unbounded, as we can send arbitrary flow around this
cycle. Otherwise, we have

∑
ij∈C τij > 0 for every cycle with

∑
ij∈C pij < 0, and

consequently, there exists a finite Δ satisfying (14).
Consequently, ρT (n,m) = min{O(n3 log2 n), O(n logn(n2 +m log logn))}. Theo-

rem 17 gives the following running time bound.

Theorem 20. For convex quadratic objectives on an uncapacitated instance on
n nodes and m arcs, the algorithm finds an optimal solution in O(m(n3 log2 n +
m logm(m + n logn))) time. For a capacitated instance, the running time can be
bounded by O(m4 logm).

The bottleneck is clearly the m minimum-cost-to-time computations. As in
Remark 18, it is likely that one can get the same running time O(m(n3 log2 n +
m logm(m + n logn))) for capacitated instances via a deeper analysis of Megiddo’s
algorithm.

Let us verify that the algorithm is strongly polynomial. It uses elementary arith-
metic operations only, and the running time is polynomial in n and m, according
to the above theorem. It is left to verify requirement (iii) on strongly polynomial
algorithms (see the introduction): if all numbers in the input are rational, then every
number occurring in the computations is rational and is of size polynomially bounded
in the size of the input.

At the initialization and in every successful trial, we compute a new flow f by
solving (13) as described in Lemma 19 and compute the new Δ and π values by
Megiddo’s algorithm. These are strongly polynomial subroutines and return rational
values of size polynomially bounded in the input. Namely, solving (13) requires first
contracting components of linear arcs and modifying costs and demands by additive
terms. In the contracted instance, we need to solve a system of linear equations by
exact arithmetics. This can be done by maintaining that the sizes of numbers in the
output are polynomially bounded in the input size; see, e.g., [32, Chapter 3]. The
new Δ and π are obtained using Megiddo’s strongly polynomial parametric search
algorithm. It is immediate that Δ will be of polynomial encoding size, since it equals
the cost-to-time ratio of a certain cycle, with both costs and times of polynomial
encoding size.

Consider now the phases between any two successful trials (or between the ini-
tialization and the first successful trial); the bound on the number of such phases
is O(logm). The value of Δ decreases by a factor of 2 at the end of each phase,
and the value of f is modified by ±Δ in path augmentations and by ±Δ/2 in the
Adjust subroutine. Consequently, the flow remains an integer multiple of Δ on the
arcs ij ∈ E \F up to the Adjust subroutine (see also Lemma 10(i)). On arcs ij ∈ F ,
it will be the sum of the value returned by Trial-and-Error, plus an integer mul-
tiple of Δ. The bound O(n + mN ) on the number of path augmentations and the
bound O(logm) on the number of phases guarantees that the numerators also remain
polynomially bounded.
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6.2. Fisher’s market with linear utilities. In the linear Fisher market model,
we are given a set B of buyers and a setG of goods. Buyer i has a budgetmi, and there
is one divisible unit of each good to be sold. For each buyer i ∈ B and good j ∈ G,
Uij ≥ 0 is the utility accrued by buyer i for one unit of good j. Let n = |B|+ |G|, let
E be the set of pairs (i, j) with Uij > 0, and let m = |E|. We assume that there is at
least one edge in E incident to every buyer and to every good.

An equilibrium solution consist of prices pj of the goods and allocations xij , so
that (i) all goods are sold, (ii) all money of the buyers is spent, and (iii) each buyer i
buys a best bundle of goods, that is, goods j maximizing Uij/pj.

The classical convex programming formulation of this problem was given by Eisen-
berg and Gale [7]. Recently, Shmyrev [33] gave the following alternative formulation.
The variable fij represents the money paid by buyer i for product j:

min
∑
j∈G

pj(log pj − 1)−
∑
ij∈E

fij logUij

∑
j∈G

fij = mi ∀i ∈ B,

∑
i∈B

fij = pj ∀j ∈ G,

fij ≥ 0 ∀ij ∈ E.

