
An Experiment to Assess the Cost-Benefits of Code Inspections in

Large Scale Software Development

Abstract

A. Porter* C. A. Toman

H. Siy L. G, Votta

Computer Science Department Software Production Research Department

University of Maryland AT&T Bell Laboratories

College Park, Maryland 20742 Naperville, Illinois 60566

aporter @cs.umd.edu cat @intgp 1.att.com

harvey@?cs.umd.edu votta@ research. att.com

We are conducting a long-term experiment (in progress) to

compare the costs and benefits of several different software

inspection methods. These methods are being applied by

beliefs about the most cost-effective ways to conduct in-

spections and raise some questions about the feasibility of

recently proposed methods.

professional developers to a commercial software product
1 Introduction

they are currently writing.

Because the laboratory for this experiment is a live de-

velopment effort, we took special care to minimize cost

and risk to the project, while maximizing our ability to

gather useful data.

This article has several goals: (1) to describe the ex-

periment’s design and show how we used simulation tech-

niques to optimize it, (2) to present our preliminary results

and discuss their implications for both software practition-

ers and researchers, and (3) to discuss how we expect to

modify the experiment in order to reduce potential risks to

the project.

For each inspection we randomly assign 3 independent

variables: (1) the number of reviewers on each inspection

team (1, 2 or 4), (2) the number of teams inspecting the

code unit (1 or 2), and (3) the requirement that defects

be repaired between the first and second team’s inspec-

tions. The reviewers for each inspection are randomly

selected without replacement from a pool of 11 experi-

enced software developers. The dependent variables for

each inspection include inspection interval (elapsed time),

total effort, and the defect detection rate.

To date we have completed 34 of the planned 64 inspec-

tions. Our preliminary results challenge certain long-held

-.
*This work is supported in part by the National Aeronautics and

Space Admmistration under grant NSG-5 123. Mr. Siy was also partly

Permission to make cfigitabhard copies of all or part of this material with-
out fee is $ranted provided that the oopies are not made or distributed
for profit or commercial advantage, the ACM copyrightkerver
notice, the title of the publication and its date appear, and notice is given
that copyright is by permission of the Association for Computing Machinery,
Inc. (ACM). To copy otherwise to republish, to post on servers or to
redistribute to lists, requires prior spedic permission and/or a fee.

SIGSOFT ’95 Washington, D.C., USA
@ 1995 ACM 0-89791-718-2/95/001 0...$3.50

For almost twenty years, software inspections have been

promoted as a cost-effective way to Improve software qual-

ity. Although the benefits of inspections have been well

studied, their costs are often justified by simply observing

that the longer a defect remains in a system, the more ex-

pensive it is to repair, and therefore the future cost of fixing

defects is greater than the present cost of finding them.

However, this reasoning is naive because inspection

costs are significantly higher than many people realize.

In practice, large projects perform hundreds of inspec-

tions, each requiring five or more participants. Besides

the obvious labor costs, holding such a large number

of meetings can also cause delays which may signifi-

cantly lengthen the development interval (calendar time

to completion). 1 Since long development intervals risk

substantial economic penalties, this hidden cost must be

considered.

We hypothesize that different inspection approaches in-

volve different tradeoffs bet ween minimum interval, mini-

mum effort and maximum effectiveness. But until now

there have been no empirical studies to evaluate these

tradeoffs. We are conducting such a study, and our results

indicate that the choice of approach significantly affects

the cost-effectiveness of the inspection.

Below, we review the relevant research literature, de-

scribe the various inspection approaches we examined,

and present our experimental design, analysis, and con-

clusions.

1As developer’s calendars fill up, it becomes increasingly ddlicult to

schedule meetmgs. This pushes meeting dates farther and farther into

the future, increasing the development interval.

92

http://crossmark.crossref.org/dialog/?doi=10.1145%2F222124.222144&domain=pdf&date_stamp=1995-10-01

1.1 Literature Review

To eliminate defects, many organizations use an iterative,

three-step inspection procedure: Preparation, Collection,

Repair[g] , First, a team of reviewers each reads the artifact

separately, detecting as many defects as possible. Next,

these newly discovered defects are collected, usually at a

team meeting, They are then sent to the artifact’s author

for repair. Under some conditions the entire process may

be repeated one or more times.

Many articles have been written about inspections.

Most, however, are case studies describing their successful

use [61T! 17’ Is>*O! lo! l]. Few critically analyze inspections

or rigorously evaluate alternative inspection approaches.

We believe that additional critical studies are necessmy

because the cost-effectiveness of inspections may well de-

pend on such variables as team size, number of inspection

sessions, and the ratio of individual contributions versus

group efforts.

Team Size: Inspections are usually carried out by a team

of four to six reviewers. Buck[*l provides data (from

an uncontrolled experiment) that showed no difference in

the effectiveness of three, four, and five-person teams.

However, no studies have measured the effect of team size

on inspection interval.

Single-Session vs. Multiple-Session Inspections: Tra-

ditionally, inspections are carried out in a single session.

Additional sessions occur only if the original artifact or

the inspection itself is believed to be seriously flawed. But

some authoix have argued that multiple session inspections

might be more effective.

Tsai et al,[161 developed the N-fold inspection process,

in which N teams each carry out independent inspections

of the entire artifact. The results of each inspection are

collated by a single moderator, who removes duplicate de-

fect reports. N-fold inspections will find more defects than

regular inspections as long as the teams don’t completely

duplicate each other’s work. However, they are far more

expensive than a single team inspection.

