
Liveness Conditions in Model-Based Service Specifications: A Case Study

Alan Fekete,

Department of Computer Science,

University of Sydney, Australia

feketeQcs. su. oz. au

Abstract

Many different formal methods provide mathematical

models of reactive systems (those that interact with an

environment to provide a service). There is disagreement

on many details, but many methods use the transition

system as the fundamental representation of a single com-

ponent; there is also broad agreement that one should

specify a service as a whole by presenting a single sys-

tem that reflects the functional requirements at a high

level of abstraction (that is, one gives a global model as

specification for a service, even though the actual imple-

mentation may be distributed). Many researchers have

concentrated on capturing the finite behavior of the spec-

ification, but for reasoning about a whole application one

needs liveness guarantees on each service. Temporal logic

is often suggested as a language for expressing liveness

properties, but some formal methods use a different tech-

nique based on fairness in the transition system. This

paper explores the ease of expressing liveness conditions

in a model-based specification. It uses an example from

the literature (acancellable resource allocator) and shows

how to express a range of liveness requirements, using

both temporal logic and transition fairness. The paper

also illustrates common techniques that are used in writ-

ing specifications based on transition fairness.

1 Introduction

1.1 Background on Service Specification

Recent years have seen a trend to “open systems” and

“component-based programming”. In these frameworks,

an application is not designed and coded as a monolithic

whole, but rat her is the combination of several pieces of

soft ware, some of which are provided by different ven-

dors. Each separate software entity may indeed be dis-

tributed, and therefore constructed from multiple local

Permission to make digital~ard copies of all or part of this material with-
out fee is granted provided that the copies are not made or distributed
for profit or commercial advantage, the ACM copyrighVserver
notice, the title of the publication and its date appear, and notice is given
that copyright is by permission of the Association for Computing Machinery,
Inc. (ACM). To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior speoific permission and/or a fee.

SIGSOFT ’95 Washington, D.C., USA
01995 ACM 0-89791-71 8-2/95/0010...$3.50

components; but at a suitable level of abstraction the en-

tity can be seen as a reactive system, whose purpose is to

interact with its environment (made up of the other enti-

ties) in a fashion which provides a service to that environ-

ment. Several research communities have devoted much

effort to designing methods for describing system compo-

nents, for expressing properties of their collective behavior

as a service, and for demonstrating correctness in a proof

that a given system’s behavior has stated properties. The

research has been done in the context of software engi-

neering (eg [8]), communication protocols (eg [10, 3, 20]),

semantics of concurrent programs (eg [9, 18, 2]), and de-

sign of distributed algorithms (eg [4, 13, 15]); while these

groups often pay little attention to one another, it is re-

markable that on some key issues many different propos-

als are closely related. At the “Concurrency and Dis-

tribution” track of the International Workshop of Soft-

ware Specification and Design (reported in [6]) support-

ers of several formal methods met and discussed how each

method would approach an example problem.

While there was considerable disagreement between dif-

ferent methods on how to represent system composition,

and what proof techniques to support, a significant num-

ber of research proposals have all taken the view that a

single localised component (often called a “process”) is

best modeled as a transition systeml ; that is, there is a

state space, with a transition relation indicating how the

state can change, the system executes in discrete events

from an initial state, taking steps each of which is in the

transition relation.

In formal methods which represent components as tran-

sition systems, it is normal to define correctness of a sys-

tem by giving a property that must hold in every execu-

tion of the system. There are a variety of ways to present

such a property, which is the specification of the require-

ments that the environment places on the system. While

some methods of formal description treat a specification

as a formula in a temporal logic, and others have allowed

set-theoretic descriptions of the set of allowed executions,

it is noticeable that in practice even researchers who adopt

these formal methods often choose a simpler way to ex-

press the specification (which is the only way in some of

10f course, there M no uniformity on a preferred syntax for

expressing the model; however, the various formal methods each

have a syntax which has a natural semantics as a transition system

62

http://crossmark.crossref.org/dialog/?doi=10.1145%2F222132.222140&domain=pdf&date_stamp=1995-10-01

the more pragmatic formal methods from the software

engineering community). Thus among a range of formal

methods, the common way to give a specification is by a

model, that is, to present a transition system whose execu-

tions are exactly the ones desired ([6], p 20, 4th column).

Of course the specification model would not be suitable as

an implemented system (it is a single global component,

w bile the real system must be distributed, fault-tolerant

etc), but it provides a simple, easily-understood view that

can be shared between clients of the service and those

who must implement the system, as discussed in more

detail in [7]. A powerful advantage of this model-based

style of specification is that it allows correctness proofs to

use the mapping techniques called “refinement”, “simula-

tion”, or “abstraction function)’, where the verifier gives a

correspondence between states of the implementation and

those of the specification, and shows that the correspon-

dence is preserved by each step of the system; it follows

by induction that executions of the system correspond to

executions of the specification model.

