Check for
Updates

The Parallel Complexity of
Exponentiating Polynomials over Finite Fields

Faith E. Fich
Martin Tompa

Department of Computer Science, FR-35
University of Washington
Seattle, WA 98195 U.S.A.

1 Exponentiation Problems

There are a number of important algebraic problems that
enjoy efficient sequential solutions, but for which the exis-
tence of much more efficient parallel solutions is currently
unresolved. To put this rather imprecise statement in tech-
nical ferms, those problems that we wish to consider are in
P, but it is not known whether or not they are in NC. Two
such problems are particularly important because of their
many applications. They are the computation of great-
est common divisors, and modular integer exponentiation.
This work is motivated by the latter.

Given n-bit integers a, ¢, and m, the problem of Mod-
ular Integer Ezponentiation is to compute a® mod m. To
illustrate its many applications, we list here some problems
that are N(C-reducible to Modular Integer Exponentiation
(but whose membership in NC is likewise unresolved):

1. primality testing (by a slight variation of the Miller-
Rabin algorithm [14,16]; in this application, the re-
duction to Modular Integer Exponentiation is proba-
bilistic),

2. computation of the encryption and decryption func-
tions in Rivest, Shamir, and Adleman’s public key
cryptosystem [17],

3. inverse computation modulo any prime,

4. Chinese remaindering with respect to prime mod-
uli [3],

5. quadratic residuosity modulo any prime [3], and

6. extraciion of square roots modulo any prime congru-
ent to 3 mod 4 [15].

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM 0-89791-151-2/85/005/0038 $00.75

It is easy to show that there is a polynomial time al-
gorithm for Modular Integer Exponentiation [3], but it is
unknown whether it is in NC, complete for P, or neither [6].
Von zur Gathen [11] approached this problem by showing
that it does have an extremely efficient parallel solution for
the special case in which all prime factors of the modulus m
are polynomial in n; note, though, that this is not the case
in any of the applications listed in the previous paragraph.

Borodin (see [11]) proposed a variant of the problem
that is closer to ordinary integer exponentiation: given n-
bit integers ¢, a, and e, the Integer Ezponentiation problem
is to compute the t* bit of a°. It is no longer clear that this
problem is even in P, since the repeated squaring method.
that works for Modular Integer Exponentiation would have
to contend with the exponential length of intermediate val-
ues.

The n low order bits of a® can be determined by comput-
ing ¢¢ mod 2", using von gur Gathen’s algorithm. Alt [1]
has shown that the high order bits of a* can also be com-
puted quickly in parallel. This is done by using a truncated
Taylor series to approximately compute ln e, multiplying
by e, and then using a truncated Taylor series to approxi-
mately compute exp(e ln a)).

In this work, we seek a better understanding of the par-
allel complexities of these exponentiation problems by tran-
scribing them from the integer domain into a polynomial
domain: if one thinks of the n bits of a (and the n bits of m,
in the Modular Integer Exponentiation problem) as n coef-
ficients of a polynomial over Z; (the ring of integers modulo
2), the transcribed problems are polynomial exponentiation
problems over Z;. The benefit of this transcription is that
it eliminates the complication of “carries” which arise in
the integer versions, allowing us to concentrate on the fun-
damental exponentiation operation.

These polynomial problems will now be defined pre-
cigely, doing so with respect to a general finite field F' rather
than the specific field Z,:

o Modular Polynomsal Ezponentiation: Given polyno-
mials a(z), m(z) € F[z], each of degree at most n,
and an n-bit integer ¢, compute (a(z))* mod m(z) €

F(z]/(m(=))-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F22145.22150&domain=pdf&date_stamp=1985-12-01

e Polynomial Ezponentiation: Given a polynomial
a(z) € F|z] of degree at most n, and n-bit integers ¢
and ¢, compute the coefficient of z* in (a(z))* € F[z)].

As further motivation for studying exponentiation prob-
lems in this polynomial domain, note that the Modular
Polynomial Exponentiation problem arises in Berlekamp’s
algorithm for factoring polynomials over finite fields [5].
Von gur Gathen [9] demonstrates a random N algorithm
for factoring polynomials over finite fields along these lines.

Modular Polynomial Exponentiation certainly has a
polynomial time solution, analogous to the repeated squar-
ing solution for Modular Integer Exponentiation. Poly-
nomial Exponentiation, on the other hand, is like Integer
Exponentiation, in the sense that a polynomial time solu-
tion is not evident, due to the exponential degree of in-
termediate polynomials. To make matters worse, Rabin
and Valiant [personal communication| have observed that
the following variant of Polynomial Exponentiation is #°-
complete:

1. The computation takes place over the integers.

2. The polynomial a(z) may have degree up to 2", but
still has only n nonzero terms.

3. The exponent ¢, rather than having n bits, need only
have value n.

{Details of this result are given in Section 7.)

Section 3 describes a method for solving the Modular
Polynomial Exponentiation problem, demonstrating that
for fields whose characteristic is polynomial in the prob-
lem size, this problem is in NC®. If the order of the field
is restricted to be less than some constant, the problem
is in NC?. In tlie special case when the modulus m(z) is
irreducible over Z,, this problem is equivalent to exponen-
tiating elements in the large finite field Z;[z]/(m(z)). It is
interesting to contrast this with one of von sur Gathen’s
results [11, theorem 2.3], which shows the impossibility of
such a fast parallel algorithm for exponentiation in large
finite fields when the elements of that field must be treated
atomically. The result of Section 3 has applications to in-
verse computation, quadratic residuosity, and the extrac-
tion of square roots in large finite fields.