Parnas and Weiss’ active design reviews (ADR)[121 and

Knight and Myers’ phased inspections (PI)[l 11 are also

multiple-session inspection procedures. Each inspection

is divided into several mini-inspections or “phases”. ADR

phases are independent, while PI phases are executed se-

quentially and all known defects are repaired after each

phase. Usually each phase is carried out by one or more
reviewers concentrating on a single type of defect.

The proponents of multiple-session inspections believe

they will be much more effective than single-session in-

spections, but they have not shown this empirically, nor

have they considered its effect on inspection interval.

Group-centered vs. Individual-centered Inspections:

It is widely believed that most defects are first identi-

fied during the collection meeting as a result of group

interaction[sl . Consequently, most research has focused

on streamlining the collection meeting by determining who

should attend, what roles they should play, how long the

meeting should last, etc.

On the other hand, several recent studies have concluded

that most defects are actually found by individuals prior to

the collection meeting. Humphrey [81 claims that the per-

centage of defects first discovered at the collection meeting

(’<meeting gain rate”) averages about 25%. In an indus-

trial case study of 50 design inspections, Votta [*81 found

far lower meeting gain rates (about 5%). Porter et al.[141

conducted a controlled experiment in which graduate stu-

dents in computer science inspected several requirements

specifications. Their results show meeting gain rates con-

sistent with Votta’s, They also show that these gains are

offset by “meeting losses” (defects first discovered during

preparation but never reported at the collection meeting).

Again, since this issue clearly affects both the research and

practice of inspections, additional studies are needed.

Defect Detection Methods. Preparation, the first step

of the inspection process, is accomplished through the

application of defect detection methods. These methods

are composed of defect detection techniques, individual

reviewer responsibilities, and a policy for coordinating

responsibilities among the review team.

Defect detection techniques range in prescriptiveness

from intuitive, nonsystematic procedures (such as ad hoc

or checklist techniques) to explicit and highly systematic

procedures (such as correctness proofs).

A reviewer’s individual responsibility maybe general, to

identify as many defects as possible, or specific, to focus on

a limited set of issues (such as ensuring appropriate use of

hardware interfaces, identifying untestable requirements,

or checking conformity to coding standards).

Individual responsibilities may or may not be coordi-

nated among the review team members. When they are

not coordinated, all reviewers have identical responsibili-

ties. In contrast, the reviewers in coordinated teams have

distinct responsibilities.

The most frequently used detection methods (Ad Hoc

and Checklist) rely on nonsystematic techniques. Re-

viewer responsibilities are general and identical. Multiple-

session inspection approaches normally require reviewers

to carry out specific and distinct responsibilities. One rea-

son these approaches are rarely used may, be that many

practitioners consider it too risky to remove the redun-
dancy of general and identical responsibilities and to focus

reviewers on narrow sets of issues that may or may not be

present. Clearly, the advantages and disadvantages of al-

ternative defect detection methods need to be understood

before new methods can be safely applied.

93

1.2 Hypotheses

Inspection approaches are usually evaluated according to

the number of defects they find. As a result, some in-

formation has been collected about the effectiveness of

different approaches, butvery little about their costs. We

believe that cost isasimportant as effectiveness, and we

hypothesize that different approaches have significantly

different tradeoffs between development interval, devel-

opment effort, and detection effectiveness. Specifically,

we hypothesize that

●

●

●

2

inspections with large teams have longer inspection

intervals, but find no more defects than smaller teams;

collection meetings do not significantly increase de-

tection effectiveness;

multiple-session inspections are more effective than

single-session inspections, but significantly increase

inspection interval.

The Experiment

To evaluate these hypotheses we designed and are conduct-

ing a controlled experiment. Our purpose is to compare the

tradeoffs between minimum interval, minimum effort, and

maximum effectiveness of several inspection approaches.

2.1 Experimental Setting

We are currently running this experiment at AT&T on a

project that is developing a compiler and environment to

support developers of the AT&T 5ESS@telephone switch-
ing system. The finished system is expected to contain 30K

new lines of C++ code, plus 6K which will be reused from

a prototype.

Our inspector pool consists of 11 experienced develop-

ers, each of which has received inspection training in the

last 5 years. The project began coding during June, 1994,
and will perform 64 code inspections by the middle of

1995.

2.2 Operational Model

To test our hypotheses we must measure both the interval

and the effectiveness of every inspection. We began by

constructing two models; one for calculating inspection
interval and effort, and another for estimating the number

of defects in a code unit.

2.2.1 Modeling the Inspection Interval The inspec-

tion process begins when a code unit is ready for inspec-

tion and ends when the author finishes repairing the defects

found in the code. The elapsed time between these events

is called the inspection interval.

The length of this interval depends on the time spent

working (preparing, attending collection meetings, and

repairing defects) and the time spent waiting (time during

which the inspection does not progress due to process

dependencies, higher priority work, scheduling conflicts,

etc).

In order to measure inspection interval and its various

subintervals, we devised an inspection time model based

on visible inspection events [191, Whenever one of these

events occurs it is timestamped and the event’s participants

are recorded. (In most cases this information is manually

recorded on the forms described in Section 2.4.1.) These

events ‘occur, for example, when code is ready for in-

spection, or when a reviewer starts or finishes his or her

preparation. This information is entered into a database,

and inspection intervals are reconstructed by performing

queries against the database.

Inspection effort can be calculated by summing the ap-

propriate subintervals. At this time, however, we haven’t

fully analyzed the effort data. Instead we are concentrating

on inspection interval as our primary cost measure because

of its schedule implications.