1.2 Specifying Liveness Properties

The bulk of work, especially by the software engineer-

ing community, in formal methods for concurrent systems

has concentrated on “safety” properties, where the in-

terest is on finite executions (often called “traces”): one

shows that the system never does something wrong. It is

widely recognised that “liveness” properties, which show

that something right eventually occurs, are much harder

to deal with. However, if one considers specifying a service

in an open environment, it is clear that the applications

will need to know about the extent to which the service

guarantees to respond to requests, and therefore, if formal

specifications are used at all they must express liveness

conditions. For example, most applications would fail if

they used a communication server that did not guarantee

that messages were event ually delivered.

The most common way to present the liveness aspects

of a specification is by temporal logic formulas [17]. This

is highly expressive, that is it makes it easy to say many

different conditions; indeed [17] use temporal logic to

describe both safety and liveness. Even many formal

methods that express safety specifications as model tran-

sition systems use temporal logic for specifying liveness

[13, 5, 20]. That is, in these methods a specification in-

volves both a model and a temporal formula, and the

meaning of such a specification is a subset of the exe-

cutions of the model, namely the subset that satisfy the

temporal formula. However, using temporal logic for ex-

pressing liveness means that verification of liveness fol-

lows the inference-rule style rather than the mapping style

that has been so easy for proving safety properties with

model-based specifications. There are a few formal meth-

ods ([16, 1 I]) in which a model includes certain fairness

conditions, by which a particular subset of the executions

are naturally selected. There are several variant defini-

tions of fairness, but the most common is that in a fair

execution, any transition that is continually enabled must

eventually happen. In these methods one can provide

both safety and liveness in a model-based specification,

by saying that a system is correct provided all its fair

executions are fair executions of the specification model.

1.3 This Paper

This paper examines the usefulness of the fairness-based

style for expressing liveness with model-based specifica-

tions of a service. z Our interest is in specifications in

practice; the theoretical limits of transition fairness is dis-

cussed in [19]. We use as a testbed a service that has been

previously described in the specification literature: a can-

celable resource allocator [6]. We will consider a range

of liveness conditions, and see to what extent it is easy

to invent the model or modify one for alternative live-

ness constraints. In doing so we will demonstrate some of

the common techniques needed to produce models with

desired transition fairness executions.

We choose Input/Output Automata (“I/OA’>) [15, 16]

as the formal method where safety is expressed by a model

transition system, and liveness by the fairness properties

of that model. To make comparison easier, we define an

alternate formal method called Input/Output Automata

with Temporal Logic (“1/OA-TL”), which expresses a

transition system exactly as in I/OA, but uses temporal

logic to identify the subset of all executions that will be

acceptable. In Section 2, we summarise the aspects of the

two formal methods; in Section 3 we introduce the ser-

vice, we present a natural model as a safety specification,

and then we analyse the liveness behavior of this model

under the I/OA fairness definition, and discuss how to use

I/OA-TL to achieve the same meaning. In Section 4 we

consider alternative liveness conditions, and see how easy

(or natural) it is to express them in each framework. In

Section 5 we present our conclusions.

2 The Formal Methods

The Input/Output automaton method was defined by

Lynch, Tuttle and Merritt [15] as a tool for modeling com

current and distributed systems. Examples are given in

[7] to show how the model can represent service specifica-

tions, complete systems, and components of a system. We

refer the reader to the expository paper [16] for a com-

plete development of the method, plus motivation and

examples. Here, we provide a brief summary of the main

aspects of the model relevant to specifications. We also

define a related model which uses the same transition sys-

tem for describing safety properties, but adds temporal

logic to determine liveness.

2.1 Transition Systems

The core of most formal models of concurrency (and in

particular, of both formal methods considered in this pa-

per) is the transition system. This fundamental model

‘Note that we only describe the requirements placed on the

service, we are not considering how to model a complex dlstr]buted

algorlthm prowdmg that service.

63

for a concurrent computation was first defined in [12]; for

use in this paper we have added the division of the set of

actions between input, output and internal ones, and the

requirement that input actions are always enabled. These

extra features are important in allowing a compositional

semantics based only on sequences of actions.

Formally, a transition system T consists of four compo-

nents:

1.

~.

3.

4.

Three sets of named actions, zn(T), out(T) and

zrzt(T), being the inputactzons, output actions and

Internal actzons respectively. We require that these

sets be pairwise disjoint. The input actions repre-

sent discrete events in the automaton that are under

the control of its environment; the output actions

represent events that are under the control of the au-

tomaton and may also affect the environment; and

internal actions are under the control of the automa-

ton but are not observed by the environment. We

refer to the union of all three sets as acts(T), the set

of csctzons. Often we are only interested in those ac-

tions that relate to the environment: thus we speak

of the set of external actions, written ezt(T), which

is in(T) U out(T).

a set states(T) of states. Usually a state is described

by assigning a value to each of a collection of typed

variables.

a nonempty set start(T) of startstates, each being

a state of the automaton. The start states represent

possible initial configurations of the system.

a transition relation steps(T) ~ (states(T) x

acts(T) x states(T)). An element (s’, m, S) of steps(T)
is called a step of the automaton, and it represents

the fact that the automaton can change from state s’

to state s by performing the action ~. We say that

action ir is enabled in state s’ if there is a transition

(s’, ~, s) in steps(T). In order to reflect the fact that

input actions are under the control of the environ-

ment, we require that for every state s’ and input

action ~, m is enabled in s’.