In Sections 4 and 5, it will be demonstrated that the
Polynomial Exponentiation problem over Z; not only has a
polynomial time solution, but is in fact in NC?. This result
will follow from a reduction to the problem of counting
the number of representations of ¢ in a certain system of
redundant representations of the integers, a combinatorial
problem that is interesting in its own right. This result is
generalized in Section 3 to fields of constant order. We also
show that, for fields whose characteristic is polynomial in
the input sige, the Polynomial Exponentiation problem is
in NC®. the problem is in NC?.

39

2 Preliminaries

We begin with a short description of notation and some
properties of finite fields. Throughout the paper, N denotes
the set of nonnegative integers and Z denotes the ring of
integers.

If F is a finite field, we use p to denote its characteristic
and ¢ = p‘ to denote its order. The finite field of order
p is Z,, the ring of integers modulo p. The usual way to
represent an element of this field is as an integer between
0 and p — 1, written in binary.

The field of order pf, for £ > 1, can be described as
Z,|yl/(9(y)) where g(y) € Z,[y] is a monic irreducible poly-
nomial of degree £. Elements of this field are represented
by polynomials in Z,{y] of degree at most £ — 1; i.e. if

t-1

7 € Z,[y)/(9(v)), then f = 3 fiy' where f; € Z, for

=0
0 <1< L-1. Wespecify a field as part of the input
by providing p and g(y).

The key property of finite fields that we require in this
paper is their “nice® binomial theorem:

Proposition 1 Let F be a field with characteristic p.
If a(z) and b(z) are elements of F[z], then (a(z) + b(z))? =
(a(z))? + (b(z)).

Proof: For0<i < p, (’) is a multiple of p, and hence

]
isOim F. 0O

Corollary 2 Let F be a field with characteristic p.
d
I a(z) = Y a2 € Flz} and k € N, then (a{z))" =

=0
d
L@y
=0
Proof: This follows by induction from Proposition 1.
a

Corollary 8 If F is a field of order ¢ and a(z) € F|z],
then (a(z))?" = a(z*") for all k € N.

Proof: This follows from Corollary 2 and the fact that
af=aforallacF. 0O

We use uniform Boolean circuits of polynomial size as
our model of parallel computation. We measure complexity
in terms of the depth of these circuits as a function of n, a
parameter describing the sise of the input.

The following result of Eberly [7] concerning polynomial
arithmetic over finite fields is important for analysing the
complexity of our algorithms.

Theorem 4 Let F be a field of order ¢ such that
logg = n°), Then the multiplication of n°() polynomials
in F[z] and the division with remainder of two polynomi-
als in F[z], where the polynomials have degree less than
n°0), can be implemented using uniform Boolean circuits
of depth O(log nloglog n) and polynomial sige.

3 Modular Polynomial Exponentiation

In [5], Berlekamp describes an important method for com-

puting (a(z))? mod m(z), where F is a finite field of order g,
-1
m(z) € F[z], d i the degree of m(z), and a(z) = }_aiz’ €

=0
F[z]/(m(z)). Specifically, he constructs a d x d matrix Q
whose 1% row (Qi.0, Qi -- ,Q.,g_;) is the sequence of coef-

ficients of the polynomial Z Qi 2’ = z"* mod m(z). Then
j=0

the elements of the row vector (ag, @y, ..., 24-;) X Q are the

coeficients of (a(z))* mod m(z), because

—

Y a2, by Corollary 3

=0

-1

2

1’0

>

=0

(a(=))*

(a. Y Qi) mod m(z), by definition of @
(E aanJ)

More generally, the elements of the row vector
G‘_l) x q.

are the coefficients of (a(z))" mod m(z). By multiply-
ing together an appropriate combination of these powers
of a(z), any power of a(z) can be obtained. When the or-
der of the field, ¢, is polynomial in n, this is an efficient
parallel method for performing modular polynomial expo-
pentiation. With minor modifications, this technique can
be adapted so that only the characteristic p must be poly-
nomial in n,

Let R be the d x d matrix whose i** row

(-Ri.m R",ls sesy R!'.J—l)

(Goaan---»

a1
is the sequence of coefficients of the polynomial Y R;;z' =
j=0

i
£? mod m(z). (Recall that p is the characteristic of F.)
Define R*) to be the the matrix obtained by raising each

entry of R to the power P ie. R,() = (R;;)"". Finally, let
M® = RE-1) x ... x RN x RO,

Lemma 6 The i* row (MY M‘"{), M!")_,) of the

matrix M(* is the sequence of coeﬂiclen ts of the polynomial
-1

k) —
Y M) =

j=0

z'** mod m(z).

40

Proof: The proof is by induction on k. If k = 1, then
M = R and the lemma is true by the definition of R.

Now let & > 1 and assume that the +* row
(M9, M5, Ml
of the matnx M®) is the sequence of coefficients of the
polynomial ‘Z:M("’z" = 27" mod m(z). Since MG+ =

R x M"‘) nt follows that

E)) p g)
- £ £ rpaaty) o
E(Ru.)’ (Z
A=0 §=0

M,«;.)zi)

L
Mt

§=0

T (Rea)”* 2 mod m(s)
A=0 N
d-1 4
> R.;,.z“) , by Corollary 2
=0
(z"')' mod m(z), by definition of R

= gzr"

Thus the lemma is true for k + 1. By induction, it is true
forallé>1. 0

-1
Corollary 6 If a(z) = Y 4,z' then the elements of

=0
the row vector ((ao)l",(a,)", ey (ag_,)"') X M® are the
coefficients of the polynomial (a(z)})*" mod m(z).