2.2.2 Modeling the Defect Detection Ratio One im-

portant measure of an inspection’s effectiveness is its de-

fect detection ratio – the number of defects found during

the inspection divided by the total number of defects in the

code. Because we never know exactly how many defects

an artifact contains, it is impossible to make this measure-

ment directly, and therefore we are forced to approximate

it.

The estimation procedure must be (a) as accurate as

possible and (b) available throughout the study because

we are experimenting with a live project and must identify

and eliminate dangerously ineffective approaches as soon

as possible.

We found no single approximation that met both criteria,

Therefore we will use three methods.

●

●

Observed detection ratio: We assume that total de-

fect density is constant for all code units and that

we can compare the number of defects found per

KNCSL. This is always available, but may be very

inaccurate.

Partial estimation of detection ratio: We use

capture-recapture methods to estimate pre-inspection

defect content. This estimation can be performed

when there are at least two reviewers and they dis-

cover some defects in common. Under these condi-

tions this method is more accurate than the observed

94

Number of Sessions] Totals

1 2

Reviewers With Repair No Repair

1 ; : 1 1
9 7

2 ; ; 9 ?
4 1; o 0 7

Table 1: This table gives the proportion of inspections

allocated to each setting of the independent variables.

●

2.3

detection ratio and is available immediately after ev-

ery inspection. Since capture-recapture techniques

make that strong statistical assumptions, we are cur-

rently testing our data to see whether or not this tech-

nique will be appropriate. (See Eick et al. [41 for

more details,)

Complete estimation of detection ratio: We will

track the code through testing and field deployment,

recording new defects as they are found. This is the

most accurate method, but is not available until well

after the project is completed.

Experimental Design

2.3.1 Variables The experiment manipulates 3 inde-

pendent variables:

1,

2.

3.

the number of reviewers per team (one, two, or four

reviewers, in addition to the author),

the number of inspection sessions (one session or two

sessions),

the coordination between sessions (in two-session in-

spections the author does or does not repair known

defects between sessions).

These variables reflect many (but not all) of the differences

between Fagan inspections, N-Fold inspections, Active

Design Reviews, and Phased Inspections. One very im-

portarit difference that is not captured in our experiment is

the choice of defect detection methods, The methods used

in Active Design Reviews and Phased Inspections involve

systematic techniques, with specific and distinct responsi-

bilities, while Fagan and N-fold inspection normally use

nonsystematic techniques with general and identical re-

sponsibilities.

The treatment distributions are shown in Table 1.

For each inspection we measured 5 dependent variables:

1. inspection interval,

2, inspection effort,

3, estimated defect detection ratio,

4. the percentage of defects first identified at the collec-

tion meeting (meeting gain rate),

5. the percentage of potential defects reported by an in-

dividual, that are determined not to be defects during

the collection meeting (meeting suppression rate).

We also capture repair statistics for every defect (See Sec-

tion 2,4.2), This information is used to discard certain

defect reports from the analysis – i.e., those regarding de-

fects that required no changes to fix them or concerned

coding style rather than incorrect functionality.

2.3.2 Design This experiment uses a 22 x 3 partial fac-

torial design to compare the interval, effort, and effec-

tiveness of inspections with different team sizes, number

of inspection sessions, and coordination strategies. We

chose a partial factorial design because some treatment

combinations were considered too expensive (e.g., two-

session-four-person inspections with and without repair).

2.3.3 Threats to Internal Validity Threats to internal

validity are influences that can affect the dependent vari-

able without the researcher’s knowledge. We considered

three such influences: (1) selection effects, (2) maturation

effects, and (3) instrumentation effects.

Selection effects are due to natural variation in human

performance. For example, if one-person inspections are

done only by highly experienced people, then their greater

than average skill can be mistaken for a difference in the

effectiveness of the treatments. We limited this effect by

randomly assigning team members for each inspection.

This way individual differences are spread across all treat-

ments.

Maturation effects result from the participants’ skills im-

proving with experience, Again we randomly assigned the

treatment for each inspection to spread any performance

improvements across all treatments.

Instrumentation effects are caused by the code to be

inspected, by differences in the data collection forms, or

by other experimental materials. In this study, one set of

data collection forms was used for all treatments. Since we

could not control code quality or code size, we randomly

assigned the treatment for each inspection.

2.3.4 Threats to External Validity Threats to external

validity are conditions that limit our ability to generalize

the results of our experiment to industrial practice. We

considered three sources of such threats: (1) experimental

scale, (2) subject general inability, and (3) subject repre-

tentativeness.

Experimental scale becomes a threat when the exper-

imental setting or the materials are not representative of

industrial practice, We avoided this threat by conducting

the experiment on a live software project.

95

A threat to subject generalizability may exist when the

subject population is not drawn from the industrial popu-

lation. This is not a concern here because our subjects are

software professionals.

Threats regarding subject representativeness arise when

the subject population is not representative of the industrial

population. This may endanger our study because our

subjects are members of a development team, not a random

sample of the entire development population.

2.3.5 Analysis Strategy Our strategy for analyzing the

experiment has three steps: resolution analysis, calibra-

tion, and hypothesis testing.

Resolution Analysis. An experiment’s resolution is the

minimum difference in the effectiveness of two treatments

that can be reliably detected.

We performed the resolution analysis using a Monte

Carlo simulation. The simulation indicates that with as few

as 5 observations per treatment the experiment can reliably

detect a difference as small as ,075 in the defect detection

rate of any two treatments, The strongest influence on

the experiment’s resolution is the standard deviation of

the code units’ defect content – the smaller the standard

deviation the finer the resolution. See Porter et al. [131 for

more details.