Let us construct a network on node set B ∪ G ∪ {t} as follows. Add an arc ij for
every ij ∈ E and an arc jt for every j ∈ G. Set bi = −mi for i ∈ B, bj = 0 for
j ∈ G, and bt =

∑
i∈B mi. Let all lower arc capacities be 0 and upper arc capacities

be ∞. With pj representing the flow on arc jt, and fij the flow on arc ij, the above
formulation is a minimum-cost flow problem with a separable convex objective. (The
arc jt is restricted, with extending the functions pj(log pj − 1) to take value 0 in 0
and ∞ on (−∞, 0). All other arcs are free; indeed, they are linear.) In this section,
the convention pj = fjt shall be used for some pseudoflow f in the above problem.

Let us justify that an optimal solution gives a market equilibrium. Let f be an
optimal solution that satisfies (3) with π : B ∪G ∪ {t} → R. We may assume πt = 0.
C′jt(α) = logα implies πj = − log pj. On each ij ∈ E we have πj − πi ≤ − logUij

with equality if fij > 0. With βi = eπi , this is equivalent to Uij/pj ≤ βi, verifying
that every buyer receives a best bundle of goods.

Oracle 1(b) is a valid assumption, since the derivatives on arcs ij between buy-
ers and goods are − logUij , while on an arc jt it is log fjt. The property (*) is
straightforward.

Let us turn to Oracle 2. When the subroutine Trial is called, we transform b to
b̂ by changing the value at one node of each component K of F . For simplicity, let us
always modify bt if t ∈ K, and on an arbitrary node for the other components. We
shall verify the assumptions in Oracle 2 only for such b̂’s; the argument can easily be
extended to arbitrary b̂ (although it is not necessary for the algorithm). Let us call
the component K containing t the large component.

In Trial(F ), we want to find a potential π : B ∪ G ∪ {t} → R ∪ {∞}, money
allocations fij for ij ∈ F , i ∈ B, j ∈ G, and prices pj = fjt for jt ∈ F such that

πj − πi = − logUij ∀ij ∈ F, i ∈ B, j ∈ G,

πt − πj = log pj ∀jt ∈ F,∑
j∈G,ij∈F

fij = b̂i ∀i ∈ B,
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∑
i∈B,ij∈F

fij = pj ∀jt ∈ F,

∑
i∈B,ij∈F

fij = b̂j ∀jt ∈ E \ F.

We may again assume πt = 0. Let Pj = e−πj for j ∈ G and βi = eπi for i ∈ B. With
this notation, Uij/Pj = βi for ij ∈ F . If jt ∈ F , then Pj = pj .

Finding f and π can be done independently on the different components of F . For
any component different from the large one, all edges are linear. Therefore we only
need to find a feasible flow on a tree and, independently, Pj and βi values satisfying
Uij/Pj = βi on arcs ij in this component. Both of these can be performed in linear
time in the number of edges in the tree. Note that multiplying each Pj by a constant
α > 0 and dividing each βi by the same α yields another feasible solution.

Let T1, . . . , Tk be the components of the large component after deleting t. If T�

contains a single good j, then we set pj = Pj = 0 (πj =∞). If T� is nonsingular, then
F restricted to T� forms a spanning tree. The equalities Uij/Pj = βi uniquely define
the ratio Pj/Pj′ for any j, j′ ∈ G ∩ T�. We have that pj = Pj and

∑
i∈B∩T�

mi =∑
j∈G∩T�

pj by the constraints on the buyers in B ∩T� and goods in G∩T�; note that

b̂i = −mi for all buyers in B ∩ T�. Hence the prices in T� are uniquely determined.
Then the edges in F simply provide the allocations fij . All these computations can
be performed in ρT (n,m) = O(m) time.

For Oracle 3, we show that Error(f, F ) can be implemented based on the Floyd–
Warshall algorithm (see [1, Chapter 5.6]). Let π be the potential witnessing that f is
(Δ, F )-feasible. Assuming πt = 0, and using again the notation Pj = e−πj for j ∈ G
and βi = eπi for i ∈ B, we get

(16) Uij/Pj ≤ βi if i ∈ B, j ∈ G, ij ∈ E, with equality if ji ∈ EF
f .

