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Abstract

Option contracts are a type of financial derivative that allow investors to hedge risk and
speculate on the variation of an asset’s future market price. In short, an option has a particular
payout that is based on the market price for an asset on a given date in the future. In 1973,
Black and Scholes proposed a valuation model for options that essentially estimates the tail
risk of the asset price under the assumption that the price will fluctuate according to geometric
Brownian motion. More recently, DeMarzo et al., among others, have proposed more robust
valuation schemes, where we can even assume an adversary chooses the price fluctuations. This
framework can be considered as a sequential two-player zero-sum game between the investor
and Nature. We analyze the value of this game in the limit, where the investor can trade
at smaller and smaller time intervals. Under weak assumptions on the actions of Nature (an
adversary), we show that the minimax option price asymptotically approaches exactly the Black-
Scholes valuation. The key piece of our analysis is showing that Nature’s minimax optimal dual
strategy converges to geometric Brownian motion in the limit.
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1 Introduction

In finance, an option is a financial contract between two parties that guarantees the purchase or
sale of a given asset, such as a stock or bond, at a specified price in the future. Buying an option
means buying the right to engage in a particular transaction, yet the the buyer has no obligation
to do so. Options are a useful tool for controlling risk in financial portfolios, as they can be used
to hedge against the possibility of a large unexpected price fluctuation.

Let us focus presently on a European call option, parameterized by an asset A, a strike price
K and a future expiration date T . The buyer of an (A,K, T ) call option is allowed to purchase 1
share of asset A for a fixed price of K on date T if she so chooses. Of course, if the market price
of A on date T is P , then the owner of the call option will only exercise the transaction if P > K.
Thus, in practice, the value of the option on date T is max(0, P −K).

What has remained a popular topic in finance is the problem of pricing options in terms of
known properties of the underlying asset and distributional properties of its price fluctuations. The
most well-known approach for pricing options is the Black-Scholes model, introduced in 1973 by
Fischer Black and Myron Scholes in their seminal paper “The pricing of options and corporate
liabilities” [2]. As the future market price of an asset is an uncertain quantity, the Black-Scholes
pricing model includes a key assumption, that an asset’s price fluctuates with constant drift and
volatility, which leads to a geometric Brownian motion (GBM) model for the price path. Thus,
given a European call option (A,K, T ), we can estimate the “fair value” of the option to be its
expected payoff under the assumption that the price path P (t) behaves according to GBM. That
is, the Black-Scholes model would set the option price to be EP∼GBM[max(0, P (T ) −K)].

The Black-Scholes model has undergone a reasonable amount of criticism, much of which is due
to the GBM characterization of the underlying asset price, a model which heavily discounts tail
risk. Extreme price changes, often due to systemic events, are estimated to be highly improbable
under Black-Scholes but occur quite frequently in practice – this valuation model does not hold for
alternative stochastic models.

There has been recent work that takes an entirely different approach to pricing options, namely
where no stochastic assumptions are made about the fluctuation of the underlying asset. This robust
option pricing framework, put forward by DeMarzo et al. [4] (with a similar model presented by
Shafer and Vovk [11]) imagines a multi-stage game between an investor and Nature. The investor
chooses an amount of money to invest in the underlying asset, and Nature chooses how the asset’s
price should change from round to round. The investor would like to exhibit a trading strategy
(algorithm) with the ultimate goal of earning almost as much as the payout of the option against
a worst-case price path. Let us imagine, for the moment, that we can construct a strategy which
receives a payout that is never more than C dollars worse than the option payout. DeMarzo et al.
make the key observation that, since this guarantee holds for any price path (within constraints),
then the price of the option should cost no more than C at the start of the game. The reason
for this is simple: if the price of the option were strictly larger than C, then the investor has an
arbitrage opportunity via short selling the option and going long on his robust trading strategy.

In the present paper, we look at this sequential game between investor and Nature and analyze
the equilibrium strategies of each player. But we go a step further and consider what is the limit
behavior of the game when the investor trades at greater and greater frequency. Intuitively, this
is what would happen when a firm switches from a trading strategy that trades once per day, to
one that trades once per hour, to once per minute, etc. The question we aim to answer is: what is
the value of this game, i.e. the minimax option price, as the trading frequency approaches infinity?
The answer is somewhat surprising: the option value, in the limit, is identical to the price under
the Black-Scholes model. We show this by proving that the worst case price path chosen by Nature,
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under reasonable constraints, will converge to geometric Brownian motion.
Recall that the Black-Scholes option pricing model is effectively about determining a “fair price”

for the derivative, under reasonably strong distributional constraints. The robust option pricing
framework of DeMarzo et al., on the other hand, only aims to exhibit an upper bound on the
option value when Nature sets the market price of the asset under some constraints on the price
fluctuations. But we show that the worst-case price is identically the fair price under the GBM
assumption. In a certain sense this provides reasonably strong validation for Black-Scholes.

We make two observations about the results.

1. While our running an example is a European call option, our main theorem holds for any
financial derivative whose payoff is a convex function of the underlying asset price on the
expiration date. This is a broad class of derivatives, including both the European put and
call options.

2. We do not provide an explicit optimal strategy for the investor. We begin by considering
a game where first the investor commits to an algorithm and then Nature responds with a
randomized price path, but the majority of our analysis concerns the dual of this game in
which Nature must act first, and then the investor can act with full knowledge of Nature’s
randomized price path. We leave as an open question whether such a strategy can be efficiently
constructed.

3. Our analysis requires that the investor can trade arbitrarily large amounts of money to com-
pete with the option payout. In a sense, we are assuming that the investor is a large institution
with the captial to go very long and very short on the asset. We believe that the result should
approximately hold when the investor has a fixed budget size, but we leave this as an open
question.

Previous Work

The primary motivation for our results draws from DeMarzo et al. [4]. This work focused primarily
on constructing robust trading strategies that can be used instead of purchasing an option, and
the authors were the first to observe that the existence of such a strategy provides a theoretical
upper bound on the price one should pay for an option. Their results draw strongly from ideas
developed within the theory of regret minimization in online learning, and the proposed algorithm
has a resemblance to the well-known Multiplicative Weights algorithm, proposed in various forms
by, among others, Littlestone and Warmuth [9] and Freund and Schapire [6]. The connection to
regret minimization strategies is unsurprising, since the primary goal of this area of research is to
provide guarantees that hold without requiring stochasticity assumptions on the data received from
Nature.