Proof:
\ d-1 .
(a(z))" = Y (a;)" 2z by Corollary 2
==0

n

d-1 -1
.2: (as)” (z: }vl.(:)z') mod m(z), by Lemma §
:r::; d-1 ’=:
% (Sermp)s. o
§=0 \i=g

Theorem 7 For any n > 0, given a field F of charac-
teristic p and order q = p‘, polynomials m(z) € F|z], with
Z a;z* € F(z]/(m(z)), and a positive

bmary integer e, such that P, 4, d, and log(e) are polynomial
in n, the problem of computing (a(z))* mod m(z) can be
solved by a Boolean circuit of depth O ({log n)? log log n))
and polynomial sige.

degree d, and a(z) =

Proof: The computation consists of the following steps.

° C?nvert the binary integer e to base p so that ¢ =
—
3 eip* and 0 < ¢; < p. Since p and loge are polyno-
k=0
mial in n, each p-ary digit of this representation can
be computed in parallel by a Boolean circuit of depth
O(log n loglog n) [2].

Compute the d rows of R in parallel. To com-
pute z» mod m(x), it suffices to divide the poly-
nomial z/?, which has degree at most (d — 1)p, by
the degree d polynomial m(z). By Theorem 4, this
can be accomplished by a Boolean circuit of depth
O{log dp loglog dp) = O(log n loglog n).

In parallel, compute all of the entries of R~1) and the
row vectors ((ao)"* ,...,(ad_,)’*) for1<k<r-1.
Each of these computations consists of exponentiating
a field element. Since f7 = f for all f € F, the
exponents can all be assumed to be less than g.

If g =p(ie. F=2,), then by Theorem 4.3 in
[4], this computation can be performed by a Boolean
circuit of depth O(log n)

Otherwise, F ~ Z,ly|/(g(y)) for some irreducible
polynomial g(y) € Z,[y] of degree £ and any element
of the field F is actually a polynomial f(y) € 2Z,[y]
of degree less than £. Thus, if our theorem is true for
the field Z,, then we may exponentiate f(y) using a
Boolean circuit of depth O ((log n)? log log n)).

For all 1 < k < r — 1 in parallel, compute
(@) .. s (aga)") x M®)

to obtain the coefficients of (a(z))** mod m(z). This
can be done using a balanced tree of k matrix multi-
plications.

Each matrix multiplication consists of 1 + logd par-
allel steps; the first is the multiplication of pairs
of field elements and the rest are the addition of
pairs of field elements. The addition of two field ele-
ments can be performed by a Boolean circuit of depth
O(log log p) = O(log log n).

If F = Z,, the multiplication of two field ele-
ments can be accomplished by performing an in-
teger multiplication followed by an integer division
with remainder in depth O(loglogplogloglogp) =
Ologlog nlogloglog n). (The integers involved have
O(logp) bits.)

Otherwise the multiplication of two field elements
consists of a multiplication and a division with re-
mainder of two polynomials of degree O(£). By The-
orem 4, this can be done in depth O(log nloglogn).
Hence, each matrix multiplication can be performed
by a Boolean circuit of depth O(log nloglogn). Since
k<r nC), the total depth necessary for a
Boolean circuit to perform the matrix multiplications
is O((log n)? loglog n).

41

e Since (a(z))* = 'ﬁ((a(z))")¢.’ the only remain-

k=0
7—1

ing task is the multiplication of Y_ex = O(ploge)

k=0
polynomials in F[z]/(m(z)). By Theorem 4, this
can be accomplished by a Boolean circuit of depth
O(log n log log n) because p, loge, and d are all n®0),
a

Corollary 8 The Modular Folynomial Ezponentiation
Problem is in NC? for finite fields of polynomial character-
istic.

Corollary 9 The Modular Polynomial Ezponentiation
Problem is in NC? for finite fields whose order is O(1).

Proof: Observe that, when the order of the field is
O(1), the addition and multiplication of field elements can
be performed by Boolean circuits of constant depth. O

In the special case when m(z) is monic and irreducible
over Z,, that is, Z,[z]/(m(z)) = GF(p?), Corollary 8 has
applications to computations in Z,[z]/(m(z)) that are anal-.
ogous to the applications of Modular Integer Exponentia-
tion outlined in Section 1. Three of these applications are
listed below.

Proposition 10 Let p be prime and m(z) be monic,
irreducible over 2,, and of degree n. Then for any a(z) €
Z,[2)/(m(2)) - {0}, (a(z))~* = (a(z))?"~*. Bence, comput-
ing inverses in Z,[z]/(m(z)) is in N C®, provided p = n®0).

Proposition 11 Let p be an odd prime, m(z) be
monic, irreducible over Z,, and of degree n, and a(z) €
2Z,[z]/(m(z)) — {0}. Then a(z) is a quadratic residue if and
only if (a(z))3¥*~" = 1. Hence, determining quadratic
residuosity in Z,[z]/(m(z)) is in NC*, provided p = n®l).