An executzon of T is a finite sequence SOTISI Xz rnsn

or an infinite sequence

slJ7rlsl rr2. ..7rns, .,. of alternating states and actions of

A such that so is a start state, and (s,, n,+l, S,+l) is a

step of T for every a, A state is said to be reachable in T

if it is the final state of a finite execution of T.

The behavior of an execution a of T is the subsequence

of a consisting of external actions, and is denoted by

beh(a). That is, to form the behavior, we ignore all states

and internal actions in the execution. We say that @ is a

behautor of T if /3 is the behavior of an execution of T.

An important operation on behaviors or other se-

quences is projection. If a is a sequence (of elements of

any alphabet) and @ is a set of elements, we write a I@

for the subsequence of a consisting of the occurrences of

those elements in the set 0. Thus if a is an execution of

transition system T, then beh(a) = alezt(T).

2.2 Input/Output Automata

An znput/output automaton A (also called an 1/0 au-

tomaton or simply an automaton) consists of a transi-

tion system trans(A), together with an equivalence rela-

tion part(A) on out(trans(A)) U znt(trans(A)), having at

most countably many equivalence classes. Each equiva-

lence class represents a group of actions under the control

of the automaton, and fairness will be required between

separate classes when the automaton executes.

An ezecution of A is just an execution of the transition

system. A fair execution of an automaton A is defined to

be an execution a of the transition system for which the

following condition holds for each class C of part(A): if a

is finite, then no action of C is enabled in the final state

of a, and if a is infinite, then either a contains infinitely

many events from C, or else a contains infinitely many

occurrences of states in which no action of C is enabled.

Thus, a fair execution gives “fair turns” to each class of

part(trans(A)). Informally, one class of part(A) typically

consists of all the actions that are controlled by a single

subsystem within the system modeled by automaton A,

and so fairness means giving each such subsystem regu-

lar opportunities to take a step under its control, if any

is enabled. In the common case that there is no lower

level of structure to the system modeled by A (when all

locally-controlled actions are in a single class of part(A)),

a fair execution is an execution in which infinitely often

the automaton is given an opportunity to take a locally

controlled action if any is enabled. That is, the fair exe-

cutions are those executions where an infinite number of

locally-controlled actions happen, those where infinitely

often the automaton is in a state with no enabled locally-

controlled action, and those which are finite and have final

state in which no locally-controlled action is enabled. In

the other common case, each locally-controlled action is

placed in a separate class, and then a fair execution is an

execution where any locally-controlled action that is con-

tinually enabled after some point must happen infinitely

often.

We say that ~ is a behavior of A if /3 is the behavior of

an execution of A. We say that ,8 is a fair behautor of A

if ,fl is the behavior of a fair execution of A and we denote

the set of fair behaviors of A by fazrbehs(A). When an

algorithm is modeled as an 1/0 automaton, it is the set of

fair behaviors of the automaton that reflect the activity

of the algorithm that is important to users.

The formal method also includes a definition for system

composition, but it is not needed in this paper,

2.2.1 Correctness

Fundamental to any use of a formal method in reasoning

is a definition of the relationship between a service speci-

fication and a system that provides the service. The for-

mal method allows specifications to be given by present-

ing sets of allowed fair behaviors, but more often, in the

model-based style, both specification and system are rep-

resented as automata. We say that system A solves spec-

ification B provided that m(trans(A)) = zn(trans(l?)),

64

out(trans(A)) = out(trcans(ll)), and fairbehs(A) ~

fazrbehs(B). That is, the system has the external inter-

face expected in the specification, and every fair behavior

of the system is among the fair behaviors of the speci-

fication. Notice that we allow the situation where the

specification has fair behaviors that are not exhibited by

the system. Also, notice that internal actions and state

spaces may be quite different, between specification and

system.

2.3 I/OA with Temporal Logic

In order to compare the expressive power of fairness-

based service specifications against temporal logic, we in-

troduce a formal method3 called Input-Output Automata

with Temporal Logic. In this method, a specification A

consists of a transition system trans(A) (presented by

sets of input actions, output actions, internal actions,

states, start states, and steps) and also a temporaJ for-

mula ternp(A). In other words, an I/OA-TL specification

is just like an automaton except that the equivalence re-

lation is replaced by a formula. The temporal formula is

an expression in a temporal logic where atomic formulas4

are the action names, and propositional connective are

used5, as well as several temporal operators defined in

[17]. These include three future operators - two unary

temporal operators ❑ and O and one binary (infix) tem-

poral operator 24. Informally ❑ means “always”, O means

“eventually”, and U means “until)’. We also use three past

operators – two unary temporal operators~ and ~and one

binary (infix) temporal operator S. Informally ~ means

“has always been”, +means “once”, and S means “since”,

A sequence of actions is a behavior of an I/OA-TL spec-

ification exactly when it is a behavior of the transition

system. A live behavior of an I/OA-TL specification is a

sequence that meets two conditions: it is a behavior of the

transition system, and also the first place in the sequence

is a model for the temporal formula; we write the set of

live behaviors of A as 2ivebehs(A).