The work of DeMarzo et al. looks briefly at the minimax formulation of the option pricing game,
although for a fixed trading frequency and using stronger assumptions than what is required in our
results. Their analysis requires using Sion’s minimax theorem [12] and they conclude that Nature’s
optimal price path must be a martingale; both of these components are used herein. Finally, the
authors provide a plot (Figure 1 in Section 7 in [4]) showing the computed minimax option price
versus the Black-Scholes price as a function of the strike price. This plot strongly foreshadows our
main result in this paper as the two curves are very close to one another, and our aim is to show
that these curves are asymptotically equal.

The other very related work is the book by Shafer and Vovk [11] titled “Probability and finance:
it’s only a game!” The authors considered a number of game-theoretic interpretations of problems
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in finance. The authors look at pricing options under a game-theoretic framework (introduced
originally by Vovk [14]) in which an investor must make a sequence of trades with an underlying
asset as Nature sets the asset’s market price. They arrive at very similar conclusions to ours,
establishing that the “fair price” under their model is identical to the Black-Scholes valuation.
However, the framework they put forward is more akin to the original derivation of the Black-
Scholes pricing model, and differs from the framework of DeMarzo et al. in that they do not aim for
worst-case bounds. In particular, their analysis requires the existence of a hypothetical derivative
which pays off according to the fluctuation of the underlying asset.

There is a significant amount of discussion and analysis of sequential minimax games in the
book of Cesa-Bianchi and Lugosi [3]. A full duality-based approach to analyzing repeated games
can be found in Abernethy et al. [1], who also utilize martingale concentration. There has been
more recent and very interesting work on pricing more exotic options by Gofer and Mansour [7, 8].

2 The Minimax Option Game

Notation. Let R0 = [0,∞), R+ = (0,∞), and N = {1, 2, 3, . . . }. Throughout, m,n index N and
t indexes R, so for instance, 0 ≤ m ≤ n means m ∈ {0, 1, . . . , n} and 0 ≤ t ≤ 1 means t ∈ [0, 1].

2.1 Problem setting and definitions.

We shall be considering the value of options (or other derivative contracts) providing a certain
payoff that depends on (a) the expiration date T , (b) a specified “strike price” K and (c) the price
X(T ) of some underlying asset at time T . We can assume that the current price X(0) is known
in advance, hence we let X(0) = 1 always. Since we consider trading in continuous time, we shall
assume without loss of generality that the option expires at T = 1. We shall consider, for each
n ∈ N, a sequential game where an investor trades n times throughout the time interval [0, 1], i.e.
we trade at every 1/n-time interval.

Let us now discuss the payoff of the option, which will be denoted by a function g : R0 → R0

whose input is the asset price at the time of expiration. For example, in the case of the European
call option the payoff function is g(x) = max(0, x−K) where K ≥ 0 is the strike price. We do not
restrict our attention to derivatives of this form, and instead we require only that g is convex and
L-Lipschitz; namely, |g(y) − g(x)| ≤ L|y − x| for all x, y ∈ R0. However, for simplicity, we use the
term “option” throughout the paper.

In the option pricing game we consider, we imagine that Nature chooses a randomized price path
for the underlying asset, with the goal of maximizing the expected difference between the payoff of
the option and the investor’s earnings. We generally use the symbol X to denote this price path.
Let X denote the set of continuous stochastic processes X : [0, 1] → R0 with X(0) = 1, representing
the asset prices. Within our analysis, we also consider a discrete variant of the continuous game,
and imagine Nature choosing price paths defined by a finite sequence of random variables. For
each n ∈ N, let Sn denote the set of sequences of random variables Sn = (Sn,0, Sn,1, . . . , Sn,n) with
Sn,0 = 1 and Sn,m ∈ R+ for 0 ≤ m ≤ n.

Given X ∈ X , we will write Sn(X) = (X(0),X(1/n), . . . ,X(n/n)) ∈ Sn to denote the discrete
points of X. Similarly, given Sn ∈ Sn, we write X(Sn) to denote the stochastic process X ∈ X
obtained by linearly interpolating the values of Sn in the log space, i.e. for any t ∈ [0, 1] of the form
t = (m+ α)/n with m ∈ {0, 1, . . . , n− 1} and 0 ≤ α ≤ 1, we define

logX(t) = (1− α) log Sn,m + α log Sn,m+1.
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Let B : [0, 1] → R denote the standard Brownian motion (also known as a Weiner Process) with
B(0) = 0, and let G : [0, 1] → R+ denote the geometric Brownian motion (GBM) with drift 0 and
volatility

√
c,

G(t) = exp

(√
c B(t)− ct

2

)

. (1)

Observe that G is a martingale since it has drift 0. We consider B and G as (random) elements of
C[0, 1], the space of continuous functions from [0, 1] to R equipped with the supremum norm.

When the price path behaves according to GBM, we can define the Black-Scholes formulation
for pricing an option defined by payoff function g:

(Black-Scholes Price) β := E[g(G(1))],

where G has the distribution defined as in (1), and the constant c is assumed to be fixed. We
observe one property of standard Brownian motion, which is that the value B(t) conditioned on
B(t0) for some t0 < t is normally distributed with mean B(t0) and variance t− t0. Similarly, it is
easy to see that

E
[

(G(t)−G(t0))
2 | Ft0

]

= G(t0)
2(exp(c(t− t0))− 1) (2)

where Fs = σ(G(r) : 0 ≤ r ≤ s) is the filtration generated by G up to time s.
We turn our attention to setting constraints for Nature’s choice of price path X ∈ X – it is

very difficult to obtain any reasonable results unless the adversary is constrained in some fashion.
In light of (2), its natural to require that the logarithm of the price path not fluctuate too greatly.

Definition 1 (CVC). We say that X ∈ X satisfies the continuous variance constraint (CVC) if

E[(X(t)−X(s))2 | Fs] ≤ (exp(c(t− s))− 1) X(s)2 a.s. for all 0 ≤ s ≤ t ≤ 1, (3)

where Fs is the filtration generated by X up to time s, and c is a variance parameter.

We will implicitly assume throughout that the variance parameter c > 0 is fixed. Observe that
the geometric Brownian motion satisfies CVC with equality. Since we shall also consider discrete
price paths Sn = (Sn,0, Sn,1, . . . , Sn,n), we construct a similar constraint for this case.

Definition 2 (DVC). For each n ∈ N, we say Sn ∈ Sn satisfies the discrete variance constraint
(DVC) if

E[(Sn,m+1 − Sn,m)
2 | Fn,m] ≤ (exp(c/n)− 1) S2

n,m a.s. for all m = 0, 1, . . . , n− 1, (4)

where now Fn,m = σ(Sn,0, . . . , Sn,m).

