
From Query Complexity to Computational Complexity

Shahar Dobzinski
∗

Department of Computer Science
Cornell University, Ithaca, NY, USA

shahar@cs.cornell.edu

Jan Vondrák
IBM Almaden Research Center

San Jose, CA, USA
jvondrak@us.ibm.com

ABSTRACT
We consider submodular optimization problems, and pro-
vide a general way of translating oracle inapproximability
results arising from the symmetry gap technique to computa-
tional complexity inapproximability results, where the sub-
modular function is given explicitly (under the assumption
that NP 6= RP). Applications of our technique include an
optimal computational hardness of (1

2
+ε)-approximation for

maximizing a symmetric nonnegative submodular function,
an optimal hardness of (1−(1−1/k)k+ε)-approximation for
welfare maximization in combinatorial auctions with k sub-
modular bidders (for constant k), super-constant hardness
for maximizing a nonnegative submodular function over ma-
troid bases, and tighter bounds for maximizing a monotone
submodular function subject to a cardinality constraint. Un-
like the vast majority of computational inapproximability
results, our approach does not use the PCP machinery or
the Unique Games Conjecture, but relies instead on a direct
reduction from Unique-SAT using list-decodable codes.

Categories and Subject Descriptors
F.2.2 [Non-numerical Algorithms and Problems]: Com-
putations on Discrete Structures

Keywords
Inapproximability, submodular function, symmetry gap

1. INTRODUCTION
In this paper we consider the approximability of vari-

ous submodular maximization problems. This class includes
problems such as finding the maximum of a monotone sub-
modular function subject to a cardinality constraint [10, 2],
maximization of a nonnegative submodular function [3], and
welfare maximization in combinatorial auctions where bid-
ders have submodular valuations [8, 7, 12].

∗Supported by NSF award AF-0910940.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOCŠ12, May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

Let f be a set function defined on a ground setN , |N | = n.
f is called submodular if for every S and T we have that
f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T). A set function f is
called monotone (non-decreasing) if for every T ⊆ S we have
that f(T) ≤ f(S). Our goal is to prove hardness results for
problems of the form max{f(S) : S ∈ F}, where F is the
family of feasible solutions.

Notice that a naive representation of the submodular func-
tion would require us to specify 2n values, one for each pos-
sible subset of the items. However, we would like our algo-
rithms to run in time that is polynomial in n. Thus, there
are two main approaches for accessing the function. The
first one is to assume that the valuation is represented by
an oracle that can answer a certain type of queries. The sim-
plest oracle is a value oracle: given a set S, what is f(S)?
To prove hardness results in the value oracle model, we have
to show that if the algorithm achieves a certain approxima-
tion ratio, then it must make a superpolynomial number of
value queries. Another model assumes that the function is
succinctly represented, i.e., the representation size is poly-
nomial in n and for each set S the value f(S) can be com-
puted in polynomial time. To prove hardness results in this
model we have to show that no polynomial-time algorithm
can guarantee a certain approximation ratio under standard
complexity assumptions, such as P 6= NP .

By now, one can say that the value oracle model is quite
well understood. Optimal or near-optimal hardness results
are known for many of the problems that have been con-
sidered [3, 5, 9]. Moreover, in [14] a unified approach for
obtaining inaproximability results was presented: it defines
a notion of symmetry gap and shows how to systematically
obtain value-oracle hardness results that match this gap.
However, the situation is less bright as far as succinctly rep-
resented functions are concerned. For example, consider the
problem of maximizing a nonnegative submodular function:
an inapproximability factor of 1

2
+ ε is known in the value

oracle model [3] (even for symmetric submodular functions,
which is optimal). However, for succinctly represented func-
tions it is only known that a (3

4
+ ε)-approximation is im-

possible unless P = NP [3], and 0.695-approximation is
impossible assuming the Unique Games Conjecture [1].

In this paper we show how to “mechanically convert” ora-
cle hardness results for submodular optimization into com-
putational hardness results. Specifically, we show that every
hardness result obtained via the symmetry gap machinery
can also be obtained for succinctly represented functions.
In a sense, this shows that the difference between oracle
hardness results and computational complexity hardness re-

sults is not too big here: one can concentrate on proving a
hardness result in the value oracle model, and get the same
hardness result when the function is explicitly represented
“for free”. Another way of interpreting our results, is that we
face both computation and communication barriers when de-
signing algorithms for submodular functions, and removing
one barrier does not suffice.

Theorem: (informal) Let max{f(S) : S ∈ F} be an in-
stance of submodular maximization with a symmetry gap
γ ∈ (0, 1). Then for any constant ε > 0, there is no (γ + ε)-
approximation algorithm for a succinctly represented prob-
lem “related” to max{f(S) : S ∈ F}, unless NP = RP .

We remark that the main oracle hardness result in [13]
contains a technical error which has been recently discov-
ered and corrected in [14]. This error does not affect any
currently known concrete applications of the theorem. We
state our main hardness result (Theorem 4.4) in a form con-
sistent with the new corrected theorem in [14].

Applications of the Main Theorem
Let us explicitly mention some of the applications of the
main theorem (analogous to the value-oracle hardness re-
sults in [3, 9, 13, 5]).

Corollary: Let f denote a succinctly represented non-
negative submodular function. Unless NP = RP ,

1. There is no (1
2

+ ε)-approximation for the problem
max f(S), even if f is symmetric.

2. There is no (1− (1− 1/k)k + ε)-approximation for the
problem max{f(S) : |S| ≤ n/k}, even if f is monotone
and k is constant (n denotes the size of the ground
set).

3. There is no (1− (1−1/k)k + ε)-approximation for wel-
fare maximization in combinatorial auctions with k
bidders that have (succinctly represented) monotone
submodular valuations, even if k is constant.

4. There is no constant-factor approximation for the prob-
lem max{f(S) : S ∈ B}, where B is the collection of
bases in a succinctly represented matroid.

5. There is no 0.491-approximation for the problem max{f(S) :
|S| ≤ `}.

6. There is no 0.478-approximation for the problem max{f(S) :
|S| ∈ I}, where I is the collection of independent sets
in a succinctly represented matroid.

Related work. As noted above, for the first application
(maximizing a succinctly represented nonnegative submodu-
lar function) it was previously known that there is no (3

4
+ε)-

approximation unless P = NP [3] and that there is no 0.695-
approximation assuming the Unique Games Conjecture [1].
Our result holds even in the more restrictive setting where
f is symmetric (for this case the papers [3, 1] provide inap-
proximability results with worse factors).

For the problem of monotone submodular maximization
subject to a cardinality constraint, Feige [2] shows that that
there is no (1− 1

e
+ε)-approximation, unless P = NP (while

1−1/e is the ratio guaranteed by the greedy algorithm [10]).

While Feige’s result hold even for coverage valuations, a sub-
class of submodular valuations, it requires the cardinality
bound to be a very small (constant) fraction of n. Our
hardness result holds for the constraint |S| ≤ n/k, with any
constant k ≥ 2. The tightness of our result in this regime is
implied by the recent work of Feldman, Naor and Schwartz
[4].

