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1 Exponentiation Problems 

There are a number of important algebraic problems that 
enjoy efficient eequential solutions, but for which the exis- 
tence of much more efficient parallel solutions la currently 
unresolved. To put this rather imprecise statement in tech- 
nical terme, those problems that we wish to consider are in 
P, but it is not known whether or not they are in J/C. Two 
such problems are particularly important because of their 
many applications. They are the compu.tation of great- 
est common divisora, and modular integer exponentiation. 
This work is motivated by the latter. 

Given n-bit integers (I, e, and m, the problem of Mod- 
ular Integer Ezponcntiation is to compute a* mod m. To 
illustrate its many applications, we list here some problems 
that are UC-reducible to Modular Integer Exponentiation 
(but whose membership in NC is likewise unresolved): 

1. primality testing (by a slight variation of the Miller- 
Rabin algorithm 114,161; in this application, the IV.- 
duction to Modular Integer Exponentiation is proba- 
bilistic), 

2. computation of the encryption and decryption func- 
tions in Riveat, Shamir, and Adlernan’ public key 
cryptosystem 1171, 

3. 

4. 

inverse computation modulo any prime, 

Chinese remaindering with respect to prime mod- 
uli 131, 

5. quadratic reeiduosity modulo any prime 131, and 

6. extraction of square roots modulo any prime congru 
ent to 3 mod 4 1151. 
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It is easy to show that there is a polynomial time al- 
gorithm for Modular Integer Exponentiation [3], but it io 
unknown whether it is in IUC, complete for P, or neither IS]. 
Von sur Gathen [11] approached this problem by showing 
that it does have an extremely efficient parallel solution for 
the special case in which all prime factora of the modulus m 
are polynomial in n; note, though, that this is not the caec 
in any of the applications listed in the previous paragraph. 

Borodin (see [ll]) proposed a variant of the problem 
that ia closer to ordinary integer exponentiation: given n- 
bit integera t, a, and e, the Integer Ezponentiation problem 
is to compute the t* bit of a’. It is no longer clear that thii 
problem is even. in P, since the repeated squaring method 
that works for Modular Integer Exponentiation would have 
to contend with the exponential length of intermediate val- 
ues. 

The n low order bits of a’ can be determined by comput- 
ing ae mod 2”, using von sur Gathen’e algorithm. Alt [I] 
haa shown that the high order bits of uc can also be com- 
puted quickly in parallel. This ie done by using a truncated 
Taylor series to approximately compute lna, multiplying 
by e, and then ,using a truncated Taylor series to approxi- 
mately compute exp(c ln a)). 

In this work, we eeek a better understanding of the par- 
allel complexities of these exponentiation problems by tran- 
ecribing them from the integer domain into a polynomial 
domain: if one thinks of the n bits of a (and the n bits of m, 
in the Modular Integer Exponentiation problem) as n coef- 
ficients of a polynomial over 2, (the ring of integers modulo 
2), the transcribed problems are polynomial exponentiation 
problems over & The benefit of thii transcription is that 
it eliminates the complication of “carries” which arise in 
the integer versions, allowing UB to concentrate on the fun- 
damental expon.entiation operation. 

These polynomial problems will now be defined pre- 
cisely, doing so with respect to a general finite field F rather 
than the specific field Zz: 

l Modular Polynomial Ezponentiation: Given polyno- 
mials a(zl),m(z) E F[z], each of degree at most n, 
and an n-bit integer c, compute (a(z))‘ mod m(z) E 

FIMm(4)* 
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l Pdynomid Ezponcntiatior Given a polynomial 
a(z) E F[z] of degree at m-t n, and n-bit integers c 
and t, compute the coefficient of I’ in (o(z))* E F[z]. 

As further motivation for studying exponentiation prob- 
lems in this polynomial domain, note that the Modular 
Polynomial Exponentiation problem arises in Berlekamp’e 
algorithm for factoring polynomials over finite fields [S]. 
Von sur Gathen [9] demonstratea a random NC algorithm 
for factoring polynomials over finite fields along these lines. 

Modular Polynomial Exponentiation certainly has a 
polynomial time solution, analogous to the repeated equar- 
ing solution for Modular Integer ESrponentiation. Poly- 
nomial Exponentiation, on the other hand, is like Integer 
Exponentiation, in the sense that a polynomial time solu- 
tion is not evident, due to the exponential degree of in- 
termediate polynomiala. To make matters worse, Rabin 
and Valiant [personal communication] have observed that 
the following variant of Polynomial Exponentiation ir #P- 
complete: 

1. The computation takes place over the integers. 

2. The polynomial a(z) may have degree up to 2”, but 
still has only n nonsero terms. 

3. The exponent c, rather than having n bits, need only 
have value n. 

(Detaila of thi8 result are given in Section 7.) 

