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Abstract

Computing accurate low rank approximations of large matrices is a fundamental data mining
task. In many applications however the matrix contains sensitive information about individuals.
In such case we would like to release a low rank approximationthat satisfies a strong privacy
guarantee such as differential privacy. Unfortunately, to date the best known algorithm for this
task that satisfies differential privacy is based on naiveinput perturbationor randomized response:
Each entry of the matrix is perturbed independently by a sufficiently large random noise variable,
a low rank approximation is then computed on the resulting matrix.

We give (the first) significant improvements in accuracy overrandomized response under the
natural and necessary assumption that the matrix haslow coherence. Our algorithm is also very
efficient and finds a constant rank approximation of anm× n matrix in timeO(mn). Note that
even generating the noise matrix required for randomized response already requires timeO(mn).
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1 Introduction

Consider a largem× n matrix A in which rows correspond to individuals, columns correspond to
movies, and the non-zero entry inA(i, j) represent the rating that individuali has given to moviej.
Such a data set shares two important characteristics with many other data sets:

1. It can be represented as amatrix with very different dimensions. There are many more people
than movies, son≫ m

2. It is composed ofsensitive information: the rating that an individual gives to a particular movie
(and the very fact that he watched said movie) can be possiblycompromising information.

Nevertheless, although we want to reveal little about the existence of individual ratings in this data set,
it might be extremely useful to be able to allow data analyststo mine such a matrix for statistical in-
formation. Even while protecting the privacy of individualentries, it might still be possible to release
another matrix that encodes a great deal of information about the original data set. For example, we
might hope to be able to recover the cut structure of the corresponding rating graph, perform principal
component analysis (PCA), or apply some other data mining technique.

Indeed, this example is not merely theoretical. Data of exactly this form was released by Net-
flix as part of their competition to design improved recommender systems. Spectral methods such
as PCA were commonly used on this dataset, and privacy concerns were acknowledged: Netflix at-
tempted to “anonymize” the dataset in an ad-hoc way. Following this supposedly anonymized release,
Naranyanan and Shmatikov [NS08] were able to re-identify many individuals in the dataset bycross-
referencing the reviews with publicly available reviews inthe internet movie database. As a result
of their work, a planned second Netflix challenge was canceled. The story need not have ended this
way however – the formal privacy guarantee known asdifferential privacycould have prevented the
attack of [NS08], and indeed, McSherry and Mironov [MM09] demonstrated that many of the recom-
mender systems proposed in the competition could have been implemented in a differentially private
way. [MM09] make use of private low-rank matrix approximations using input perturbation methods.
In fact, it is not possible to generically improve on input perturbation methods for all matrices with-
out violatingblatant non privacy[DN03]. Nevertheless, in this paper, we give the first algorithms for
low rank matrix approximation with performance guaranteesthat are significantly better than input
perturbation, under certain commonly satisfied conditionswhich are already assumedin prior work
on non-private low-rank matrix approximation.

In this paper, we consider the problem of privately releasing accurate low-rank approximations to
datasets that can be represented as matrices. Such matrix approximations are one of the most funda-
mental building blocks for statistical analysis and data mining, with key applications including latent
semantic indexing and principle component analysis. We provide theorems bounding the accuracy
of our approximations as compared to the optimal low rank approximations in the Frobenius norm.
The classical Eckart-Young theorem asserts that the optimal rank-k approximation of a matrixA (in
either the Frobenius or Spectral norms) is obtained by computing the singular value decomposition
A = UΣVT, and releasing thetruncatedSVD Ak = UΣkVT , where inΣk, all but the topk singular val-
ues have been zeroed out. Computing the SVD of a matrix takes timeO(mn2). In addition to offering
privacy guarantees, our algorithm is also extremely efficient: it requires only elementary matrix op-
erations and simple noisy perturbations, and for constantk takes time onlyO(mn). This represents a
happy confluence of the two goals of privacy and efficiency. Normally, the two are at odds, and differ-
entially private algorithms tend to be (much) less efficient than their non-private counterparts. In this
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case, however, we will see that some algorithms for fast approximate low-rank matrix approximation
are much more amenable to a private implementation than their slower counterparts.

Computing low rank matrix approximations privately has been considered at least since [BDMN05],
and to date, no algorithm has improved over simple input perturbation, which achieves an error (when
compared with the best rankk approximationAk) in Frobenius norm ofΘ(

√
k(n+m)). Although this

error is optimal without making any assumptions on the matrix, this error can be prohibitive when the
best rankk approximation is actually very good: when‖A−Ak‖F ≪

√
k(n+m). That is, exactly in the

case when a low rank approximation to the matrix would be mostuseful. We give an algorithm which
improves over input perturbation under the conditions thatm≪ n and that thecoherenceof the matrix
is small: roughly, that no single row of the matrix is too significantly correlated with any of the right
singular vectors of the matrix. Equivalently, no left singular vector has large correlation with one of
the standard basis vectors. Low coherence is a commonly studied and satisfied condition. For exam-
ple, Candes and Tao, motivated by the same Netflix Prize dataset re-identified by [NS08], consider
the problem of matrix completion under low coherence conditions [CT10]. They show that matrix
completion is possible under low coherence assumptions, and that several reasonable random matrix
models exhibit a strong incoherence property. Notably, [CT10] were not concerned with privacy at
all: they viewed low coherence as a natural assumption satisfied for datasets resembling the Netflix
prize data that could be leveraged to obtain stronger utility guarantees. This represents a second
happy confluence of the goals of data privacy and utility: lowcoherence is an assumption that others
alreadymake free of privacy concerns in order to improve the state ofthe art in data analysis. We
show that the same assumption can simultaneously be leveraged for data privacy. In retrospect, low
coherence is also an extremely natural condition in the context of privacy, although one that has not
previously been considered in the literature. If a matrix fails to have low coherence, then intuitively
the data of individual rows of the matrix is encoded closely in individual singular vectors. If it does
have low coherence, no small set of singular vectors can be used to encode any row of the matrix with
high accuracy, and intuitively, low rank approximations reveal less local information about particular
entries of the matrix.

The problem we solve is the following: Given a matrixA and a target rankk we privately compute
and release a rankO(k) matrix B such that‖A−B‖F is not much larger than‖A−Ak‖F , whereAk is the
optimalrankk approximation toA, and‖ · ‖F is theFrobenius norm. The quality of the approximation
depends on several factors, includingn, m, the desired rankk, and the coherence of the matrix. Our
approach improves over input perturbation when the matrix coherence is small.

Our algorithm promises (ε, δ)-differential privacy[DMNS06] with respect to changes of any sin-
gle row of magnitude 1 in theℓ2-norm. This is only stronger than the standard notion of changing
any single entry in the matrix by a unit amount. In the very special case of the matrix representing
a (possibly unbalanced) graph, this captures (for example)the addition or removal of a single edge.
Therefore in this case our algorithm is promisingedge privacyrather thanvertex privacy. From a
privacy point of view, this is less desirable than vertex privacy, but is still a strong guarantee which is
appropriate in many settings. We note that edge privacy is well studied with respect to graph problems
(see, e.g. [NRS07, GLM+10, GRU11]), and we do not know of any algorithms with non-trivial guar-
antees on graphs that promise vertex privacy, nor any algorithms in the more general case of matrices
that promise privacy with respect to entire rows.
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1.1 Our results

We start with our first algorithm that improves over randomized response on matrices of smallC-
coherence. We say that anm× n matrix A hascoherence C, if no row has Euclidean norm more than
C · ‖A‖F/

√
m, i.e., more thanC times the the typical row norm.This parameter varies between 1 and√

m, since no row can have Euclidean norm more than‖A‖F . Intuitively the condition says that no
single row contributes too significantly to the Frobenius norm of the matrix.

Theorem 1.1(Informal version ofTheorem 6.2). There is an(ε, δ)-differentially private algorithm
which given a matrix A∈ �m×n of coherence C such that n> m computes a rank2k matrix B such
that with probability9/10,

‖A− B‖F 6 O (‖A− Ak‖F) +Oε,δ

(√
km+

√
kn ·
√

Ck‖A‖F
(nm)1/4

)
.

Moreover, the algorithm runs in time O(kmn).

Hidden in theOε,δ-notation is a factor ofO(log(k/δ)/ε) that depends on the privacy parameters.
Usually,δ ≪ 1/k so that log(k/δ) 6 2 log(1/δ). To understand the error bound note that the first term
is proportional to the best possible approximation error‖A − Ak‖F of any rankk approximation. In
particular, this term is optimal up to constant factors. Thesecond term expresses a more interesting
phenomenon. Recall that we assumen ≫ m so that

√
kn would usually dominate

√
kmexcept that

the the
√

kn term is multiplied by a factor which can be very small if the matrix has low coherence
and is not too dense. For example, whenk = O(1), C = O(1) and‖A‖F = O(

√
n), the error is roughly

O(
√

m+
√

n/m1/4) which can be as small asO(n3/8) depending on the magnitude ofm. However,
already in a much wider range of parameters we observe an error of o(

√
kn). In fact, inSection Cwe

illustrate why the Netflix data satisfies the assumptions made here and why they are likely to hold in
other recommender systems.