Proposition 12 Let p = 3 (mod 4) be prime and
m(z) be monic, irreducible over Z,, and of odd degree n.
Let a(z) € Z,[z]/(m(z)) be a quadratic residue. Then
(a(z))¢**+V i a square root of a(z). Hence, extracting
square roots in Z,[z]/(m(z)) is in NC?, provided p = n®H),

4 Relating Polynomial Exponentiation
to the Redundant Representations of
Integers

For expository purposes, the results of this section and the
next are presented with respect to the special case F = 2,.
In Section 6 we discuas how these results can be generalized
to an arbitrary finite field whose characteristic is polyno-
mial in the input size.

r
Given e € N, let e = Y_¢;2', where ¢; € {0,1}. Then

=0
e_16,_2-- ¢ € {0,1}" is the binary representation of e.

Corollary 18 For a(z) € 2Z;]z], (a(z))* = 'I—Ila(z"')‘i .

Proof: This follows directly from Corollaries 2 and 3.
0O

Example 1 This begins a running example of how to
compute the coefficient of z% in (z° + z! + 2z° + z4)!! over
Z,. To begin, Corollary 13 is applied to decompose (z° +
z! + 2° + z*)", In this example e = 11,4 = 1011,, 80

(2° + 2* + 2% + 24) %' x
(z° + 2 +2° + ,,A)oxz’x
(zl) + gl + zS + zl)lle Y4
(30 + Il‘ + za + zl)lxz"
= (2% + 2! + 2%+ z4)8x
(%) x
(z° + z* + 2% + 24)*x
(z° + 2 + 2% 4 24!
= (2% + 2% + 2% + 23?)x
(2%)x
(z° 4+ 2% + 2% + 2%)x
(2°+z'+2*+24). O

(2 +z'+ 2+ 2 =

We now define the redundant representation system to
which Section 1 alluded. The notation D;D;_;--- Dy de-
notes the concatenation of the sets D;,...,D;, Dy. The
i-fold concatenation of D with itself is denoted by D*.

If y = yi—1¥i-2-- - yo € N¥, define

i=1

val(y) = 3" y;2/.
=0

Fix sets Dy, Dy,...,Diy... C N. Foru,s € Nand y €
{0,1), define

C(u,y) = #{z € DDy, - Dy | val(z) = val(ug)}.

in words, C(0, y) is the number of representations of the in-
teger val(y) in a radix 2 system in which the set of allowable
digits in the #® least significant position is D;.

Example 2 val(4001) = 4-234-0-22+0-2'+1-2° = 33.
Let D; = Dg = Do = {0, 1,3,4} and Dz = {0}. Then
N(4,001) = 3, since there are 3 values of z € Dy D,D, D,
with val(z) = 33, namely 4001, 3041, and 3033. D

Theorem 14 provides the promised reduction from the
Polynomial Exponentiation problem to computation of the
number of redundant representations of the integer t.

Theorem 14 Let a(z) = 6o + a1z + --- + ayz’ €
23|z, let t,e € N, and let ¢p_ 1tz --¥ € {0,1}™ and
¢—16,-2:-€ € {0,1}" denote the binary representations
of t and e, respectively. Define ¢; = 0 if § > r. Then

the coefficient of z* in [] a(z*)% when multiplied over Z is
)

42

C(0,tpm—1tm—z- - -t,) where, for all £ € N, the set of allow-
able digits for the i* position is

-

Proof: Each term in the expansion of [] a(z*)* is
20
obtained by selecting one term from each of the factors
a(z?)" and multiplying them together. Note that if ¢; = 0,
then a(z?')% = 1 = z° and, thus, z° is the only term which
can be selected from this factor.

{k|as= 1},
{0},

fe=1
otherwise

When e; = 1, the set of terms of the factor a(2z?')% =

‘ . o
3" ai(z¥)* is {z** | a4 = 1}. By our definition of the sets
k=0
D;, [I 2% is a term in the expansion of II a(z*)* if and
>0 >0

only if z; € D; for all i > 0.

The coefficient of z* in [] a(z*)* when multiplied over

20
Z is the number of terms [] z%* in the expansion of
20
IT a(z*)% which satisfy ¢t = ¥ 22", Fori >r, ;=0
20 >0

r—1

and 2z; € D; = {0}. Thust = Y} 22° = val(z). This is
exactly the definition of C(0, t,..-.,zt:._z cedp). O

Example 3 Example 1 is continued here by demon-
sirating how to use Theorem 14 in order to compute the
coefficient of % in

P(z) = (2°+ 2+ 2% + 23%)x
(=°)x
(z° + 2z + z* + z%)x
(22 +z'+22+32%). O

when multiplied over Z. In the statement of Theorem 14,
a(z) = 2"+ ' + 23 4+ 24,
t = 33, which is 100001 written in binary,
e =11, which is 1011 written in binary,
Da = Dl = Do = {0, 1,3,4}, and
D.=D5=D4=Dz={0}.
The conclusion of Theorem 14 is that the coefficient of £
in P(z) is C(0,100001). The next section shows how to
compute this value, but for this small example it is easy to
verify that C(0,100001) = 3, using the same 3 representa-
tions as in Example 2. To understand at an intuitive level

why Theorem 14 is true, note the following natural corre-
spondences:

Representation Monomial
4001 (z')? () () () =22 -2 - 2° - 2}
3041 (%) - (z9)* - (24)? - (a')! = 2% - 20 - 28 - 2
3033 (z2)° - (29)* - (%) - (2°)* = 24 - 20 - 2% . 2

Thus, for example, the representation 3041 corresponds to
selecting z?* from the first factor of P(z), z° from the sec-
ond, and z® from the third, and z' from the fourth. The
product of these four selections contributes 1 to the coef-
ficient of =%, just as 3041 contributes 1 to the number of
representations of 100001. O

Corollary 15 Let a(z) € 2,[z], let t,e € N, and let
tm_1tm-z - 8o € {0,1}™ be the binary representation of ¢.
Then the coefficient of z' in (a(z))* when compuied over
2, is the parity of C(0,tp_1tm—2--- o), where the set of
allowable digits is as in Theorem 14.