Section 3 describes a method for solving the Modular 
Polynomial Exponentiation problem, demonstrating that 
for fields whose characteristic is polynomial in the prob- 
lem size, this problem is in NC’. If the order of the field 
is restricted to be leaa than some constant, the problem 
is in NC*. In the special cade when the modulur m(z) in 
irreducible over Z,, this problem la equivalent to exponen- 
tiating elements in the large finite field Z,[z]/(m(z)). It is 
interesting to contrast this with one of von sur Gathen’s 
reeults [11, theorem 2.31, which shows the impossibility of 
such a fast parallel algorithm for exponentiation in large 
finite fields when the elements of that field must be treated 
atomically. The result of Section 3 haa applications to in- 
veree computation, quadratic residuoaity, and the extrac- 
tion of square roots in large finite fields. 

In Sections 4 and 5, it will be demonstrated that the 
Polynomial Exponentiation problem over 2, not only has a 
polynomial time solution, but is in fact in UC*. This result 
will follow from a reduction to the problem of counting 
the number of representations of t in a certain syetem of 
redundant representations of the integers, a combinatorial 
problem that is interesting in it8 own right. This result is 
generalieed in Section 3 to fielde of constant order. We also 
show that, for fields whose characteristic ie polynomial in 
the input size, the Polynomial Exponentiation problem is 
in UCs. the problem ia in NC*. 

2 Preliminaries 

We begin with a short description of notation and some 
properties of finite fielde. Throughout the paper, A denotes 
the set of nonnegative integers and 2 denotes the ring of 
integers. 

If F ie a finite field, we use p to denote its characteristic 
and q = p’ to denote its order. The finite field of order 
p is Z,, the ring of integers modulo p. The usual way to 
represent an element of this field is aa an integer between 
0 and p - 1, written in binary. 

The field of order pc, for L > 1, can be described a~ 
&[y]/(g(y)) where g(y) E &[y] is a manic irreducible poly- 
nor&l of degree L. Elements of this field are represented 
by polynomials in Z,iy] of degree at most L - 1; i.e. if 

f E ~plarl/Md)~ then f = g fig’ where fi E 2, for 

0 5 i 5 L - 1. We specify a field aa part of the input 
by providing p and g(y). 

The key property of finite field that we require in this 
paper is their %ice’ binomial theorem: 

Proposition 1 Let F be a field with characteristic p. 
If a(z) and b(z) are elements of F[z], then (o(z) + b(z))p = 
(44)’ + (W)P. 

is oy;f: For 0 < i < p, 6) is a multiple of p, and hence 
. cl 

Corollary 2 Let F be a field with characteristic p. 

If a(z) = ko,& E F[z] and k E N, then (O(Z))” = 
i=o 

g%Ylr’. 

Roof: This follow8 by induction from Proposition 1. 
0 

Corollary 3 If F is a field of order q and a(z) E F[z], 
then (o(z))@ = u(z*‘) for all k E 1. 

Proof: This followa from Corollary 2 and the fact that 
aq = a for all Q E F. o 

We use uniform Boolean circuit8 of polynomial sire as 
our model of parallel computation. We measure complexity 
in terms of the depth of these circuits as a function of n, a 
parameter describing the sise of the input. 

The following result of Eberly [7] concerning polynomial 
arithmetic over finite fields is important for analysing the 
complexity of our algorithms. 
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Theorem 4 Let F be a field o:l order q euch that 
logq = no(‘). Then the multiplication of no(r) polynomiala 
in P(zj and the division with remainder of two polynomi- 
als in F[z], where the polynomials have degree less than 
no(‘), can be implemented using uniform Boolean circuits 
of depth O(log n Iog log n) and polynomial rise. 

3 Modular Polynomial Exponentiation 

In [S], Berlekamp describee an important method for com- 
puting (a(z))’ mod m(z), where F is a tlnite field of order q, 

m(z) E F[2], d is the degree of m(z), and a(z) = ‘2 dizi E 

F[z]/(m(z)). Specifically, he construct8 a d x d &trix Q 
whose i” row (Qi,e, Q<,rv.. . , Qi,,-l) is the squence of coef- 

ficients of the polynomial ‘CQidz’ 2 ati mod m(z). Then 
.- 

the elements of the row vdzr (aO, al,. . . , a& x Q are the 
coefficients of (e(z))* mod m(z), because 

(44)’ = g &‘a by Codl~~ 3 

I E (Qi g Qi,j.‘) mod m(z), by definition of Q 

= 

More generally, the elements of the row vector 

( =o,h,-*- ,a-1) x Qk 

are the coefficients of (a(z))*‘ mod m(z). By multiply- 
ing together an appropriate combinat:ion of these powers 
of a(z), any power of e(t) can be obtained. When the or- 
der of the field, q, ia polynomial in R, thin is an efficient 
parallel method for performing modular polynomial expo- 
nentiation. With minor modifications, this technique can 
be adapted so that only the characterintic p must be poly- 
nomial in n. 

Let R be the d x d matrix whose i* row 

d-1 
ir the sequence of coefficients of the polynomial c &# I 

zip mod m(z). (Recall that p is the character% of F.) 
Define R@) to be the the matrix obtained by raising each 
entry of R to the power # i.e. #I = C&i)‘“. Finally, let 
M(k) = R(k-1) x . . . x R(l) x R(O). 