To be completely precise, we follow the usual temporal

logic definitions [17] to describe when a place j in a se-

quence /3 = TI X2 . . . is a model for a formula Q (written

(8, J) 1= @); this is done by structural induction. Since we

are mostly concerned with the first place in the sequence,

we write ~ + @ as an abbreviation for (~, 1) > @.

c if O is an atomic formula (that is, the name of an

action m) then P + @ iff T is the j-th action in ~

(that is, ir, = rr)

3This method is presented only to provide a level-playing field

for the comparisons In this paper, It m not a serious alternative

methodology

41n the other temporal loglc formal methods known to the au-

thor, both safety and liveness are expressed in terms of the se-

quence of states through which the model passes (with this state

space thus accessible to all the enwronment). This paper uses se-

quences of events, as is done in process algebra methods, in the
beltef that th, s m more appropriate to model distmbuted systems

where each service M implemented by (one or more) dwt]nct pro-

cesses, each with Its own pr]vate address space,

5For convemence, when action names include parameters, we

use existential and uruversal quantification over the values of one

or more parameters as an abbreviation for a large dqunctlon or

corqunctlon of formulas, one for each value of the parameter

if @ = @l VI% then (~, j) +0 iff either (fl,~) +@ I

or (/?, j) ~ 02 (and similarly for other propositional

connective)

if 0. = ❑01 then (~, j) ~ @ iff every later! place

in the sequence is a model for 01 (that is, when for

every k greater than or equal to J, (~, k) + 01)

if @ = OQ1 then (/3, j) + @ iff some later place of /3

is a model for O] (that is, when for some k greater

than or equal to j, (8, k) 1= 01)

if @ = @lUOZ then (~, j) ~ @ iff there is some later

place for which ~z holds, and @l holds for every place

from the current one up to (but not including) that

one. More mathematically, this is when there exists

k greater than or equal to j such that (/3, k) & %

and also for every z such that j s i < k, (P, z) + 01

if @ = D @l then (P, j) 1= @ iff every earlier place

in the sequence is a model for @l (that is, when for

every k less than or equal to j, (~, k) \ @l)

if @ = GO] then (/3, j) + @ iff some earlier place of P

is a model for 01 (that is, when for some k less than

or equal to j, (@, k) + ’31)

if @ = OISOZ then (~, j) + @ iff there is some earlier

place for which @z holds, and O] holds for every place

from (but not including) that one up to the current

one. More mathematically, this is when there exists

k less than or equal to j such that (~, k) + @Z and

also for every z such that k < t < j, (,8, Z) 1= %

To clarify this notation, let us present some simple ex-

amples. The formula ❑l(r V @) applies to ~ when every

action in the sequence is either m or @; the formula On

says that m occurs somewhere in the sequence; the formula

•0~ says that ir occurs infinitely often in the sequence;

the formula ❑ (r +- (O@)) says that every r is followed

eventually by ~; and (=rr)U@ says that @ occurs in the

sequence, and that its first occurrence comes before any

occurrence of 7r.

Even when I/OA-TL is used to capture a specifi-

cation, an implemented system will be modelled by

an automaton (with fairness used to determine al-

lowed executions). In this situation, we will say

the automaton A solves an I/OA-TL specification B

when in(trans(A)) = irs(tran.s(l?)), out(trans(A)) =

out(traras(l?)), and fawbehs(A) G livebehs(B).

3 The Cancelable Resource Allocator

The 7th International Workshop on Software Specifica-

tion and Design (IWSSD-7) was held in Redondo Beach

California in December 1993. As part of the track on

Concurrency and Distribution, participants familiar with

a range of formal specification methods ([9, 15, 4]) were

6Throughout these descriptions, the words ‘<later’ and “earner”

are not strtct; that is, they include the place itself

65

asked to specify a system using their preferred technique.

The system is described as follows, quoted from [6].

“A non-shareable resource R is used by a set of user

processes U1,. . . . U~. Access to R is managed by an allo-

cator process AR. Before using R, user process U, request

access from AR, which responds with an allocation indi-

cation when R becomes free. When a user process U, is

finished with R, it signals the allocator that it has re-

leased the resource. At any point between requesting the

resource and becoming aware that it has been allocated

the resource, a user process may cancel its request. A

solution should not preclude U, and AR from being phys-

ically distributed. The system must ensure that R is never

allocated to more than one U, at a time, and should min-

imise the time that R is allocated to a U, that has released

it or cancelled the request for it. ”

This problem is similar to the resource allocation prob-

lems whose specifications in temporal logic are discussed

by Manna and Pnueli [17], but the possibility of can-

celing a request is not present in their work; this makes

our I/OA-TL descriptions more complicated than those

in [17].

In the 1/0 automaton method, and thus also in using

I/OA-TL, the fundamental step in specification is to iden-

tify and name the actions by which a component interacts

with its environment. We must also determine whether

each is controlled by the component (an output of the

component) or controlled by the environment (an input

of the component). In the case of the resource allocator

specification, one can choose the following actions:

Request (z): client U, requests access (input of the alloca-

tor)

Cancel(i): client U, cancels outstanding request (input of

the allocator)

Grant(i): client U, is informed that it has access (output

of the allocator)

Finish(i): client u, releases resource (input of the alloca-

tor).