When‖A‖F >
√

n, the previous theorem cannot improve on randomized responseby more than
a factor ofO(m1/4). Our next theorem uses a stronger but standard notion of coherence known as
µ0-coherence. We defer a formal definition ofµ0-coherence toSection 5, but we remark that this
parameter varies between 1 andm. Using this notion we are able to obtain improvements roughlyof
orderO(

√
m).

Theorem 1.2(Informal version ofTheorem 6.3). There is an(ε, δ)-differentially private algorithm
which given a matrix A∈ �m×n with n > m and ofµ0-coherenceµ and rank r> 2k computes a rank
2k matrix B such that with probability9/10,

‖A− B‖F 6 O (‖A− Ak‖F) +Oε,δ


√

km+
√

kn ·
√
µkr
m

 .

Moreover, the algorithm runs in time O(kmn).

The hidden factor here is the same as before. Note that whenµkr = polylog(n), the theorem
can lead to an error bound̃O

(
n1/4

)
depending on the magnitude ofm. Note that this is roughly the

square root of what randomized response would give. But again under much milder assumptions on
the coherence, the error remainso

(√
kn

)
. Notably, Candes and Tao [CT10] work with a stronger

incoherence assumption than what is needed here. Nevertheless they show that even their stronger
assumption is satisfied in a number of reasonable random matrix models. A slight disadvantage of
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the error bound inTheorem 1.2is that the actual rankr of the matrix enters the picture.Theorem 1.2
hence cannot improve overTheorem 1.1when the matrix has very large rank. We do not know if the
dependence onr in the above bound is inherent or rather an artifact of our analysis.

Finally, we remark that while our result depends on theµ0-coherence of the input matrix, our
algorithm does not require knowledge or estimation of theµ0-coherence of the input matrix. The only
parameters provided to the algorithm are the target rank andthe privacy parameters.

Reconstruction attacks and tightness of our results. As it turns out, existing work on “blatant
non-privacy” and reconstruction attacks [DN03] demonstrates that our results are essentially tight
under the given assumptions. To draw this connection, let usfirst observe whyinput perturbation
cannot be improved without any assumption on the matrix. To be more precise, by input perturbation
we refer to the method which simply perturbs each entry of thematrix with independent Gaussian
noise of magnitudeO

(
ε−1

√
log(1/δ)

)
, which is sufficient to achieve (ε, δ)-differential privacy with

respect to unitℓ2 perturbations of the entire matrix. To obtain a rankk approximation to the original
matrix, one can then simply compute the exactly optimal rankk approximation to the perturbed matrix
using the singular value decomposition, which as one can show introduces errorOε,δ

(√
km+

√
kn

)

compared to the optimal rankk approximation to the original matrix in the Frobenius norm.First,
let us observe that it is not possible in general to have an algorithm which guarantees error in the
Frobenius norm ofo(

√
kn) for everymatrix A, without violatingblatant non-privacy1, as defined by

[DN03]. This is because there is a simple reduction which starts with an (ε, δ)-differentially private
algorithm for computing rankk approximations to matricesA ∈ �m×n and gives an (ε, δ)-differentially
private algorithm which can be used to reconstruct almost every entry in any databaseD ∈ {0, 1}n′

for n′ = k · n. It is known that (ε, δ)-private mechanisms do not admit such reconstruction attacks,
and so the result is a lower bound. The reduction follows fromthe fact that we can always encode a
bit-valued databaseD ∈ {0, 1}n′ for n′ = k · n ask rows of anm× n matrix for anym > k, simply
by zeroing out all additionalm− k rows. Note that the resulting matrix only has rankk, and so the
optimal rankk approximation to this matrix haszeroerror. If we could recover a matrixA′ such that
‖A − A′‖F = o(

√
kn), this would mean that for a typical nonzero rowAi of the matrix withi ∈ [k],

we would have‖Ai − A′i ‖2 = o(
√

n), and‖Ai − A′i ‖1 6 o(n). Then, by simply rounding the entries,
we could reconstruct the original databaseD in almost all of its entries, giving blatant non-privacy as
defined by [DN03].

What is happening in the above example? Intuitively, the problem is that in the rankk matrix we
construct fromD, thek nonzero rows of the matrix are encoded accurately by onlyk right singular
vectors. On the other hand, low coherence implies that anyk right singular vectors poorly represent a
set of onlyk rows. Hence, there is hope to circumvent the above impediment using a low coherence
assumption on the matrix. Indeed, this is precisely whatTheorem 1.1andTheorem 1.2demonstrate.
Nevertheless, reconstruction attacks still lead to lower bounds even under low coherence assumptions.
Indeed, using the above ideas, the next proposition shows that Theorem 1.1is essentially tight up to
a factor ofO(

√
k). Since in many applicationsk = O(1), this discrepancy between our upper bound

and the lower bound is often insignificant.

Proposition 1.3. Any algorithm which given an m× n matrix A of coherence C outputs a rank k

1An algorithmM is blatantly non-private if for every databaseD ∈ {0,1}n′ it is possible to reconstruct a 1−o(1) fraction
of the entries ofD exactly, given only the output of the mechanismM(D).
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matrix B such that with high probability

‖A− B‖F 6 o

(√
kn ·
√

C‖A‖F
(nm)1/4

)

cannot satisfy(ε, δ)-differential privacy for sufficiently small constantsε, δ.

Informal proof. For the sake of contradiction, suppose there exists such an algorithmM that satisfies
(ε, δ)-differential privacy. Then consider a randomized algorithmM′ : {0, 1}n′ → �n′ which takes a
data setD ∈ {0, 1}n′ containing a sensitive bit forn′ = kn individuals and encodes it as them×n matrix
AD which containsD in its first k rows and is 0 everywhere else.M′(D) then computesM(AD) and
outputs the projection ofM(AD) onto the firstk rows (thought of as a vector of lengthn′ = kn).

We claim thatM′ is (ε, δ)-differentially privacy. This is because the map fromD to AD is sensi-
tivity preserving and the post-processing computed onM(AD) preserves (ε, δ)-differential privacy of
M.

On the other hand, we claim thatM′ is blatantly non-private. To see this note that the matrixAD

has coherenceC =
√

m/k and‖A‖F 6
√

kn so that one can check that‖A −M(A)‖F 6 o(
√

kn) with
high probability. This implies that‖D −M′(D)‖2 6 o(

√
n′) with high probability. We therefore also

have‖D −M′(D)‖1 6 o(n′). But in this case we can compute a data setD′ from the output ofM′(D)
such that‖D−D′‖0 = o(n′) by rounding. This is the definition of a reconstruction attack showing that
M′ is blatantly non-private. Since (ε, δ)-differential privacy is known to prevent blatant non-privacy2

for sufficiently smallε, δ > 0, this presents the contradiction we sought. �

A similar proof shows that erroro(
√

n·
√
µ/m) (whereµ is theµ0-coherence of the matrix) cannot

be achieved with (ε, δ)-differential privacy. This shows that alsoTheorem 1.2is tight up to the exact
dependence onk and r. We leave it as an intriguing open problem to determine the exact interplay
between coherence and the other parameters.

1.2 Techniques and proof overview

Our algorithm is based on a random-projection algorithm of Halko, Martinsson and Tropp [HMT11],
which involves two steps:range findingandprojection. The range finding algorithm first computes
k Gaussian measurements ofA, which we denote byY = AΩ. Here, A is m× n andΩ is n × k.
These measurements can be thought of as a random projection of the matrix into a lower dimensional
representation, i.e.,Y is m× k. The crux of the analysis in [HMT11] is in arguing thatY already
captures most of the range ofA. Hence, all that remains to be done is to compute the orthonormal
projection operatorPY into the span ofY, and to compute the projectionPYA. Note thatPYA is now
a k-dimensional approximation ofA and sinceY closely approximated the range ofA, it must be a
good approximation, say, in the Frobenius norm.

The motivation of [HMT11] was to obtain a fast low rank approximation algorithm. Indeed,
[HMT11] give a detailed theoretical analysis and empirical evaluation of the algorithm’s performance.

Step 1: Privacy preserving range finder and projection. We will leverage the algorithm of [HMT11]
to obtain improved accuracy bounds in the privacy setting. As a first step, we need to be able to carry
out the range finding and projection step in a privacy preserving manner. Our analysis proceeds by
observing that the projection ofA to Y approximately preserves all of theℓ2 row-norms ofA, and so

2See, e.g., the proof of Theorem 4.1 in [De11].
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we can apply a Gaussian perturbation toY, rather than toA. (An m× k standard Gaussian matrix has
Frobenius normO(

√
km), which is now independent ofn). The formal presentation of this part of the

argument appears inSection 4. This step provides an approximation to the range ofA which might
already be useful for some applications, but has not yet achieved our goal of computing a low rank
approximation toA itself. For this, we need the projection step discussed next.