Lemma 6 The i’ row (A$), A@, . . ., A&,) of the 
matrix A41L) is the squence of coefficients of the polynomial 
*-I (k) c Mii d I dJ” mod m(z). 
j=Q 

Roof: ‘The proof ir by induction on t. If k = 1, then 
M(r) = R and the lemma is true by the definition of R. 

Now let 1c > 1 and awume that the i* row 

of the matrix Mik) is the squence of coc5cientr of the 

polynomial ‘2 M$‘zi 3 zip’ 
;.=I3 

mod m(z). Since Mtk+*) = 

Rfk) x MO), it follow6 that 

by Corollary 2 

( > 2’P l L 
mod m(z), by definition of R 

&*+I . 

Thus the lemma is true for k + 1. By induction, it b true 
forallkz 1. 0 

d-1 

Corollary 6 If a(z) = xaiz’ then the elements of 
i=O 

the row vector ((do)J”, (a$“, . . . , (a,-$‘) x A4tk) are the 

coefficients of the polynomial (o(z))r’ mod m(z). 

Proof: 

(WY’ = f&‘# * ’ 2*’ by Corollary 2 
&O 

mod m(4 by Lemma 5 

Cl 

Theorem 7 For any n > 0, given a field F of charac- 
teristic p and order q = pL, polynomials m(z) E F[2], with 

d-1 
degree d, and a(z) = c oit” E F[z]/(m(z)), and a positive 

ko 
binary integer c, such that p, 4 d, and log(c) are polynomial 
in n, the problem of computing (a(2))’ mod m(z) can be 
solved by a Boolean circuit of depth 0 ((log n)’ log log n)) 
and polynomial sise. 

Proof: The computation consists of the following steps. 

l Convert the binary integer c to bane p IYO that t = 
r-1 
c e&pk and 0 < ek < p. Since p and loge are polyno- 
k=p 

real in n, each p-ary digit of thie representation can 
be computed in parallel by a Boolean circuit of depth 
O(log n log log n) [Z]. 
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l Compute the d rows of R in parallel. To com- 
pute zjr mod m(z), it suffices to divide the poly- 
nomial zip, which has degree at most (d - l)& by 
the degree d polynomial m(z). By Theorem 4, this 
can be accomplished by a Boolean circuit of depth 
O(log dp log log dp) = O(log n log log n). 

l In parallel, compute all of the entries of R@-l) and the 
row vectors ((aO)p’ ,.. .,(adwJpk) for 1 5 k 5 r - 1. 
Each of these computations consists of exponentiating 
a field element. Since f’ = f for all f E F, the 
exponents can all be assumed to be less than q. 

If q = P (i.e. F = 2, ), then by Theorem 4.3 in 
141, this computation can be performed by a Boolean 
circuit of depth O(logn) 

Otherwise, F H Z,[y]/(g(y)) for some irreducible 
polynomial g(y) E Zp[y] of degree L and any element 
of the field F is actually a polynomial f(y) E Zp[y] 
of degree less than L. Thus, if our theorem is true for 
the field Z,, then we may exponentiate f(y) using a 
Boolean circuit ‘of depth 0 ((log n)* log log n)). 

l For all 1 5 k 5 r - 1 in parallel, compute 

( (adpk , . . . , (a~-l)pk) X W) 

to obtain the coefficients of (a(z))J” mod m(z). This 
can be done using a balanced tree of k matrix multi- 
plications. 

Each matrix multiplication consists of 1 + logd par- 
allel steps; the first is the multiplication of paira 
of field elements and the rest are the addition of 
paira of field elements. The addition of two field ele- 
ments can be performed by a Boolean circuit of depth 
O( log log p) = O(log log n). 

If F = Z,, the multiplication of two field ele- 
ments can be accomplished by performing an in- 
teger multiplication followed by an integer division 
with remainder in depth O(loglogplogloglogp) = 
O(log log A log log log n). (The integera involved have 
0( logp) bits.) 

Otherwise the multiplication of two field elements 
consists of a multiplication and a division with re- 
mainder of two polynomiaia of degree O(L). By The- 
orem 4, this can be done in depth O(log nloglogn). 
Hence, each matrix multiplication can be performed 
by a Boolean circuit of depth O(log n log log n). Since 
k < r = no(‘), the total depth necessary for a 
Boolean circuit to perform the matrix multiplications 
is O((logn)*loglogn). 

l Since (a(z))* = z ((a(z))Pk)ek, the only remain- 
= 

r-1 

ing task is the multiplication of c ek = O(plogc) 

polynomials in F[z]/(m(z)). B;?!heorem 4, this 
can be accomplished by a Boolean circuit of depth 
O(log n log log n) because p, log G, and d are all no(‘). 
Cl 

Corollary 8 The Modular Folynomial Ezponentiation 
Problem is in UC’ for finite fields of polynomial character- 
istic. 

Corollary 9 The Modular Polynomid Ezponentiation 

Problem is in NC* for finite fields whose order is O(1). 

Proofi Observe that, when the order of the field is 
O(l), the addition and multiplication of field elements can 
be performed by Boolean circuits of constant depth. IJ 

In the special case when m(z) is manic and irreducible 
over Z,, that is, Zp[z]/(m(z)) Q GF(pd), Corollary 8 has 
applications to computations in Zp[z]/(m(z)) that are anal-. 
ogous to the applicatione of Modular Integer Exponentia- 
tion outlined in Section 1. Three of these applications are 
listed below. 