Furthermore, we have pj −Δ ≤ Pj ≤ pj +Δ if pj > 0 and Pj ≤ Δ if pj = 0.
Let us now define γ : G×G→ R as

γjj′ = max

{
Uij′

Uij
: i ∈ B, ji, ij′ ∈ EF

f

}
.

If no such i exists, define γjj′ = 0; let γjj = 1 for every j ∈ G.

Claim 21. Assume we are given some Pj values, j ∈ G. There exist βi values
(i ∈ B) satisfying (16) if and only if Pj′ ≥ Pjγjj′ holds for every j, j′ ∈ G.

Proof. The condition is clearly necessary by the definition of γjj′ . Conversely, if
this condition holds, setting βi = maxj∈G Uij/Pj does satisfy (16).

If there is a directed cycle C with Πab∈Cγab > 1, then f cannot be (Δ, F )-feasible
for any Δ. Otherwise, we may compute γ̃jj′ as the maximum of Πab∈P γab over all
directed paths P in EF

f from j to j′ (setting the value 0 again if no such path exists).
This can be done by the multiplicative version of the Floyd–Warshall algorithm in
O(n3) time (note that this is equivalent to finding all-pair shortest paths for − log γab).

For (Δ, F )-feasibility, we clearly need to satisfy

(pj −Δ)γ̃jj′ ≤ Pj γ̃jj′ ≤ Pj′ ≤ pj′ +Δ.

Let us define Δ as the smallest value satisfying all these inequalities, that is,

(17) Δ = max

{
0, max

j,j′∈G
pj γ̃jj′ − pj′

γ̃jj′ + 1

}
.
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We claim that f is (Δ, F )-feasible with the above choice. For each j ∈ G, let Pj =
maxh∈G γ̃hj(ph−Δ). It is easy to verify that these P values satisfy Pj′ ≥ Pjγjj′ , and
pj −Δ ≤ Pj ≤ pj +Δ. The condition (16) follows by Claim 21.

The complexity of Error(f, F ) is dominated by the Floyd–Warshall algorithm,
O(n3) [8]. The problem is defined on an uncapacitated network, with the number of
nonlinear arcs mN = |G| < n. Thus Theorem 17 gives the following.

Theorem 22. For Fisher’s market with linear utilities, the algorithm finds an
optimal solution in O(n4 + n2(m+ n logn) logn).

The algorithm of Orlin [30] runs in O(n4 logn) time, assumingm = O(n2). Under
this assumption, we get the same running time bound.

To prove that the algorithm is strongly polynomial, let us verify the nontrivial
requirement (iii) (see the introduction). As discussed in section 5.1, if the input is
rational, we shall maintain that f , Δ, and the eπi values are rational; the latter
are used in the computations instead of the πi’s. At the initialization and in every
successful trial, the subroutines described above are strongly polynomial and therefore
return rational f , Δ, and eπi values, of size polynomially bounded in the input (note
that the eπi values above are denoted by Pi for i ∈ G and βi for i ∈ B, and eπt = 1).
Between two successful trials, we can use the same argument as in section 6.1 for
quadratic costs: there are O(logm) such iterations, Δ is divided by two at the end of
every phase, and the path augmentations change f by ±Δ andAdjust by ±Δ/2. The
multiplicative Dijkstra algorithm described in the appendix also maintains rational
eπi values of polynomial encoding length.

6.3. Fisher’s market with spending constraint utilities. The spending con-
straint utility extension of linear Fisher markets was defined by Vazirani [37]. In this
model, the utility of a buyer decreases as the function of the money spent on the

good. Formally, for each pair i and j there is a sequence U1
ij > U2

ij > · · · > U
�ij
ij > 0

of utilities with numbers L1
ij , . . . , L

�j
ij > 0. Buyer i accrues utility U1

ij for every unit of

j he purchased by spending the first L1
ij dollars on good j, U2

ij for spending the next

L2
ij dollars, etc. These �ij intervals corresponding to the pair ij are called segments.