Note that Request(l) is a different action from

Request(z) and so on; formally there is no significance in

the fact that they have similar names (although in most

cases the transition relation will follow a uniform pattern

that is most easily described using a free variable z in

Request(t).

Here is the transition system foranatural model-based

specification of the safety requirements on the resource

allocator. We will refer to the specification as T$af.. The

state space is given by all possible assignments (that re-

spect type declarations) to the following variables: r-eq

an array of booleans initially false, and grant an array of

booleans initially false. The meaning of req[i] = true is

that U, has made a request that has not yet been satisfied

or cancelled; the meaning of gmnt[i] = true is that Ut is

currently allowed to access R.

Next we give the transition relation, in Figure 1. Syn-

tactically, each action type is described here with a pre-

condition and an effect. Formally, the transition relation

is actually a set of triples (s’, rr, s): the syntax describes

the set of all such triples where ~ is the named action, s’

is some state in which the precondition is true, and s is a

state which is produced from s’ by performing the assign-

ments listed as the effect. When no precondition is listed,

the default is precondition= true, as must happen for each

input action (since these are always enabled). As it hap-

pens, this automaton has no internal actions, but that is

not a necessary feature of a model-based specification.

It is easy to see that this is a direct expression of the

English description of the service. For example, the in-

put actions Request(z) and Cancel(i) simply alter the i-th

entry of r-eq to reflect that a request is now outstand-

ing or not, The input Finish(z) adjusts the i-th entry of

grant to reflect that the resource is no longer allocated.

These inputs are under the control of the users, not that

of the allocator, so they are always enabled. The output

action Grant(i) can occur whenever there is an outstand-

ing request from U, (expressed in the first clause in the

precondition) and also no user is currently allocated the

resource (expressed in the second clause of the precondi-

tion). Its effect is simply to record that the resource has

been allocated and that the request is no longer outstand-

ing.

3.1 Fairness and the Transit ion System

Now we consider what happens if we use the transition

system TSaf. as the basis of an 1/0 automaton; that is, we

explore which behaviors are fair.

Suppose, as is common, that each output action is in a

separate class of the equivalence relation. That is, let

Al denote the automaton with trans(Al) = T,~f~ and

part(Al) is the diagonal relation on the output actions.

We want to understand the liveness requirement on the

service described by the fair executions of this model. It

turns out that this model cannot deadlock: that is, if there

is any user who makes a request and does not cancel it,

then the allocator must eventually grant the resource to

someone.

As an example, the following infinite execution of Al (in

which users 1 and 3 repeatedly request and then cancel)

is not fair, since user 2 never cancels its request but no

grant occurs.

Request(l)

Request (2)

Request (3)

Cancel(1)

Request (1)

Cancel(3)

Request (3)

Cancel(1)

Request (1)

Cancel(3)

Request(3)

. ..<

However, the model does allow any individual user to

starve. There are fair executions in which a particular

user makes a request which is never granted or cancelled.

While fairness forces some user to be granted access, there

is no certainty that the particular request will ever be

66

Request (z) Grant(z)

Effect: Precondition:

reg[i] +-- true req[i]

~fie~j : 9rant[~l
Cancel(t)

Effect: grcmt[i] - true

req[i] - fake req[i] - fake

Finish(i)

Effect:

grant[i] + fake

Figure 1: Transition System Safety Specification: T,afc

granted, as fairness ensures that an action from the equiv-

alence class will occur provtded the class is corttirtztouslg

enabled. Whenever one user gains access, all other grants

become disabled, so fairness is not violated even when one

particular grant action never occurs.

One fair execution in which user 2 is starved is the

following, which we call ~,~~,~.:

Request (2)

Request (3)

Grant(3)

Finish(3)

Request (1)

Grant(l)

Finish(l)

Request (3)

Grant(3)

Finish(3)

Request(l)

Grant (1)

Finish(l)

.,, .

The reason ~,~=,o, is fair is that every time the re-

source is allocated, all other Grant actions become dis-

abled. Thus Grant(2) is not continuously enabled (even

though Uz is continuously waiting), so even with Grant(2)

being in a separate class of the equivalence relation, fair-

ness does not ensure that the action occurs.

Thus the most natural I/OA model is convenient for

the service provider (it is easy to find algorithms if they

can starve users), but it is not very pleasant for the client.