Proof: This follows directly from Corollary 13 and
Theorem 14. QO

Example 4 Continuing Example 3, the coefficient of
£ in (z° + z* + z° + z*)" when computed over 2; is
C(0,100001) mod 2=1. O

5 Counting Redundant Representations

Let tp_itm—2-t¢ € {0,1}™ be input together with
Dp_1,Dn_2,...,Dp, where D; C {0,1,...,d}. (For con-
venience, assume that D; = {0} if § > m.) The goal
of this section is to derive algorithms that compute the
pumber C(0,2m_stm—2---¢p) of radix 2 representations of
t = val{tp_1tm—2- - to) in which D; is the set of allowable
digits in the i* significant position.

Theorem 16 provides a recurrence for computing C(u, y),
and is the basis for the efficient algorithms of this section.
The intuition underlying the recurrence is very simple. Sup-
pose u € N, b € {0,1}, and y € {0,1}%, and the goal
is to rewrite uby in other legal representations. For any
k € D;y1, u — k can be *borrowed” from the most signifi-
cant position, thus replacing u and b by k and b+ 2(u—k),
respectively.

Theorem 16 For all u,s € N, b € {0,1} and y €
{o,1Y,

_f1,itueD

Clwe) = {0 , otherwise

Cluby) = 3 C(b+2(u-k),y).
e

43

Proof:
CasE 1 (C(u,€)):

. #{z € D, | vai(2) = val(u)}
#{BGDo|z=u}.

Clu,¢)

CASE 2 (C(u,by)): Let u,s € N, b€ {0,1}, and y €
{0,1}°. Suppose k € N and z € N**! satisfy val(kz) =
val(uby). Since val(uby) < (u + 1)2°*! and val(z) > 0,
k < u. Hence
C(ﬂ,by) = #{kz I ke D.'.H andze D;D,_,--- Dy

and val(kz) = val(uby)}

= ¥ #{z€DiDiy-- Do|val(kz) = val(uby)}

€D, 44
k<u

= Y #{z€D;D;_y- Dy |
¥ val(z) = (b + 2(u — k))2° + val(y)}

= Y Cb+2(u-k)y). O

YDy,
k<u
In order to make the application of Theorem 16 more
efficient, we observe in Lemma 17 that if the most signif-
icant digit u becomes too great, then C(u,y) = 0, simply
because there is not enough *capacity” in the available po-
sitions using only allowable digits.

Lemma 17 If u > 2d then C(u,y) = 0.

Proof: Let i = |y|. Then val{uy) > u2’ > d2*+!, but

max{val(z) | z € D;D;_y--- Do} £ ¥ d27 < d2°*1,

i=0
Hence,

C(u,y) = #{z€ DiD;-, - Dy | val(z) = val(uy)}

0. O

Theorem 16 and Lemma 17 together provide a
polynomial time sequential algorithm for computing
C(t,tm—1tm—2 - - - tp), using dynamic programming: for pro-
gressively longer suffixes y of {py_1tm—2---fpand all0 < o' <
2d, use the recurrence of Theorem 16 to compute C(u',y).
This is illustrated in the following example.

Example 6 This example completes Example 3 by

showing how to compute C(0,100001). In applying the
recurrence of Theorem 16, recall that

.D; = Dl = Do = {0,!,3,4) and
D‘=D5=D4=Dz={0}.

The dynamic programming algorithm proceeds by complet-
ing the following table row by row:

y _[Cy) CQ,y) C2y) CBy) C(4y) CB,y) C6,y) C(1,y)
€ 1 1 0 1 1 0 0 0
1 1 2 1 1 2 1 0 0
o1 1 1 2 0 0 0 0 0
001 1 3 2 1 3 2 0 0
0001 1 2 3 0 0 0 0 0
00001 | 1 3 0 0 0 0 0 0
100001 3 0 0 0 0 0 0 0

As examples of how these entries are computed from the
recurrence of Theorem 16,

C(4,001) = C(0,01) + C(2,01) + C(6,01) + C(8,01)
1+2+0+40

3

since Dy = {0, 1,3, 4}, but

C(4,0001) = C(8,001)
0

since Dy = {0}. O

The following theorem shows that the recurrence of The-
orem 16 can be evaluated efficiently in parallel, using a
technique similar to that used in Section 2.3.3 of [13].

Theorem 18 Given inputs tn_yf,—2-- -t € {0,1}" and
D,_1,D,_3,..., Dy, where D; C {0,1,...,n}, the problem
of computing C(0,1,,_stn_2--t) is in DET, and hence in
NC:. (DET is Cook’s class of problems N C'-reducible to
computing the determinant of an integer matrix. See [6]
for a discussion.)

Proof: The intuition underlying the proof is as follows.
Consider the row vector Vi = (C(0,y),...,C(2n — 1,¥))
From the recurrence of Theorem 16 it follows that V(v
can be computed simply by multiplying V™ by a 2n x
2n matrix with entries from {0,1}. Hence the problem of
computing C(0,¢,_1tn-2 - - - to) is reduced to the problem of

multiplying n such matrices M(® M) M0C-1) oyer 7, .