�ij = 0 is allowed, but we assume
∑

j∈G �ij > 0 for all i ∈ B and
∑

i∈B �ij > 0 for all
j ∈ G. Let n = |B| + |G| denote the total number of buyers and goods, and let m
denote the total number of segments. Note that m > n2 is also possible.

No extension of the Eisenberg–Gale convex program is known to capture this
problem. The existence of a convex programming formulation is left as an open
question in [37]. This was settled by Birnbaum, Devanur, and Xiao [2], giving a
convex program based on Shmyrev’s formulation. Let fk

ij represent the money paid
by buyer i for the kth segment of product j, 1 ≤ k ≤ �ij :

min
∑
i∈G

pj(log pj − 1)−
∑

i∈B,j∈G,1≤k≤�ij
fk
ij logU

k
ij

∑
j∈G,1≤k≤�ij

fk
ij = mi ∀i ∈ B,

∑
i∈B,1≤k≤�ij

fk
ij = pj ∀j ∈ G,

0 ≤ fk
ij ≤ Lk

ij ∀ij ∈ E.

This gives a convex cost flow problem again on the node set B ∪ G ∪ {t}, by
adding �ij parallel arcs from i ∈ B to j ∈ G, and arcs jt for each j ∈ G. The upper



STRONGLY POLYNOMIAL SEPARABLE CONVEX COST FLOWS 1757

capacity on the kth segment for the pair ij is Lk
ij . To apply our method, we first need

to transform it to an equivalent problem without upper capacities. This is done by
replacing the arc representing the kth segment of ij by a new node (ij, k) and two
arcs i(ij, k) and j(ij, k). The node demand on the new node is set to Lk

ij , while on the

good j, we replace the demand 0 by −∑
i,k L

k
ij , the negative of the sum of capacities

of all incident segments. The cost function on i(ij, k) is − logUk
ijα, while the cost of

j(ij, k) is 0. Let S denote the set of the new (ij, k) nodes. This modified graph has
n′ = n+m+ 1 nodes and m′ = 2m+ |G| arcs.

Assumption (*) is clearly valid. Oracle 1(b) is satisfied the same way as for linear

Fisher markets, using an oracle for the eC
′
ij(α) values.

In Trial(F ), we want to find an F -tight flow f ′ on the extended network, wit-
nessed by the potential π : B ∪ S ∪ G ∪ {t} → R. We may assume πt = 0. Let
Pj = e−πj for j ∈ G and βi = eπi for i ∈ B and Sk

ij = e−π(ij,k) . For the kth segment

of ij, Uk
ij/S

k
ij = βi if i(ij, k) ∈ F and Sk

ij = Pj if j(ij, k) ∈ F .
As for linear Fisher markets, if a component of F does not contain t, we can

simply compute all potentials and flows, as F is a spanning tree of linear edges in this
component.

For the component K with t ∈ K, let T� be a component of K−t. F is a spanning
tree of linear edges in T� as well, and therefore the ratio Pj/Pj′ is uniquely defined
for any j, j′ ∈ G ∩ T�. On the other hand, we must have Pj = pj, and we know that∑

j∈G∩T�
pj = −

∑
v∈T�

bv by flow conservation. These determine the Pj = pj values

and thus all other βi and Sk
ij values in the component as well. The support of the flow

fij is a tree, and hence it can also be easily computed. The running time of Trial is
again linear, ρT (n

′,m′) = O(m′) = O(m).
Error(f, F ) can be implemented the same way as for the linear Fisher market.

We shall define the values γ : G × G → R so that Pj′ ≥ Pjγjj′ must hold, and
conversely, given Pj prices satisfying these conditions, we can define the βi and Sk

ij

values feasibly. Let

γjj′ = max

{
Uk′
ij′

Uk
ij

: i ∈ B,

j(ij, k), (ij, k)i, i(ij′, k′), (ij′, k′)j′ ∈ EF
f

}
.