The situation is similar when considering the problem
of welfare maximization in combinatorial auctions. It was
known that there is no (1 − 1

e
)-approximation unless P =

NP , [7] (for coverage valuations), and that a (1− 1
e
) approx-

imation can be achieved using value queries only [12]. The
hardness result of [7] requires the number of players k to
be a large constant, while our result holds for any constant
k ≥ 2. The tightness of our result is implied again by [4].

For the other problems mentioned above, no non-trivial
hardness results in the computational complexity model were
previously known.

Our Approach
In contrast to a large body of existing work on the hardness
of approximation of explicitly posed problems, our proofs are
not based on Probabilistically Checkable Proofs or other so-
phisticated machinery. Instead we present an alternative ap-
proach that is based on encoding a submodular function us-
ing a Unique-SAT formula and list decodable codes. List de-
codable codes are a generalization of error correcting codes;
the difference is that, given an encoded (possibly corrupted)
message, instead of decoding a single possible message, the
list decoding algorithm outputs a list of possible messages,
one of which is guaranteed to be correct. This allows list
decoding algorithms to handle a greater number of errors
than that allowed by unique decoding.

We sketch here at a high level the main ideas of our ap-
proach. For illustration, we consider the problem of non-
negative submodular maximization, for which it was proved
in [3] that any (1

2
+ ε)-approximation would require an ex-

ponential number of value queries1. We start by explaining
the main ideas of this result.

Oracle hardness. Consider a ground set partitioned into
two “hidden parts”, X = A ∪B, and define two possible set
functions on X. One is independent of A,B, and is defined
as f(S) = |S| · |X \ S|. Another one, fA, is defined to
coincide with f whenever S is “balanced” in the sense that
|S∩A|−|S∩B| ∈ [−ε|X|, ε|X|]. For sets that are unbalanced,
fA(S) depends on A in such a way that A (and also B) has
“high value”. Indeed, A and B are the intended optimal
solutions for fA. The gap between the optima for f and fA
is close to 2. The core of the proof is that the functions f and
fA cannot be distinguished by subexponentially many value
queries, because every query with high probability falls in
the region where f and fA coincide. On such a query, the
two functions not only give the same answer, but the answer
does not give any information about (A,B).

How to hide a set. The main challenge in turning this
into a computational hardness result is to present the input
function fA explicitly without revealing the partition (A,B).
A natural description of fA contains information about A
in some form, and if an algorithm learns A, it knows the
optimal solution.
1This proof can be seen as a germ of the symmetry gap
technique.

The solution is to hide the set A using an error-correcting
code: Let Ax be the codeword encoding a bit string x,
using an error-correcting code C (we use a natural corre-
spondence between sets and bit-strings here). This gives an
exponential-size family of candidate sets {Ax : x ∈ {0, 1}m}.
Only one of them is the true optimal solution A: this set
A = Ax∗ is determined by a distinguished string x∗. How-
ever, the distinguished string x∗ is not given explicitly - it is
given for example by a uniquely satisfiable formula φ whose
satisfying assignment is x∗. Thus, the formula φ implicitly
describes an objective function fAx∗ .

In order to interpret φ as a description of the function
fφ = fAx∗ , we have to make sure that we are able to evaluate
fφ(S), given φ. Here, we use the property that fA(S) only
depends on A when S is unbalanced with respect to A, or
in other words, when S is closer to A in Hamming distance
than a random set would be. If C is a suitable list-decodable
code, this is sufficient to determine A, by finding the list of
potential codewords close to S, and checking if any of them
corresponds to the satisfying assignment x∗. If we determine
that S is indeed close to Ax∗ , we are able to evaluate fφ(S) =
fAx∗ (S). If S is not close to Ax∗ , it means that the defining
formula does not depend on Ax∗ and we are again able to
evaluate fφ(S) = f(S). Thus, φ can be interpreted as a
succinct description of fφ.

Uniqueness and NP-hardness. To summarize: We have
a problem whose input is assumed to be a Unique-SAT for-
mula φ. This formula describes a submodular function fAx∗ ,
where x∗ is the satisfying assignment to φ (or f in case there
is no satisfying assignment). The optima in the two cases
differ by a factor close to 2. Therefore, approximating the
optimum within a factor better than 2 would allow us to
distinguish whether the formula is satisfiable or not.

The only remaining issue is the assumption that the for-
mula has a unique assignment. This can be dealt with, fol-
lowing the work of Valiant and Vazirani [11]. They showed
that every formula φ can be transformed into a random for-
mula φ′ of size polynomial in φ, such that if φ is satisfiable,
then with constant probability φ′ has a unique satisfying
assignment. If φ is not satisfiable, then φ′ is not satisfi-
able either. Therefore, we can feed the resulting formula φ′

(repeatedly) into our presumed algorithm for submodular
maximization, and determine by checking the returned so-
lution whether there is a unique satisfying assignment. We
allow our algorithm to perform arbitrarily when the input
formula has multiple satisfying assignments, since such a for-
mula does not encode a submodular function. Still, we are
able to detect whenever a unique solution exists, and this
will happen eventually with high probability. Therefore, we
are able to solve SAT with one-sided error, and this implies
NP = RP .

2. PRELIMINARIES

2.1 List Decodable Codes
Definition 2.1 (List Decodable Codes). A pair of

functions (E,D), E : Σm → Σn, D : Σn → (Σm)`, ` =
poly(n) is called an (n,m, d)-list decodable code if:

1. E is injective.

2. For c ∈ Σn and x ∈ Σm, x ∈ D(c) if and only if
dH(c, E(x)) ≤ d.

Here, dH denotes Hamming distance, dH(x, y) = |{i : xi 6=
yi}|. Of particular interest will be list decodable codes over
Σ = {0, 1}, but we will also use larger alphabets. In this
paper we are only interested in cases where E and D can be
computed in polynomial time.

2.2 Unique-SAT and RP

Definition 2.2. Unique-SAT is a problem whose input is
a formula φ and the goal is to:

• asnwer NO, if φ has no satisfying assignment,

• answer YES, if φ has exactly 1 satisfying assignment,

• return an arbitrary answer otherwise.

Definition 2.3. RP is the class of decision problems that
can be decided by randomized polynomial-time algorithms
that always answer NO if the correct answer is NO, and an-
swer YES with probability at least 1/2 if the correct answer
is YES.

Theorem 2.4 (Valiant-Vazirani [11]). Unique-SAT is
NP hard under one-sided error randomized reductions.

3. WARMUP: NONNEGATIVE SUBMODU-
LAR MAXIMIZATION

In this section, we consider the problem of non-monotone
submodular maximization. In this problem we are given a
non-negative submodular function f : 2X → R+ and we are
interested in finding a set S maximizing f(S). The result
we prove is implied by our more general result for symmetry
gap hardness. We present it separately to convey the main
ideas more clearly.

Theorem 3.1. There is a class C of succinctly represented
nonnegative submodular functions, such that if there is a
polynomial-time (1

2
+ ε)-approximation algorithm for maxi-

mizing functions in C then NP = RP . The result holds even
for symmetric functions.