The theorem then follows from Proposition 5.2 of Cook [6)].
The details of this reduction to the matrix product problem
are given below.

CONSTRUCTION: For 0 < ¢ < nand 0 £ 4,7 < 2n,
compute
MO = 1 ,ifj=¢(mod2)and u - i(; - ;) € D,y
14 0 , otherwise ’

b

Call the oracle to compute M = M x ... x M2 x
M"Y, Now C(O, th-ilpn-2"" tu) is computed as the 0%
entry of V(9 x M, where V(9 is the row vector V(9 =
(€O, 6, ..., C(n —1,6).

CORRECTNESS: Let y be a suffix of ¢,_ytp—2- -y, s =
lyl, and 0 £ u < 2n. By induction on §, it will be demon-
strated that the u® entry of V{9 x M(® x. . . x M—2} x M-1)
is C(u,y).

Basis (i == 0): The u® entry of Vd is C(u,¢), by defi-
pition.

Induction: Let y be the suffix of ¢, ;¢,_2---t, whose
length is 1. Assume by the induction hypothesis that the
j% entry of V@ x MO x ... x M6-2 x MG-1) is-C(j,y),
for all 0 < j < 2n. By the definition of M9, the u®* entry
of (V@ x MO x ... x M- x M(-1) x M® is thus

>z

0L iCIn—1
jEt; (mod 3)

u—4(j—t:}€Diys
Letting k = u — (5 — ¢,), this is
> C(ti+2(u—k)y)

rED 4,y

C(4,y)

w—n+1<k<s
= Y C(t +2(u—k),y) (by Lemma 17)
k€D; 4,
&k<u
= C(uy, t;y) (by Theorem 16).

ANALYSIS: The following operations are required in the
construction, and are all readily seen to be in ¥C': sub-
tracting O(log n) bit integers, checking if an integer k < 2n
is in an input set D C {0,1,...,n}, and computing the
inner product of 2 vectors each of length 2n whose entries
are integers of O(nlogn) bits each. O

Corollary 19 Given input strings e,—;e,-3--- ¢,
tastn_z- -ty € {0,1}" and a polynomial a(z) € Z|z],
where ¢ = val(es-1€,-2:--€), t = val(th_1tp—2---%) and
the degree of a(z) = n, the problem of computing the coef-
ficient of z* in (a(z))*, computed over Z;, is in DET, and
hence in NC?.

Proof: This follows directly from Corollary 15 and
Theorem 18. 0O

6 The Generalization to Arbitrary Finite
Fields

Using techniques similar to those of the preceding sections,
- we demonstrate that the general Polynomial Exponentia-
tion problem is in NC* when the characteristic of the field
is polynomial in the input size and in NC? when the char-
acteristic is constant.

Let F be a finite field of characteristic p. Given ¢,t €

r—1 m—1

N,let e = Zc.p and ¢t = Et.p' where 0 < ¢, 4 <

p. Then e,_,c,_z -¢p and t,,._lt,,._g -1p are the base p
representations of e and ¢, respectively. For convenience,
we definee; =0 fors > r,

d
Consider the polynomial a(z) = Y_ a;2/ € F|z] of de-

gree d. i=0
Corollary 20 [a(z)]* = Hc,-(z") where
4 e
ciz) = (}_:(a,-)"z’) .
Proof:
la(z)}* = E(a(z))‘i"

= H Z(“ > (=)’) ., by Corollary 3
=]_;I c;(z’)

Fori > r, we havee; = 0 and, hence, c;(z*') = 1. Therefore
r—1

Hcs(z")—HC-(z’) =

20

Let ¢;; be the coefficient of z/ in ¢;(z). In particular, if
J>de;orj <0, thenc;; =0.

Hy=yi_1yi-2---yo € N*, define
i-1]
val(y) = >_y;¥.
=0

Foruie Nandy€{0,1,...,p~ 1}, define C,(u,y) to be
the coefficient of @ in [] ¢;(z*).
=0

Lemma 21 If t < p* then the coefficient of z* in

II ci(z*’) is equal to] ¢;o times the coefficient of z in
120 J2s

Ec,'(z'i)-

Proof: For j 2 i, every term of cj(z*'), except its
constant term, is a multiple of z¢°. 0O

45

Corollary 22 The coefficient of z! in [] c;(z*') is

§20

H (ao)c,-pi) x C,(O, tm-ltm-z Tt to)-

m<j<r

equal to (

Proof: Since t < p™+!, it follows from Lemma 21 that
[Ici(z) isequal to | [T 0| X Co(0, tmortm—z--- o).

j>0 j2m+1
For j > r, we have ¢; = 0 and ¢jo = 1. Therefore

II co= II (a)*. O

F2m+l m<i<r

Another way to view C,(0,tp.1tm-2---o) is as a
weighted count of the redundant representations of the inte-
gert > 0in a radix p system. More precisely, for each j > 0,
we define the weight function w; : N — F by w;(k) = cj.
(Recall that ¢;, is the coefficient of z* in ¢;(z).) The weight
of a string y = y; - - - yop € N**, is defined to be

%) = l:[w;(y;)-

w(y.'-..
=0
Then, for u,4 € N and y € {0,1,...,p ~ 1}*, Cpu,y) =

L{w(z) | z € N*! and val(z) = val(uy)}.
Notethat if z = z;---zpand ¢;,; = Oforsome 0 < j <4,

then w(z) = 0 and, hence, the representation z does not
contribute to the weighted count. For the field Z;,

w(z) = 1 ifz;eD;for0<i<k
T 10 otherwise

and thus C;(u,y) is the parity of the function C(u, y) used
in Section 4.