It is worth noting that, while the CVC and DVC apply to different spaces, the latter is essentially
weaker than the former. Rather than require that the variance be controlled for every s, t time
interval, DVC only specifies that the fluctuations between successive 1/n length time points are
bounded. This fact is used in our proof.

We will need one more constraint on Nature’s choice of price path. To describe this final
restriction, let ζ = (ζ1, ζ2, . . . ) be a sequence of positive real numbers with the property that
ζn → 0 and

lim inf
n→∞

nζ2n
log n

> 16c.

For example, we can take ζn = n− 1
2
+δ for any 0 < δ < 1/2. We will assume throughout the paper

that ζ is chosen and fixed, and satisfies the above properties.
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Definition 3 (ZCn). For each n ∈ N, we say that Sn ∈ Sn satisfies the ζn-constraint (ZCn) if
∣

∣

∣

∣

Sn,m+1

Sn,m
− 1

∣

∣

∣

∣

≤ ζn a.s. for all m = 0, 1, . . . , n− 1. (5)

Similarly, for each n ∈ N we say that X ∈ X satisfies the ζn-constraint if Sn(X) does.

The ZCn constraint may appear strong, since we have a hard bound on what values the price
ratios can take, but upon closer inspection one sees that this is a very weak constraint. It is required
for our results because we require in various places that the prices lie in a compact set. However,
the bounds we get are independent of the sequence ζ. And furthermore while the ζn must approach
0, it can do so at an arbitrarily slow rate. Notice that (4) is a similar constraint to that of (5),
where the former is “soft” and the latter “hard”, but the constraint in (4) shrinks at a rate of
Θ(1/n) whereas the rate in (5) shrinks at a much slower rate. We will show that the addition of
ZCn becomes negligible in the limit. While GBM violates ZCn, we show in (10) that it does so
with vanishing probability.

Definition 4. Define the following sets:

• XC = {X ∈ X : X satisfies CVC}.

• X n
C,ζ = {X ∈ XC : Sn(X) satisfies ZCn}.

• Sn
D = {Sn ∈ Sn : Sn satisfies DVC}.

• Sn
D,ζ = {Sn ∈ Sn

D : Sn satisfies ZCn}.

• Sn
D,ζ,mg = {Sn ∈ Sn

D,ζ : Sn is a martingale with respect to the natural filtration (Fm,n)}.

• Sn
D=,ζ,mg = {Sn ∈ Sn

D,ζ,mg : Sn satisfies DVC with equality a.s. for all m}.
Note that we have the following relations:

X n
C,ζ ⊆ XC ⊆ X

Sn
D=,ζ,mg ⊆ Sn

D,ζ,mg ⊆ Sn
D,ζ ⊆ Sn

D ⊆ Sn

Furthermore, observe that if X ∈ XC then Sn(X) ∈ Sn
D for each n ∈ N.

2.2 The Option Pricing Game.

We wish to analyze the zero-sum game between the investor, who buys and sells shares in an
underlying asset, and Nature (the adversary), who chooses the path of the asset’s market price over
the time period. We shall assume that the game is parameterized by a value n which determines the
frequency of the investor’s trades. More specifically, we’ll allow the investor to adjust his investment
after each 1/n interval of time.

Continuous Pricing Game:

• Investor’s strategy A ∈ An is a tuple of functions A1, . . . , An each having the form Am :
X|[0,(m−1)/n] 7→ ∆m where ∆m ∈ R and X|[0,t] is the stochastic process X ∈ X restricted to
the range [0, t]. In other words, the investor will choose an amount of money ∆m to invest
in the underlying asset after having observed the price path up to time (m − 1)/n. That
is, A can be interpreted as a sequence of random variables (∆1,∆2, . . . ,∆n) where ∆m is
measurable with respect to Fm−1

n
, the filtration of the price path X up to time m−1

n .
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• We imagine Nature’s strategy as selecting a price path X ∈ X satisfying both CVC and ZCn.
More simply, we let Nature’s strategy set be X n

C,ζ .

• Assume now that the investor has committed to a strategy A and Nature has committed to a
price path X. At round m, the investor had invested ∆m units of currency in the underlying
asset previously, and the price fluctuated from X((m − 1)/n) to X(m/n). Hence, in this

round the investor has earned exactly
(

X(m/n)
X((m−1)/n) − 1

)

∆m.

• Recall that the investor’s goal is to construct a strategy that can compete with the payout
of the option. Imagine, for example, that the investor had a strategy to buy and sell the
underlying asset as he watches the price fluctuate, and that even in the worst case this
strategy had a payout that was only D dollars worse than the payout of the option. Then
the investor would never pay more than a price of D to purchase the option in question, for
he could simple execute his successful strategy and never lose more than D. This argument
is one of the key ideas in DeMarzo et al. [4].

• With the previous observation in mind, we should design our option pricing game so as to
determine the largest deviation between the option payout and the earnings of the investor
when the investor is playing the optimal strategy and Nature is selecting a worst case price
path. For a particular trading strategy A ∈ An and a price path X ∈ X , we define the the
loss

Ln(A,X) = EX

[

g(X(1)) −
n
∑

m=1

(

X(m/n)

X((m− 1)/n)
− 1

)

∆m

]

.

It will be convenient to consider what happens when the sum
∑n

m=1

(

X(m/n)
X((m−1)/n) − 1

)

∆m

vanishes. For this case the investors strategy is irrelevant, hence we define

Ln(X) = L(X) := EX [g(X(1))].

With the previous discussion in mind, we can now precisely define the quantity of interest. The
central focus of the present work is to study the asymptotic value of the discussed game, which is
exactly:

lim
n→∞

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A,X). (6)

Discrete Pricing Game In order to analyze this game we will also consider a discrete version,
in which Nature selects some random sequence Sn ∈ Sn

D,ζ instead of a full price path in X . The
set of algorithms An need not be redefined for this discrete game, as we shall assume that on some
input S an algorithm A trades according to continuous price path X(Sn) obtained by interpolation
defined above. For a given Sn ∈ Sn

D,ζ , we abuse notation somewhat by defining

Ln(A,Sn) := Ln(A,X(Sn)) and Ln(Sn) := Ln(X(Sn)) = E[g(Sn,n)].

This is perfectly natural since, in the continuous version, the loss function can be computed by
only looking at the points X(0),X(1/n), . . . ,X(n/n).
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3 The Main Result

We now state our main result and given the skeleton of the proof, with the more challenging lemmas
saved for the appendix. The proof has a number of interesting ingredients, from an application
of Sion’s minimax theorem (Lemma 1), a version of the “maximum principle” for maximization
of convex functions with random inputs (Lemma 3), and a lower bound that requires analyzing
Gaussian tails (Lemma 5). But the heaviest lifting is done in Theorem 2, which utilizes a key
application of the Lindeberg–Feller Theorem for martingale convergence.