Step 2: Controlling the projection matrix using low coherence. We then show that under our
low-coherence assumption onA, the entries of the projection matrix into the range ofY, PY, must be
small in magnitude. Finally, whenPY has small entries, the final projection step, of computingPYA
has low sensitivity, and although we must now again add a Gaussian perturbation of dimensionm× n,
the magnitude of the perturbation in each entry can be smaller than would have been necessary under
naive input perturbation.

In order to obtain bounds on theℓ∞-norm of the projection operator we make crucial use of the
low-coherence assumption. Here we describe the proof strategy that leads toTheorem 1.2. Theorem 1.1
is somewhat easier to show and follows along similar lines. The first observation is that the Gaussian
measurements taken by the range finding algorithm are mostlylinear combinations of the top left
singular vectors of the matrix. But when the matrixA has low coherence, then its top left singular
vectors must have very small correlation with the standard basis. This means that the top singular
vectors must have small coordinates. As a result each of the Gaussian measurements we take must
have smallℓ∞-norm relative to the magnitude of the measurement. Some complications arise as we
must add noise to the matrixY for privacy reasons and then orthonormalize it using the Gram-Schmidt
orthonormalization algorithm. A key observation is that the noise matrix is generated independently
of Y. As a result, it must be the case that all columns of the noise matrix have very small inner product
with the columns ofY. A careful technical argument uses this observation in orderto show that the
effect of noise can be controlled throughout the Gram-Schmidt orthonormalization. The result is a
projection matrix in which the magnitude of each entry is small whenever the coherence ofA was
small to begin with.

The exact proof strategy depends on the notion of coherence that we work with. Both notions
we consider in this paper are presented and analyzed inSection 5. We then also show that small
µ0-coherence is indeed a stronger assumption than smallC-coherence.

1.3 Related Work

1.3.1 Differential Privacy

We use as our privacy solution concept the by now standard notion of differential privacy, developed
in a series of papers [BDMN05, CDM+05, DMNS06], and first defined by Dwork, McSherry, Nis-
sim, and Smith [DMNS06]. The problem of privately computing low-rank approximations to matrix
valued data was one of the first problems studied in the differential privacy literature, first considered
by Blum, Dwork, McSherry, and Nissim [BDMN05], who give an input perturbation based algorithm
for computing the singular value decomposition by directlycomputing the eigenvector decomposi-
tion of a perturbed covariance matrix. Computing low rank approximations is an extremely useful
primitive for differentially private algorithms, and indeed, McSherry and Mironov [MM09] used the
algorithm given in [BDMN05] in order to implement and evaluate differentially private versions of
recommendation algorithms from the Netflix prize competition.
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Finding differentially private low-rank approximation algorithms with superior theoretical per-
formance guarantees to input perturbation methods has remained an open problem. Beating input
perturbation methods for arbitrary symmetric matrices wasrecently explicitly proposed as an open
problem in [GRU11], who showed that such algorithms would lead to the first efficient algorithm
for privately releasing synthetic data useful forgraph cutswhich improves over simple randomized
response. Our work does not resolve this open question because our results only improve over in-
put perturbation methods for matrices with unbalanced dimensions which satisfy a low-coherence
assumption, but is the first algorithm to improve over [BDMN05] under any condition.

Comparison to recent results of Kapralov, McSherry and Talwar. In a recent independent and
simultaneous work, Kapralov, McSherry, and Talwar [KMT11] give a new polynomial-time algo-
rithm for computing privacy-preserving rank 1 approximations to symmetric, positive-semidefinite
matrices. Their algorithm achieves (ε, 0)-differential privacy under unit spectral norm perturbations
to the matrix. Their algorithm outputs a vectorv such that for allα > 0, �[vTAv] > (1 − α)‖A‖ −
O(n log(1/α)/(εα)) (where‖ · ‖ denotes the spectral norm) and they show that this is nearly tight for
(ε, 0)-differential privacy guarantees. Our results are therefore strictly incomparable. In this work,
the goal is to achieve erroro(

√
kn) (i.e. o(

√
n) for rank-1 approximations) assuming low coherence,

(a stronger error bound) under (ε, δ)-differential privacy (a weaker privacy guarantee) and without
making any assumptions about symmetry or positive-semidefiniteness.

1.3.2 Fast Computation of Low Rank Matrix Approximations

There is also an extensive literature on randomized algorithms for computing approximately opti-
mal low rank matrix approximations, motivated by improvingthe running time of the exact singular
value decompositions. This literature originated with thework of Papadimitriou et al [PTRV98] and
Frieze, Kannan, and Vempala [FKV04], who gave algorithms based on random projections and col-
umn sampling (in both cases with the goal of decreasing the dimension of the matrix). Achlioptas and
McSherry [AM01] give fast algorithms for computing low rank approximations based on randomly
perturbing the original matrix (which can be done to induce sparsity). Although [AM01] pre-dated
the privacy literature, some of the algorithms presented init can be viewed as privacy preserving,
because perturbing the actual matrix with appropriately scaled Gaussian noise is a privacy preserving
operation sometimes referred to asrandomized response. When appropriately scaled (for privacy)
Gaussian noise is added to anm× n matrix, it results in an algorithm for approximating the best rank
k approximation up to an additive error ofO(

√
k(m+ n)) in the Frobenius norm.

Our algorithms are most closely related to the very recent work of Halko, Martinsson, and Tropp
[HMT11], who give fast algorithms for computing low rank approximations based on two steps: range
finding, and projection. As already discussed, in the first step, these algorithms project the matrixA
into anm× k matrix Y which approximately captures therangeof A. ThenA is projected into the
range ofY, which yields a rankk matrix which gives a good approximation toA if a good rank-k
approximation exists. We will further discuss the algorithm of [HMT11] and our modifications in the
course of the paper.

1.3.3 Low Coherence Conditions

Low coherence conditions have been recently studied in a number of papers for a number of matrix
problems, and is a commonly satisfied condition on matrices.Recently, Candes and Recht [CR09]
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and Candes and Tao [CT10] considered the problem ofmatrix completion. Matrix completion is the
problem of recovering all entries of a matrix from which onlya subset of the entries which have been
randomly sampled. This problem is inspired by the Netflix prize recommendation problem, in which
a matrix is given, with individuals on the rows, movies on thecolumns, and in which the matrix entries
correspond to individual movie ratings. The matrix provides only a small number of movie ratings per
individual, and the challenge is to predict the missing entries in the matrix. Clearly accurate matrix
completion is impossible for arbitrary matrices, but [CR09, CT10] show the remarkable result that it
is possible under low coherence assumptions. Candes and Tao[CT10] also show that almost every
matrix satisfies a low coherence condition, in the sense thatrandomly generated matrices will be low
coherence with extremely high probability.

Talwalkar and Rostamizadeh recently used low-coherence assumptions for the problem of (non-
private) low-rank matrix approximation [TR10]. A common heuristic for speeding the computation
of low-rank matrix approximations is to compute on only a small randomly chosen subset of the
columns, rather than on the entire matrix. [TR10] showed that under low-coherence assumptions
similar to those of [CR09, CT10], the spectrum of a matrix is in fact well approximated by a small
number of randomly sampled columns, and give formal guarantees on the approximation quality of
the sampling based Nyström method of low-rank matrix approximation.
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2 Preliminaries

We view our dataset as a real valuedmatrix A ∈ �m×n.We sometimes denote thei-th of a matrix by
A(i). Let

N = {P ∈ �m×n : there exists an indexi ∈ [m] such that‖P(i)‖2 6 1 and‖P( j)‖2 = 0 for all j , i}
(1)

denote the set of matrices that take 0 at all values, except possibly in a single row, which has Euclidean
norm at most 1.

Definition 2.1. We say that two matricesA,A′ ∈ �m×n areneighboringif (A− A′) ∈ N .

We use the by now standard privacy solution concept of differential privacy:

Definition 2.2. An algorithm M : �m×n → R (whereR is some arbitrary abstract range) is (ε, δ)-
differentially privateif for all pairs of neighboring databasesA,A′ ∈ �m×n, and for all subsets of the
rangeS ⊆ R:

�r {M(A) ∈ S} 6 exp(ε)�r
{
M(A′) ∈ S

}
+ δ

We make use of the following useful facts about differential privacy.
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Fact 2.3. If M : �m×n → R is (ε, δ)-differentially private, and M′ : R→ R′ is an arbitrary random-
ized algorithm mapping R to R′, then M′(M(·)) : �m×n→ R′ is (ε, δ)-differentially private.