For comparison, we also give an I/ OA-TL specification

of the deadlock-free, but starvation-prone service by us-

ing the same natural transition relation T,afe, and adding

an appropriate liveness formula. To keep things read-

able, let us define some abbreviations. We use held(i)

to denote (= Finish(t))~Grant (!); this formula holds at

any place where user ~ is allocated the resource. We use

asking(z) to denote (=(Cancel(8) V Grant (i))) ~Request(t);

this formula holds at any place where user i is requesting

the resource. That is, these formulas express the same

facts as grant[i] = true and req[i] = true, respectively,

but they are writteu using temporal logic on sequences

of actions instead of state components. With this no-

tation, the presence of deadlock at a place can be repre-

sented by the formula (3i ❑askzng(z))A(O(~(3j held(j))));

in English one would say that deadlock is when some

user requests forever and it is always the case that no

user has the resource. Thus the condition that deadlock

never happens is ❑Y((3z ❑asking(z))A(Cl(=(qj held(j))))),

which is easily transformed to the equivalent formula

❑((=i ❑rding(i)) + (O(3j he’d))).
We can easily prove that the given I/OA-TL specifica-

tion has the set of its live behaviors being exactly the fair

behaviors of Al. To do so, note from the transition rela-

tion that the output action Grant(t) is enabled exactly at

the places where asking(i) A (VJ =held(j)) holds. We will

abbreviate this to enabied(i). In general, an execution is

not fair when some output is eventually enabled forever

without occuring; for Al, each output is disabled imme-

diately after it occurs. Thus for Al, an execution is not

fair exactly if some output is eventually always enabled.

Thus the fair executions are described by Vi 00 enabled(i).

Simple temporal equivalences given in [17] show this is

equivalent to the formula given above for no deadlock.

3.2 Other Automata for the Same Transition

System

One might think to change the specification by taking the

same transition system with a different equivalence rela-

tion. For example one could place all the output actions

in the same equivalence class.

No matter how the equivalence relation is defined, the

specification allows starvation. The reason is that when-

ever one user is granted the resource, all the output ac-

tions are disabled. Thus no matter what equivalence rela-

tion is chosen, any execution with infinitely many Grant

actions has infinitely many states in which no output is

enabled; that is, the execution is fair.

However it is not the case that changing the equivalence

class has no effect on the set of fair behaviors. When all

output actions are in a single equivalence class, the fol-

lowing is not a fair behavior (even though it is fair for Al,

67

as it does not involve a deadlock).

Request (1)

Request (3)

Cancel(1)

Request (1)

Cancel(3)

Request (3)

Cancel(l)

Request (1)

Cancel(3)

Request(3)

In this execution, each request is eventually cancelled,

but the interleaving is such that at each instant, one user

has a request that is outstanding (the user involved is dif-

ferent at different instants). Thus at every state, there is

some action that is enabled and is in the single equivalence

class; however no output ever occurs.

We can give an equivalent in I/OA-TL to the specifi-

cation with all output actions in a single class. We use

the same transition system, and as temporal formula we

take c! O((3Z Grant(i)) V l(EIz enabled(i))). This expresses

directly the definition of fair executions. We remark that

one cannot use a similar agrument to claim that any au-

tomaton has an equivalent in I/OA-TL, since in general

one can’t always find a temporal formnla that captures

when an action is enabled.

4 Variant Specifications

In this section we will consider in turn several specifica-

tions which make stronger or weaker guarantees about

when users’ requests are granted. For each, we will show

how to give an automaton, and also a specification in

I/OA-TL.

4.1 Deadlock Allowed

The first variant we consider is when we wish to be com-

pletely permissive; that is we want to find accept every

(finite or infinite) behavior of T,.fe, even those in which

deadlock occurs. In I/OA-TL this is trivial: we simply

take the transition system T,tfe and the temporal formula

true.

Transition system fairness means that continuously en-

abled output actions eventually occur. Therefore, to make

a automaton whose fair behaviors include many sequences

in which outputs do not occur, we must change the under-

lying transition system so that each output is periodically

disabled. This is easy to arrange. We define a new tran-

sition system T – pause. The actions of TPCU,. are all the

actions of T,.t. together with two internal actions stop and

go. The state variables of Tpa.,. are the state variables
of T,aj, together with status which is a boolean, initailly

true.

The transition relation is given in Figure 2. The only

changes from that of T,a}e are the two internal actions

and also an extra precondition, so statrss must be true

whenever a Grant output occurs.

Finally we take the transition system TPOU,, with the

equivalence relation in which each output and internal ac-

tion is in a separate equivalence class. It is easy to see that

any behavior of this automaton is a behavior of T,~f~, just

by taking the execution in which it arises and ignoring the

status component in the state, and the internal steps. To

show that any behavior of T,a/, is actually a fair behavior

of ~PWS., we - take an execution in which it arises, and

replace each state s of T,afc in that execution by a brief

sequence, which begins with a state of TPau,c which has

status = true and has other components identical to s; fol-

lowed by the internal action stop followed by a state with

status = false and otherwise identical to s; followed by

go followed by the state which has status = true and has

other components identical to s. If the original sequence

was finite, ending in state s, we extend the result of the

replacement to an infinite sequence by adding an endless

pattern consisting of repetitions of the following: the in-

ternal action stop followed by a state with status = false

and otherwise identical to s; followed by go followed by

the state which has status = true and has other compo-

nents identical to s. The result of this transformation is

clearly an execution of TP~ti~~;furthermore the result is

fair, since every output action is infinitely often disabled

(immediately after stop) and each internal action is per-

formed infinitely often.

4.2 No Starvation

Next we consider restricting the allowed behaviors, rathei-

than increasing the set as in the previous subsection. Sup-

pose we wish to write a specification that says “the system

gives mutual exclusion, and no user is allowed to starve”.