Theorem 1. We have
lim
n→∞

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A,X) = β,

where β = E[g(G(1))] is the Black-Scholes price.

Proof. Observe that for sufficiently large n ∈ N,

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A,X) = sup
X∈Xn

C,ζ

inf
A∈An

Ln(A,X) by Lemma 1

≤ sup
Sn∈Sn

D,ζ

inf
A∈An

Ln(A,Sn) since Sn(X n
C,ζ) ⊆ Sn

D,ζ

= sup
Sn∈Sn

D,ζ,mg

Ln(Sn) by Lemma 2

= Ln(S
∗
n) by Lemma 3

where S∗
n is an element of Sn

D=,ζ,mg that achieves the supSn
D,ζ,mg

(the existence of which is proven

in Lemma 3). By letting n → ∞ and using Lemma 4 we obtain

lim sup
n→∞

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A,X) ≤ lim
n→∞

Ln(S
∗
n) = β.

On the other hand, by Lemma 5 we also know that

β ≤ lim inf
n→∞

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A,X).

Hence we conclude that
lim
n→∞

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A,X) = β.

We now proceed to establish the necessary lemmas for the above proof. The first lemma states
that we have minimax duality for our game.

Lemma 1. For every n we have

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A,X) = sup
X∈Xn

C,ζ

inf
A∈An

Ln(A,X).

This lemma is proved in the appendix, but it follows essentially from the minimax theorem of
Sion [12].

The second lemma states that the optimal strategy for nature is a martingale, and furthermore,
that the strategy of the investor does not matter.

8



Lemma 2.

sup
Sn∈Sn

D,ζ

inf
A∈An

Ln(A,Sn) = sup
Sn∈Sn

D,ζ,mg

Ln(Sn),

Proof. Defining Tn,m =
Sm,n

Sn,m−1
− 1, we can “unwind” the game round-by-round:

sup
Sn∈Sn

D,ζ

inf
A∈An

Ln(A,Sn) = sup
Tn,1

inf
∆1

E
Sn,1

[

−Tn,1∆1 + sup
Tn,2

inf
∆2

E
Sn,2

[

−Tn,2∆2

+ · · · + sup
Tn,n

inf
∆n

E
Sn,n

[

−Tn,n∆n + g(Sn,n)

]

· · ·
]]

, (7)

where for all m, ESn,m [ · ] should be read as ESn,m [ · |Sn,m−1]. Suppose Sn was such that
ESn,m [Tn,m |Sn,m−1] = a 6= 0 for some m; then we see that

inf
∆m∈R

E
Sn,m

[−∆mTn,m | Sn,m−1] = inf
∆m∈R

−a∆m = −∞.

From (7), it now follows that infA∈An Ln(A,Sn) = −∞ for such an Sn. Thus, to ensure Ln(A,Sn) >
−∞, the adversary must set E[Tn,m|Sn,m−1] = 0 for each m, meaning Sn must be a martingale
sequence by definition of Tn,m. Hence,

sup
Sn∈Sn

D,ζ

inf
A∈An

Ln(A,Sn) = sup
Sn∈Sn

D,ζ,mg

inf
A∈An

Ln(A,Sn).

Furthermore, since Sn is a martingale, we see from (7) that the investor’s actions ∆m are irrelevant.
In particular, we can write

sup
Sn∈Sn

D,ζ,mg

inf
A∈An

Ln(A,Sn) = sup
Sn∈Sn

D,ζ,mg

Ln(Sn), (8)

which concludes the proof.

The third lemma states that the supremum of the objective function is achieved by a stochastic
process with maximal variance.

Lemma 3. For sufficiently large n, there exists S∗
n ∈ Sn

D=,ζ,mg such that

Ln(S
∗
n) = sup

Sn∈Sn
D,ζ,mg

Ln(Sn).

The key to this lemma is that maximization of a convex function always occurs at the boundary.
The proof requires more work since the maximization is executed over a non-compact space. The
full proof is in the appendix.

We now show that the optimal strategy for Nature converges to the geometric Brownian motion.

Theorem 2. For any sequence (S∗
n, n ∈ N) with S∗

n ∈ Sn
D=,ζ,mg,

X(S∗
n)

d−→ G

where G is the geometric Brownian motion defined in (1).
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Proof. For each n ∈ N and 0 ≤ m ≤ n define

Wn,m = logS∗
n,m +

cm

2n
,

and let Wn,(n·) ∈ C[0, 1] denote the linear interpolation of the values (Wn,m, 0 ≤ m ≤ n). That is,
for t ∈ [0, 1] of the form t = (m+ α)/n with m ∈ {0, 1, . . . , n− 1} and 0 ≤ α ≤ 1, we define

Wn,(nt) = (1− α)Wn,m + αWn,m+1 = logX(S∗
n)(t) +

ct

2
.

It suffices to show that Wn,(n·)
d−→ √

cB where B is the standard Brownian motion, for then we
have

logX(S∗
n) =

(

Wn,(n·) −
ct

2
: t ∈ [0, 1]

)

d−→
(√

cB(t)− ct

2
: t ∈ [0, 1]

)

,

and thus X(S∗
n)

d−→ G by the continuous mapping theorem.

Throughout, let Fn,m = σ(S∗
n,0, . . . , S

∗
n,m) and Tn,m =

S∗

n,m

S∗

n,m−1
− 1. Let βn,0 = 0 and βn,m ∈

Fn,m−1 be a predictable sequence such that Mn,m = Wn,m + βn,m is a martingale sequence with
respect to (Fn,m), and let βn,(n·),Mn,(n·) ∈ C[0, 1] be the linear interpolations of (βn,m) and (Mn,m),
respectively. Our approach is to show that

Mn,(n·)
d−→ √

cB and βn,(n·)
p−→ 0 (9)

where 0 is the zero function in C[0, 1]. By Slutsky’s theorem [13, Theorems 18.10 and 18.11], these

would imply the desired result Wn,(n·) = Mn,(n·) − βn,(n·)
d−→ √

cB.

To show Mn,(n·)
d−→ √

cB we appeal to the Lindeberg–Feller theorem for martingales [5,

Theorem 7.3], and to show βn,(n·)
p−→ 0 we use Taylor approximation to bound the value of

max1≤m≤n |βn,m|. The detailed proof is in Appendix C.

Furthermore, we also have the convergence of the payoff values.

Lemma 4. For any sequence (S∗
n, n ∈ N) with S∗

n ∈ Sn
D=,ζ,mg,

lim
n→∞

Ln(S
∗
n) = β.