The following useful theorem of Dwork, Rothblum, and Vadhantells us how differential privacy
guarantees compose.

Theorem 2.4 (Composition [DRV10]). Let ε, δ ∈ (0, 1), δ′ > 0. If M1, . . . ,Mk are each(ε, δ)-
differentially private algorithms, then the algorithm M(A) ≡ (M1(A), . . . ,Mk(A)) releasing the con-
catenation of the results of each algorithm is(kε, kδ)-differentially private. It is also(ε′, kδ + δ′)-
differentially private for:

ε′ <
√

2k ln(1/δ′)ε + 2kε2

We denote the 1-dimensional Gaussian distribution of meanµ and varianceσ2 by N(µ, σ2). We
useN(µ, σ2)d to denote the distribution overd-dimensional vectors with i.i.d. coordinates sampled
from N(µ, σ2). We write X ∼ D to indicate that a variableX is distributed according to a distribu-
tion D.We note the following useful fact about the Gaussian distribution.

Fact 2.5. If gi ∼ N(µi , σ
2
i ), then

∑
gi ∼ N

(∑
i µi ,

∑
i σ

2
i

)
.

The following theorem is well known folklore. We include a proof in the appendix for complete-
ness.

Theorem 2.6(Gaussian Mechanism). Let x, y ∈ �d be any two vectors such that‖x − y‖2 6 c. Let
Y ∈ �d be an independent random draw from N(0, ρ2)d, whereρ = cε−1

√
log(1.25/δ). Then for any

S ⊆ �d :
�r {x+ Y ∈ S} 6 exp(ε)�r[y + Y ∈ S] + δ

Vector and matrix norms. We denote by‖ · ‖p theℓp-norm of a vector and sometimes use‖ · ‖ as a
shorthand for the Euclidean norm. Given a realm× n matrix A, we will work with thespectral norm
‖A‖2 and the Frobenius norm‖A‖F defined as

‖A‖2 = max‖x‖=1 ‖Ax‖ and ‖A‖F =
√∑

i, j a2
i j . (2)

For anym× n matrix A of rankr we have‖A‖2 6 ‖A‖F 6
√

r · ‖A‖2 . For a matrixY we denote byPY

the orthonormal projection operator onto the range ofY.

Fact 2.7. PY = Y(Y∗Y)Y−1

Fact 2.8(Submultiplicativity). For any m×n matrix A and n×r matrix B we have‖AB‖F 6 ‖A‖F ·‖B‖F .

Theorem 2.9 (Weyl). For any m× n matrices A,E, we have|σi(A+ E) − σi(A)| 6 ‖E‖2 , where
σi(M) denotes the i-th singular value of a matrix M. whereσi(M) denotes the i-th singular value of
a matrix M.

3 Low-rank approximation via Gaussian measurements

We will begin by presenting an algorithm of Halko, Martinsson and Tropp [HMT11] as described in
Figure 1. The algorithm produces a rankr + p approximation that already forp > 2 closely matches
the best rankr approximaton of the matrix in Frobenius norm. The guarantees of the algorithm are
detailed inTheorem 3.1.

10



Input: Matrix A ∈ �m×n, target rankr, oversampling parameterp.

1. Range finder: LetΩ be ann×k standard Gaussian matrix wherek = p+ r. Compute then×k
measurement matrixY = AΩ. Compute the orthonormal projection operatorPY.

2. Projection: Compute the projectionB = PYA.

Output: Matrix B of rankk.

Figure 1: Base algorithm for computing a low-rank approximation

Theorem 3.1([HMT11]). Suppose that A is a real m× n matrix with singular valuesσ1 > σ2 > . . . .

Choose a target rank r> 2 and an oversampling parameter p> 2 where r+ p 6 min{m, n}. Draw an
n× (r + p) standard Gaussian matrixΩ, construct the sample matrix Y= AΩ and let B= PYA. Then
the expected approximation error in Frobenius norm satisfies

� ‖A− B‖F 6
(
1+

r
p− 1

)1/2 √∑

j>r

σ2
j . (3)

In particular, for p= r + 1 we have

� ‖A− B‖F 6
√

2 · ‖A− Ar‖F (4)

When applying the the theorem we will use Markov’s inequality to argue that the error bounds
hold with sufficiently high probability up to a constant factor loss. As shown in [HMT11], much
better bounds on the failure probability are possible. We will omit the precise bounds here for the
sake of simplicity.

4 Privacy-preserving sub-routines: Range finder and projection

In order to give a privacy preserving variant of the above algorithm, we will first need to carefully
bound the sensitivity of the range finder and of the projection step, and bound the effect of the neces-
sary perturbations. We do this for each step in this section.

4.1 Privacy-preserving range finder

In this section we present a privacy-preserving algorithm which finds a set of vectorsY whose span
contains most of the spectrum of a given matrixA.

Lemma 4.1. The algorithm inFigure 2satisfies(ε, δ)-differential privacy.

Proof. We argue that outputting̃Y preserves (ε, δ)-differential privacy. That outputtingW preserves
(ε, δ)-differential privacy follows from the fact that differential privacy holds under arbitrary post-
processing.

Consider any two neighboring matricesA,A′ ∈ �m×n differing in theiri’th row, and letY = AΩ
andY′ = A′Ω. Definee ∈ �n to beeT = A(i) − A′(i). Note that by the definition of neighboring, we

must have‖e‖2 6 1. Observe that for each rowj , i, we haveY( j) = Y′( j), and definêe ∈ �k to be

11



Input: Matrix A ∈ �m×n, target rankr, oversampling parameterp such thatr + p 6 min{m, n},
privacy parametersε, δ ∈ (0, 1).

1. LetΩ be ann× k standard Gaussian matrix wherek = p+ r.

2. Compute then× k measurement matrixY = AΩ.

3. LetN ∼ N(0, ρ2)m×k whereρ = 2ε−1
√

2k log(4k/δ).

4. Let Ỹ = Y + N.

5. Orthonormalize the columns ofỸ and let the result beW.

Output: Orthonormalm× k matrix W.

Figure 2: Privacy-preserving range finder

ê = Y(i) − Y′(i) = eTΩ. First, we will give a high-probability bound on‖̂e‖2. Observe that for each
j ∈ [k], êj is distributed like a standard Gaussian:

êj ∼
n∑

ℓ=1

eℓ · N(0, 1) = N

0,
n∑

ℓ=1

e2
ℓ

 = N(0, 1) ,

where we usedFact 2.5. Therefore, we have for anyt > 1, by standard Gaussian tail bounds,

�r
{∣∣∣̂ej

∣∣∣ > t
}
6 2 exp

(
− t2

2

)

Taking a union bound over allk coordinates we have:

�r

{
max
j∈[k]

∣∣∣̂ej

∣∣∣ >
√

2 log(4k/δ)

}
6
δ

2

In particular, we have except with probabilityδ/2,

‖̂e‖2 6
√

2k log(4k/δ) (5)

Note that we have setρ such that conditioned onEquation 5(which holds with probability at least 1−
δ/2) we have the following byTheorem 2.6: For every setS ⊆ �m×k,�r

{
Ỹ ∈ S

}
6 exp(ε)�r

{
Ỹ′ ∈ S

}
+

δ/2. Hence, without any conditioning we can say:

�r
{
Ỹ ∈ S

}
6 exp(ε)�r

{
Ỹ′ ∈ S

}
+ δ

which completes the proof of privacy. �

Theorem 4.2. Let A be an m× n matrix with singular valuesσ1 > σ2 > . . . . Then, given A and
valid parameters r, p, ε, δ, the algorithm inFigure 2 returns a matrix W such that W satisfies(ε, δ)-
differential privacy, and moreover we have the error bound

� ‖A−WWTA‖F 6
(
1+

r
p− 1

)1/2 √∑

j>r

(σ j + ρ)2 . (6)

12



Proof. Privacy follows fromLemma 4.1. Let us therefore argue the second part of the theorem. Con-
sider them× (n+m) matrix

A′ = [A | ρIm×m] ,

whereIm×m is them×m identity matrix. LetΩ′ denote a random (m+ n) × k Gaussian matrix. Note
that

Ỹ ∼ A′Ω′ .

That is, Ỹ is distributed the same way asY′ = A′Ω′. Here, we’re using the fact thatρN(0, 1) =
N(0, ρ2).

On the other hand, byTheorem 3.1, we know thatY′ is a good range forA′ in the sense that

� ‖A′ − PY′A
′‖F 6

(
1+

r
p− 1

)1/2 √∑

j>r

σ′2j . (7)

Here,σ′j denotes thej-th largest singular value ofA′.