Calibration. We continuously calibrate the experiment

by monitoring the sample mean and variance of each treat-

ment’s detection ratio and inspection interval, and the num-

ber of observed inspections. Based on this information we

may discontinue some treatments (1) if their effectiveness

1s so low or if their interval is so long that it puts the

project at risk, or (2) if it is determined that the current

distributions will produce too few data points to identify

statistically significant differences in their performances.

In fact, we are planning to discontinue at least three treat-

ments in the remainder of the study. (See Section 5.)

Hypothesis Testing. Once the data are collected we an-

alyze the combined effect of the independent variables on
the dependent variables to evaluate our hypotheses. Once

the significant explanatory variables are discovered and

their magnitude estimated, we will examine subsets of the

data to study our specific hypotheses.

@or example, If two treatments have little within-treatmentWWkUrce
andverydifferent meanperformance,thenfew datapointsareneededto
statisticallyestablishthe difference Otherwise,more observations are
necessary, If the number of data points needed is more than the number

of inspections to be done, we will have to consider removmg some of the

treatments

2.4 Experimental Instrumentation

We designed several instruments for this experiment:

preparation and meeting forms, author repair forms, and

participant reference cards.

2,4.1 Data Collection Forms We designed two data

collection forms, one for preparation and another for the

collection meeting.

The meeting form is filled in at the collection meeting.

When completed, it gives the time during which the meet-

ing was held, and a page number, a line number, and an

ID for each defect.

The preparation form is filled in during both preparation

and collection, During preparation, the reviewer records

the times during which he or she reviewed, and the page

and line number of each issue (“suspected” defect). During

the collection meeting the team will decide which of the

reviewer’s issues are, in fact, real defects. At this time, real

defects are recorded on the meeting form and given an ID.

If a reviewer had discovered this defect during preparation

then they record this ID on their preparation form.

2.4.2 Author Repair Forms The author repair form

captures information about each defect identified during

the inspection. This information includes Defect Disposi-

tion (no change required, repaired, deferred); Repair Effort

(< lhr , < 4hr , <. 8hr, or > 8hr-), Repair Local-

ity (whether the repair was isolated to the inspected code

unit), Repair Responsibility (whether the repair required

other developers to change their code), Related Defect

Flag (whether the repair triggered the detection of new

defects), and Defect Characteristics (whether the defect

required any change in the code, was changed to improve

readability or to conform to coding standards, was changed

to correct violations of requirements or design, or was

changed to improve efficiency).

2.4.3 Participant Reference Cards Each participant

received a set of reference cards containing a concise de-

scription of the experimental procedures and the responsi-

bilities of the authors and rewewers.

2.5 Conducting the Experiment

To support the experiment, Mr. Harvey Siy, a doctoral

student working with Dr. Porter at the University of Mary-

land, joined the development team in the role of inspection

quality engineer (IQE). The IQE is responsible for track-

ing the experiment’s progress, capturing and validating

data, and observing all inspections. The IQE also attends

the development team’s meetings, but has no development
responsibilities.

When a code unit is ready for inspection, its author sends

an inspection request to the IQE. The IQE then randomly

assigns a treatment (based on the treatment distributions

96

given in Table 1) and randomly draws a review team from

the reviewer pool, 3 These names are then given to the

author, who schedules the collection meeting. Once the

meeting is scheduled, the IQE puts together the team’s

inspection packets,4

The inspection process used in this environment is sim-

ilar to a Fagan inspection, but there are some differences.

During preparation, reviewers analyze the code in order

to find defects, not just to acquaint themselves with the

code. During preparation reviewers have no specific tech-

nical roles (i,e,, tester, or end-user) and have no checklists

or other defect detection aids. All suspected defects are

recorded on the preparation form. The experiment places

no time limit on preparation, but a organizational limit of

300 LOC over a maximum of 2 hours is generally ob-

served.

For the collection meeting one reviewer is selected to be

the reader. This reviewer paraphrases each line of code.

During this paraphrasing activity, reviewers may bring up

any issues found during preparation or discuss new issues.

The code unit’s author moderates the collection meeting

and compiles the master list of all defects. Other reviewers

have no predefine roles.

The IQE also attends the collection meeting to ensure

that all the procedures are followed correctly, After the

collection meeting he gives the preparation forms to the

author, who then repairs the defects, fills out the author re-

pair form, and returns all forms to the IQE. After the forms

are returned, the IQE interviews the author to validate the

data.

3 Data and Analysis

Four sets of data are important for this study: the team

defect summaries, the individual defect summaries, the

interval summaries, and the author repair summaries. This

information is captured on the preparation, meeting, and

repair forms.

The team defect summary forms show all the defects

discovered by each team. This form is filled out by the

author during the collection meeting and is used to assess

the effectiveness of each treatment. It is also used to

measure the added benefits of a second inspection session

by comparing the meeting reports from both halves of

two-session inspections with no repair.

The individual defect summary forms show whether or

not a reviewer discovered a particular defect. This form

is filled out during preparation to record all suspected de-
fects. The data is gathered from the preparation form and

‘“ 3we do not allow any single reviewer to be assigned to both teams in

a two-session inspection.
q’r’he inspection packet con~ins the code to be inspected all rewired

data collection forms and instnsctions, and a notice giving the time and

location of the collection meeting.

is compiled during the collection meeting when review-

ers cross-reference their suspected defects with those that

are recorded on the meeting form, This information, to-

gether with the team summaries, is used to calculate the

capture-recapture estimates and to measure the benefits of

collection meetings.

The interval summaries describe the amount of calendar

time that was needed to complete the inspection process.