Proposition 10 Let p be prime and m(z) be manic, 
irreducible over Z,, and of degree n. Then for any a(z) E 
~p141(m(4) - {Oh (a(4)-’ = (a(z))p’-*. Hence, comput- 
ing inverses in Zp[z]/(m(z)) is in NC’, provided p = no(‘). 

Proposition 11 Let p be an odd prime, m(z) be 
manic, irreducible over Zp, and of degree n, and a(z) E 

4&1/b(4) - VI. Th en a(z) is a quadratic residue if and 
only if (a(~))t+~) = 1. Hence, determining quadratic 
residuosity in Zp[z]/(m(z)) is in NC’, provided p = no(‘). 

Roporition 12 Let p E 3 (mod 4) be prime and 
m(z) be manic, irreducible over Z,, and of odd degree n. 
Let a(z) E Z,[z]/(m(z)) be a quadratic residue. Then 
(a(z))+“+” is a square root of a(z). Hence, extracting 
square roots in Zp[z]/(m(z)) is in J/C’, provided p = no(‘). 

4 Relating Polynomial Exponentiation 
to the Redundant Representations of 
Integers 

For expository purposes, the results of this section and the 
next are presented with respect to the special case F = &. 
In Section 6 we diecuse how these results can be generalised 
to an arbitrary finite field whose characteristic is polyno- 
mial in the input siee. 

Given e E N, let e = ee;t’, where Ci E (0, 1). Then 
‘= 

G-I%-2 1. . Q E (0, 1)’ is ;hl binary representation of c. 
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Corollary 13 For a(z) E Z&l, (a(z))* = ‘i o(z2’)‘i. 
i=O 

Proofi This follows directly from Corollaries 2 and 3. 

Example 1 This begins a running example of how to 
compute the coefficient of P in (cc0 + x1 + zs + z4)11 over 
2,. To begin, Corollary 13 is applied to decompose (P + 
zJ + 9 + z’)~~. In this example e = 1lJ0 = 10112, so 

(2” + XJ + 2s + z’)JJ = (z” + 2J ik 23 + z’)JX2’x 
(ZO + ZJ -412~ + Z’)OX2’ x 
(9 + tJ + 2s + z’)JXZ’ x 
(9 + ZJ + 2s + z’)Jx*O 

= (20+2’+2++2’)‘x 

(tO)x 
[z’ 12’ ; f 1 ;‘;I” 
20 2’ 41 

= (20 + co + t2’ + 9’) x 

(z”lx 
(2” f 52 $ I’ -I” z?) x 

(50 + 2’ -I- zs + 2’). Cl 

We now define the redundant representation system to 
which Section 1 alluded. The notation DiDi-1. * * Do de- 
notes the concatenation of the sets Di, . . . , D,, Do, The 
i-fold concatenation of D with itself is denoted by D’. 

If Y = Yi-JYi-2 . . . y. E Ai, define 

d(y) = zyj2j. 
jz0 

. 
FJX sets Do, D,, . . . . Di,... C N. For u,i E N snd y E 
(0, l}‘, define 

C(U, y) = #{2 E DiDi-1. *. Do 1 d(Z) = Vd(Uy)}. 

~JJ words, C(0, y) is the number of repreemtations of the in- 
teger vai(y) in a radii 2 system in which the set of allowable 
digits in the rw least significant position. is Di. 

Example 2 val(4001) = 4.25+O-22+O-2J+1.20 = 33. 
Let Ds = D1 = Do = {0,1,3,4} and D2 = (0). Then 
N(4,OOl) = 3, since there are 3 values of a E DsD2DlDo 
with A(z) = 33, namely 4001, 3041, and 3033. a 

Theorem 14 provides the promised reduction from the 
Polynomial Bxponentiation problem to computation of the 
number of redundant representations of the integer t. 

Theoreml4Let u(2) = uo+ulz+...+~,2+ E 
&[t], let t,c E U, and let f,,,-Jt,,,-2-~-t0 E {O,l}” and 
G-162 * * ’ ~0 E (0, 1)’ denote the binary representations 
of t and e, respectively. Define ei = 0 if i 1 r. Then 
the coefficient of z’ in n IZ(Z*‘)~~ when multiplied over 2 ir 

i>O 

C(0, fnr-Jfm-:~ * * * 10) where, for all i E U, the set of allow- 
able digits for the i* position is 

itia&=‘}t if ei= 1 
, otherwise ’ 

Proof: IEach term in the expansion of n a(z”)‘i is 
120 

obtained by selecting one term from each of the factom 
q(z*‘)#i and multiplying them together. Note that if ei = 0, 
then a($*)“i := 1 = z” and, thus, z” is the only term which 
can be selected from this factor. 