Indistinguishable submodular functions. We define
submodular functions on a ground set X = [2n], follow-
ing [3]. Sometimes we will also identify X with [n]× {0, 1}.
We start by defining a function fC : 2[2n] → R+ for every
set C ⊂ [2n] of size n. In the definition we use the notation
a = |S ∩ C| and b = |S ∩ C|.

fC(S) =

 (a+ b)(2n− a− b) if |a− b| ≤ 2εn,
2a(n− b) + 2(n− a)b if |a− b| > 2εn.

+4ε2n2 − 8εn|a− b|

We also define the function f(S) = |S| · (2n − |S|). Notice
the both functions are symmetric. In [3] it is shown that
all the above functions are submodular. Moreover, for any
C ∈

(
[2n]
n

)
, maxS fC(S) = fC(C) = 2n2 + 4ε2n2 − 8εn2

and maxS f(S) = n2. Therefore, the ratio between the two
maxima is 2−O(ε).

In [3], it is shown that these two functions cannot be dis-
tinguished by a polynomial number of value queries. How-
ever, we take a different approach here and design a way
to present the above functions explicitly on the input, while
guaranteeing that distinguishing between the two cases im-
plies deciding Unique-SAT.

SAT-submodular functions. We encode the functions
above as follows. First, we fix a suitable list decodable
code: more precisely a family of binary (n,m, (1

2
− ε)n)-

list decodable codes for all n ∈ Z+ (over Σ = {0, 1}, with
n = poly(m) and constant ε > 0; such codes are described
for instance in [6]). We denote the encoding function by
E : {0, 1}m → {0, 1}n and the decoding function by D :
{0, 1}n → ({0, 1}m)`. This code is fixed in the following.

Each function in C is described by a boolean formula φ,
which is assumed to have at most one satisfying assignment.
(If φ has multiple satisfying assignments, it may not encode
a submodular function and an algorithm run on such input
can behave arbitrarily.) Given φ on m variables, we de-
fine fφ : {0, 1}2n → R+ as follows. Let x = (x1, . . . , xm)
be the unique satisfying assignment to the variables (if it
exists). Let y = E(x) ∈ {0, 1}n. We identify the ground
set X = [2n] with [n] × {0, 1} and we define an expansion
procedure exp : {0, 1}n → 2X as follows: (i, 0) ∈ exp(x)
and (i, 1) /∈ exp(x) if yi = 0, and (i, 0) /∈ exp(x) and
(i, 1) ∈ exp(x) if xi = 1. Note that |exp(x)| = n. We
define the function corresponding to φ to be fφ = fC where
C = exp(x) and x is the unique satisfying assignment to
φ (with some overloading of notation which the reader will
hopefully forgive). If φ is not satisfiable then we interpret
the function as fφ = f . As we will see, this is a natural
choice, considering that the “high-value set” for fφ is de-
termined by a satisfying assignment for φ. If there is no
satisfying assignment, there is also no high-value set.

We now show that φ is indeed a legitimate representation
of fφ in the sense that value queries can be answered effi-
ciently (and thus one can use the algorithms of [3] to obtain
good approximation ratios if the input is a SAT-submodular
function given by φ). In particular, we do not need to know
whether φ is satisfiable in order to evaluate fφ(S).

Lemma 3.2. Given φ, the value of fφ(S) can be calculated
in polynomial time for any S ⊆ [2n].

Proof. In this proof we view subsets of X = [2n] as
strings in {0, 1}2n; the Hamming distance dH is then equiv-
alent to the symmetric difference between sets. Observe that
if S is balanced, meaning ||S ∩ C| − |S \ C|| ≤ 2εn, we can
calculate the value of fC(S) without having to know what
C is (or even without knowing whether the function is f or
fC). Therefore, to calculate the value for given S, we have
to show a polynomial-time procedure that finds out whether
S is balanced or unbalanced, and finds C in the unbalanced
case. In the following we show a procedure that identifies
whether |S ∩ C| − |S \ C| > 2εn and in that case finds C.
The other case is similar.

Claim 3.3. If |S ∩ C| − |S \ C| > 2εn then dH(S,C) <
n− 2εn.

Proof. Using the assumption and |C| = n,

2εn < |S∩C|−|S \C| = n−|C \S|−|S \C| = n−dH(S,C).

For a ∈ {0, 1}, we define a contracting procedure cona :
2X → {0, 1}n that takes a set C ⊆ X = [n] × {0, 1} and
produces the following n-bit string y = cona(C): If (i, 0) /∈
C and (i, 1) ∈ C then xi = 0. If (i, 0) ∈ C and (i, 1) /∈ C
then xi = 1. Otherwise, xi = a. Note that cona(exp(x)) = x
for both a ∈ {0, 1}. We now need the following simple claim:

Claim 3.4. If dH(S,C) < n − 2εn then there exists a ∈
{0, 1} such that dH(cona(S), cona(C)) < n

2
− εn.

Proof. Observe that two “01” bits in S that do not agree
with two “10” bits in C (or vice versa) will result in one bit
of disagreement between cona(S) and cona(C). If two “10”
bits (or “01” bits) in C do not agree with “11” (or “00”)
bits in S, then we have one bit of disagreement between
cona(S) and cona(C) for either a = 0 or a = 1. Therefore,
a block with two disagreements between S and C translates
to one bit of disagreement between cona(S) and cons(C),
and a block with one disagreement translates to a bit with
1
2

probability of disagreement (when choosing a ∈ {0, 1}
uniformly at random). Thus the claim holds for some value
of a ∈ {0, 1}.

We are now ready to complete the proof. Observe that
if dH(cona(S), cona(C)) < n

2
− εn then the list-decodable

property of the code implies that the unique satisfying as-
signment x must be in one of the polynomially many strings
that D(cona(S)) returns. We can check if x is one of the
strings of D(cona(S)) simply by testing the satisfiability of
each of the assignments that D(cona(S)) returns, for each
of the two possible values of a. If none of the assignments
is satisfying, we know that S is balanced with respect to C
and we do not need the knowledge of C to compute fC(S).
If we find the set C, computing fC(S) is straightforward.

Proof of Theorem 3.1. Assume that we have a (1
2

+
8ε)-approximation algorithm for maximizing a nonnegative
submodular function. The specific class of submodular func-
tions that we use is the class of SAT-submodular functions,
where fφ is encoded by giving the formula φ. Given a for-
mula φ, we simply copy it on the input for the submodular
maximization algorithm; i.e. the reduction is trivial.

As we showed, the function fφ can be evaluated efficiently,
given φ. Hence the presumed submodular maximization al-
gorithm will be able to find the optimum within a factor of
1
2

+ 8ε. If the input formula is uniquely satisfiable, then the

true optimum is at least (2− 8ε)n2 and hence the algorithm
returns a solution of value strictly above n2. On the other
hand, if the input formula is not satisfiable, there is no so-
lution of value more than n2. Therefore, we can distinguish
the two cases and solve Unique-SAT. By Theorem 2.4, this
implies NP = RP .