Proof. From Theorem 2 we know that X(S∗
n)

d−→ G, so in particular, by looking at the value at

t = 1 we also have S∗
n,n

d−→ G(1). Given M > 0, let gM (x) = min(g(x),M). Note that gM is a

bounded continuous function, so the convergence S∗
n,n

d−→ G(1) gives us

lim
n→∞

E[gM (S∗
n,n)] = E[gM (G(1))] for each M > 0.

Moreover, since gM ↑ g pointwise by the monotone convergence theorem we also know that

lim
M→∞

E[gM (G(1))] = E[g(G(1))].

We claim that
lim

M→∞
E[gM (S∗

n,n)] = E[g(S∗
n,n)] uniformly in n;

we prove this claim in Appendix D. This uniform convergence allows us to interchange the order
of the limit operations, giving us the desired result

lim
n→∞

E[g(S∗
n,n)] = lim

n→∞
lim

M→∞
E[gM (S∗

n,n)] = lim
M→∞

lim
n→∞

E[gM (S∗
n,n)] = lim

M→∞
E[gM (G(1))] = E[g(G(1))].

10



The last lemma states that we have a matching lower bound for the limit of the game value.

Lemma 5.

β ≤ lim
n→∞

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A,X).

Proof. For each n ∈ N, define a stochastic process Gn : [0, 1] → R+ by setting Gn = G if the geo-
metric Brownian motion G does not violate ZCn, and Gn = 1 (the constant function 1) otherwise.
Observe that Gn is continuous and satisfies ZCn by construction. Furthermore, Gn satisfies CVC
because Gn is a mixture of two components, namely G and the constant function 1, each of which
satisfies CVC. This shows that Gn ∈ X n

C,ζ . Similarly, Gn is a martingale, so Sn(Gn) is also a
martingale. Thus by (8) we have

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A,X) ≥ inf
A∈An

Ln(A,Gn) = Ln(Gn) = E[g(Gn(1))].

We now show that limn→∞ E[g(Gn(1))] = E[g(G(1))], which will give us the desired result:

lim inf
n→∞

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A,X) ≥ lim
n→∞

E[g(Gn(1))] = E[g(G(1))] = β.

Recall that E[G(1)] = 1, so E[(G(1) − 1)2] = Var(G(1)) = exp(c) − 1. We claim that for
sufficiently large n,

P(G does not violate ZCn) ≥
(

1− 1

n2

)n

→ 1 as n → ∞. (10)

We prove this claim in Appendix E. Then using Lipschitz property of g and the Cauchy-Schwarz
inequality, we obtain

∣

∣E
[

g(G(1))
]

− E
[

g(Gn(1))
]∣

∣ =
∣

∣E
[

(g(G(1)) − g(1)) · 1{G violates ZCn}
]∣

∣

≤ E
[

|g(G(1)) − g(1)| · 1{G violates ZCn}
]

≤ L E
[

|G(1) − 1| · 1{G violates ZCn}
]

≤ L E[(G(1) − 1)2]1/2 P(G violates ZCn)
1/2

≤ L
(

exp(c)− 1
)1/2

(

1−
(

1− 1

n2

)n)1/2

→ 0 as n → ∞.
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A Proof of Lemma 1

Once we write out the objective Ln(A,X) explicitly, we see that the single inf sup can be broken

down into a sequence of nested sup inf’s as follows. Let Tn,m be the random variable X(m/n)
X((m−1)/n) −1

for m = 1, . . . n. Then we have

inf
A∈An

sup
Sn∈Sn

D,ζ

Ln(A,Sn) = inf
∆1

sup
Tn,1

E1

[

−Tn,1∆1 + inf
∆2

sup
Tn,2

E2

[

−Tn,2∆2

+ · · ·+ inf
∆n

sup
Tn,n

En

[

−Tn,n∆n + g

(

n
∏

m=1

(1 + Tn,m)

) ]

· · ·
]]

, (11)

where Em should be interpreted to mean the expectation conditioned on the filtration of the random
path X up to time m−1

n .
We now recall a simplified version of Sion’s minimax theorem [12], a generalization of Von

Neumann’s minimax theorem [10]. Assume we are given a compact convex set Λ and a convex set

12



Ω, each a subset of a linear topological space, and we have a function f : Ω×Λ → R continuous in
each input, convex in the first input and concave in the second. Then it holds that

inf
ω∈Ω

sup
λ∈Λ

f(ω, λ) = sup
λ∈Λ

inf
ω∈Ω

f(ω, λ).

This can be applied to each of the nested inf sup’s in (12) recursively, where we substitute Ω = R and
Λ = ∆([−ζn, ζn]), the set of distributions on the interval which is compact in the weak topology1.
The objective function of the m-th nested inf sup is clearly linear in ∆m, and it is also linear in the
distribution on Tn,m as we are simply taking an expectation over this distribution. We then have

inf
A∈An

sup
Sn∈Sn

D,ζ

Ln(A,Sn) = sup
Tn,1

inf
∆1

E1

[

−Tn,1∆1 + sup
Tn,2

inf
∆2

E2

[

−Tn,2∆2

+ · · ·+ sup
Tn,n

inf
∆n

En

[

−Tn,n∆n + g

(

n
∏

m=1

(1 + Tn,m)

) ]

· · ·
]]

, (12)

Of course, since we are considering ∆m as a function of the history up to time (m − 1), Nature
may as well solve for the optimal randomized price path determined by Tn,1, . . . , Tn,n in advance
and announce this to the investor. Since ∆m does not interact with any price fluctuations beyond
the m-th one, the choice of ∆m may as well be made with knowledge of Tn,m+1, . . . , Tn,n. In other
words, the sequence of sup’s can be gathered together, and we obtain the desired result.

B Proof of Lemma 3

We will assume without loss of generality that the filtration Fn,m is fixed for the set Sn
D,ζ,mg. Taking

the sup over the weak topology, we see that the argsup is nonempty since the set Sn
D,ζ,mg is compact.

Define
M(Sn) := {m : E[T 2

n,m | Fn,m−1] < exp(c/n)− 1},
where Tn,m is defined as usual. In other words, M(Sn) is set of steps m where DVC is slack for Sn.
Now let Ŝn be an element of the argsup such that |M(Ŝn)| is minimal. Assume for a contradiction
that M(Ŝn) is nonempty, and let m∗ ∈ M(Ŝn).