Example 68 Consider a(z) = (z° + 22' + 222 + z%) €
Zs[z] and e = 46, which has the base 3 representation 1201.
Then

[a(z)]* (z° + 22" + 227 + z4)4¢

(z° + 22! + 222 + z4) P

(z° + 22* + 222 + 24)*?x

(z° + 22" + 22% + z4)*3x

(z° + 22" + 222 + g9

(z° + 2z + 222 + 24)%"x
(z°+ =2+ 222 + 22 + 28 + 2* +
(%)%

(z° + 22! + 22% + z4).

z*)'x

In this redundant representation system, the integer
t = 82, which is 10001 expressed in ternary, can be rep-
resented in exactly four ways: 10001, 3001, 2301, and 1601.
The weights associated with these representations are 0,
0,8 = 2 mod 3, and 4 = 1 mod 3, respectively. Thus
C;(4,10001) = 0 mod 3.

Notice that Cp(u,€) = co for all ¥ € N. More gener-
ally, C,(u,y) can be computed by means of the following

recurrence.

Theorem 23 For u,i € N, b € {0,1,...,p— 1}, and
ye{osli'“v?‘l}"

Cplu, by) = Z Cirr1kCp(b+ p(u — k), y)-

0<k<dp

Proof: Let z = val,(uby). The value of C;(u, by) is the
i+1 i .
coefficient of z* in [¢j(z”’) = eipa(=**") | [I ;(z*) |-
j=0 j=0
This is the sum of the coefficients of z* in the polyno-

L\ .
mials ¢4z | [[i(z*')
§=0

. Since the coefficient of z*

in ¢ip1az®® ' | [] ¢i(2*')] is cit1 s times the coefficient of
J=0
z+-k* in [¢j(z*’) and z — kp*+! = val((b + p(u — k))),
§=0
it follows that C,(u, by} = Y cis1£Cp(b + p(u — k), ¥).
k

Now ¢;,1(z) is a polynomial with degree less than dp,
80 ¢414 = 0 for k > dp. We may therefore assume that the
limits of the summation are 0 < k <dp. O

Theorem 24 For any n > 0, given a field F' of char-
acteristic p and order ¢ = pf, a polynomial a(z) € F|[z], of
degree d, and e,t € N, such that p, ¢, d, log(e), and log(t)
are polynomial in n, the problem of computing the coeffi-
cient of z* in {(a(z))* can be solved by a Boolean circuit of
depth O ((log n)? loglog n)) and polynomial size.

Proof: Let i, tm-2---t; denote the base p represen-
tation of £. Consider the row vector

Ve = (Cp(0,9)s -y Cp(dp - L))

From the recurrence of Theorem 23, it follows that V()
can be computed by simply multiplying V® by a dp x dp
matrix with entries in F.

Specifically, let M) be the dp x dp matrix such that
M = ciprgppo—sy. Then Viimitiorto) = Vitioi-to) x MO
80, by induction, V m-1tm-3t0) = V(5 M(®) x. . . x M(m-1),
Notice that C,(0,t) is the 0% element of V (fm-1tm-3to),

The computation proceeds as follows.

e Convert the binary integer ¢ to base p. Asin Theorem
7, since loge and logt are polynomial in n, this can
be done in O(log n loglog n) steps.

o Compute the coefficients of the polynomials ¢,(z), for
0 <1 < m-—1. This can be done by raising each
coefficient of a(z) to the power 2%, as in Theorem 7,
via a Boolean circuit of depth O((log n)? loglogn) and
then raising the resulting degree d polynomial to the
power ¢; < p, which, from Theorem 4, can be done in
O(log nloglog n) depth, since d and p are polynomial
in n.

46

e Compute the product V{9 x M(® x...x M(»-1)_ (Re-
call that the elements of V(9 and M®, .., A Mi=-1
are coefficients of the polynomials co(2),. .., m-1(2).)
Since m = O(logt), d, and p are polynomial in n,
these matrix multiplications can be performed in par-
allel, as in Theorem 7, by a Boolean circuit of depth
O((log n)? log log n).

o Multiply Cp(0,tm—1tm—z--to) (which is the 0% en-
try of the row vector V{9 x M©® x ... x M(=-1) by
[1 (a0)“". As above, this can be computed by a

m+1<i<r

Boolean circuit in depth O((logn)?loglogn). 0O

The following two corollaries are analogues of Corollar-
ies 8 and 9 in Section 3.

Corollary 26 The Polynomial Ezponentiation Prob-
lem is in NC? for finite fields of polynomial characteristic.

Corollary 26 The Polynomial Ezponentiation Prob-
lem is in NC? for finite fields whose order is O(1).

7 #P-Completeness of a Variant

As mentioned in Section 1, if the degree of the base polyno-
mial a(z) is changed from n to exponential in n (but a(z)
still is allowed to have only n nonsero terms), the effect is
to change the complexity of the problem: instead of being
in NC%, it is now #P-hard. This remains true even if the
exponent is changed from exponential in n to n. (See Garey
and Johunson (8] for a discussion of #£.)