Claim 4.3. ‖A− PY′A‖F 6 ‖A′ − PY′A′‖F

Proof. The claim is immediate, because we can obtainA from A′ by truncating the lastm columns.
Hence, the approximation error can only decrease. �

Claim 4.4. For all j, we have|σ j − σ′j | 6 ρ .

Proof. Consider the matrixA0 = [A | 0m×m] where 0m×m is the all zeros matrix. Note that

A′ = A0 + E with E = [0m×n | ρIm×m] .

Also,σ j = σ j(A0), since we just appended an all zeros matrix. On the other hand,

‖E‖2 = ‖ρIm×m‖2 = ρ .

Hence, by Weyl’s perturbation bound (Theorem 2.9)

|σ j − σ′j | = |σ j(A0) − σ′j | 6 ‖E‖2 = ρ .

�

Combining the previous claims with (7), we have

� ‖A− PY′A‖F 6 � ‖A′ − PY′A
′‖F 6

(
1+

r
p− 1

)1/2 √∑

j>r

(σ j + ρ)2 .

SinceY′ andỸ are identically distributed, the same claim is true when replacing PY′ by PỸ. Further-
more,PỸ =WWT and so the claim follows. �

Corollary 4.5. Let A∈ �m×n be as in the previous theorem. Assume that m6 n and run the algorithm
with p> r + 1. Then, with probability99/100,

‖A−WWTA‖F 6 O



√∑

j>r

σ2
j +

√
ρ2m

 .

13



Proof. By Markov’s inequality and the previous theorem, we have with probability 99/100,

‖A− PWA‖F 6 O



√∑

j>r

(σ j + ρ)2

 .

But note that (σ j + ρ)2 = σ2
j + 2σ jρ + ρ

2
6 3σ2

j + 3ρ2. This is because eitherσ j > ρ > 1 and thus

σ2
j > σ jρ or elseρ > σ in which caseρ2

> σ jρ. The claim follows by using that
√

a+ b 6
√

a+
√

b
for non-negativea, b > 0. �

4.2 Privacy-preserving projections

In the previous section we showed a privacy-preserving algorithm that finds a small number of or-
thonormal vectorsW such thatA is well-approximated byWWTA. To obtain a privacy preserving
low-rank approximation algorithm we still need to show how to carry out the projection step in a
privacy-preserving fashion. We analyze the error of the projection step in terms of the magnitude of
the maximum entry of each column ofW. This serves to bound the sensitivity of the matrix multipli-
cation operation. The smaller the entries ofW, the smaller the over all error that we incur.

Input: Matrix A ∈ �m×n,matrixW ∈ �m×k whose columns have norm at most 1, privacy parameters
ε, δ ∈ (0, 1).

1. Let W = [w1 | w2 | · · · | wk] and for eachi ∈ [k] let αi = ‖wi‖∞ denote the maximum
magnitude entry inwi .

2. Let N be a randomk × n matrix where Ni j ∼ N(0, α2
i ρ

2) for i ∈ [k], j ∈ [n] and
ρ = 2ε−1√8k ln(4k/δ) ln(2/δ).

3. Compute the matrixB =W(WTA+ N).

Output: Matrix B of rankk.

Figure 3: Privacy-preserving projection

Lemma 4.6. The output B of the algorithm satisfies(ε, δ)-differential privacy.

Proof. We will argue that releasingWTA + N preserves (ε, δ)-differential privacy. That releasingB
preserves differential privacy follows from the fact that differential privacy does not degrade under
arbitrary post-processing. Fix any two neighboring matrices A,A′ differing in their i’th row. Let
E = A− A′ and leteT = A(i) − A′(i) = E(i). Recall by the definition of neighboring,‖e‖2 6 1, and for

all other j , i, ‖E j‖2 = 0. For anyj ∈ [k], consider thej’th row of WTE:

‖(WTE)( j)‖2 =

√√
n∑

ℓ=1

W2
ℓ, j · e

2
ℓ
6 α j‖e‖2 = α j .

Hence, byTheorem 2.6, releasing (WTE)( j) + g
T whereg ∼ N(0, α2

jρ
2)n preserves ( ε√

8k ln(2/δ)
, δ2k)-

differential privacy. Finally, we applyTheorem 2.4to see that releasing each of thek rows ofWTE

14



preserves (ε′, k(δ/2k) + δ/2) = (ε′, δ)-differential privacy for:

ε′ 6
√

2k ln(2/δ) · ε
√

8k ln(2/δ)
+ 2k

(
ε

√
8k ln(2/δ)

)2

6 ε

as desired. �

Theorem 4.7. The algorithm above returns a matrix B such that B satisfies(ε, δ)-differential privacy
and moreover with probability99/100,

‖A− B‖F 6 ‖A−WWTA‖F +O



√√√
k

k∑

i=1

α2
i ρ

2n

 .

In particular if maxi αi = α, we have with the same probability,

‖A− B‖F 6 ‖A−WWTA‖F +O

(
αk log(k/δ)

√
n

ε

)
.

Proof.

‖A− B‖F = ‖A−W(WTA+ N)‖F = ‖A−WWTA−WN‖F 6 ‖A−WWTA‖ + ‖WN‖F

But ‖W‖F =
√

k so that, byFact 2.8,

‖WN‖F 6 ‖W‖F‖N‖F =
√

k · ‖N‖F .

On the other hand, by Jensen’s inequality and linearity of expectation,

� ‖N‖F 6
√
� ‖N‖2F =

√∑

i, j

�N2
i j =

√√√ k∑

i=1

c2
kρ

2n .

The claim now follows from Markov’s inequality. �

Note that the quantitiesαi are always bounded by 1, since allwi ’s are unit vectors. In the next
section, we will show that under certain incoherence assumptions, we will have (or will be able to
enforce) the condition that theαi values are bounded significantly below 1.

5 Incoherent matrices

Intuitively speaking, a matrix isincoherentif its left singular vectors have low correlation with the
standard basis vectors. There are multiple ways to formalize this intuition. Here, we will work
with two natural notions of coherence. In both cases we will be able to show that we can find—
in a privacy-preserving way—projection operators that have small entries. As demonstrated in the
previous section, this directly leads to improvements overrandomized response.
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5.1 C-coherent matrices

In this section we work with matricesA in which row norms do not deviate by too much from the
typical row norm. Another way to look at this condition is that coordinate projections provide little
spectral information about the matrixA. From this angle the condition we need can be interpreted as
low coherencein the sense that the singular vectors ofA that correspond to large singular values must
be far from the standard basis.

Definition 5.1 (C-coherence). We say that a matrixA ∈ �m×n is C-coherentif

max
i∈[m]
‖eT

i A‖ 6 C · ‖A‖F√
m
.

Note that we have 16 C 6
√

m.

The next lemma shows that sparse vectors have poor correlation with the matrix in the above
sense. We say a vectorw is ℓ-sparseif it has at mostℓ nonzero coordinates.

Lemma 5.2. Let A∈ �m×n be a C-coherent matrix. Letw be anℓ-sparse unit vector in�m. Then,

‖wTA‖ 6 C
√
ℓ‖A‖F√
m

.

Proof. Sincew is ℓ-sparse we can write it asw =
∑ℓ

i=1 αiei wheree1, . . . , eℓ areℓ distinct standard
basis vectors and

∑
i α

2
i = 1. Hence,

‖wT A‖ =
∥∥∥∥∥∥∥

ℓ∑

i=1

αie
T
i A

∥∥∥∥∥∥∥
6

ℓ∑

i=1

αi‖eT
i A‖ 6 C

√
ℓ‖A‖F√
m

.

In the last step we used the Cauchy-Schwarz inequality and the fact thatA is C-coherent. �

Lemma 5.3. Let α > 0. Let A ∈ �m×n be a C-coherent matrix. Letw ∈ �m be a unit vector and
supposewα is the vector obtained fromw by zeroing all coordinates greater thanα. Then,

wT
αA = wTA+ e

where e is a vector of norm

‖e‖ 6 C‖A‖F
α
√

m
.

Proof. Note thatw − wα is anℓ-sparse vector withℓ 6 1/α2. Here we used thatw is a unit vector
and hence there can be at most 1/α2 coordinates larger thanα. The lemma now follows directly from
Lemma 5.2. �

The next lemma is a straightforward extension of the previous one for the case where we multiply
A by a matrixW rather than a single vector.
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Lemma 5.4. Let α > 0. Let A ∈ �m×n be a C-coherent matrix. Let W∈ �m×k be a matrix whose
columns have unit length. Suppose Wα is the matrix obtained from W by zeroing all entries greater
thanα. Then,

WWT
αA =WWTA+ E

where E is a matrix of Frobenius norm

‖E‖F 6
Ck‖A‖F
α
√

m
.

Proof. By the previous lemma, we haveWT
αA = WTA + E′ , where every row ofE′ has Euclidean

normC‖A‖F/α
√

m. Hence,‖E′‖F 6 C
√

k‖A‖F/α
√

m. But then

WWT
αA =WWTA+WE′ .