4. INAPPROXIMABILITY FROM SYMME-
TRY GAP

In this section, we present a computational-complexity
version of the general hardness result for submodular opti-
mization based on the symmetry gap [14]. This encapsulates
the hardness result for nonnegative submodular maximiza-
tion as a special case (see [14] for more details). First, we
summarize the symmetry gap technique and formulate our
main result.

Symmetry gap. The starting point is a fixed instance
max{f(S) : S ∈ F}, where f : 2X → R+ is a submodular
function and F ⊂ 2X is the set of feasible solutions. We
assume that this instance is symmetric with respect to a
certain group G of permutations of X, in the following sense.

Definition 4.1. We call an instance max{f(S) : S ∈ F}
on a ground set X totally symmetric with respect to a group

of permutations G on X, if f(S) = f(σ(S)) for all S ⊆ X
and σ ∈ G, and S ∈ F ⇔ S′ ∈ F whenever Eσ∈G [1σ(S)] =
Eσ∈G [1σ(S′)].

Remark. The symmetry assumption on the family of fea-
sible sets here is stronger than the one given in [13]. This is
due to a mistake in [13] which the author only recently found
and corrected in a revised manuscript [14]. This mistake af-
fects the formulation of the general hardness theorem (see
[14]), but fortunately not any of the concrete applications
given in [13] and [5].

We note that σ ∈ G is a permutation of X, but we also
use it for the naturally induced map on subsets of X and
vectors indexed by X. For x ∈ [0, 1]X , we define the sym-
metrization operation as x̄ = Eσ∈G [σ(x)]. (Whenever we
use this notation, σ is drawn uniformly from the group G.)
A fractional solution x is called symmetric, if x̄ = x.

We consider the multilinear extension F (x) = E[f(x̂)],
where x̂ ∈ {0, 1}X is a random vector whose i-th coordinate
is rounded to 1 independently with probability xi and 0 with
probability 1 − xi. We also define P (F) = conv({1S : S ∈
F}), the polytope associated with F . Then, the symmetry
gap is defined as follows.

Definition 4.2 (Symmetry gap). Let max{f(S) : S ∈
F} be an instance totally symmetric under a group of permu-
tations G of the ground set X. Define x̄ = Eσ∈G [σ(x)]. The
symmetry gap of this instance is defined as γ = OPT/OPT
where

OPT = max{F (x) : x ∈ P (F)},

OPT = max{F (x̄) : x ∈ P (F)}

Definition 4.3 (Refinement). Let F ⊆ 2X , |X| = k

and |N | = n. A refinement of F is F̃ ⊆ 2N×X , where

F̃ = {S̃ ⊆ N ×X
∣∣ (x1, . . . , xk) ∈ P (F)

where xj =
1

n
|S̃ ∩ (N × {j})|}

The hardness result of [14] states that there is a class of in-
stances of submodular maximization “similar to max{f(S) :

S ∈ F}”, namely in the form max{f̃(S) : S ∈ F̃} where

F̃ is a refinement of F , for which achieving an approxima-
tion better than γ requires an exponential number of value
queries. Here, we turn this into the following computational
hardness result.

Theorem 4.4. Let max{f(S) : S ∈ F} be an instance of
nonnegative (optionally monotone) submodular maximiza-
tion, totally symmetric with respect to G with symmetry gap
γ = OPT/OPT , and ε > 0. Then there is a collection C of

succinctly represented instances in the form max{f̃(S) : S ∈
F̃}, where f̃ is nonnegative (optionally monotone) submod-

ular and F̃ is a refinement of F , and there is no (γ + ε)-
approximation algorithm for C unless NP = RP .

Applications. We mention a few applications of this the-
orem, that arise from the symmetric instances given in [13].
These are computational-complexity analogues of the results
given in [13].

Corollary 4.5. Unless NP = RP , there is no (1− (1−
1/k)k + ε)-approximation for the problem max{f(S) : |S| ≤
n/k}, where f is a succinctly represented monotone submod-
ular function (and k is constant).

Corollary 4.6. Unless NP = RP , there is no (1− (1−
1/k)k + ε)-approximation for welfare maximization in com-
binatorial auctions with k bidders that have (succinctly rep-
resented) monotone submodular valuations (and k is con-
stant).

Corollary 4.5 follows immediately from Theorem 4.4 and
the following symmetric instance on k elements: max{f(S) :
|S| ≤ 1} where f(S) = min{|S|, 1}, as in [13]. Corollary 4.6
requires some additional justification; we discuss it in Sec-
tion 5.

Another application due to a symmetric instance given in
[13] is the following.

Corollary 4.7. Unless NP = RP , there is no constant-
factor approximation for the problem max{f(S) : S ∈ B},
where f is a succinctly represented nonnegative (non-monotone)
submodular function, and B is the collection of bases in a
succinctly represented matroid.

Additional applications follow from the symmetric instances
given in [5].

Corollary 4.8. Unless NP = RP , there is no 0.491-
approximation for the problem max{f(S) : |S| ≤ `}, where f
is a succinctly represented nonnegative submodular function.

Corollary 4.9. Unless NP = RP , there is no 0.478-
approximation for the problem max{f(S) : |S| ∈ I}, where f
is a succinctly represented nonnegative submodular function
and I is the collection of independent sets in a succinctly
represented matroid.

4.1 The proof
Here we proceed to prove Theorem 4.4. Up to a certain

point, the approach is analogous to that of [13]: Based on
the symmetric instance, we produce pairs of instances with a
ratio of optimal values corresponding to the symmetry gap,
that are provably hard to distinguish. The difference is in
how we present these instances on the input. In contrast to
the oracle model of [13], we encode the instances succinctly
in a way that still makes them hard to distinguish. The main
issue is how to present the objective function succinctly on
the input, without revealing too much about its structure.

We appeal to the following technical lemma in [14] (the
full version of [13]).

Lemma 4.10. Consider a function f : 2X → R+ invari-
ant under a group of permutations G on the ground set X.
Let F (x) = E[f(x̂)], x̄ = Eσ∈G [σ(x)], and fix any ε > 0.

Then there is δ > 0 and functions F̂ , Ĝ : [0, 1]X → R+

(which are also symmetric with respect to G), satisfying:

1. For all x ∈ [0, 1]X , Ĝ(x) = F̂ (x̄).

2. For all x ∈ [0, 1]X , |F̂ (x)− F (x)| ≤ ε.

3. Whenever ||x − x̄||2 ≤ δ, F̂ (x) = Ĝ(x) and the value
depends only on x̄.

4. The first partial derivatives of F̂ , Ĝ are absolutely con-
tinuous2.

5. If f is monotone, then ∂F̂
∂xi
≥ 0 and ∂Ĝ

∂xi
≥ 0 every-

where.

6. If f is submodular, then ∂2F̂
∂xi∂xj

≤ 0 and ∂2Ĝ
∂xi∂xj

≤ 0

almost everywhere.