When ei := 1, the set of terJns of the factor a(z2’ )‘i = 

$ ~~(2~‘)~ is { zLz’ 1 al: = 1). By our definition of the s&r 

Di, n @ * 18’ a term in the expansion of n a(z2’p if and 
isO 

only Jf Zi E Di for all i 2 0. 
i>O 

The coeffi,cieat of z’ in f18(z2’)*i when multiplied over 
it0 

2 is the number of terms n z*i*’ in the expansion of 
I.20 

Eu(z’~)‘~ wllich satisfy t = C Zi2’. For i 2 t, ci = 0 
i>O 

ad ~6 E Di = (0). Thue t = zy2’ = ucrl(z). This is 

exactly the definition of C(0, i,-:?m-2 . . - to)* o 

Example 3 Ekample 1 is continued here by demon- 
strating how to use Theorem 14 in order to compute the 
coefficient of a+ in 

P(z) = (zo+z’+2*‘+z22)x 

(z”)x 
(z” + 29 + 2’ + 20)X 
(2” + 2’ + 9 + 2’). q 

when multiplied over 2. In the rtatement of Theorem 14, 

a(z) = 2:O + 21 + 2s + 24, 

t = 33, which is 100001 written in binary, 

c = 11, which is 1011 written in binary, 

4 = D1 = D,, = (0, 1,3,4}, and 

D o = 4 = 04 = D2 = (0). 

The conclusion of Theorem 14 is that the coefficient of P 
in P(z) is C(0, 100001). The next section shows how to 
compute this value, but for thii small example it is easy to 
verify that C(0, 100001) = 3, ukng the same 3 representa- 
tions as in Exainple 2. To undemtand at an intuitive level 
why Theorem 14 is true, note the following natural corre- 
spondences: 
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Thus, for example, the representation 3041 corresponds to 
selecting z2’ from the first factor of P(z), z” from the MC- 
ond, and zz from the third, and z1 from the fourth. The 
product of these four selections contributes 1 to the coef- 
ficient of zss, just as 3641 contributes 1 to the number of 
representations of 100001. 0 

Corollary 16 Let a(z) E Z2[a$ let t,e E 1, and let 
L-IL-2 . . ate E (0, I)- be the binary representation of t. 
Then the coefficient of 2’ in (u(z))’ when computed over 
Z2 is the parity of C(0,tn-lf,,,-2 -. . to), where the set of 
allowable digits is as in Theorem 14. 

Proof: This follows directly from Corollary 13 and 
Theorem 14. 0 

Example 4 Continuing Example 3, the coe5cient of 
P in (20 + z1 + zs + z4)r1 when computed over 22 is 
C(0, 100001) mod 2 = 1. a 

6 Counting Redundant Repreaentationa 

Let t m-ltm-r *. *to E (0, 1)” be input together with 
Dm-I, Dm-2,. . . , Do, where Di c (0, 1,. . . , d}. (For con- 
venience, assume that Dj = (0) if j > m.) The goal 
of thii section is to derive algorithms that compute the 
number C(0, &,-r&,-r -- - fo) of radix 2 representations of 
t = val(&4tnr-2. * . te) in which Di is the set of allowable 
digits in the i” significant position. 

Theorem 16 provides a recurrence for computing C(u, y), 
and is the basis for the e5cient algorithms of this section. 
The intuition underlying the recurrence is very simple. Sup 
pose u E M, b E (0, l}, and y E (0, l}‘, and the goal 
is to rewrite uby in other legal representations. For any 
k E Di+lg u - k can be “borrowed” from the moat signi& 
cant position, thus replacing u and b by A and b + 2(u - A), 
respectively. 

Theorem 16 For all u,i E A/, b E (0, 1) and y E 
(0, l)‘, 

C(u,e) = 
1 

1 ,ifuEDe 
0 , otherwise 

C(u,by) = c C(b+2(u-k),y). 
‘@I+1 
&$I 

Roof: 

CASE 1 (c(U,C)): 

CASE 2 (C(u, by)): Let u,i E u, b E (0, I}, and y E 
{O,l}‘. Suppose k E N and c E Ui+’ satisfy val(kz) = 
val(uby). Since val(uby) < (u + 1)2’+’ and val(z) 2 0, 
k < u. Hence 
C(U, by) = #{kZ 1 k E D<+I and Z E DiDi- *. . DO 

and val(kz) = val(uby)} 

= hcF+t #{z E DiDi- . . . D0 1 val(kz) = val(uby)j- 

ki” 

= C #{ZE DiD{-l’*‘DO 1 
b@i+l 
k<u val(z) = (b + 2(u - k))2’ + val(y)} 

= c C(b+2(u-k),y). CI 

In order to make the application of Theorem 16 more 
eflicient, we observe in Lemma 17 that if the most signif- 
icant digit u becomes too great, then C(u, y) = 0, simply 
because there is not enough ‘capacity’ in the available po- 
sitions using only allowable digits. 

Lemma 17 If u 2 2d then C(u, y) = 0. 

Proofi Let i = Iyl. Then val(uy) 2 ~2’ > d2i+1, but 

max{val(z) j z E DiDi- * * . Do} < k d2’ < d2’+‘. 
j=@ 

Hence, 

C(%Y) = #{z E DiDi-1.. . Do I val(z) = val(uy)} 
= 0. q 

Theorem 16 and Lemma 17 together provide a 
polynomial time sequential algorithm for computing 
qu, Llfnr-2 . - . to), using dynamic programming: for pro- 
gressively longer suffixes y of tm--lt,,,-r . . . to and all 0 5 u’ < 
2d, use the recurrence of Theorem 16 to compute C(u’, y). 
This is illustrated in the following example. 