We wish to construct some S∗
n from Ŝn by modifying T̂n,m∗ . Note that since the filtration Fn,m

is fixed, for each m the constraints DVC, ZCn, and mg on T̂n,m are independent of the values of
T̂n,m∗ , so to ensure S∗

n ∈ Sn
D,ζ,mg, we need only maintain the three constraints for the modified

T̂n,m∗ .
For brevity let T̂ = T̂n,m∗ . Denote v∗ = exp(c/n) − 1 and v = E[T̂ 2 | Fn,m∗−1]. Note that

v < v∗ by assumption, and for sufficiently large n, v∗ < ζ2n by the definition of ζ. Henceforth
we will assume n is large enough for the latter inequality. Let A be an independent event with
P(A) = α, where α := (v∗ − v)/(ζ2n − v), and let Z be the random variable which is ζn and −ζn
each with probability 1/2. Finally, set T = T̂1Ā + Z1A and define S∗

n by T ∗
n,m = T̂n,m for m 6= m∗

and T ∗
n,m∗ = T . Note that this T satisfies ZCn and mg trivially, and satisfies DVC with equality:

E[T 2 | Fn,m∗−1] = (1− α)E[T̂ 2 | Fn,m∗−1] + αζ2n = v + α(ζ2n − v) = v∗,

and hence S∗
n ∈ Sn

D,ζ,mg and in fact |M(S∗
n)| = |M(Ŝn)| − 1. We will show below that E[g(Ŝn,n)] ≤

E[g(S∗
n,n)], meaning S∗

n is also in the argsup, thus condtradicting the minimality of |M(Ŝn)|. Hence,
1Notice that the use of ZCn is critical here, as we wouldn’t have compactness otherwise.

13



for sufficiently large n, we can select some S∗
n in the argsup such that M(S∗

n) = ∅, which completes
the proof.

We now show E[g(Ŝn,n)] ≤ E[g(S∗
n,n)]. Observe that g (

∏n
m=1(1 + tm)) is convex in each tm

(fixing the others). Thus, we see that conditioned on {T̂n,m | m 6= m∗},

f(t) = g



(1 + t)
∏

m6=m∗

(1 + T̂n,m)



− at

is convex in t, where a is chosen such that f(ζn) = f(−ζn). Now we have

E[f(T )]− E[f(T̂ )] = α
(

E[f(Z)]− E[f(T̂ )]
)

= α
(

f(ζn)− E[f(T̂ )]
)

≥ 0,

since f(t) ≤ f(ζn) for all t ∈ [−ζn, ζn] by convexity of f . Hence, denoting {T̂n,m | m 6= m∗} by
T̂n,−m∗ , we have

E[g(Ŝn,n)] = E
[

E[f(T̂ ) | T̂n,−m∗ ]
]

≤ E
[

E[f(T ) | T̂n,−m∗ ]
]

= E[g(S∗
n,n)],

where we use the fact that the linear term aT in the definition of f does not change the expectation,
as E[T ] = E[T̂ ] = 0.

C Proof of Theorem 2

For simplicity we will write Sn in place of S∗
n. Note that since Sn ∈ Sn

D=,ζ,mg we know that for
each n ∈ N and 1 ≤ m ≤ n,

E[Tn,m | Fn,m−1] = 0, E[T 2
n,m | Fn,m−1] = exp(c/n)− 1, and |Tn,m| ≤ ζn a.s. (13)

Showing βn,(n·)
p−→ 0. Observe that for each n ∈ N and 1 ≤ m ≤ n,

βn,m = −E[Wn,m −Wn,m−1 | Fn,m−1] + βn,m−1

= −E

[

log

(

Sn,m

Sn,m−1

)

∣

∣

∣ Fn,m−1

]

− c

2n
+ βn,m−1

= −E [log (1 + Tn,m) | Fn,m−1]−
c

2n
+ βn,m−1.

Now write

βn,m =

m
∑

k=1

(βn,k − βn,k−1) = −
m
∑

k=1

(

E[log(1 + Tn,k) | Fn,k−1] +
c

2n

)

,

so by Lemma 6, for sufficiently large n and for all 1 ≤ m ≤ n we have

|βn,m| ≤
m
∑

k=1

∣

∣

∣E[log(1 + Tn,k) | Fn,k−1] +
c

2n

∣

∣

∣ ≤
m
∑

k=1

(

2c ζn
n

+
c2

n2

)

≤ 2c ζn +
c2

n
.

Thus, since βn,(n·) is a linear interpolation of (βn,m, 0 ≤ m ≤ n), for sufficiently large n we have

max
0≤t≤1

|βn,(nt)| = max
1≤m≤n

|βn,m| ≤ 2c ζn +
c2

n
→ 0 as n → ∞.

This shows that in fact βn,(n·) → 0 a.s.

14



Showing Mn,(n·)
d−→ √

cB. For 1 ≤ m ≤ n let Yn,m be the martingale differences,

Yn,m = Mn,m −Mn,m−1

= Wn,m −Wn,m−1 − E[Wn,m −Wn,m−1 | Fn,m−1]

= log(1 + Tn,m)− E[log(1 + Tn,m) | Fn,m−1].

Let Vn,0 = 0 and for 1 ≤ m ≤ n, let Vn,m be the partial sum of the conditional variance,

Vn,m =

m
∑

k=1

E[Y 2
n,k | Fn,k−1] =

m
∑

k=1

Var(log(1 + Tn,k) | Fn,k−1).

By the Lindeberg-Feller theorem for martingales [5, Theorem 7.3], to prove Mn,(n·)
d−→ √

cB it
suffices to show that

1. for all ε > 0,
∑n

m=1 E[Y
2
n,m 1{|Yn,m| > ε} | Fn,m−1]

p−→ 0, and

2. Vn,⌊nt⌋
p−→ ct for all 0 ≤ t ≤ 1.

The first condition is easy to satisfy using Lemma 6. Indeed, given ε > 0, from Lemma 6 we see
that for sufficiently large n and for all 1 ≤ m ≤ n,

∣

∣E[log(1 + Tn,m) | Fn,m−1]
∣

∣ ≤ 2c ζn
n

+
c2

n2
≤ ε

2
a.s.

Moreover, from the assumption that |Tn,m| ≤ ζn → 0, for sufficiently large n and for all 1 ≤ m ≤ n
we also have

| log(1 + Tn,m)| ≤ ζn ≤ ε

2
a.s.

Thus for sufficiently large n and for all 1 ≤ m ≤ n,

|Yn,m| ≤ | log(1 + Tn,m)|+
∣

∣E[log(1 + Tn,m) | Fn,m−1]
∣

∣ ≤ ε a.s.,

which implies the asymptotic negligibility condition,

n
∑

m=1

E[Y 2
n,m 1{|Yn,m| > ε} | Fn,m−1] = 0 a.s. for sufficiently large n.