Observe that we can choose ε > 0 arbitrarily small (but
constant). Then, the lemma provides another constant, δ >
0 (which will be important in the following), and functions

F̂ , Ĝ such that F̂ is close to the multilinear extension F of
the original objective function, while Ĝ is its symmetrized
version Ĝ(x) = F̂ (x̄). Hence the gap between the optimal

values of F̂ and Ĝ is arbitrarily close to the symmetry gap
(as in [13]; see [14] for more details). We remark that in

addition, the functions F̂ , Ĝ have explicit forms (see [14])
that can be evaluated efficiently, given the function f . Recall
that f is a fixed particular function and |X| is a fixed ground
set, and hence we can present f explicitly by its list of values.
Although the formulas defining F̂ and Ĝ in [14] involve a
number of terms exponential in |X|, the number of terms is
constant since |X| is constant.

We also use the following lemma from [14], which allows
us to use the continuous functions above to define discrete
submodular functions.

Lemma 4.11. Let F : [0, 1]X → R be a function with ab-
solutely continuous first partial derivatives. Let N = [n],
n ≥ 1, and define f : N × X → R so that f(S) = F (x)
where xi = 1

n
|S ∩ (N × {i})|. Then

1. If ∂F
∂xi
≥ 0 everywhere for each i, then f is monotone.

2. If ∂2F
∂xi∂xj

≤ 0 almost everywhere for all i, j, then f is

submodular.

In this manner, we obtain pairs of discrete instances as-
sociated with F̂ and Ĝ, such that the ratio between their
optima is close to the symmetry gap. The new contribu-
tion is how we encode these instances on the input. At a
high level, we encode the submodular functions arising from
Lemma 4.10 as follows. The functions are defined on a re-
fined ground set N ×X, which can be viewed as partitioned
into clusters N × {i} corresponding to individual elements
i ∈ X of the original symmetric instance. We hide this
partition by associating exponentially many possible par-
titions with the codewords of a list decodable code. The
“correct” partition is associated with a codeword x∗ that en-
codes a unique satisfying assignment to a certain formula
φ. (See Section 3 for an explanation of this idea in a spe-
cial case where the partition has just 2 parts.) Intuitively, if
an algorithm gives a good approximation to the respective
maximization problem, it must be able to determine the un-
derlying partition and hence by decoding the codeword find
a satisfying assignment to the formula.

4.2 Element-transitive groups
First, we explain the case of element-transitive permuta-

tion groups: These are groups G of permutations on X such

2A function F : [0, 1]X → R is absolutely continuous, if ∀ε >
0; ∃δ > 0;

∑t
i=1 ||xi − yi|| < δ ⇒

∑t
i=1 |F (xi)− F (yi)| < ε.

that for any two elements i, j ∈ X, there is σ ∈ G such that
σ(i) = j. Alternatively, such groups can be described by
saying that they induce a single orbit on X.

Definition 4.12. Given a group G of permutations on
X, we define a relation ∼ where i ∼ j if there is σ ∈ G such
that σ(i) = j.

Since for each σ, σ′ ∈ G, the group also contains σ−1 and
σ ◦ σ′, it is quite obvious that ∼ is an equivalence relation.

Definition 4.13. An orbit of X is an equivalence class
of the relation ∼. We say that G is element-transitive, if
i ∼ j for all i, j ∈ X; i.e. X is a single orbit.

In this case, all the elements are in a certain sense equiva-
lent (although the group could still have a non-trivial struc-
ture). Furthermore, we have the following useful (known)
property.

Lemma 4.14. For each orbit O ⊆ X, the symmetrized
vector x̄ = Eσ∈G [σ(x)] satisfies x̄j = 1

|O|
∑
i∈O xi for all

j ∈ O.

Proof. Consider i, j ∈ O and fix π ∈ G such that π(i) =
j. Then we have

x̄j = Eσ∈G [xσ(j)] = Eσ∈G [xσ◦π(i)]

Since the distribution of σ ◦ π is the same as that of σ (uni-
form over G), we get that x̄j = x̄i. Furthermore, |O|x̄j =∑
i∈O x̄i =

∑
i∈O xi, because each permutation in G maps

O onto itself.

In particular, if G is element-transitive, the symmetrized
vector x̄ has all coordinates equal. We remark that this is the
case in the symmetric instances that lead to Corollary 4.5
and Corollary 4.6 (see [9, 13]).

Our goal is to encode succinctly the submodular functions
arising from F̂ and Ĝ. In particular, we would like to have
a hidden partition of the ground set N × X into sets (Yi :

i ∈ X), and we want to define submodular functions f̂(S) =

F̂ (x), ĝ(S) = Ĝ(x), where xi = |S∩Yi|
|Yi|

. We want to be able

to evaluate the functions f̂(S), ĝ(S) efficiently, and yet it is
important that the partition (Yi : i ∈ X) should not be easy
to determine.

Recall Lemma 4.10. If ||x− x̄||2 ≤ δ, then F̂ (x) = Ĝ(x).

Moreover, Ĝ(x) = F̂ (x̄) and hence the value depends only on
x̄. Since all the coordinates of x̄ are equal, the value depends
only on

∑
xi and we do not need to know anything about the

hidden partition. Knowledge about the partition is needed
only in the case where the set S is unbalanced in the sense

that the respective vector xi = |S∩Yi|
|Yi|

has some coordinates

that are significantly larger than others. Therefore, we can
proceed as follows.

Hiding a partition. Let N = [n] and X = [k]. We fix a
(n,m, (1− 1+γ

k
)n)-list-decodable code over the alphabet X,

where γ =
√
δ/k with δ from Lemma 4.10 (see [6]). With

each codeword y ∈ Xn, we associate the following partition
of N × X: for each i ∈ [k], Yi = {(a, ya + i (mod k)) :

1 ≤ a ≤ n}. We have
⋃k
i=1 Yi = N × X, because each

pair (a, j) appears in Yi for exactly one i ∈ [k]. One of
these partitions will be distinguished by some property of
the codeword y ∈ Xn that can be checked efficiently, but

the distinguished codeword cannot be found easily — we use
Unique-SAT for this task. We consider a formula φ over m
variables in X, which has either 0 or 1 satisfying assignment.
In case the formula has a unique satisfying assignment, it
defines a partition (Y1, . . . , Yk) as above, using the codeword
y = E(z), where z is the unique satisfying assignment to φ.
If φ does not have any satisfying assignment, it is interpreted
as encoding the symmetric case where the input instance
does not depend on the partition (Y1, . . . , Yk).

Encoding the feasibility constraint. In line with the
definition of refinement (Definition 4.3) and also with the
concept of a hidden partition (Y1, . . . , Yk), let us now define
the feasible sets in the refined instance:

F̃ = {S ⊆ N ×X : ξ(S) ∈ P (F) where ξi(S) =
1

n
|S ∩ Yi|}

Observe the following: since the membership condition S ∈
F for the original instance is assumed to depend only on the
symmetrized vector 1S = Eσ∈G [1σ(S)], membership in F̃ de-

pends only on the symmetrized vector ξ(S). In fact we are
now considering the case where the symmetrized vector has
all coordinates equal, and hence membership in F̃ depends
only on

∑
j ξj(S) = 1

n
|S|. Hence an algorithm does not

need to know the codeword y and the partition (Y1, . . . , Yk)
in order to check the feasibility of a set S. The feasibil-
ity constraint can be described explicitly on the input by a
boolean table indexed by |S|.