Example 6 This example completes Example 3 by 
showing how to compute C(O,lOOOOl). In applying the 
recurrence of Theorem 16, recall that 

Da = D1 = Do = {0,1,3,4} and 

D, = D5 = D, = Dz = (0). 

The dynamic programming algorithm proceeds by complet- 
ing the following table row by row: 
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us examples of how these entries are computed from the 
recurrence of Theorem 16, 

C(4,OOl) = c(o, 01) + c(2,Ol) + C(6,Ol) + C(8,Ol) 
= 1+2+0+0 
= 3 

Call the oralcle to compute A4 = M(O) x 1 .a x JU(“-~) x 

M(“-‘)a Now C(0, t,Bl t,4 . . . to) is computed ae the O* 
entry of V(cj x M, where V(') is the row vector W = 
(C(0, c), . . . , C(2n - 1, e)). 

since Da = (0,1,3,4}, but 

CORRECTNESS: Let y be a au& of t,,,tnD2 - . . to, i = 
1~1, and 0 2 u < 2n. By induction on i, it will be demon- 
strated that the u* entry of V b) x M(O) x. . a x M(i-2) xM(‘-‘) 

ir C(u, y). 

C(4,OOOl) = C(8,OOl) Basis (i = 0): The u” entry of V(d is C(u,c), by defi- 
= 0 nition. 

eince D, = (0). o 

The following theorem shows that the recurrence of The- 
orem 16 can be evaluated efficiently in parallel, using a 
technique similar to that used in Section 2.3.3 of (131. 

Theorem 18 Given inputs t,-lt,-l. . . to E (0, 1)” and 
&-I, La.. . , Do, where Dj E {0,1,. . .,n), the problem 
of computing C(0, fn-,tn-s +. . to) is in Df 7, and hence in 
MC’. (DE T is Cook’s class of problema NC’-reducible to 
computing the determinant of an integer matrix. See [S] 
for a discussion.) 

hfuetiow:: Let y be the suffix of f,,-,t,,-2 -. . to whose 
length is i. Assume by the induction hypothesis that the 
j’ entry of V(4 x @I x . . . x Ml’-2) x M(W b C(j, y), 
for all 0 5 j .< 2n. By the definition of M(‘l, the uti entry 
of(vk)x~P)x... x M(i-2) x M(i-1)) x Mb] ~,TJ thu 

c C(i, Y). 
O~j~,*n- I 

jrti (mod 1) 
u-)WiW,+t 

Proof: The intuition underlying the proof is aa follows. 
Consider the row vector V(v) = (C(0, y), . . . , C(2n - 1, y)) 
From the recurrence of Theorem 16 itI follows that V(b) 
can be computed simply by multiplying V(v) by a 2n x 
2n matrix with entries from (0, 1). Hence the problem of 
computing C(0, t,-, L2 . . . to) is reduced to the problem of 
multiplying n such matrices M(O), M(l), . . . , M(+l) over 1. 
The theorem then follows from Proposition 5.2 of Cook IS]. 
The details of this reduction to the matrix product problem 
are given below. 

CONSTRUCTION: For 0 5 i < n and 0 5 u, j < Zn, 
compute 

M!i) = 1 , if j E f; (mod 2) and u - f(j - t;) E Di+, 
1.u 0 , otherwise 

Letting k = U - t(j - ti), thii is 

C C(ti + 2(u - k), Y) 
k-Q+1 

r-n+l(L<u 

= C C(ti $- 2(U - k), Y) (by I.mma 17) 
k@i+a 
kL_<r 

=' C(U, tiy) (by Theorem 16). 

ANALYSIS: The following operations are required in the 
construction, and are all readily seen to be in UC’: sub- 
tracting O(log n) bit integers, checking if an integer k < 2n 
is in an input set D g (0, 1, . . ., n}, and computing the 
inner product of 2 vectors each of length 2n whose entries 
are integers of 0( n log n) bits each. u 

Corollary 10 Given input rtringe c,-;Iz,,,~ -e. Q,, 
tn-l&-2 a a- to E (0,l)” and a polynomial a(z) E Z&], 
where e = val(h,,e,,2.-.co), t = val(t,,,lt,,2..~to) and 
the degree of a(z) = n, the problem of computing the coef- 
ficient of 2’ in (a(s))e, computed over 22, is in DE 7, and 
hence in UC2. 

Proof: This follows directly from Corollary 15 and 
Theorem 18. o 



6 The GeneraIication to Arbitrary Finite 
Fielda 

Using technique8 similar to those of the preceding sections, 
we demonstrate that the general Polynomial Exponentia- 
tion problem is in NC* when the characteristic of the field 

. is polynomial in the input aiae and in UC* when the char- 
acteristic is constant. 