For the second condition, let 0 ≤ t ≤ 1 be given. Then by Lemma 8, for sufficiently large n we have

∣

∣Vn,⌊nt⌋ − ct
∣

∣ =

∣

∣

∣

∣

∣

∣

⌊nt⌋
∑

m=1

Var(log(1 + Tn,m) | Fn,m−1)− ct

∣

∣

∣

∣

∣

∣

≤
⌊nt⌋
∑

m=1

∣

∣

∣
Var(log(1 + Tn,m) | Fn,m−1)−

c

n

∣

∣

∣
+

∣

∣

∣

∣

c⌊nt⌋
n

− ct

∣

∣

∣

∣

≤
⌊nt⌋
∑

m=1

(

4c ζn
n

+
3c2

n2

)

+
( c

n
(nt+ 1)− ct

)

≤ 4c ζn +
3c2

n
+

c

n
→ 0 as n → ∞.

Thus Vn,⌊nt⌋ → ct a.s. for each 0 ≤ t ≤ 1.
To complete the proof of Theorem 2 we establish the following lemmas.
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Lemma 6. For sufficiently large n and for all 1 ≤ m ≤ n we have

∣

∣

∣E [log(1 + Tn,m) | Fn,m−1] +
c

2n

∣

∣

∣ ≤ 2c ζn
n

+
c2

n2
a.s.

Proof. Observe that for sufficiently large n, say n ≥ N , and for all 1 ≤ m ≤ n, the following
inequalities hold:

exp(c/n)− 1 ≤ 2c

n
, exp(c/n)− 1− c

n
≤ 2c2

n2
, and 3(1− ζn) ≥ 1.

Throughout the rest of this proof, all inequalities hold for n ≥ N and uniformly for all 1 ≤ m ≤ n.
By the second-order Taylor expansion (with remainder) of the function x 7→ log(1 + x) around

the point x = 0,

log(1 + Tn,m)− Tn,m +
1

2
T 2
n,m =

1

3(1 + ξn,m)3
T 3
n,m

where ξn,m is some value between 0 and Tn,m. Then, since |Tn,m| ≤ ζn,

∣

∣

∣

∣

log(1 + Tn,m)− Tn,m +
1

2
T 2
n,m

∣

∣

∣

∣

=

∣

∣

∣

∣

1

3(1 + ξn,m)3
T 3
n,m

∣

∣

∣

∣

≤ |Tn,m|3
3(1 − ζn)3

≤ ζn T 2
n,m,

so

E

[

∣

∣

∣ log(1 + Tn,m)− Tn,m +
1

2
T 2
n,m

∣

∣

∣

∣

∣

∣

∣

∣

Fn,m−1

]

≤ ζn E[T 2
n,m | Fn,m−1] = ζn

(

exp(c/n)− 1
)

≤ 2c ζn
n

.

Therefore,

∣

∣

∣E[log(1 + Tn,m) | Fn,m−1] +
c

2n

∣

∣

∣ =

∣

∣

∣

∣

∣

E

[

log(1 + Tn,m)− Tn,m +
1

2
T 2
n,m

∣

∣

∣ Fn,m−1

]

− 1

2

(

exp(c/n)− 1− c

n

)

∣

∣

∣

∣

∣

≤ E

[

∣

∣

∣ log(1 + Tn,m)− Tn,m +
1

2
T 2
n,m

∣

∣

∣

∣

∣

∣

∣

∣

Fn,m−1

]

+
1

2

∣

∣

∣

∣

∣

exp(c/n) − 1− c

n

∣

∣

∣

∣

∣

≤ 2c ζn
n

+
c2

n2
.

Lemma 7. For sufficiently large n and for all 1 ≤ m ≤ n we have

∣

∣

∣E
[

log2(1 + Tn,m) | Fn,m−1

]

− c

n

∣

∣

∣ ≤ 4c ζn
n

+
2c2

n2
a.s.

Proof. We follow a similar argument as in the proof of Lemma 6. Observe that since ζn → 0, for
sufficiently large n, say n ≥ N , the following inequalities hold:

exp(c/n) − 1 ≤ 2c

n
, exp(c/n)− 1− c

n
≤ 2c2

n2
, and

3− 2 log(1− ζn)

3(1− ζn)3
≤ 2.

Throughout the rest of this proof, all inequalities hold for n ≥ N and uniformly for all 1 ≤ m ≤ n.
Recall that from the second-order Taylor expansion of the function x 7→ log2(1+ x) around the

point x = 0,

log2(1 + Tn,m)− T 2
n,m =

(−3 + 2 log(1 + ξn,m)

3(1 + ξn,m)3

)

T 3
n,m
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where ξn,m is some value between 0 and Tn,m. Then, since |Tn,m| ≤ ζn,

∣

∣log2(1 + Tn,m)− T 2
n,m

∣

∣ =

∣

∣

∣

∣

(−3 + 2 log(1 + ξn,m)

3(1 + ξn,m)3

)

T 3
n,m

∣

∣

∣

∣

≤ 3− 2 log(1− |Tn,m|)
3(1− |Tn,m|)3 |Tn,m|3

≤ 3− 2 log(1− ζn)

3(1− ζn)3
ζn T 2

n,m

≤ 2ζn T 2
n,m.

Then

E

[

∣

∣ log2(1 + Tn,m)− T 2
n,m

∣

∣

∣

∣

∣
Fn,m−1

]

≤ 2ζn E[T 2
n,m | Fn,m−1] = 2ζn

(

exp(c/n) − 1
)

≤ 4c ζn
n

.

Therefore,

∣

∣

∣
E
[

log2(1 + Tn,m) | Fn,m−1

]

− c

n

∣

∣

∣
=
∣

∣

∣
E
[

log2(1 + Tn,m)− T 2
n,m | Fn,m−1

]

+
(

exp(c/n)− 1− c

n

)∣

∣

∣

≤ E

[

∣

∣ log2(1 + Tn,m)− T 2
n,m

∣

∣

∣

∣

∣
Fn,m−1

]

+
∣

∣

∣
exp(c/n)− 1− c

n

∣

∣

∣

≤ 4c ζn
n

+
2c2

n2
.

Lemma 8. For sufficiently large n and for all 1 ≤ m ≤ n we have

∣

∣

∣Var(log(1 + Tn,m) | Fn,m−1)−
c

n

∣

∣

∣ ≤ 4c ζn
n

+
3c2

n2
a.s.