Encoding the submodular function. We encode a sub-
modular function fφ by providing a value table of the initial
objective function f : 2X → R+ (which is a constant-size
object), and a formula φ over m variables in X, which has
either 0 or 1 satisfying assignment. In case the formula
has a unique satisfying assignment, it defines a partition
(Y1, . . . , Yk) as above, using the codeword y = E(z), where
z is the unique satisfying assignment to φ, and E is the en-
coding function of the list-decodable code that we fixed be-
forehand. Such a formula φ is then interpreted as encoding
the function fφ(S) = F̂ (ξ(S)) where ξi(S) = 1

n
|S ∩ Yi|. If φ

does not have any satisfying assignment, it is interpreted as
encoding the function fφ(S) = Ĝ(ξ(S)) = F (ξ̄(S)) (which
depends only on

∑
j ξj(S) = 1

n
|S|, and hence the partition

(Y1, . . . , Yk) is irrelevant).

Evaluating the submodular function. The main tech-
nical point is to prove that given φ, we are able to evaluate
the function fφ(S) efficiently. As in Section 3, the trick
is that we don’t necessarily need to determine the partition
(Y1, . . . , Yk) in order to evaluate fφ, even if we are in the sat-
isfiable case where the partition matters. If S is balanced in
the sense that the vector defined by xi = ξi(S) = 1

n
|S ∩ Yi|

satisfies ||x − x̄||2 ≤ δ, then F̂ (x) = Ĝ(x) = F̂ (x̄) and we

can evaluate fφ(S) = F̂ (x) without knowing the partition
(essentially we can assume that we are in the unsatisfiable

case and evaluate F̂ (x̄)).
However, we must be able to detect whether ||x− x̄||2 > δ

and if so, reconstruct the partition (Y1, . . . , Yk). Recall that
we consider the case where x̄ has all coordinates equal to
x̄ = 1

n

∑
xi; hence we want to detect whether ||x − x̄||2 =∑

i(xi − x̄)2 > δ. This implies that for some coordinate,

xi − x̄ >
√
δ/k = γ. Recall that xi = 1

n
|S ∩ Yi|, and

x̄ = 1
kn
|S|. Therefore, we want to be able to detect that S

intersects some part Yi more than others. In fact, since the

parts (Y1, . . . , Yk) are generated from Y1 by cyclic rotation
of the alphabet X, it is enough to be able to detect this
event for the first part, Y1.

The following lemma is crucial for accomplishing that. It
states that if we have a set S ⊂ [n]×X that correlates with
a codeword y ∈ Xn more than a random set would, then we
can convert S into a codeword s ∈ Xn that is closer to y in
Hamming distance than a random codeword would be.

Lemma 4.15. Let y ∈ Xn be a hidden codeword, |X| = k.
If S ⊆ [n]×X satisfies

|{i ∈ [n] : (i, yi) ∈ S}| ≥
1

k
|S|+ γn,

then we can transform S (without knowing y) into a list of

n|X| strings s(`) ∈ Xn such that for at least one of them,

dH(s(`), y) ≤
(

1− 1 + γ

k

)
n

Proof. First we show how to find s ∈ Xn probabilisti-
cally. Let Si = {j ∈ X : (i, j) ∈ S}. For each i ∈ [n], we
choose si as a random element of X, where each element of

Si is chosen with probability 2
k
− |Si|

k2
, and each element of

X \ Si is chosen with probability 1
k
− |Si|

k2
. (The reader can

check that these probabilities add up to |Si|(2
k
− |Si|

k2
)+(k−

|Si|)(1
k
− |Si|

k2
) = 1.)

What is the expected number of coordinates where s and
y disagree? We call i ∈ [n] good if Si contains yi, and bad
otherwise. By assumption, the number of good coordinates
is at least 1

k
|S| + γn. On each good coordinate, we have

Pr[si = yi] = 2
k
− |Si|

k2
, while for each bad coordinate, Pr[si =

yi] = 1
k
− |Si|

k2
. So the expected Hamming distance between

s and y is

E[dH(s, y)] =

n∑
i=1

(1− Pr[si = yi])

=
∑

good i

(
1− 2

k
+
|Si|
k2

)
+
∑

bad i

(
1− 1

k
+
|Si|
k2

)

=

n∑
i=1

(
1− 1

k
+
|Si|
k2

)
− 1

k
good coordinates

≤
(
n− n

k
+
|S|
k2

)
− 1

k

(
1

k
|S|+ γn

)
=

(
1− 1 + γ

k

)
n.

We can derandomize this construction by noting that due to
linearity of expectation, we can have arbitrary dependencies
between different coordinates si. Hence we can implement
the randomization by subdividing [0, 1] into |X| intervals for
each i ∈ [n], drawing a single random number Θ ∈ [0, 1] for
all i ∈ [n], and then listing the n|X| possible events.

Using this lemma, we can evaluate the function fφ(S) as
follows.

• Using Lemma 4.15 with γ =
√
δ/k, convert S into a

list of strings s(`) ∈ Xn. Make k copies of each string
by considering all cyclic rotations of the alphabet X,
i→ i+ j mod k.

• Using the list-decodable code, get a list of all strings
z ∈ Xm such that dH(s(`), E(z)) ≤

(
1− 1+γ

k

)
n for

some string s(`) on the list above.

• For each z ∈ Xm on this list, check whether the re-
spective assignment satisfies the formula φ. If so, let
(Y1, . . . , Yk) be the partition of N ×X associated with
y = E(z), as above. Otherwise, use a default partition
such as Yj = {(i, j) : i ∈ N}.

• Compute xj =
|S∩Yj |
|Yj |

and evaluate fφ(S) = F̂ (x).

(We refer to [14] for an explicit formula for F̂ (x).)

Claim 4.16. The above is a valid efficient procedure to
evaluate the function fφ.

Proof. All the steps are efficient, due to Lemma 4.15,
properties of list decoding, and the construction of F̂ . We
remark that although the definition of F̂ in [14] involves
multilinear polynomials with 2k terms, the number of terms
is still constant since k is a constant.

For correctness, we need to check that we find the correct
partition (Y1, . . . , Yk) whenever it is necessary for evaluating
the function. If the input formula φ is uniquely satisfiable,
let z be the unique assignment, y = E(z) and (Y1, . . . , Yk)
the associated partition.