Let F be a finite field of characteristic p. Given c, f E 
r-1 m-1 

.U, let c = Ceip’ and t = C tip’ where 0 5 eipti < 
i=O i=O 

p. Then c,-~c,-~ ...eo and t,,,--ltm-2 .-. to are the base p 
representations of c and t, respectively. For convenience, 
we define ei = 0 for i 2 r. 

Consider the polynomial a(z) = LIZ,& E F[z] of de- 

gree d. 
j=O 

CO~O~~JUY 22 The coefficient of 2’ in n cj(&) ie 

equal to (m~K~aojejP’) x Cp~0,t._lt,-2-..~~Y 

Roof: Since t c p“+, it follow6 from Lemma 21 that 

n Cj(d) is equal t0 n Cj,O X C,(O, t,-lt,-*. - - fo). 

20 ( 1 iln+l 
For j 2 r, we have ej = 0 and cj.0 = 1. Therefore 

n Cj,O = n (ao)cj#. 0 
j>m+l m<j<r 

Another way to view C,(O, t,,lt,12~~~ to) is as a 
weighted count of the redundant representations of the inte- 
ger t 2 0 in a radix p system. More precisely, for each j 2 0, 
we define the weight function wj : Jf t F by wj(k) = cj$. 
(Recall that CjJ is the coefficient of zL in cj(Z).) The weight 
of a string y = 9; * * * y. E ui+l, is defined to be 

W(Yi * * * YO) = fi Wj(yj)* 

j=O 

Then, for u,i E N and y E (0, 1, . . .,p - l}‘, Cp(u, y) = 
C{w(z) 1 z E AP+’ and val(z) = val(uy)}. 

proof: Note that if E = 26. ..zeandcj,,j=Oforsome05 j<i, 
then w(z) = 0 and, hence, the representation a does not 

r-1 
WI = ~(44Ppi 

contribute to the weighted count. For the field Z2, 

by Corollary 3 
w(z) = l 

t 

ifsiEDiforO~i~k 
0 otherwise 

and thus C~(U, y) is the parity of the function C(u, y) used 
in Section 4. 

For i 1 r, we have ei = 0 and, hence, ci(&) = 1. Therefore 

gCi(&) = fl Ci(&)* 0 
itO 

Let cii be the coefficient of zj in cc(z). In particular, if 
j > dei or j < 0, then Cij = 0. 

Example 6 Consider a(z) = (2” + 22’ + 22* + 2’) E 
Zs[z] and c = 46, which has the base 3 representation 1201. 
Then 

[a(z)]’ = (2” + 22’ + 2z2 + 2~~)~’ 
= (20 + 221 + 222 + zy’x 

If Y = Yi-lYi-2 . .a YO E M’, define (20 + 221+ 222 + I’k x 
(2” + 22’ + 29 + 2y x 

i-l 

vabtv) = C YjP’* 
j=O 

(2” + 221 + 29 + 2y 
= (2” + 22’ + 222 + 2’)“x 

(20 + 21 + 239 + 223 + 26 + 2’ + z’)Ox 

Foru,i~Nandyf{O,l,...,p-l}i,defineCp(u,y)tobe 

the coefficient of z”~JC*) in h cj(z”). 
j=O 

Lemma 21 If t < pi then the coefficient of z1 in 

Rci(zg’) is qllal t0 n Cj,O times the coefficient of z’ in 
jli 

z Cjfd). 

j-l, 

Roof: For j 2 i, every term of cj(&), except its 
constant term, ie a multiple of Zp’. Cl 

(20) x 
(2” + 221 + 222 + 2’). 

In this redundant representation system, the integer 
t = 82, which is 10001 expreraed in ternary, can be rep 
resented in exactly four ways: 10001,3001, 2301, and 1601. 
The weights ausociated with these representation6 are 0, 
0, 8 E 2 mod 3, and 4 i 1 mod 3, respectively. Thus 
Cs(4, 10001) s 0 mod 3. 

Notice that Cp(u,e) = cer for all u E U. More gener- 
ally, C,(u, y) can be computed by meane of the following 
recurrence. 
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Theorem 23 For u, i E 4, b E (0, 1,. . . , p - l}, and 
YE{O,l)...) p-l}‘, 

Cp(u, by) = c Ci+,,kC,(b + P(” - k), Y)- 
Olk<dp 

Proof: Let z = val,,(uby). The value of CJu, by) is the 
it1 

coefficient Of 2’ in fl Cj(z") = Ci+l(fl’+‘) 
j=O 

This ie the 8um of the coefficients of 2’ in the polyno- 

. Since the coefficient of 8’ 

is ci+a,k theta the Coefficknt Of 

z*-~P’+’ in fiOcj(&) and z - kp”’ = val((b + P(U - k))y), 

it follows that cp(u, by) = c Ci+l,kCp(b i- p(u - k), y). 
k 

Now Ci+l(8) is a polynomial with degree lest than dp, 
80 ci+l$ = 0 for k 2 dp. We may therefore aeaume that the 
limit8 of the summation are 0 5 k < dp. 0 

Theorem 24 For any n > 0, given a field F of char- 
acteristic p and order q = p’, a polynomial a(z) E F[z], of 
degree d, and c, t E U, such that p, A?, d, log(c), and log(t) 
are polynomial in n, the problem of clomputing the coeffi- 
cient of z1 in (a(~))~ can be solved by a Boolean circuit of 
depth 0 ((log n)2 log log n)) and polynomial siae. 