Proof. Writing

Var(log(1 + Tn,m) | Fn,m−1) = E[log2(1 + Tn,m) | Fn,m−1]− E[log(1 + Tn,m) | Fn,m−1]
2,

we can bound
∣

∣

∣Var(log(1 + Tn,m) | Fn,m−1)−
c

n

∣

∣

∣ ≤
∣

∣

∣E[log2(1 + Tn,m) | Fn,m−1]−
c

n

∣

∣

∣+ E[log(1 + Tn,m) | Fn,m−1]
2.

For sufficiently large n and for all 1 ≤ m ≤ n, by Lemma 7 the first term above is at most
4c ζn/n+ 2c2/n2, while by Lemma 6 the first term above is at most

(

c

2n
+

2c ζn
n

+
c2

n2

)2

≤ c2

n2
.

Thus for sufficiently large n and for all 1 ≤ m ≤ n,

∣

∣

∣Var(log(1 + Tn,m) | Fn,m−1)−
c

n

∣

∣

∣ ≤ 4c ζn
n

+
2c2

n2
+

c2

n2
=

4c ζn
n

+
3c2

n2
,

as desired.

17



D Proof of Lemma 4

In view of the proof sketch in Section 3, it suffices to show that

lim
M→∞

E[gM (S∗
n,n)] = E[g(S∗

n,n)] uniformly in n.

For simplicity we will write Sn in place of S∗
n. Without loss of generality we may assume g(0) = 0,

so the Lipschitz property of g tells us that g(x) ≤ Lx for all x ≥ 0.
Recall that since Sn is a martingale we have E[Sn,n] = E[Sn,0] = 1 for all n ∈ N. We now show

that for each n ∈ N,

E[S2
n,m] = exp

(cm

n

)

for all m = 1, . . . , n. (14)

We proceed by induction on m, for each fixed n. The base case m = 1 follows from the fact
that Sn ∈ Sn

D=,ζ,mg, so Sn satisfies DVC with equality. Now assume the claim is true for some
1 ≤ m < n. For m+ 1, by expanding the DVC constraint

E[(Sn,m+1 − Sn,m)
2 | Fn,m] = (exp(c/n)− 1)S2

n,m

we get

E[S2
n,m+1 | Fn,m] = 2Sn,m E[Sn,m+1 | Fn,m]− S2

n,m + (exp(c/n) − 1)S2
n,m = exp(c/n) S2

n,m.

Taking expectation on both sides and using the inductive hypothesis, we obtain

E[S2
n,m+1] = exp

( c

n

)

E[S2
n,m] = exp

(

c(m+ 1)

n

)

,

which proves (14). In particular, by plugging in m = n to (14) we see that E[S2
n,n] = exp(c) for all

n ∈ N.
Now fix 1 ≤ n ≤ ∞. By the Cauchy-Schwarz inequality, for M > 0 we have

∣

∣E[g(Sn,n)]− E[gM (Sn,n)]
∣

∣ = E[(g(Sn,n)−M) · 1{g(Sn,n) > M}]
≤ E[g(Sn,n) · 1{g(Sn,n) > M}]
≤ E[g(Sn,n)

2]1/2 P(g(Sn,n) > M)1/2

For the first factor, since g(Sn,n) ≤ LSn,n we have that E[g(Sn,n)
2] ≤ L2

E[S2
n,n] = L2 exp(c).

Similarly, for the second factor, by Markov inequality we have

P(g(Sn,n) > M) ≤ P(Sn,n > M/L) ≤ E[Sn,n]

M/L
=

L

M
.

Therefore,
∣

∣E[g(Sn,n)]− E[gM (Sn,n)]
∣

∣ ≤ L3/2 exp(c/2)

M1/2
,

and since the bound is independent of n, this shows that limM→∞ E[gM (Sn,n)] = E[g(Sn,n)] uni-
formly in n, as desired.
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E Proof of Lemma 5

In view of the proof sketch in Section 3, it remains to show that for sufficiently large n,

P(G does not violate ZCn) ≥
(

1− 1

n2

)n

.

Recall that G(t) = exp(
√
cB(t) − ct/2) where B is the standard Brownian motion. Thus for

each n ∈ N and for all 0 ≤ m ≤ n− 1,

G((m+ 1)/n)

G(m/n)
= exp

(√
cB

(

m+ 1

n

)

−√
cB
(m

n

)

− c

2n

)

= exp

(
√

c

n
Zm − c

2n

)

where Zm =
√
n(B(m+1

n )− B(mn )) has N(0, 1) distribution and Z0, Z1, . . . , Zn−1 are independent.
Therefore,

P(G does not violate ZCn) = P

(

max
0≤m≤n−1

∣

∣

∣

∣

G((m+ 1)/n)

G(m/n)
− 1

∣

∣

∣

∣

≤ ζn

)

= P

(

max
0≤m≤n−1

∣

∣

∣

∣

exp

(
√

c

n
Zm

)

− 1

∣

∣

∣

∣

≤ ζn

)

= P

(∣

∣

∣

∣

exp

(
√

c

n
Z − c

2n

)

− 1

∣

∣

∣

∣

≤ ζn

)n

where Z ∼ N(0, 1).
From the assumptions ζn → 0 and lim infn→∞ nζ2n/ log n > 16c we can choose n large enough,

say n ≥ N , such that the following inequalities are true:

log(1 + ζn) ≥
ζn
2
,

√

n

c
ζn ≥

√

c

n
,

√
n ζn

2
√
c

≥
√

2

π
and

n ζ2n
log n

≥ 16c.

Throughout the remainder of this proof we suppose n ≥ N . Observe that if we have
exp

(√

c
nZ − c

2n

)

− 1 > ζn then

Z >
1

2

√

c

n
+

√

n

c
log(1 + ζn) >

√
n ζn
2
√
c
,

and similarly, if exp
(√

c
nZ − c

2n

)

− 1 < −ζn then

Z <
1

2

√

c

n
+

√

n

c
log(1− ζn) ≤

1

2

√

c

n
−
√

n

c
ζn ≤ −

√
n ζn
2
√
c
.

This shows that

P

(∣

∣

∣

∣

exp

(
√

c

n
Z − c

2n

)

− 1

∣

∣

∣

∣

> ζn

)

≤ P

(

|Z| >
√
n ζn
2
√
c

)

= 2 P

(

Z >

√
n ζn
2
√
c

)

.

By standard Gaussian tail bound [5, Theorem 1.4],

P

(

Z >

√
n ζn
2
√
c

)

≤ 1√
2π

2
√
c√

n ζn
exp

(

−nζ2n
8c

)

≤ 1

2
exp(−2 log n) =

1

2n2
.

Thus

P(G does not violate ZCn) =

(

1− 2 P

(

Z >

√
n ζn
2
√
c

))n

≥
(

1− 1

n2

)n

.
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