If the set S is such that the respective vector xi = 1
n
|S∩Yi|

satisfies ||x − x̄||2 > δ, we showed above that this implies

xi−x̄ >
√
δ/k = γ for some coordinate i. In terms of the set

S and partition (Y1, . . . , Yk), this means 1
n
|S∩Yi|− 1

kn
|S| > γ

for some i. By considering cyclic rotations of X, we can
assume that 1

n
|S ∩ Y1| − 1

kn
|S| > γ; this is exactly the as-

sumption of Lemma 4.15. Therefore, we will generate a
list of strings s(`) such that for one of them, dH(s(`), y) ≤
(1− 1+γ

k
)n. By the properties of the list-decodable code, we

will be able to decode y and a string z such that y = E(z)
will appear on the list of decoded messages. Then we will
check the formula φ and discover that z is a satisfying as-
signment - in this case, we determine correctly the partition
(Y1, . . . , Yk), and we evaluate the correct function F̂ (x).

If the set S is such that ||x − x̄||2 ≤ δ, then we may not
discover a satisfying assignment. The same will happen if
no satisfying assignment exists. In both cases, we will use
the default partition Yj = {(i, j) : i ∈ N}. However, we still
compute the correct value in both cases because in the region
where ||x − x̄||2 ≤ δ, we have F̂ (x) = Ĝ(x) = F̂ (x̄), and
this function does not depend on the partition (Y1, . . . , Yk).
It depends only on

∑
xi = 1

n
|S|, and hence we will again

evaluate correctly.

This completes the proof of Theorem 4.4 in the case where
the group G is element-transitive: We encoded the possible
input functions f̂(S) = F̂ (x) and ĝ(S) = Ĝ(x) in a way
that reduces Unique-SAT to the two cases, and the ratio
between the two optima can be made arbitrarily close to
the symmetry gap. The general case is treated in the next
section.

4.3 General Symmetry Groups
In this section we extend the proof of Theorem 4.4 to the

case of arbitrary symmetry groups G. Compared to Sec-
tion 4.2, the added difficulty is the presence of multiple or-
bits in the ground set X (see Definition 4.13). In general, we
have to deal with the phenomenon of multiple orbits, for the

following reason. The refined instances are partitioned into
clusters (Yi : i ∈ X), and the argument in Section 4.2 was
that this partition should be “hidden” from the algorithm.
This is possible to achieve, if all elements in the original in-
stance are equivalent and hence the objective function treats
them the same way. However, in general we cannot claim
that the algorithm cannot learn anything about the parti-
tion (Yi : i ∈ X). Elements in different orbits can affect the
objective function in different ways. We can only claim that
the subpartition corresponding to each orbit remains hid-
den and cannot be determined by an algorithm. Therefore,
we have to adjust the way we associate the partition with a
codeword.

Encoding a partition with multiple orbits. Let G be
a symmetry group that induces a partition of X into orbits
O1, . . . , Or. We consider a refinement of the ground set that
is also partitioned into parts corresponding to the orbits:
X̃ = Õ1 ∪ . . . ∪ Õr. This partitioning will be made explicit
and known to the algorithm. What we want to hide is the
partitioning of each set Õi into clusters corresponding to the
elements of Oi. We could use a separate error-correcting
code for each orbit; however, to connect this construction
with the construction of the functions F̂ , Ĝ, it is more con-
venient to use a single error-correcting code for all the orbits.
We do this as follows.

Let κ be the smallest common multiple of the sizes of all
orbits |Oi|, and let Σ be an alphabet of size κ. Note that
κ is still a constant, depending only on the initial instance.
For each orbit, the refinement of Oi will be defined on the
set N × Σ. Each “column” {i} × Σ will be partitioned into
|Oi| pieces of size κ/|Oi|, and the location of these pieces
is determined by certain coordinates of an error-correcting
code. The error-correcting code will map strings in Σm to
codewords in Σrn (for all r orbits). The i-th orbit will use
the respective portion of n symbols of the codeword. The
refinement of the full ground set X will be X̃ = [r]×N ×Σ,
where r is the number of orbits. The product structure given
by [r]×N × Σ will be explicitly known to an algorithm.

Given a distinguished codeword y ∈ Σrn, we define a par-
tition of X̃ = [r]×N × Σ, indexed by X. For convenience,
we denote elements of X by (i, j), where (i, j) is the j-th
element of orbit Oi. Then, the partition consists of parts
Yi,j where 1 ≤ i ≤ r and 1 ≤ j ≤ |Oi|. We define

Yi,j = {(i, a, ya+jκ/|Oi|+` (mod κ)) : a ∈ N, 0 ≤ ` < κ/|Oi|}

In other words, Yi,j is a subset of {i}×N×Σ, which for each
a ∈ N contains a block of κ/|Oi| elements, whose location
is determined by the codeword y. Together, these blocks for
elements in Oi form the set {i} × N × Σ. Taking a union

over all orbits Oi, we obtain the ground set X̃ = [r]×N×Σ.

Encoding the feasibility constraint. By a natural ex-
tension of the previous section, the feasible sets in the refined
instance are the following:

F̃ = {S ⊆ N×X : ξ(S) ∈ P (F) where ξi,j(S) =
1

n
|S∩Yi,j |}

Observe that ξ(S) is now a vector indexed by i, j, where
Oi is an orbit and j is an element in the orbit. We know
that membership in F depends only on the symmetrized
vector 1S , and similarly membership in P (F) depends on

the symmetrized vector x̄. Therefore, S ∈ F̃ ⇔ ξ(S) ∈
P (F) ⇔ ξ(S) ∈ P (F). The effect of symmetrization on

ξ(S) is that the coordinates on each orbit are made equal

(see Lemma 4.14). Therefore, the condition S ∈ F̃ depends
only on the parameters |S ∩ ({i} × N × Σ)| which can be
computed by the algorithm (since the product structure of
[r]×N×Σ is explicit and known). We only need a description
of the polytope P (F), which can be described succinctly by
F ⊆ 2X , a constant-size object.

Encoding the objective function. Finally, we show how
we encode the objective function in the general case. Again,
we provide a value table of the original objective function
f : 2X → R+, and a formula φ over m variables in Σ, which
has either 0 or 1 satisfying assignment. In case the formula
has a unique satisfying assignment, it defines a partition
(Yi,j : (i, j) ∈ X) as above, using the codeword y = E(z),
where z is the unique satisfying assignment to φ. Such
a formula φ is then interpreted as encoding the function
fφ(S) = F̂ (ξ(S)) where ξi,j(S) = 1

n
|S ∩ Yi,j |. If φ does not

have any satisfying assignment, it is interpreted as encod-
ing the function fφ(S) = Ĝ(ξ(S)) = F (ξ(S)) (which de-
pends only on

∑
ξi,j(S) = 1

n
|S|, and hence the partition

(Yi,j : (i, j) ∈ X) is irrelevant).

Evaluating the submodular function. Again, the main
point is to show how to evaluate fφ(S), given the formula
φ. Now we have a vector (indexed by pairs (i, j)) defined by

xi,j = ξi,j(S) =
|S∩Yi,j |
|Yi,j |

. If x satisfies ||x − x̄||2 ≤ δ, then

S is balanced, F̂ (x) = Ĝ(x) = F̂ (x̄) and we can evaluate

fφ(S) = F̂ (x) without knowing the partition (again we can
consider a default partition Yi,j = {(i, a, jκ/|Oi| + `) : 0 ≤
` < κ/|Oi|}, since the answer does not depend on it).