Theorem 27 (Rabin, Valiant [personal communica-
tion]) Let

a(z) = z° 4+ 2% + 2 - - - 4 2",

where w,, w,,...,w, are n-bit integers. Given a(z) and an
n-bit integer ¢, the problem of computing the coefficient of
z' in (a(z))" over Z is # P-complete.

Proof: To demonstrate inclusion in #P, a count-
ing machine would make n independent nondeterministic
guesses, each guess being one of a(z)’s n + 1 terms. The
machine accepts if and only if the product of these n guessed
terms is z‘. The number of accepting computations is the
coefficient of z* in (a(z))".

To demonstrate #P-hardness, notice that the problem
is a slight variant of the counting version of a knapsack
problem with weights w;, w,, ..., w, and knapsack capac-
ity ¢; the only difference is that the same weight can be
gelected more than once, as long as the total number of
selections is still at most n. By returning to the reduction
from the exact cover problem to the knapsack problem 8],
it is straightforward to verify that, for those instances of
the knapsack problem that arise in the reduction, no solu-
tion exists in which a weight is selected more than once.
o

It is even easier to see that computing the coefficient of

z! in the product of n sparse polynomials is #P-complete,

by considering (1 + z*')(1 + z¥#)--- (1 + z¥~). A product
r=1

of sparse polynomials arises as J] a(z*) in Section 4; what
=0

seems to make these easier to compute is the special re-

lationship (a geometric sequence) of the exponents among

the constituent polynomials.

Notice that Theorem 27 remains true when Z is re-
placed by Z,, where p > (n + 1)"~?, since the number of
solutions of this version of the knapsack problem is at most
(n + 1)*-%. If, instead of having the base field fixed in
advance, we allow the field to be specified as part of the in-
put, then, by the Chinese Remainder Theorem, this sparse
polynomial exponentiation problem is still #P-complete
with the restriction that characteristic of the input field
is O(nlogn). This problem is even closer to that discussed
in Section 6.

Acknowledgements

We thank Les Goldschlager for discussions that led to the
problem of exponentiation in Z;[z], and Michael Rabin and
Les Valiant for observations on the # P-completeness of the
sparse polynomial problems discussed in Section 7. We are
particularly indebted to Don Coppersmith who pointed out
Berlekamp’s Q matrix method, transforming what had pre-
viously been a nonuniform algorithm for Modular Polyno-
mial Exponentiation into a uniform one.

This paper is based upon work supported by the Na-
tional Science Foundation under Grants DCR-8301212,
DCR-8352093, and MCS-8402676. The first author was
also supported by an IBM Faculty Development Award and
the University of Washington Graduate School Research
Fund.

References

(1) H. Alt, “Comparison of Arithmetic Functions with re-
spect to Boolean Circuit Depth®, Proceedings of the
Sizteenth Annual ACM Symposium on Theory of Com-
puting, Washington, D.C., 1984, 466-470.

[2] H. Alt and N. Blum “On the Boolean Circuit Depth of
Division Related Functions”, Department of Computer
Science, Pennsylvania State University, 1983.

[3] D. Angluin, “Lecture Notes on the Complexity of Some
Problems in Number Theory”, Technical Report #243,
Yale University, August 1982.

(4] P. W. Beame, S. A. Cook, and H. J. Hoover, “Log
Depth Circuits for Division and Related Problems”,
Proceedings of the Twenty Fifth Annual IEEE Sym-
possum on Foundations of Computer Science, Singer
Island, Florida, 1984, 1-6.

47

[5] E. R. Berlekamp, *Factoring Polynomials over Large
Finite Fields®, Math. Comput. 24, 1970, 713-735.

[6] S. A.Cook, “A Taxonomy of Problems with Fast Par-
allel Algorithms”®, University of Toronto, June 1984.

{7] W. Eberly, “Very Past Parallel Matrix and Polyno-
mial Arithmetic® Proceedings of the Twenty Fifth An-
nual IEEE Symposium on Foundations of Compulter
Science, Singer Island, Florida, 1984, 21-30.

(8] M. R. Garey and D. S. Johnson, Computers and In-
tractabslity, A Guide to the Theory of NP-Completeness,
Freeman, San Francisco, 1979.

[9] J. von zur Gathen, *Parallel Algorithms for Algebraic
Problems”, SIAM Journal on Computing 18, Novem-
ber 1984, 802-824.

[10] J. von sur Gathen, ‘Parallel Powering”, Proceedings of
the Twenty Fifth Annual IEEE Symposium on Foun-
dations of Computer Science, Singer Island, Florida,

1984, 31-36.

[11] J. von sur Gathen, “Computing Powers in Parallel”,
preprint, December 1984.

{12] R. M. Karp, *“Reducibility among Combinatorial
Problems®, Complensty of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press,
New York, 1972, 85-103.

(13] D. J. Kuck, The Structure of Computers and Compu-
tation, volume 1, Wiley, New York, 1978.

[14] G. Miller, “Riemann’s Hypothesis and Tests for Pri-
mality®, Journal of Computer and System Sciences 18,
1976, 300-317.

(15] M. O. Rabin, “Digitalized Signatures and Public-Key
Functions as Intractable as Factorisation”, Technical
Report MIT/LCS/TR-212, M.I.T., January 1979.

[16] M. O. Rabin, “Probabilistic Algorithm for Testing Pri-
mality®, Journal of Number Theory 12, 1980, 128-138.

[17] R. L. Rivest, A. Shamir, and L. Adleman, *A

Method for Obtaining Digital Signatures and Public-
Key Crypto-Systems®, Communications of the ACM
21, 1978, 120-126.