PutE = WE′ and note that‖E‖F 6 ‖W‖F‖E′‖F =
√

k‖E′‖F . The lemma follows. �

The previous lemma quantifies what happens if we replaceWWTA by WWT
αA.Working withWT

α

for smallα instead ofWT will decrease the sensitivity of the computation ofWT
αA.On the other hand,

by the previous lemma we have an expression for the error resulting from the truncation step.

5.2 Strong coherence

Here we introduce and work with the notion ofµ0-coherencewhich is a standard notion of coherence.
As we will see inSection 5.3, it is a stronger notion thanC-coherence. Consequently, the results we
will be able to obtain usingµ0-coherence are stronger than our previous results onC-coherence in
certain aspects.

Definition 5.5 (µ0-coherence). Let U be anm× r matrix with orthonormal columns andr 6 n. Recall,
thatPU = UUT . Theµ0-coherenceof U is defined as

µ0(U) =
m
r

max
16 j6m

‖PUej‖2 =
m
r

max
16 j6m

‖U( j)‖2 . (8)

Here,ej denotes thej-th m-dimensional standard basis vector andU( j) denotes thej-th row ofU.
Theµ0-coherenceof anm× n matrix A of rankr given in its singular value decompositionUΣVT

whereU ∈ �m×r is defined asµ0(U).

Fact 5.6. 1 6 µ0(U) 6 m

Proof. SinceU is orthonormal, there must always exists a row of square normr/m. On the other
hand, no row ofU has squared norm larger thanr. �

The above notion is used extensively throughout the literature in the context of matrix completion
and low rank approximation, e.g., in Candes and Recht [CR09], Keshavan et al. [KMO10], Talwalkar
and Rostamizadeh [TR10], Mohri and Talwalkar [MT11]. Motivated by the Netflix problem, Candes
and Tao [CT10] study matrix completion for matrices satisfying a stronger incoherence assumption
than smallµ0-coherence.

Our goal from here on is to show that if we run our range finding algorithm fromSection 4.1on
a low-coherence matrix it will produce a projection matrix with small entries. This result (presented
in Lemma 5.11) requires several technical lemmas.

The first technical step is a lemma showing that vectors that lie in the range of an incoherent
matrix must have smallℓ∞-norm.
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Lemma 5.7. Let U be an orthonormal m× r matrix. Supposew ∈ range(U) and‖w‖ = 1. Then,

‖w‖2∞ 6
r
m
· µ0(U) .

Proof. Let u1, . . . , ur denote the columns ofU. By our set of assumptions, there existα1, . . . , αr ∈ �
such that

w =

r∑

i=1

αiui and
∑

i

α2
i = 1 .

Therefore, denoting thej-th entry ofw by w j and thej-th entry ofui by ui j , we have

|w j |2 =


r∑

i=1

αiui j


2

6


r∑

i=1

α2
i




r∑

i=1

u2
i j

 (by Cauchy-Schwarz)

= ‖U( j)‖2 .

In particular‖w‖2∞ 6 maxj∈[m] ‖U( j)‖2. On the other hand, usingDefinition 5.5,

‖w‖2∞ 6 max
j∈[m]
‖U( j)‖2 =

r
m
· µ0(U) .

The lemma follows. �

We will need the following geometric lemma: If we start with asmall orthonormal set of vectors
of low coherence and we append few random unit vectors, then the span of the resulting set of vectors
has a low coherence basis.

Lemma 5.8. Let u1, . . . , ur ∈ �m be orthonormal vectors. Pick unit vectors n1, . . . , nk ∈ �m−1 uni-
formly at random. Assume that

m> c0k(r + k) log(r + k) (9)

where c0 is a sufficiently large constant. Then, there exists a set of orthonormal vectorsv1, . . . , vr+k ∈
�

m such thatspan{v1, . . . , vr+k} = span{u1, . . . , ur , n1, . . . , nk} and furthermore, with probability99/100,

µ0([v1 | · · · | vr+k]) 6 2µ0([u1 | · · · | uk]) +O

(
k logm

r

)

Proof. We will construct the basis iteratively using the Gram-Schmidt orthonormalization algorithm
starting with the partial orthonormal basisu1, . . . , ur . The algorithm works as follows: At iterationi
we have obtained a partial orthonormal basisv1, . . . , vt wheret = r + i − 1. We then pick a random
unit vectorv ∈ �m−1 and letv′ =

∑t
i=1 viv

T
i v. Put

vt+1 =
v − v′
‖v − v′‖ .

Let Vt = [v1 | · · · | vt] andVt+1 = [Vt | vt+1]. Our goal is to bound‖vt+1‖2∞ as this will directly lead to
a bound onµ0(Vt+1) in terms ofVt. Summing up this bound overt will lead to a bound onµ0(Vr+k)
which is what the lemma is asking for.

Let us start with a two simple claims that follow from measureconcentration on the sphere. The
first one bounds theℓ∞-norm of a random unit vector.
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Claim 5.9. ‖v‖2∞ 6 O
(

logm
m

)
with probability1− 1/200k.

Proof. It is not hard to show that for everyi ∈ [m], the coordinate projectionfi(v) = vi is a Lips-
chitz function on the sphere. Moreover, the median offi is 0 by spherical symmetry. By measure
concentration (Theorem B.1), �r {| fi | > ε} 6 O(exp(−ε2m/2)). Settingε = O(

√
(logm+ logk)/m) =

O(
√

log(m)/m) and taking a union bound over allmcoordinates completes the proof. �

The second claim we need bounds the Euclidean norm ofv′.

Claim 5.10. ‖v′‖2 6 O
(

r+k
m

)
with probability1− 1/200k.

Proof. Proceeding as in proof of the previous claim, we note that foreachi ∈ [t], fi(v) = 〈vi , v〉 is a Lip-
schitz function on the sphere with median 0. Applying Theorem B.1with ε = O(

√
(log t + logk)/m),

it follows that with probability 1− 1/200kt,

fi(v)
2
6 O

(
logk+ log t

m

)
.

Taking a union bound over alli ∈ [t] we have with probability 1− 1/200k,

‖v′‖2 =
t∑

i=1

〈vi , v〉2 6 O

(
t(logk+ log t)

m

)
= O

(
(r + k) log(r + k))

m

)
,

where we used thatt 6 r + k. �

On the one hand, note thatv′ is in the span ofv1, . . . , vt by definition. Hence,Lemma 5.7directly
implies that

‖v′‖2∞ 6
t
m
· ‖v′‖2 · µ0(Vt) . (10)

Hence, combiningEquation 10with Claim 5.10, we have with probability 1− 1/200k,

‖v′‖2∞ 6 O

(
t(r + k) log(r + k)

m2
· µ0(Vt)

)
. (11)

On the other hand, we can bound‖vt+1‖2∞ as follows:

‖vt+1‖2∞ =
‖v − v′‖2∞
‖v − v′‖2

6
‖v‖2∞ + 2‖v‖∞‖v′‖∞ + ‖v′‖2∞

‖v − v′‖2
6

3(‖v‖2∞ + ‖v′‖2∞)

‖v − v′‖2
.

By Claim 5.10we have that with probability 1− 1/200k,

‖v − v′‖2 = ‖v‖2 + ‖v′‖2 − 2〈v, v′〉 > 1− 2‖v′‖2 > 1−O

(
(r + k) log(r + k)

m

)
.

In the first inequality above we used that〈v, v′〉 = ∑t
i=1〈vi , v〉2 = ‖v′‖2.We then appliedClaim 5.10in

the second inequality. ByEquation 9, m is sufficiently large so that

1

‖v − v′‖2
6 O(1) . (12)
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CombiningEquation 11with Equation 12and applyingClaim 5.9, we conclude that with with
probability at least 1− 1/100k,

‖vt+1‖2∞ 6 O

(
logm

m
+

t(r + k) log(r + k)

m2
· µ0(Vt)

)

But when the above bound on‖vt+1‖2∞ holds, then we must have

µ0(Vt+1) 6 µ0(Vt) +
m

t + 1
‖vt+1‖2∞ 6

(
1+O

(
(r + k) log(r + k)

m

))
µ0(Vt) +O

(
logm

t

)
(13)

Taking a union bound over allk steps, we find that with probability 99/100, Equation 13is true at all
steps of the Gram-Schmidt algorithm. Assuming that this event occurs, we have:

µ0(Vr+k) 6

(
1+O

(
(r + k) log(r + k)

m

))k

µ0(Vr ) +O

(
k logm

r

)

6 2µ0(Vr) +O

(
k logm

r

)
(sincem≫ k(r + k) log(r + k) by Equation 9)

This finishes our proof of the lemma sinceµ0(Vr) = µ0([u1 | · · · | ur ]) by definition. �

The choice of failure probability in the previous lemma was rather arbitrary and stronger bounds
can be achieved. We finally arrive at the main lemma in this section.