This information is used to compare the average inspec-

tion interval and the distribution of subintervals for each

treatment.

The author repair summaries characterize all the defects

and provide information about the effort required to repair

them.

At this time 34 inspections have been completed. Con-

sequently, we do not yet have enough data to definitively

evaluate our hypotheses. However, we can look at the

apparent trends in our preliminary data, explore the impli-

cations of this data for our hypotheses, and discuss how

the resolution of these hypotheses at the completion of

the experiment will help us answer several open research

questions,

3.1 Data Reduction

Data reduction is the manipulation of data after its col-

lection. We have reduced our data in order to (1) remove

data that is not pertinent to our study, and to (2) adjust for

systematic measurement errors.

3.1.1 Reducing the Defect Data The preparation and

meeting forms capture the set of issues that were raised

during each inspection. The reduction we made was to re-

move duplicate reports from 2-session-without-repair in-

spections. This task is performed by the IQE and the code

unit’s author.

Another reduction was made because, in practice, many

issues, even if they went unrepaired, would not lead to

incorrect system behavior, and they are therefore of no

interest to our analysis.

Although defect classifications are usually made during

the collection meeting, we feel that authors understand the

issues better after they have attempted to repair them, and

therefore, can make more reliable classifications. conse-

quently, we use information in the repair form and inter-

views with each author to classify the issues into one of

three categories:

●

●

97

False Positives (issues for which no changes were

made),

Soft Maintenance (issues for which changes were

made only to improve readability or enforce coding

standards),

Figure 1: Disposition of Issues Recorded at the Collec-

tion Meeting. For each treatment, the bat-chart shows the

percentage of the issues recorded at collection meetings

that turn out to be false positives, soft maintenance, or true

defects. Across all treatments, only 21% of the issues are

true defects.

● True Defects (issues for which changes were made to

fix requirements or design violations, or to improve

system efficiency).

The distribution of defect classifications for each treat-

ment appears in Figure 1, Across all inspections, 2470 of

the issues are False Positives, 5570 involve Soft Mainte-

nance, and 21 ?ZOare True Defects. We consider only True

Defects in our analysis of estimated defect detection ratio

(a dependent variable).5

3.1.2 Reducing the Interval Data The preparation,

meeting, and repair forms show the dates on which impor-

tant inspection events occur. This data is used to compute

the inspection intervals.

We made two reductions to this data. First, we observed

that some authors did not repair defects immediately fol-

lowing the collection meeting. Instead, they preferred to

concentrate on other development activities, and fix the

defects later, during slow work periods. To remove these

cases from the analysis, we use only the pre-meeting in-

terval (the calendm period between the submission of an
inspection request and the completion of the collection

meeting) as our initial measure of inspection interval.

When this reduction is made, two-session inspections

have two inspection subintervals – one for each session.

The interval for a two-session inspection is the longer of

its two subintervals, since both of them begin at the same

time,

swe ~b~~~~d that most of the soft maintenanceissuesare caused

by conflicts betweenthe coding style or conventionsusedby different
reviewers. In and of themselves,theseare not true defects, We feel
these issues might be more efficiently handIed outside of the inspection

process with automated tools or standards.

PHASE

Figure 2: Pre-meeting Inspection Interval. These box-

plots show all the interval data divided into two parts: time

before the meeting and time after the meeting. The total

inspection time has a median of 14.5 days, 59% of which

is before the meeting.

Number of Sessions I Totals

1 2

Team Size With Repair I No Repair

1 6 4 4 14

2 7 4 5 16

4 4 0 0 4

Totals 17 8 9 34

Table 2: This table shows the number of inspections we

have observed for each treatment,

Next, we removed all non-working days from the inter-

val, Non-working days are defined as either (1) weekend

days during which no inspection activities occur, or (2)

days during which the author is on vacation and no re-

viewer performs any inspection activities. We use these

reduced intervals as our measure of inspection interval.

Figure 2 is a boxplotb showing the number of work-

ing days from the issuance of the inspection request to

the collection meeting, from the collection meeting to the

completion of repair, and the total. The total inspection

interval has a median of 14.5 working days, 8.5 before and

6 after the collection meeting.

3.2 Overview of Data

Table 2 shows the number of observations to date for each

treatment, Figure 3 is a contrast plot showing the interval

61n this paper we have made extensive use Of boxplots to represent

data distributions, Each data set is represented by a box whose height

spans the central 5070 of the data. The upper and lower ends of the box

marks the upper and lower quartiles. The data’s median is denoted by a

bold line within the box. The dashed vertical lines attached to the box

indicate the tails of the distribution; they extend to the standard range of

the data (1.5 times the inter-quartile range). All other detached points

are “mrtliers’f, [31

98

80-

0:
All Data Repair Team

Sessions Reviewers

FACTORS

204-

o-

All Data Repair Team
Sessions Reviewers

FACTORS

Figure 3: Effectiveness and Interval by Independent

Variables. The dashes in the far left column of the first

plot show the defect detection rates for all inspections. The

dotted horizontal line marks the average defect detection

rate. The other four columns indicate factors that may in-

fluence this dependent variable. The plot demonstrates the

ability of each factor to explain variations in the dependent

variable. For the Sessions factor, the vertical locations of

the symbols “ 1” and “2” are determined by averaging the

defect detection rates for all code inspection units hav-

ing 1 or 2 sessions. The bracket at each factor represents

one standard error of difference. If the actual difference

is longer than the bracket, then that factor is statistically

significant, The right plot shows similar information for

inspection interval.

and effectiveness of all inspections and for every setting

of each independent variable. This information is used

to determine the amount of the variation in the dependent

variables that is explained by each independent variable.