Given these γjj′ values, the γ̃jj′ values can be computed by the Floyd–Warshall algo-
rithm and the optimal Δ obtained by (17) as for the linear case.

Finding the γjj′ values can be done in O(m′) time, and the Floyd–Warshall al-
gorithm runs in O(|G|3) time. This gives ρE(n

′,m′) = O(m′ + |G|3) = O(m + n3).
From Theorem 17, together with Remark 18, we obtain the following.

Theorem 23. For an instance of Fisher’s market with spending constraint util-
ities with n = |B| + |G| and m segments, the running time can be bounded by
O(mn3 +m2(m+ n logn) logm).

It can be verified that the algorithm is strongly polynomial in the same way as
for the linear case.

7. Discussion. We have given strongly polynomial algorithms for a class of
minimum-cost flow problems with separable convex objectives. This gives the first
strongly polynomial algorithms for quadratic convex cost functions and for Fisher’s
market with spending constraint utilities. For Fisher’s market with linear utilities,
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we get the same complexity as in [30].
The bottleneck in complexity of all applications is the subroutine Trial. How-

ever, the exact value of errF (f) is not needed: a constant approximation would also
yield the same complexity bounds. Unfortunately, no such algorithm is known for
the minimum cost-to-time ratio cycle problem that would have significantly better,
strongly polynomial running time. Finding such an algorithm would immediately
improve the running time for quadratic costs.

A natural future direction could be to develop strongly polynomial algorithms for
quadratic objectives and constraint matrices with bounded subdeterminants. This
would be a counterpart of Tardos’s result [36] for linear programs. Such an exten-
sion could be possible by extending our techniques to the setting of Hochbaum and
Shanthikumar [18].

The recent paper [39] shows that the linear Fisher market, along with several
extensions, can be captured by a concave extension of the generalized flow model.
A natural question is whether there is any direct connection between the concave
generalized flow model and the convex minimum-cost flow model studied in this paper.
Despite certain similarities, no reduction is known in any direction. Indeed, no such
reduction is known even between the linear special cases, that is, generalized flows
and minimum-cost flows. The perfect price discrimination model [11] and the Arrow–
Debreu Nash bargaining problem [38] are instances of the concave generalized flow
model, but they are not known to be reducible to convex cost flows. On the other
hand, the spending constraint utility model investigated in this paper is not known
to be reducible to concave generalized flows.

The algorithm in [39] is not strongly polynomial. Even for linear generalized
flows, the first strongly polynomial algorithm was given only very recently [40]. One
could try to extend this to a class of concave generalized flows in a manner similar to
that in the current paper, i.e., assuming certain oracles. This could lead to strongly
polynomial algorithms for the market problems that fit into this model.

A related problem is finding a strongly polynomial algorithm for minimizing a
separable convex objective over a submodular polyhedron. Fujishige [10] showed that
for separable convex quadratic costs, this is essentially equivalent to submodular func-
tion minimization. Submodular utility allocation markets by Jain and Vazirani [21]
also fall into this class and are solvable in strongly polynomial time; see also Nagano
[27]. Other strongly polynomially solvable special cases are given by Hochbaum and
Hong [14].

A common generalization of this problem and ours is minimizing a separable
convex objective over a submodular flow polyhedron. Weakly polynomial algorithms
were given by Iwata [19] and Iwata, McCormick, and Shigeno [20]. One might try to
develop strongly polynomial algorithms for some class of separable convex objectives,
in particular for separable convex quadratic functions.