Lemma 5.11. Let A be an m× n matrix of rank r. LetΩ ∼ N(0, 1)n×k with k 6 r denote a random
standard Gaussian matrix and define Y= AΩ. Assume that m> c0kr log r for sufficiently large
constant c0. Further, letσ > 0 and N ∼ N(0, σ2)m×k denote a random Gaussian matrix with i.i.d.
entries sampled from N(0, σ2). Put Ỹ = AΩ + N and letw1, . . . , wk be an orthonormal basis for the
range ofỸ. Then, with probability99/100,

max
i∈[k]
‖wi‖∞ 6

√
4r
m
· µ0(A) +O


√

k logm
m

 .

Proof. Let U denote the left singular factor ofA. Let u1, . . . , ur denote the columns ofU.We have,

span({w1, . . . , wk}) = range(̃Y),

sincew1, . . . , wk is an orthonormal basis for the range ofỸ by construction. On the other hand,

range(Y) ⊆ range(A) = span({u1, . . . , ur}) .

SinceỸ = Y + N this implies that range(̃Y) ⊆ span{u1, . . . , ur , n1, . . . nk} , wheren1, . . . , nk are the
columns ofN normalized such that‖ni‖ = 1. By assumptionm is large enough so that we can apply
Lemma 5.8. Thus we obtain orthonormal vectorsv1, . . . , vr+k satisfying

range(̃Y) ⊆ span{v1, . . . , vr+k}

and the matrixV whose columns arev1, . . . , vr+k has coherence

µ0(V) 6 2µ0(U) +O

(
k logm

r

)
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with probability 99/100. In particular,wi ∈ range(V) for all i ∈ [k] . Therefore, byLemma 5.7, we
have that

max
i∈[k]
‖wi‖2∞ 6

r + k
m
· µ0(V) 6

2(r + k)
m

· µ0(U) +O

(
(r + k)k logm

rm

)
.

Sincek 6 r andµ0(A) = µ0(U), we conclude that

max
i∈[k]
‖wi‖∞ 6

√
4r
m
· µ0(A) +O


√

k logm
m

 .

The lemma follows. �

Remark 5.12. We remark that the previous lemma is essentially tight. Indeed, under the given as-
sumption on A there could be a left singular vector ofℓ∞-norm

√
rµ0(A)/m. The above lemma implies

that we are never more than a O(
√

logm)-factor away from this bound.

5.3 Relation betweenC-coherence andµ0-coherence

Here we show that the assumption of smallµ0-coherence is strictly stronger than that of smallC-
coherence assuming the rank of the matrix is not too large.

Lemma 5.13. Let A be an m× n matrix of rank r. Then, A is C-coherent where

C 6
√

rµ0(A) .

Proof. Let the SVD ofA beUΣVT and denote the right singular vectors byv1, . . . , vr . Extend them
arbitrarily to an orthonormal basis of�n, denotedv1, . . . , vn.We then have for everyj ∈ [m],

‖eT
j A‖2 =

n∑

i=1

〈eT
j A, vi〉2 =

r∑

i=1

(
σi〈ej , ui〉

)2
6


r∑

i=1

∣∣∣σi〈ej , ui〉
∣∣∣


2

, (14)

where we used that theℓ22-norm of a vector is bounded by theℓ21-norm. On the other hand,


r∑

i=1

∣∣∣σi〈ej , ui〉
∣∣∣

2

6


r∑

i=1

|σi |
∣∣∣〈ej , ui〉

∣∣∣


2

6


r∑

i=1

σ2
i




r∑

i=1

〈ej , ui〉2
 = ‖A‖2F · ‖U j‖2 , (15)

where we used Cauchy-Schwarz in the inequality. It follows that

max
j∈[m]
‖eT

j A‖2 = ‖A‖2F max
j∈[m]
‖U j‖2 = ‖A‖2F

rµ0(A)
m
.

Taking square roots on both sides and rearranging, we find
√

m
‖A‖F

·max
j∈[m]
‖eT

j A‖ 6
√

rµ0(A) .

Note that the left hand side is exactly the smallestC for which A is C-coherent. This proves the
lemma. �

Recall thatLemma 5.2showed that the singular vectors corresponding to large singular values of
a C-coherent matrixA cannot be too sparse. In particular, the top singular vectors must have small
µ0-coherence as a result. However, we cannot rule out that there are singular vectors corresponding
to small singular values that do have large coordinates.
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6 Privacy-preserving low rank approximations

In this section we compose the range finder, projection and truncation step to get a private low rank
approximation algorithm suitable for matrices of low coherence.

Input: Matrix A ∈ �m×n, target rankr > 2, oversampling parameterp > 2, pruning parameter
α > 0, privacy parametersε, δ ∈ (0, 1).

1. Range finder: Run the range finder (Figure 2) on A with sampling parameterk = p + r and
privacy parameters (ε/2, δ/2). Let the output be denoted byW.

2. Pruning: Let W′ be the matrix obtained fromW by zeroing out all entries larger thanα.

3. Projection: Run the projection algorithm (Figure 3) on inputA,W′ and privacy parameters
(ε/2, δ/2). Let B denote the output of the projection algorithm.

Output: Matrix B of rankk = (r + p).

Figure 4: The private find and project algorithm (PFP) for computing privacy-preserving low-rank approxima-
tions

Lemma 6.1. ThePFP algorithm satisfies(ε, δ)-differential privacy.

Proof. This follows directly from composition and the privacy guarantee achieved by the subroutines.
�

The next theorem details the performance ofPFPonC-coherent matrices. In particular, it shows
that in a natural range of parameters it improves significantly over randomized response (input pertur-
bation).

Theorem 6.2(Approximation forC-coherent matrices). There is an(ε, δ)-differentially private algo-
rithm that given a C-coherent matrix A∈ �m×n and parameters r> 2, p > 2 produces a rank k= r+p
matrix B such that with probability9/10,

‖A− B‖F 6 O


√

1+
r

p− 1
· ‖A− Ar‖F +

√
kmlog(k/δ)
ε

+
√

C‖A‖Fk
( n
m

)1/4 log(k/δ)1/2

ε1/2

 . (16)

In particular, the second error term is o
( √

knlog(k/δ)/ε
)
, whenever

m= o(n) and
Ck‖A‖F

√
log(k/δ)
√

n
= o

(√
m
)
. (17)

We generally think ofC, k as small compared to bothm and n. Equation 17states that the al-
gorithm outperforms randomized response wheneverm is not too large compared ton and not too
small compared to the rankk, the Frobenius norm ofA divided by

√
n, and the coherence parameter

C. These two conditions are naturally satisfied for a wide rangeof parameters. For example, when
‖A‖F = O(

√
kn) (so that randomized response no longer provides non-trivial error) andC = O(1)

(i.e., the matrix is very incoherent), then the requirementonm is just that

ω(k3) 6 m6 o(n) .
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The proof ofTheorem 6.2is a straightforward combination of our previous error bounds for range
finding, pruning and projection.

Proof ofTheorem 6.2. We runPFPwith the given set of parametersr, p, ε, δ and a suitable choice of
the pruning parameterα > 0. Before fixingα, we claim that the error of the algorithm satisfies, with
probability 9/10,

‖A− B‖F 6 O

(√
1+

r
p− 1

· ‖A− Ar‖F +
Ck‖A‖F
α
√

m
+

(√
km+ αk

√
n
)
· log(k/δ)

ε

)

Here, the first term follows fromTheorem 3.1and an application of Markov’s inequality to argue
that the bound holds except with sufficiently small constant probability. The other terms followfrom
Theorem 4.7(error bound of the projection algorithm),Corollary 4.5(error bound of the range finder),
and,Lemma 5.4(error bound for the pruning step with parameterα). We can now optimizeα so as
to achieve the geometric mean between the two terms that it appears in (asα and 1/α). RunningPFP
with this choice ofα directly results in the error bound stated inEquation 16. Equation 17is now
easily verified by equating theO(·)-term inEquation 16with o(

√
knlog(k/δ)/ε) and rearranging.

Since all sub-routines fail with probability at most 1/100, we can take a union bound to conclude
that the algorithm fails to satisfy the error bound with probability at most 1/10. �

We will next analyze the performance ofPFPonµ0-incoherent matrices. In this case no truncation
is necessary, since we argued that the projection matrix with high probability already has very small
entries. The error bound here is stronger in certain aspectsas we will discuss in a moment.