We also show another variable, total number of reviewers

(the number of reviewers per session multiplied by the

number of sessions). This variable provides information

about the relative influence of team size vs. number of

sessions,

3.3 Analysis of Interval Data

Inspection interval is an important measure of cost. Fig-

ure 4 shows the inspection interval (pre-meeting only) by

treatment and for all treatments.

The cost of increasing team size is suggested by com-

paring 1-session inspections (lsXlp, 1sX2P, and lsX4p).

T “—

A

i-l
i!

h

~

lsXtp fJ@a tsX4P 2,XlpN 2,X1 PR 2sX2pN 2sX2pR All

TREATMENT

Figure 4: Pre-meeting Interval by Treatment. This plot

shows the observed pre-meeting interval for each inspec-

tion treatment. Across all treatments, the median interval

is 8.5 days.

Since there is no difference in the three intervals team

size alone does not appear to affect interval.

The additional cost of multiple inspection sesstons

can be seen by comparing l-session inspections with 2-

session- without-repair inspections (lsX2p and 1sX1 p with

2sX2pN and 2sXlpN inspections), We find that 2-session

inspections don’t take longer than 1-session inspections.

However, we also note that the intervals of 2-session in-

spections have much more variance than do 1-session in-

spections+

The cost of serializing two inspection sessions is

suggested by comparing 2-session-with-repair inspec-

tions to 2-session-without-repair inspections (2sX2pN and

2sXlpN with 2sX2pR and 2sXlpR inspections). When

the teams have only 1 reviewer we find no difference in

interval, but difference is found for 2-reviewer teams. This

may indicate that requiring repair between sessions only

increases interval as the team size grows.

We can draw other observations from this data. For

instance, except for the 2sX2pR treatment (20 days), all

treatments have similar median intervals (7.5 days).

3.4 Analysis of Effectiveness Data

The primary benefit of inspections is that they find defects.

This benefit will vary with the different inspection treat-

ments. Figure 5 shows the observed defect density for all

inspections and for each treatment separately.

The effect of increasing team size is suggested by not-

ing that there is no difference in the effectiveness of any

7 In ~hiS ~icle, we ~onSider two data distributions tO be significantly

different only if the Wllcoxon rank sum test rejects the null hypothesis that

the observations are drawn from the same population with a confidence

level >.9.

99

I T

-r

1

lsXIP 1sX2P 1SX4P 28X1PN2sX1 DR2W2PN 2s,WPR All

TREATMENT

Figure 5: Observed Defect Density by Treatment. This

plot shows the observed defect density for each inspec-

tion treatment. Across all inspections, the median defect

detection rate was 24 defects per KNCSL.

1-session inspection (lsXlp, 1sX2p, and lsX4p inspec-

tions). Although the median defect detection rate increases

with the number of reviewers, the variance increases also.

The effective of having multiple sessions is suggested by

comparmg 1-session inspections with 2-session-without-

repair inspections (1 sX2p and 1sXlp with 2sX2pN and

2sXlpN inspections). 2-session inspections are more ef-

fective than 1-session inspection only when there are two

reviewers on the team.

The effect of serializing multiple sessions is suggested

by comparing 2-session-with-repair inspections to 2-

session-without-repair inspections (2sX2pN and 2sXlpN

with 2sX2pR and 2sX lpR inspections). The data show

that repairing defects between multiple sessions doesn’t

increase effectiveness.

Several other trends appem in the preliminwy data.

First, 2sX2p inspections are more effective than lsX4p,

suggesting that 4 people will be more effective as 2 small

groups than as 1 larger group, On the other hand 2sXlp

inspections aren’t more effective than 1sX2p inspections.

3.5 Meeting Effects

During preparation, reviewers analyze the code units to
discover defects. After all reviewers are finished prepar-

ing, a collection meeting is held. These meetings are

believed to serve at least two important functions: (1) sup-

pressing unimportant or incorrect defect reports, and (2)

finding new defects, In this section we analyze the effect

collection meetings on inspection performance,

Analysis of Preparation Reports. One input to the col-
lection meeting is the list of defects found by each reviewer

during his or her preparation. Figure 6 shows the percent-

age of defects reported by each reviewer that are eventually

TREATMENT

Figure 6: True Defect Rate per Reviewer Preparation

Report by Treatment. This boxplot shows the rate at

which defects found during preparation are eventually con-

sidered to be true defects. Across all treatments, only 15%

of the reports turn out to be true defects.

determined to be true defects. Across all 88 preparation

reports, only 1590 of all issues turn out to true defects.

The only differences we see are that 2sX2pN inspec-

tions have more true reports than lsXlp, 1sX4p, 2sXlpN

and 2sX1 pR inspections, and 2sX2pR inspections have

more true reports than 25X lpN and 2sX lpR inspections.

There is no difference between any 2-person method. The

largest difference is between 2sX2pN inspections (20%

true reports) and 2sXlpN inspections (8??0true reports).

Analysis of Suppression. It is generally assumed that

collection meetings suppress unimportant or incorrect de-

fect reports, and that without these meetings, authors

would have to process many spurious reports during re-

pair. As we showed in the previous section as average of

85% of reviewer reports do not involve true defects.

Figure 7 shows the suppression rates for all 88 reviewer

reports. Across all inspections about 25?40of msues are

suppressed. One trend in the preliminary data is that sup-

pression appears to be independent of the treatment.