Appendix. In this appendix we describe two variants of Dijkstra’s algorithm
that are used for the shortest path computations in our algorithm. This is an equiv-
alent description of the well-known algorithm; see, e.g., [1, Chapter 4.5]. The first,
standard version is shown in Algorithm 5. We start from a cost function c on a di-
graph D = (V,A) and a potential vector π with cij − πj + πi ≥ 0 for every arc, and
two designated subsets S and T . The set R is initialized as R = S and denotes in
every iteration the set of nodes that can be reached from S on a tight path, that is,
all arcs of the path satisfying cij −πj +πi = 0. Every iteration increases the potential
on V \R until some new tight arcs enter. We terminate once R contains a node in T ;
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a shortest path between S and T can be recovered using the pointers pred(i).
In our algorithm, this subroutine will be applied if Oracle 1(a) holds. In the

Δ-phase, we apply it for the digraph EF
f (Δ) and the cost function cij = C′ij(fij +Δ),

and for the potential π as in the algorithm. Note that if the initial π is rational, and
all cij values are rational, the algorithm terminates with a π that is also rational.
Oracle 1(a) guarantees that if fij and Δ are rational numbers, then so is cij .

Algorithm 5. Shortest Paths.

INPUT A digraph D = (V,A), disjoint subsets S, T ⊆ V , a cost function
c : A→ R and a potential vector π : V → R with cij − πj + πi ≥ 0 for every ij ∈ A.

OUTPUT A shortest path P between a node in S and a node in T and a
π′ : V → R with cij − π′j + π′i ≥ 0 for every ij ∈ A, and equality on every arc of P .

R← S;
for i ∈ S do pred(i)← NULL;
while R ∩ T = ∅ do

α← min{cij − πj + πi : ij ∈ A, i ∈ R, j ∈ V \R};
for j ∈ V \R do πj ← πj + α;
Z ← {j ∈ V \R : ∃ij ∈ A, i ∈ R such that cij − πj + πi = 0};
for j ∈ Z do

pred(j)← i ∈ R such that ∃ij ∈ A : cij − πj + πi = 0;
R← R ∪ Z;

π′ ← π;

Algorithm 6 shows a multiplicative variant of the previous algorithm; they are
identical after substituting cij = log γij and πi = logμi. This variant shall be applied
under Oracle 1(b). We shall assume that every eπi value is rational, and set μi = eπi ,

and γij = eC
′
ij(fij+Δ). The assumption guarantees that if fij and Δ are rational

numbers, then so is γij . Consequently, the rationality of the eπi values is maintained
during the computations.

Algorithm 6. Multiplicative Shortest Paths.

INPUT A digraph D = (V,A), disjoint subsets S, T ⊆ V , a cost function
γ : A→ R and a potential vector μ : V → R with γij

μi

μj
≥ 1 for every ij ∈ A.

OUTPUT A shortest path P between a node in S and a node in T and a

μ′ : V → R with γij
μ′
i

μ′
j
≥ 1 for every ij ∈ A, and equality on every arc of P .

R← S;
for i ∈ S do pred(i)← NULL;
while R ∩ T = ∅ do

α← min{γij μi

μj
: ij ∈ A, i ∈ R, j ∈ V \R};

for j ∈ V \R do μj ← αμj ;
Z ← {j ∈ V \R : ∃ij ∈ A, i ∈ R such that γij

μi

μj
= 1};

for j ∈ Z do
pred(j)← i ∈ R such that ∃ij ∈ A : γij

μi

μj
= 1;

R← R ∪ Z;
μ′ ← μ;
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Table of notation and concepts.

Notation/concept Section Description
mL, mN sect. 2, after (*) number of linear/nonlinear arcs
ρf (i), Ex(f) sect. 2, (2) net flow amount in node i/total excess
Ef , Ef (Δ) sect. 2.1, above (3)/(4) residual graph/ Δ-residual graph
EF

f , EF
f (Δ) sect. 4.1, (6)/(8) F -residual graph/ (Δ, F )-residual graph

F ∗ sect. 4.1, (5) set of arcs tight in every optimal solution
errF (f) sect. 4.2, (12) “error measure”
free/restricted arcs sect. 2
linear/nonlinear arcs sect. 2, after (*)
linear acyclic arc set end of sect. 4.1
pseudoflow sect. 2, above (2)
F -pseudoflow sect. 4.1, above (6)
Δ-feasible sect. 2.1, (4)
(Δ, F )-feasible sect. 4.1, (9)
F -optimal sect. 4.1, (7)
F -tight sect. 4.2, (10)
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