Theorem 6.3(Approximation forµ0-coherent matrices). There is an(ε, δ)-differentially private algo-
rithm that given a rank R matrix A∈ �m×n and parameters r> 2, p > 2 such that k= r + p 6 R and
m> ω(RklogR) produces a rank k matrix B such that with probability9/10,

‖A− B‖F 6 O


√

r
p− 1

· ‖A− Ar‖F +

√

km+

√
kRµ0(A) + k2 logm

m

√
kn

 ·
log(k/δ)
ε

 . (18)

In particular, the error is o
( √

knlog(k/δ)/ε
)
, whenever

m= o(n) and Rk(µ0(A) + logm)
√

log(k/δ) = o(m) . (19)

Just as in the previous theorem we get a range form in which the algorithm improves over ran-
domized response. Here, we need the coherence ofA to be small compared tom. We also observe
a dependence on the rank of the matrix. This means the algorithm presents no improvement if the
matrix is close to being full rank. Recall thatµ0(A) can be as small asO(1). In particular, in the
natural case whereµ0(A), k,R all are small compared tom, e.g.,m0.3, the requirement inEquation 19
reduces tom= o(n).

Note thatTheorem 6.3is quantitatively stronger thanTheorem 6.2in the following regime: When
k,R,C, µ0(A) are all small (e.g.,no(1)), m 6

√
n and‖A‖2F > n, thenTheorem 6.3improves over ran-

domized response by a factor of roughly
√

m, whereasTheorem 6.2achieves anm1/4-factor improve-
ment.
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Proof ofTheorem 6.3. We runPFPwith the given set of parametersr, p, ε, δ andα = 1. Note that this
choice ofα implies that we never modify the matrix returned by the rangefinder. We claim that the
error of the algorithm is with probability 9/10,

‖A− B‖F 6 O


√

1+
r

p− 1
· ‖A− Ar‖F +


√

km+

√
kRµ0(A) + k2 logm

m

√
kn

 ·
log(k/δ)
ε

 ,

which is what we stated in the theorem. The first error term follows as before fromTheorem 3.1and
Markov’s inequality so that it holds with probability 99/100. The term ofO(

√
kmlog(k/δ)/ε) follows

from Corollary 4.5. To understand the remaining terms that byLemma 5.11we have that the matrix
W = [w1 | · · · | wk] returned by the range finder satisfies with probability 99/100,

α = max
i∈[k]
‖wi‖∞ 6

√
4R
m
· µ0(A) +O


√

k logm
m

 .

In applying Lemma 5.11we needed thatm > c0kRlogR for sufficiently large constant which is
satisfied by our assumption. Hence,Theorem 4.7ensures that the error resulting from the projection
operation is at mostO(αk

√
n log(k/δ)/ε). Expandingα in the latter bound gives the stated error term.

Equation 17is now easily verified by equating theO(·)-term inEquation 18with o(
√

knlog(k/δ)/ε)
and rearranging.

Again, we can take a union bound over the failure probabilities of the sub-routines to bound the
probability that our algorithm fails to satisfy the stated bound by 1/10. �
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A Privacy of the Gaussian Mechanism

Theorem A.1 (Gaussian Mechanism). Let x, y ∈ �d be any two vectors such that||x − y||2 6 c. Let
Y ∈ �d be an independent random draw from N(0, ρ2)d, whereρ = cε−1

√
log 1.25/δ. Then for any

S ⊆ �d:
�r[x+ Y ∈ S] 6 exp(ε)�r[y + Y ∈ S] + δ

Proof. For a setS ⊆ �d, write S − x to denote the set{s− x : s ∈ S} andS Qto denote{sQ : s ∈ S}.
Write Si = {si : s∈ S} to denote the projection of the set onto thei’th coordinate of its elements.

First we consider the one dimensional case, wherex, y ∈ � and ||x− y||2 = |x− y| 6 c. Without

loss of generality, we may takex = 0 andy = c. Let T ⊆ S be the setT = {z ∈ S : z< ρ
2ε

c −
c
2} First,

we argue that�r[x+ Y ∈ S \ T] = �r[Y ∈ S \ T] 6 δ. This follows directly from the tail bound:

�r[Y > t] 6
ρ
√

2π
exp(−t2/2ρ2)

Observing that:

�r[Y ∈ S \ T] 6 �r[Y >
ρ2ε

c
− c

2
]

and plugging in our choice ofρ = cε−1
√

log 1.25/δ completes the claim. Next we show that condi-
tioned on the event thatY < S \ T, we have:�r[x+ Y ∈ S] 6 exp(ε)�r[y + Y ∈ S]. Conditioned on
this event we have:

∣∣∣∣∣∣ln
(
�r[Y ∈ S]
�r[Y ∈ S − c]

)∣∣∣∣∣∣ 6 max
z∈T

∣∣∣∣∣∣ln
(
�r[Y = z]
�r[Y = z− c]

)∣∣∣∣∣∣ =
∣∣∣∣∣∣ln

(
exp(−z2/2ρ2)

exp(−(z+ c)2/2ρ2)

)∣∣∣∣∣∣

where here�r[Y = t] denotes the probability density function ofN(0, ρ2) at t. This quantity is
bounded byε whenever:

z6
ρ2ε

c
− c

2
i.e. wheneverz∈ T. Therefore:

�r[x+ Y ∈ S] 6 exp(ε)�r[y + Y ∈ S] + δ

which completes the proof in the 1-dimensional case.
For the multi-dimensional case, we will take advantage of the rotational invariance of the Gaus-

sian distribution to rotate any Euclidean lengthc-perturbation into a lengthc standard basis vector,
reducing it to the 1-dimensional case.

Consider any two vectorsx, y ∈ �d such that||x − y||2 6 c. Let Q ∈ �d×d be the orthonormal
(rotation) matrix such that (x − y)Q = c′ · e1 wheree1 ∈ �d is the 1st standard basis vectore1 =

(1, 0, . . . , 0), andc′ = ||x − y||2 6 c. We will use the fact that for any orthonormal matrixQ, and for
anyY ∼ N(0, ρ2)d, YQ ∼ N(0, ρ2)d: i.e. spherically symmetric Gaussian distributions are invariant
under rotation. We have:

�r[x+ Y ∈ S] = �r[(x+ Y)Q ∈ S Q] = �r[xQ+ YQ∈ S Q] = �r[Y ∈ S Q− xQ]

We want to bound: ∣∣∣∣∣∣ln
(
�r[Y ∈ S Q− xQ]
�r[Y ∈ S Q− yQ]

)∣∣∣∣∣∣
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Now note that we have chosenQ such that (S Q− xQ)i = (S Q− yQ)i for all i > 1 (Because (xQ)i =

(yQ)i for all y > 1). Therefore, we have:
∣∣∣∣∣∣ln

(
�r[Y ∈ S Q− xQ]
�r[Y ∈ S Q− yQ]

)∣∣∣∣∣∣ =
∣∣∣∣∣∣ln

(
�r[Y1 ∈ (S Q)1 − (xQ)1]
�r[Y1 ∈ (S Q)1 − (yQ)1]

)∣∣∣∣∣∣

Note that by rotational invariance, we have:�r[(zQ)1 > t] = �r[z1 > t] for any vectorz ∈ �d, and
so we are now again in the 1-dimensional case, in which the theorem is already proven.

�

B Measure concentration on the sphere

In Section 5we used the following classical result regarding concentration of Lipschitz functions on
the sphere. A proof can be found for example in Matousek’s text book [Mat02].

Theorem B.1(Lévy’s lemma). Let f : �d−1→ � be a Lipschitz function in the sense that

| f (x) − f (y)| 6 ‖x− y‖2

and define the median of f asmed(f ) = sup
{
t ∈ � : �r { f 6 t} 6 1

2

}
. Then,

�r {| f −med(f )| > ε} 6 4 exp(−ε2d/2) ,

where probability probability and expectation are computed with respect to the uniform measure on
the sphere.

C The Netflix Data

In this section we illustrate why the data set released by Netflix satisfies the assumptions underlying
Theorem 1.1. That is, the matrix is unbalanced, sparse andC-coherent (Definition 5.1) for very small
C. Indeed, according to information released by Netflix, the data set has the following properties:

1. There arex = 100, 480, 507 movie ratings,m = 17, 770 movies andn = 480, 189 users. In
particular, the data set is very sparse in that only ax/mn ≈ 0.011 fraction of the matrix is
nonzero. Also note thatm≪ n.

2. The most rated movie in the data set isMiss Congenialitywith t = 227, 715 ratings (followed
by Independence Daywith 216, 233). Hence, the maximum number of entries in one row is
only at/x ≈ 0.0022 fraction of the total number ofnonzeroentries. Moreover, all entries of the
matrix are in{1, . . . , 5} and thus very small numbers.

We conclude that, indeed, the Netflix matrix issparseand the maximum norm of any row takes up
only a tiny fraction of the total norm of the matrix. We further believe that these properties are likely
to hold in other recommender systems. Indeed, the average number of ratings per user should be
small (thus resulting in a sparse matrix), and no item shouldbe rated almost as often as all other items
taken together (thus resulting in low coherence).
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