Analysis of Meeting Gains Another function of the Col-

lection meeting is to find new defects in addition to those

discovered by the individual reviewers. Defects that are

first discovered at the collection meeting are called meet-

ing gains,

Figure 8 shows the meeting gain rates for all 51 collec-

tion meetings. Across all inspections, 33% of all defects

discovered are meeting gains. The data suggests meeting

gains are independent of treatment.

100

Figure 7: Meeting Suppression Rate by Treatment.

These boxplots show the suppression rate for each re-

viewer by treatment. The suppression rate for a reviewer

is the number of defects detected during preparation but not

included in the collection meeting defect report, divided

by the total number of defects recorded by the reviewer

in hislher preparation. Across all inspections, 25% of the

preparation reports are suppressed.

I,XIP tW2P tsX4P 2,X1PN 2sXfpR 2,X2PN 2,X2PR All

TREATMENT

Figure 8: Meeting Gain Rate by Treatment. These

boxplots shows the meeting gain rates for all inspections

and for each treatment. The average rate was 3370.

4 Conclusions

We are in the midst of a long term experiment in which

we apply different software inspection methods to all the

code units produced during a professional software de-

velopment. We are assessing the methods by randomly

assigning different team sizes, numbers of inspection ses-

sions, author repair activities, and reviewers to each code

unit. To date we have completed 34 of the planned 64

inspections, We expect to finish the remaining 30 inspec-
tions by the middle of 1995.

Our preliminary results challenge certain long-held be-
liefs about the most cost-effective ways to conduct inspec-

tions. It also raises some questions about the feasibility of

recently proposed methods.

In this section we summarize our preliminm-y results

and discuss their implications from points of view of both

practitioners and researchers.

Individual Preparation. Our data indicate that almost

one-half of the issues reported during preparation turn out

to be false positives, Another 35$Z0pertain to nonfunc-

tional style and maintenance issues. Finally, only 15%

concern defects that will compromise the functionality of

the delivered system.

For practitioners this suggests that a good deal of effort

is currently being expended on issues that might better be

handled by automated tools or standards.

For researchers this suggests that developing better de-

fect detection techniques may be much more important

than any of the organizational Issues discussed in this ar-

ticle [141.

Meeting Gains. On the average 33% of defects were

meeting gains.

One implication of this result is that it may be worth-

while to study the cost-benefits of meeting-less inspec-

tions. For example, 2sX2pN inspections are more than

33% more effective than 1sX4p inspections. Without

a collection meeting 2sX2pN inspections would still be

more effective, but might require less total effort and have

a shorter interval.
These meeting gain rates are higher than those reported

by Votta[lsl (5%). Since meetings without meeting gains

are a large, unnecessary expense, it’s important for re-

searchers to better understand this issue, Some possible

explanations for this are (1) Votta’s study focused on design

inspections rather than code inspections, (2) the average

team size for a design inspection is considerably larger

than for code inspections, or (3) design reviewers may

prepare much more thoroughly since design defects are

likely to be more damaging than code defects. We will be

examining this issue more closely in the remainder of the

experiment.

Team Size. We found no difference in the interval or ef-

fectiveness of inspections with 1, 2, or 4-reviewer teams.

The effectiveness of l-reviewer teams was considered

poorer than that of larger teams with a confidence level of

about ,2, Although this difference is not normally consid-

ered statistically significant, it does suggest that 1-reviewer

teams are not as effective as 2 or 4-reviewer teams,

For practitioners this suggests that reducing the default

number of reviewers from 4 to 2 may significantly reduce

effort without increasing interval or reducing effectiveness.
The implications of this result for researchers is un-

clear. We need to develop a better understanding of why

4-reviewer teams weren’t more effective than 2-reviewer

teams. We will explore this issue further during the re-

mainder of the experiment.

101

Multiple Sessions. We found that 2, 2-person teams

were more effective than 1, 4-person team, but 2, 1-person

teams weren’t more effective than 1, 2-person team. We

also found that 2-session inspections without repair have

the same interval as 1-session inspections.

In practice this indicates that 2-session-without-repair

Inspections should be used if their increased effectiveness

is considered to be worth the extra effort (not interval).

These results are significant for researchers as well.

Multiple session methods such as active design reviews

(ADR) and phased inspections (PI) rely on the assumption

that several one person teams using specially developed

defect detection techniques can be more effective than a

single large team without special techniques, Some of our

experimental treatments mimic the ADR and PI methods

(without special defect detection techniques). This sug-

gests that any improvement offered by these techniques

will not come just from the structural organization of the

inspection, but will depend heavily on the development of

defect detection techniques.

The performance of 2sX2pN inspections partially sup-

ports use of multiple sessions methods such as N-fold

inspections. Of course, our data doesn’t indicate to what

degree these methods will scale up (i.e., as the number of

sessions grows beyond 2).

Serializing Multiple Sessions. We found that repairing

defects in between multiple sessions had no effect on de-

fect detection rate, but in some cases increased interval

dramatically.

In practice, we see no reason to repair defects between

multiple sessions. Furthermore, some of the developers

in our study felt that the 2-session-with-repair treatments

caused the greatest disruption in their schedule. For exam-

ple, they had to explicitly schedule their repairs although

they would normally have used repair to fill slow work

periods.

This result raises several research questions as well.

Why aren’t more defects found relative to the without-

repair inspections? Is it because different defects are found

in the 2 sessions of without-repair inspections? Is it be-
cause the defect detection techniques being used are find-

ing all the defects they can find (producing an upper bound

on any treatment’s effectiveness)?