Proot: Let tnrqtnr-2.. . to denote the baee p represen- 
tation of t. Consider the row vector 

Vtr’ = (Cp(O, Y), . . . . Cp(dp - 1, ~1). 

from the recurrence of Theorem 23, it follows that V(b) 
can be computed by simply multiplyiug V(8) by a dp x dp 
matrix with entries in F. 

Specifically, let M(q be the dp x dp matrix such that 
Mg, = ~i+l,fip(u-k)~ Then V(h-tk-r...‘o) = V(‘~-I”-‘O) x M(‘3 
80, by induction, Vhn-lfm-~***h) = Vk) X: M(O) X. . . x M(m-1). 
Notice that C,(O, 1) is the OL element of V(fm-lf+*...to). 

The computation proceed8 a8 follows. 

l Convert the binary integer c to base p. As in Theorem 
7, since loge and logt are polynomial in n, this can 
be done in O(Iog nloglogn) steps. 

l Compute the coefficient8 of the polynomial8 ci(x), for 
O<i<m- 1. This can be done by raising each 
coefficient of e(z) to the power #, a8 in Theorem 7, 
via a Boolean circuit of depth O((log n)2 log logn) and 
then raising the resulting degree d polynomial to the 
power ei < p, which, from Theorem 4, can be done in 
O(log n log log n) depth, since d and p are polynomial 
in n. 

Comput,e the product V(r) x M(O) x. a - x A@-‘). (Re- 
cali that the element8 of Vb) and M(O), . . . , Mf’“-‘) 
are coefficient8 of the polynomiala co(z), . . . , c,,,-l(t).) 
Since rn = O(logt), d, and p are polynomial in n, 
these matrix multiplications can be performed in par- 
allel, a8 in Theorem 7, by a Boolean circuit of depth 
O((lognr)2 loglogn). 

Multiply C,(O, t,+t,-a -.-to) (which b the O* en- 
try of the row vector V(‘) x M(O) x w . . x Mm-*)) by 
mt~i<bdeipi- A 8 a b ove, this can be computed by a 

Boolean circuit in depth O((log n)l log log n). q 

The following two corollaries are analogues of Corollar- 
ies 8 and 9 in Section 3. 

Corollary 25 The Polynomial Exponentiation Prob- 
lem ie in MC’ for finite field8 of polynomial characteri8tic. 

Corollary 26 The Polynomid Ezponentiation Pmb- 
km is in UC* for finite fields whose order ia O(1). 

7 #P-Completeness of a Variant 

A8 mentioned in Section 1, if the degree of the base polyno- 
mial a(z) is changed from n to exponential in n (but a(z) 
still is allowed to have only n nonsero terms), the effect is 
to change the complexity of the problem: instead of being 
in UC’, it is now #P-hard. This remain8 true even if the 
exponent is changed from exponential in n to n. (See Garey 
and Johnson [8] for a discussion of #P.) 

Theorem 27 (Rabin, Valiant (personal communica- 
tion]) Let 

where wl, w2, . . . , w8 are n-bit integers. Given a(z) and an 
n-bit integer f, the problem of computing the coefficient of 
zf in (a(2))” over 2 ia #P-complete. 

Proof: To demonrtrate inclusion in #P, a count- 
ing machine would make IL independent nondeterministic 
guesses, each gueea being one of a(z)‘8 n + 1 terms. The 
machine accepts if and only if the product of these n guessed 
termn is zf. The number of accepting computations b the 
coefficient of zf in (a(2))“. 

To demonstrate #P-hardness, notice that the problem 
ir a alight variant of the counting version of a knapeack 
problem with weight8 wl, tua, . . . , w, and knapsack capac- 
ity t; the only difference i8 that the lame weight can be 
selected more than once, as long as the total number of 
selections is wtill at most n. By returning to the reduction 
from the exact cover problem to the knapsack problem [S], 
it is straightforward to verify that, for those instances of 
the knapsack problem that arise in the reduction, no rolu- 
tion exists in which a weight is selected more than once. 
cl 



It ie even easier to see that computing the coefficient of 
z1 in the product of n spame polynomials is #P-complete, 
by considering (1 + z-1)( 1 + L’S)_ . . (1 + zga). A product 

r-1 
of sparse polynomials arises as n a(z2’) in Section 4; what 

i=o 
seems to make these easier to compute is the special re- 
lationship (a geometric sequence) of the exponents among 
the constituent polynomials. 

Notice that Theorem 27 remains true when 2 is re- 
placed by Z,, where p > (n + l)n-l, since the number of 
solutions of this version of the knapsack problem is at most 
(n + I)--‘. If, instead of having the base field fixed in 
advance, we allow the field to be specified as part of the in- 
put, then, by the Chinese Remainder Theorem, this sparse 
polynomial exponentiation problem is still #P-complete 
with the restriction that characteristic of the input field 
is O(n log n). This problem is even closer to that discussed 
in Section 6. 
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