That is, one might want to specify that if a user makes

a request and does not cancel it, then eventually that

user must be allocated the resource. To do this in I/OA-

TL, we start with the original transition system T,~f,,

and add an appropriate temporal formula. However, one

must be careful. To say ‘(user z does not starve’) is given

as ❑(Request(Z) + O(Cancel(i) V Grant(t))), that is, any

request is eventually followed by a cancel or grant for

user Z. However, it is not correct to simply add this as a

liveness condition to our simple transition system. One

must be wary: the guarantee can’t be met unless there

are also liveness requirements placed on the users, that

each eventually releases the resource after being granted

it. This aspect (of conditional specification) is consid-

ered in the TLA formal method by Abadi and Lamport

[I]. Thus in I/OA-TL, the liveness condition must be

❑((Vi(Grant(i) + OFinish(Z)))) + ❑(b’i(Request(2) +

O(Cancel(Z) V Grant(t)))).

To present a fairness-based specification for this idea,

that no user may be starved, is not at first obvious. Since

fairness makes each action happen when it is continuously

enabled, our idea is to make each grant action eventually

always enabled; however, each grant is disabled whenever

another user holds the resource, so we think we should

prevent other users from getting the resource until the

given user has done so. This is done by including in the

state variables which determine how often each request

68

Request (~)

Effect:

req[i] +-- true

Cancel(i)

Effect:

req[!] +- false

Finish(i)

Effect:

grad[2] + false

stop

Precondition:

status

Effect:

status A fake

Grant (i)

Precondition:

req[i]

#j: grant[j]

~status

Effect:

grant[i] + true

req[i] + fake

go

Precondition:

Tstatus

Effect:

status +- true

Figure 2: Transition System Allowing Deadlock: TP~~,~

can be overtaken. We extend the state by variables pass,

which a two-dimensional array of integers, initially all

zero, and rnax, a two-dimensional array of non-negative

integers, initailly all zero. The meaning of pass[z, J] = n is

that U, is waiting for the resource, and that Uj has been

allocated the resource n times since U, made its request.

The meaning of rncm[t, j] = n is that during U,’s current

wait, there are only allowed to be n grants to Uj.

The transition relation is given in Figure 3. The

changes from the original model T.afc are that each time

a user process starts to wait, an arbitrary value is chosen

for the limits on how often it can be overtaken. Note that

the changes are that pass[i, ~] is reset to zero each time U,
ceases to be waiting (by being allocated the resource, or

by canceling), that it is increased each time Uj is granted

the resource while U, is waiting, and that a precondition

prevents the resource being allocated to a user if any other

user has already been overtaken by it too often.

Notice that the model is noncfeter-ministic, not just in

having more than one action enabled in a state (as we have

seen before), but also in having more than one state pos-

sible as the new state after a given action occurs. This

is expressed in the syntax by the free variable z in the

effect of Request; the semantics is that the transition re-

lation includes all (s’, ~, s) where there exists a value for

the free variable z which satisfies the “where” clause and

for which applying the effect assignments changes s’ into

s.

4.3 One-bounded Overtaking

The most obvious way to make the specification useful to

clients is to demand that requests are handled in FIFO

order: if U, makes a request, then it will be granted or

cancelled before any grant is made to a user which re-

quested after U,. This is trivial to state in a model-based

specification, by keeping a queue of requesting users, and

always granting only to the head of the queue. Unfor-

tunately, this specification is not implementable in a dis-

tributed system, where there is no way to detect the true

order of events in different places. Thus we do not present

this here.

The normaf way to capture an idea close to FIFO in a

distributed system is to require that each user who does

not cancel his request must be granted the resource before

he has been overtaken more than once by each other user.

Thus an allowed fair behavior would be:

Request(l)

Request (2)

Grant (2)

Finish(2)

Request (3)

Grant (3)

Finish(3)

Grant(l)

Finish(l).

However, the following would not be allowed, since user

2 is granted the resource twice while user 1 waits:

Request (1)

Request (2)

Grant (2)

Finish(2)

Request(2)

Grant (2)

Finish(2)

Grant(l)

Finish(l).

Notice that this variant involves conditions that can

be detected in finite behaviors (not just infinite ones); in

technical terms it is not a pure liveness property conjoined

with the “mutual exclusion” safety property. It is easy to

69

Request(i)

Effect:

req[t] - true

doforall j: rrscm[i, j] ~ z

where z ~ O

Cancel(t)

Effect:

req[i] + @se

doforall j: pass[i, J] % O

Finish(t)

Effect:

gmnt[i] t-- false

Grant(i)

Precondition:

req[i]

j3j : grant[j]

~fie~j ‘ req[j] A pass[j, ~] 2 max[j, i]

grant[i] + true

req[t] * false

doforall J: if req[j] then

pass[j, 2] - pass[j, 2] + 1

doforall j: pass[t, j] + O

Figure 3: Transition System With No Starvation: Tb.and

achieve this effect by taking the transition relation TbOw~d

above, and always choosing 1 as the value of maz[i, j].