This result also provides some information about the re-

cently proposed phased inspection method. This method

requires small teams each specially defect detection tech-

mques to perform several inspections in serial, repairing

defects between each session. Our data shows no improve-
ment due solely to the presence of repair. Consequently,

without special defect detection techniques the approach

in unlikely to be effective.

5 Future Work

During the remainder of this experiment we will be making

several changes to the experimental design. In particular

we will remove treatments that require defect repair in be-

tween a 2-session inspection (2sX2pR and 2sX lpR). As

discussed previously, these treatments are no more effec-

tive than the without repair variety, but can affect interval

considerable y.

We are also considering removing the 1SX lp treatment.

As discussed above, this treatment is potentially the poor-

est performing treatment and continuing to use it poses

some threats to the projects. Therefore, we will be moni-

toring it closely as the experiment continues.

We will also deepen our data analysls. For example, we

will explore the following questions.

How much variation in the observed performance can

be explained by natural variation in the code being

inspected?

How much variation in the observed performance can

be explained by natural variation in the individual

inspectors?

How many defects are found in common by both

teams in a 2-session inspection?

Why are 2-sessions better than 1? Is it because there

is little overlap between the 2 teams or is it because

with 2 teams there is a greater chance of selecting a

high performance team?

Finally, we feel it is important that others attempt to

replicate our work, and we are preparing materials to fa-

cilitate this. Although we have rigorously defined our

experiment and tried to remove the external threats to va-

lidity, it is only through replication that we can be sure all

of them have been addressed.

Acknowledgments

We would like to recognize the efforts of the experimental

participants – an excellent job is being done by all, Our

special thanks to Nancy Staudenmayer for her many help-

ful comments on the experimental design. Our thanks to

Dave Weiss and Mary Zajac who did much to ensure we

had all the necessary resources and to Clive Loader and

Scott VanderWiel for their valuable technical comments,

Finally, Art Case’s editing is greatly appreciated.

References

[1] Barry Boehm. Verifying and validating software re-

quirements and design specifications, IEEE Soft-

ware, 1(1):75–88, January 1984.

102

[2] F. O. Buck, Indicators of quality inspections. Techni-

cal Report 21.802, IBM Systems Products Division,

Kingston, NY, September 1981.

[3] John M. Chambers, William S. Cleveland, Beat

Kleiner, and Paul A. Tukey. Graphical Methods for

Data Analysis. Wadsworth International Group, Bel-

mont, California, 1983.

[4] Stephen G Eick, Clive R Loader, M. David Long,

Scott A Vander Wiel, and Lawrence G Votta.

Capture-recapture and other statistical methods for

software inspection data. In Computing Science and

Statistics: Proceedings of the 25th Symposium on

the Inteq$ace, San Diego, California, March 1993.

Interface Foundation of North America.

[5] M. E. Fagan. Design and code inspections to re-

duce errors in program development. IBM Systems

Journal, 15(3):216–245, 1976.

[6] P. J. Fowler. In-process inspections of work products

at at&t. AT&T Technical Journal, March-April 1986.

[7] D. P. Freeman and G. M. Weinberg. Handbook of

Walkthroughs, Inspections and Technical Reviews.

Little, Brown, Boston, MA, 1982.

[8] Watts Humphrey. Managing the Software Process.

Addison-Wesley, New York, 1989.

[9] IEEE Standard forsof~are reviews and audits. Soft.

Eng. Tech. Comm. of the IEEE Computer Society,

1989. IEEE Std 1028-1988,

[10] John C. Kelly, Joseph S. Sherif, and Jonathan Hops.

An analysis of defect densities found during software

inspecitons. In SEL Workshop Number 15, Goddard

Space Flight Center, Greenbelt, MD, nov 1990.

[11] John C. Knight and E. Ann Myers. An improved

inspection technique. Communications of the ACM,

36(1 1):51-61, November 1993.

[12] Dave L. Parnas and David M. Weiss. Active design

reviews: principles and practices. In Proceedings of

the 8th International Conference on Software Engi-

neering, pages 215–222, Aug. 1985.

[13] Adam A, Porter, Harvey Siy, Carol Toman, and

Lawrence G. Votta, An experiment to assess the

cost-benefits of code inspection in large scale soft-

ware development. Technical Report CS-TR-34 10,

University of Maryland, College Park, MD.

[14] Adam A. Porter and Lawrence G. Votta. An exper-

iment to assess different defect detection methods
for software requirements inspections. In Sixteenth

International Conference on Software Engineering,

Sorrento, Italy, May 1994.

[15] Glen W. Russel. Experience with inspections

in ultralarge-scale developments. IEEE Software,

8(1):25–31, January 1991.

[16] G. Michael Schnieder, Johnny Martin, and W. T.

Tsai. An experimental study of fault detection in user

requirements. ACM Trans. on Soflware Engineering

and Methodology, 1(2): 188–204, April 1992.

[17] T. A, Thayer, M. Lipow, and E. C. Nelson. Soft-

ware reliability, a study of large project reality, vol-

ume 2 of TRW series of Software Technology. North-

Holland, Amsterdam, 1978.

[18] Lawrence G, Votta. Does every inspection need a

meeting? In Proceedings of ACM SIGSOFT ’93

Symposium on Foundations of Software Engineering,

pages 107–1 14. Association for Computing Machin-

ery, December 1993.

[19] Alexander L. Wolf and David S. Rosenblum. A study

in software process data capture and analysis. In

Proceedings of the Second International Conference

on Software Process, pages 115–124, February 1993.

[20] E. Yourdon. Structured Walkthroughs. Prentice-Hall,

Englewood, NJ, 1979.

103