We must be able to reconstruct the partition (Yi,j : (i, j) ∈
X) whenever ||x − x̄||2 > δ. This means that xi,j − x̄i,j >√
δ/k = γ for some (i, j). Here, x̄ has coordinates equal on

each orbit Oi, i.e. x̄i,j depends only on i. This means that
S intersects Yi,j more than the average Yi,j′ over j′ ∈ Oi:

|S ∩ Yi,j | >
1

|Oi|
(|S ∩

⋃
j′∈Oi

Yi,j′ |+ γκn)

As Yi,j is a subset of {i} ×N × Σ, we can restrict S to the
same set and define S′ = S∩({i}×N×Σ) = S∩

⋃
j′∈Oi

Yi,j′ .

It still holds that |S′ ∩ Yi,j | > 1
|Oi|

(|S′| + γκn). Now, Yi,j

consists of a block of κ/|Oi| cyclically shifted copies of a
particular codeword y ∈ Σrn; by an averaging argument S′

also intersects one of these copies, let’s call it y′, more than

the average: |S′ ∩ y′| ≥ |Oi|
κ
|S′ ∩ Yi,j | > 1

κ
|S′| + γn. By

Lemma 4.15, we can generate a list of codewords s(`) such
that for at least one of them, dH(s(`), y′) < (r − 1+γ

κ
)n.

By list decoding, we are able to find such a codeword and
determine the distinguished partition (Y(i,j) : (i, j) ∈ X).
Then we are able to evaluate the function fφ.

The rest of the proof is identical to the case of element-
transitive groups. If we are able to approximate the opti-
mum better than the symmetry gap, we must be able to dis-
tinguish the instances max{f̂(S) : S ∈ F̃} and max{ĝ(S) :

S ∈ F̃}, and hence solve Unique-SAT.

5. WELFARE MAXIMIZATION FOR K

AGENTS
As an application of Theorem 4.4, we stated Corollary 4.6

on the hardness of welfare maximization for k agents. This

follows fairly easily from the discussion in Section 4.2, al-
though some additional considerations are necessary due to
the fact that the welfare maximization problem is formally
in a different format than max{f(S) : S ∈ F}. In this sec-
tion, we present a sketch of the proof of Corollary 4.6 —
both to explain the additional arguments, and also to show
a concrete application of the somewhat abstract machinery
of symmetry gap.

In fact, we show Corollary 4.6 in the special case where
all agents have the same valuation function, and hence the
problem can be reformulated as the following:

max

{
k∑
i=1

f(Si) : Si ⊆ X are disjoint

}

We argue about the hardness of the problem as follows. We
start from a symmetric instance where f(S) = min{|S|, 1},
on a ground set of size k. Note that this is symmetric under
every permutation of the ground set, and hence the group is
element-transitive as in Section 4.2. The multilinear exten-
sion of this function is F (x) = 1−

∏k
i=1(1− xi). The sym-

metrized version is G(x) = 1−(1− 1
k

∑k
i=1 xi)

k. Lemma 4.10

gives two slightly modified functions F̂ (x), Ĝ(x), very close

to the above, such that F̂ (x) = Ĝ(x) whenever ||x̄−x||2 ≤ δ.
By discretizing these functions on a ground set partitioned
into (Y1, Y2, . . . , Yk), |Y1| = . . . = |Yk| = n, we obtain mono-

tone submodular functions f̂(S) = F̂ (1
n
|S ∩ Y1|, . . . , 1

n
|S ∩

Yk|) and ĝ(S) = Ĝ(1
n
|S ∩ Y1|, . . . , 1

n
|S ∩ Yk|).

By the discussion in Section 4.2, these functions can be en-
coded on the input (while hiding the partition (Y1, . . . , Yk))
in such a way that we cannot distinguish the two cases,
unless NP = RP . Now assume for a moment that the in-
put functions are derived from F (x) or G(x) rather than

F̂ (x), Ĝ(x). When the input formula is f(S) = F (1
n
|S ∩

Y1|, . . . , 1
n
|S ∩ Yk|) = 1−

∏k
i=1(1− 1

n
|S ∩ Yi|), then one can

achieve welfare k, by allocating Yi to the agent i. If the
input function is g(S) = G(1

n
|S ∩ Y1|, . . . , 1

n
|S ∩ Yk|) = 1−

(1− 1
kn
|S|)k, then the optimal solution is any partition into

sets of equal size, which gives welfare k(1− (1−1/k)k). The

actual valuations on the input are derived from F̂ (x), Ĝ(x)
and hence slightly different from the above, but the rela-
tive difference of the two optimal values can be made arbi-
trarily small. Therefore, achieving a (1 − (1 − 1/k)k + ε)-
approximation would imply NP = RP .

6. REFERENCES
[1] Per Austrin. Improved inapproximability for

submodular maximization. In APPROX, pages 12–24,
2010.

[2] Uriel Feige. A threshold of ln n for approximating set
cover. Journal of the ACM, 45(4):634–652, 1998.

[3] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák.
Maximizing non-monotone submodular functions. In
IEEE FOCS, pages 461–471, 2007.

[4] Moran Feldman, Seffi Naor, and Roy Schwartz. A
unified continuous greedy algorithm for submodular
maximization. In IEEE FOCS, pages 570–579, 2011.

[5] Shayan Oveis Gharan and Jan Vondrák. Submodular
maximization by simulated annealing. In ACM-SIAM
SODA, pages 1098–1116, 2011.

[6] Venkatesan Guruswami and Atri Rudra. Soft
decoding, dual BCH codes, and better list-decodable
eps-biased codes. In ECCC 15(036), 2008.

[7] Subhash Khot, Richard J. Lipton, Evangelos
Markakis, and Aranyak Mehta. Inapproximability
results for combinatorial auctions with submodular
utility functions. Algorithmica, 52:1:3–18, 2008.

[8] Benny Lehmann, Daniel Lehmann, and Noam Nisan.
Combinatorial auctions with decreasing marginal
utilities. Games and Economic Behavior,
55:2:270–296, 2006.

[9] Vahab Mirrokni, Michael Schapira, and Jan Vondrák.
Tight information-theoretic lower bounds for welfare
maximization in combinatorial auctions. In ACM EC,
pages 70–77, 2008.

[10] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular
set functions - I. Mathematical Programming,
14:265–294, 1978.

[11] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy
as detecting unique solutions. Theoretical Computer
Science, 47:1:85–93, 1986.

[12] Jan Vondrák. Optimal approximation for the
submodular welfare problem in the value oracle model.
In ACM STOC, pages 67–74, 2008.

[13] Jan Vondrák. Symmetry and approximability of
submodular maximization problems. In IEEE FOCS,
pages 651–670, 2009.

[14] Jan Vondrák. Symmetry and approximability of
submodular maximization problems. 2011. Full
version, arXiv:1110.4860v1.