Expressing l-bounded waiting is quite convoluted in

temporal logic, where counting is not easy. Based on

Manna and Pnueli[l 7] we give the following formula,

which we present in stages. First define pWq to mean
(pUq) V ❑p. Next define atmostonce(t, j) by Request(t) +

(~ Grant(j) w(Grant(j)w(~Grant(j) w(Grant(i) V

Cancel(i))))); this is a predicate which is true at any

place where i requests the resource and is not subse-

quently overtaken twice by j while waiting, and also at

places where i does not request the resource. We can

now express l-bounded waiting as Wi, j cstmostonce(i, j),
which we abbreviate to onebounded. Thus to get

the liveness formula to combine with T,afc one would

say (uVi (Grant(z) + OFinish(z))) =+- (onebounded A

(CIVZ (Request(z)+ (Grant(i) V Firsish(~))))).

5 Conclusions

This paper has shown that it is feasible to use model-

based service specifications (appropriate for safety con-

ditions), and include liveness as the consequence of fair

execution of the model. This is in contrast to the more

common technique, where a model-based safety specifica-

tion is augmented with temporal logic formulas to express

liveness. More experience is needed to determine whether

the single model style is more convenient for specifiers and

verifiers of the typical services needed in building reactive

systems, compared with the traditional mixed approach

where proofs use mapping techniques for safety and infer-

ence rules for liveness.

By examining a case study of a cancelable resource al-

locator, we have seen how a range of different liveness

conditions can be expressed using a model-based specifi-

cation in a formal method where executions have fairness

characteristics. The most natural model implied a rather

unsatisfactory liveness condition, where global deadlock

was prevented but starvation of some individual users was

allowed. We have shown how to vary the model to obtain

more or less infinite fair behaviors. To make all infinite

behaviors fair, we repeatedly disabled all activity then

reenabled it. To express the absence of starvation as a

specification, we kept track of how often each request was

overtaken, and non-deterministically chose limits on these

quantities. We could also express l-bounded overtaking,

which is an approximation to FIFO ordering and yet is

achievable in a distributed system. We have also shown

how to express these same conditions in temproal logic.

It is possible that in many practical cases, liveness may

be subsumed by more precise timing guarantees. These

can also be expressed in a model based style, as shown in

[14].

References

[I] Abadi, M. and Lamport, L., “Open Systems in TLA”

Proc. ACM Symposium on Principles of Distributed

Computing, pp 81-90, August 1994.

[2] Baeten, J. and Weijland, W., Process Algebra, Cam-

bridge University Press, 1990.

[3] Bolognesi, T. and Brinksma, E., “Introduction to the

1S0 specification language Lotos”, Computer Networks

and ISDN Sy.sterns, vol. 14, pp. 25–59, 1987.

[4] Chandy, M. and Misra, J., Parallel Program Design:

A Foundation, Addison-Wesley, 1988.

[5] Duke, R. and Smith, G., “Temporal Logic and Z Spec-

ifications” Australian Computer .lournai, 21(2):62-66,

May 1989,

[6] Feather, M. and van Lamsweerde, A., “Succeeding of

the 7th International Workshop on Software Specifica-

tion and Design” Software Engineering Notes, 19(3): 18-

22, July 1994.

70

[7] Fekete, A., “Formal Models of Communication Ser-

vices: A Case Study” IEEE Computer, 26(8):37-47,

August 1993.

[8] Hayes, I., Specification Case Studies, Prentice Hall

International, 1987.

[9] Hoare, C. A. R., Communicating Sequential Processes,

Prentice Hall International, 1985.

[10] Holzmann, G., Design and Validation of Computer

Protocols, Prentice Hall Software Series, 1991.

[11] Jonsson, B., “Compositional Specification and Veri-

fication of Distributed Systems” ACM Transactions on

Programming Languages and Systems, 16(2):259-303,

1994.

[12] Keller, R., “Formal Verification of Concurrent Pro-

grams” Communications of the ACM, 19(7):371-384,

1976.

[13] Lamport, L., “The Temporal Logic of Actions” ACM

Transactions on Programming Languages and Systems,

16(3):872-923, 1994.

[14] Lynch, N., and Attiya, H., “Using Mappings to Prove

Timing Properties” Distributed Computing, 6(2): 121-

139.1992.

[15] Lynch, N., and Tuttle, M., “Hierarchical Correctness

Proofs for Distributed Algorithms” Proc. ACM Sympo-

sium on Principles of Distributed Computing, pp 137-

151, August 1987.

[16] Lynch, N., and Tuttle, M., “An Introduction to In-

put/Output Automata” CWI Quaterly, 2(3):219-246,

September 1989.

[17] Manna, Z. and Pnueli, A., The Temporal Logic of Re-

active and Concurrent Systems Springer-Verlag, 1992.

[18] Milner, R., Communication and Concurrency, Pren-

tice Hall International, 1989.

[19] Reingold, N., Wang, D.-W., and Zuck, L., “Games

1/0 Automata Play” in Proc. Third International

Conference on Concurrency Theory, August 1992,

Springer-Verlag LNCS 630.

[20] Shankar, A. and Lam, S., ‘(A stepwise refinement

heuristic for protocol construction”, ACM Transactions

on Programmmg Languages and Systems, vol. 14, pp.

417-461, July 1992.

71

